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1 INTRODUCTION AND OVERVIEW 
In this paper I want to report on some recent developments in wavelet technol- 
ogy and, in particular, how it relates to some of the research activities at NASA. 
First, I want to indicate the nature of our research effort at Rice University in 
this direction. We have developed over the last four years a Computational 
Mathematics Laboratory (CML) housed in the Computer and Informa- 
tion Technology Institute (CITI) at Rice. This laboratory has as its primary 
focus research in the theory and applications of wavelets and more generally mul- 
tiscale phenomena in mathematics, science and engineering. The researchers in 
the CML are: 

0 R. 0. Wells, Jr., Professor of Mathematics (Rice), Director of CML 

0 C. S. Burrus, Professor of Electrical and Computer Engineering (Rice) 

0 W. W. Symes, Professor and Chairman of Computa.tiona1 and Applied 

Roland Glowinski, Cullen Professor of Mathematics, University of Hous- 

and Director of CITI 

Mathematics (Rice) 

ton 

0 4 Post Doctoral Fellows and 5 Graduate Students 

Principal Support: ARPA, NASA, Aware, Inc., Texas Instruments, 'Texas 
Higher Education Coordinating Board 
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Wavelet research has been developing rapidly over the past five years, and 
in particular in the academic world there has been significant activity at Rice, 
Yale, MIT, Delaware, Brown, S. Carolina, Washington Univ., Minnesota, Dart- 
mouth, and numerous other universities. In the industrial world, there has 
been developments at Aware, Inc., Lockheed, Martin-Marietta, TRW, Kodak, 
Exxon, and many others. The government agencies supporting wavelet research 
and development include ARPA, ONR, AFOSR, NASA, and many other agen- 
cies. The recent literature in the past five years includes a recent book [6] which 
is an index of citations in the past decade on this subject, and it contains over 
1,000 references and abstracts. 

2 WAVELET MATHEMATICS 
Fundamentally, wavelets are a new type of function which provide an excellent 
orthonormal basis for functions of one or more variables. They provide a local- 
ized basis, and can represent square-integrable functions, but also constant and, 
more generally, polynomial functions in a locally finite manner. 

In 1988 Daubechies’ fundamental paper on wavelets [l] appeared. In this 
paper we find for the first time a parametrized family of orthonormal systems 
of functions in L2(R) with certain important complementary properties. Each 
system of functions has the following properties: 

0 each system is generat:d from a scaling function p(x) and a wavelet func- 
tion +(x) by rescalings (by powers of an integer) and translations (e.g., 
pj,h(x) := 2j/’p(23’c - IC) and +j,k(x) := 2j/’+(2iz - IC). The wavelet 
system 

is an orthonormal basis for L2(R) and more general functions as well (in- 
cluding constants and higher order polynomials, depending on the wavelet 
system chosen). 

{ + O , k ( Z ) ,  + j , k ( Z ) ,  j ,  k. E 2, j L 0) (1) 

4 each element in a given system has compact support and is continuous or 
can be chosen to be smooth up to a given finite order and by the resealing 
above, the supports of the basis functions becomes very small for large 
scaling index j. 

0 There are fast algorithms for computing the coefficients of the expansion of 
a given digitized (sampled function). This is the discrete wavelet transform 
(from the sampled function to the wavelet expansion coefficients), and it 
is an O ( N )  algorithm. 

0 The classical discrete Fourier and cosine transforms appear as a special 
case of the general discrete wavelet transform (DWT) 
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0 The discrete wavelet transform is parallelizable and can ben implemented 
on massively parallel machines as well as can be designed into specializedd 
VLSI chips (e.g., for digital video editing). 

In general a scaling function and corresponding wavelet function satisfy the 
scaling equation 

2 g - 1  

lo(%) = E a k V ( f 2 . z  - k) (2) 
k=O 

and the corresponding wavelet defining equation 

where the coefficients of the scaling equation a k  must satisfy linear and quadratic 
constraints of the form: 

and where 6 k  := ( - l ) k + 1 b 2 g - l - k .  
One of the powers of wavelet technology is the ability to choose the defining 

coefficients for a given wavelet system to be best adapted to the given problem. 
Daubechies developed in her original paper [l] specific families of wavelet sys- 
tems which had maximal vanishing moments of the 1c, function and which were 
very good for representing polynomial behavior. In Figure 1 we see the corre- 
sponding Daubechies scaling and wavelet function for the case of 4 coefficient 
(g = 2) where 

and 
In Figure 2 we see the contrast between the Fourier representation and 

wavelet representation for a given example of a transitory signal, and that the 
wavelet representation does provide a superior representation for this particular 
example. 

3 WAVELET MULTISCALE 
REPRESENTATION OF DATA 

If we consider such a wavelet system, and assume that there is a certain amount 
of smoothness (C2, for instance), then we can try to use these functions as basis 
elements for representing discrete data at different scales. 
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Scaling Function Wavei et Fu nct ion 
Figure 1: On the left is the 4-coefficient Daubechies scaling function and on the 
right is the corresponding wavelet function 

27-term Fourier 27- t e r rn Wave let 
Figure 2: Comparison of a wavelet and Fourier representation of a transient 
signal 
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Namely, if we let for fixed J E N, 

(7) 
k 

where c J k  represents a sampling of a given function f(x) at the points x = k/2J, 
then f” is a smooth wavelet interpolation of our original sampled f (z) at the scale 
J (or, what is the same thing, on a mesh with mesh size h = 1/2J). Mallat [SI 
showed that from the scaling equations defining y3 and 4 one can reexpress f i n  
terms of scaling and wavelet functions at coarser scales, namely: 

J -  1 

f(x) = CJk(DJk(g )  = ~ c O k y 3 O k ( ~ )  d J k ’ $ j k ( g ) .  (8) 
k k k j = O  

In (8) we see that the left hand side (LHS) represents the data at a single “fine” 
scale J, while the right hand side (RHS) gives a multiscale representation of the 
data at the coarser scales {0,1,. . ., J - 1). The Mallat transform consists of 
mapping the coefficients at the single scale on the LHS of (8) to the multiscale 
coefficients on the RHS of (8), and conversely (inverse Mallat transform). This 
transform consists of convolution with the filters which define the scaling and 
wavelet functions along with downsampling (and upsampling for the inverse 
transform). 

4 IMAGE COMPRESSION AND 
TELECOMMUNICATIONS 
TECHNOLOGY 

A major application of wavelets to technology has been in the area of data com- 
pression. The following list indicates the breadth of this application area. In 
each case the compression ratios indicated are what is roughly currently avail- 
able, and are all products of Aware, Inc., of Cambridge, Mass., which is the 
leading commercial supplier of wavelet-based compression algorithms, in the 
form of software, chips, and plug-in boards for various application areas. More- 
over, the compression ratio indicates compression to a version of the original 
signal which is indistinguishable from the original signal for the purposes at 
hand, and has been verified and tested by the industry experts in that given 
area. As one example, audio compression, listed at 8-1 compression ratio, has 
the property that the human ear cannot normally distinguish the compressed 
signal from the original, and the compression algorithm uses information about 
how the ear perceives sound and at what frequency scales. 

Audio compression - high fidelity at 8:l 

Still-image compression 20:l (BW), 1OO:l  (Color) 
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o Seismic compression 20:l 

0 Radiology images 20:l 

0 Fingerprint images 25:l 

0 Video compression (color) 140:l 

The basic idea in a compression algorithm in all of the above examples is to 
represent the digitized signal in terms of a wavelet expansion (the coefficients 
of this expansion will be the Discrete Wavelet Transform). Using a statistical 
analysis of the data type involved one carries out a systematic dropping of bits 
of these wavelet expansion coefficients at specific scales (this is the quantization 
process) to represent the same signal effectively with less bits, and an additional 
lossless compression is then applied to the result, which can then be either 
transmitted or archived. To recover the signal, one reverses the process with 
the exception of the quantization step, as those bits cannot be recovered. For 
further details about this compression process in the context of images, see, e.g., 
[12], and more information about specific technologies in all of the areas above 
is available, in particular, from Aware, Inc. in Cambridge, Mass. 

One important feature of all of these algorithms is that one can download a 
compressed signal (or even an uncompressed signal represented in terms of its 
DWT), at any desired scale to obtain “snapshots” of the data, and download 
additional information later (or in the case of audio, to increase the fidelity at 
a later time). This technology is undergoing rapid development at the present 
time, and there is still much to be learned and understood in terms of modeling 
these compression ideas. 

A second important area in which the DWT has played an important role 
is that of Assymetric Data Subscriber List (ADSL) technology. This is the ba- 
sic copper wire twisted-pair communications link between American homes and 
their telephone companies. The spectral bands of this communication link are 
divided into three regions, the lowest being POTS (“Plain Old Telephone Ser- 
vice”), the second being a band for sending conventional digital data (linking 
computers for instance), and the high end of the band is reserved for digital 
video commmunication. The problem was that this was such a noisy channel 
that it was difficult to  send video signals over this band in a meaningful man- 
ner. Very recently, Aware, Inc. announced a partnership with Analog Devices 
(a second Boston area company) to build transceivers which will implement 
such video communication in an effective manner, and this will be marketed 
to the telephone industry by an Alliance involving this partnership plus Wes- 
tel, Newbridge, and AT&T, all of whom are involved in various aspects of the 
telecommunication industry. The technical report [8] which will appear soon 
in the proceedings of the International Communications Conference to be held 
in New Orleans in 1994 gives further information about this iiew advance in 
wavelet communications technology. 
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5 WAVELET-BASED NUMERICAL 
SOLUTIONS OF DIFFERENTIAL 
EQUATIONS 

The wavelet represention of a sampled function of the form (7) allows one to 
use the scaling functions at a given scale (in this case at the arbitrary scale J 
corresponding to a mesh size of h = 1/2J) as finite-element or Galerkin-type 
basis elements in a discrete approximation to some continuous problem (e.g., 
solving a paftial differential equation numerically). In a number of recent pa- 
pers these ideas have been carried out for various types of elliptic boundary 
value problems [11,10,9,2,4]. In addition one can use the multiscale representa- 
tion of data as given in (8) to implement multigrid iterative schemes for solving 
such elliptic boundary problems where the solution by direct methods or by 
iterative methods at a single scale is prohibitive. In particular, one obtains an 
efficient multiscale algorithm for solving the model problem involving Laplace’s 
equation for a domain with a very general boundary [3]. Moreover, a second 
model problem involving anisotropic coefficients in two dimensions with periodic 
boundary values admits a robust multigrid algorithm whose condition number 
is independent of the mesh size and of the anisotropy parameter [7]. In these 
multigrid applications of wavelets to numerical analysis the linear Mallat algo- 
rithms (transform from single scale to multiscale and conversely) play a major 
role. They allow one to map simply from one adjacent scale to another in a very 
effective manner, and that, along with the implicit orthogonality (and hence lack 
of redundancy), is one of the keys to their success in this applications (which is 
also true in their application to digital signal processing). 
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