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Abstract. The geomagnetic field can be represented mathematically by spherical harmonic 
expansions of scalar magnetic potentials. The mean square value of the magnetic induction represented by 
potential harmonics of degree n averaged over a sphere gives the spatial magnetic power spectrum at degree 
n on the sphere. McLeod‘s Rule for the magnetic field generated by Earth’s core says that the internal 
spatial geomagnetic power spectrum of the c m  field at the core surface, Rnc(c), is expected to be inversely 
proportional to (2n + 1) for finite degrees 1 < n 5 NE We verify McLeod‘s Rule by using it to locate the 
core-mantle boundary with single epoch main field models of satellite geomagnetic data. This method is 
found to be more accurate than other core magneto-location methods, with the estimated core radius of 
3485 km being very close to the seismologic value of 3480 km. 

With the core radius fixed at 3480 km, we then calibrate M c W ’ s  Rule and similar spectral forms 
against main field model values of Rn for degrees 3 through 12. By extrapolation to the degree 1 dipole, 
we predict the expectation value of Earth’s dipole moment to be about 5.89~ Am2 rms (74.5% of its 
1980 value) and the expectation value of geomagnetic intensity at Earth’s surface to be about 35.6 pT rms. 
Archeo- and paleomagnetic intensity data show these and related predictions to be reasonably accurate. 

The distribution x2 with 2ni- 1 degrees of freedom is assigned to (2n+ l)RJc)/{ Rn(c) 1,  where { RJc) 1 
is the expected power of the core field at degree n on the core surface. We extend this even to the first 
degree, arguing that the small lilt of Earth’s magnetic dipole moment relative to its rotation axis is mainly a 
geometric, rather than an energetic, effect of the Coriolis pseudo-force on outer core field and flow; 
moreover, (i) small lilt need not imply excess dipole power, (ii) normalized dipole power can be distributed 
as x2 with three degrees of freedom when the axial dipole is not normally distributed, and (iii) examples 
include the composite bi-Maxwellian-Gaussian distribution for the axial dipole complementing weaker, 
normally distributed equatorial dipole moments. According to the x2 dipole power distribution, an 
exceptionally weak absolute dipole moment (GO% of the 1980 value) will occur during 2.5% of geologic 
time. We estimate the mean duration for such major geomagnetic excursions, one quarter of which feature 
axial dipole reversal, using the dipole power time-scale from modem geomagnetic field models and a 
statistical model of geomagnetic dipole power excursions. The resulting mean excursion duration of 2767 
years forces us to predict an average of 9.04 excursions per million years, 2.26 axial dipole reversals per 
million years, and a mean reversal duration of 5533 years. Paleomagnetic data show these purely 
geomagnetic predictions to be quite accurate. 

McLeod‘s Rule for the core field, even when extrapolated to the first degree, led to (1) very accurate 
magneto-location of the core-mantle boundary; (2) fairly accurate prediction of paleomagnetic field 
intensity; and (3) accurate prediction of the mean frequency of major absolute geomagnetic dipole 
excursions and axial dipole reversals. We conclude that McLeds Rule serves to unify geomagnetism arid 
paleomagnetism, correctly relates theoretically predictable statistical properties of the core geodynamo to 
magnetic observation, and provides bonafide a priori information required for stochastic inversion of 
paleo-, archeo-, and/or historical magnetic measurements. 





1. Introduction 

In a geomagnetically source-free region, such as the region just above Earth's surface, the 
geomagnetic induction of internal origin B is the negative gradient of a scalar potential Vint that satifies 
Laplace's equation. At time t and position r in geocentric spherical polar coordinates (radius r, colatitude 
8, and east longitude $), the spherical harmonic expansion of (zero mean) Vht  is well-known to be 

O0 n+l 

n=l m=O 
Vht  @,t) = a Z (ah) C [gnm(t)cosm$ + hnm(t)sinm$]Pnm(co&) , 

where Pnm is the Schmidt-normalized associated Legendre function of degree n and order m and [gnm(t), 
hnm(t)] are the Gauss Coefficients at reference radius a = 6371.2 km. Gauss coefficients can be estimated 
by a weighted least squares fit to geomagnetic data; this usually requires truncating the sum over n at finite 
degree N (see, e.g., Langel[1987]). Accurate statistical prior information about the Gauss coefficients may 
supplement such regularization, increase the accuracy of estimated Gauss coefficients, and improve the 
reliability of associated uncertainty estimates [McLecd, 1986; Backus, 19881. The accuracy of a statistical 
hypothesis about Gauss coefficients may be established by theoretical development and empirical testing of 
its predictions. 

The main source of the main geomagnetic field is electric current flowing in Earth's roughly 
spherical, electrically conducting, ferro-metallic liquid outer core and solid inner core. So here we use B = 
-VV and (1) to describe this field outside the core at radii r 2 c = 3480 km [Dziewonski and Anderson, 
1981; Kennett et al., 19951. Fields due to weaker currents in the resistive, ferro-magnesian silicate and 
oxide mantle, magnetization in the colder crust, and currents in the ionosphere above and comet-shaped 
magnetosphere beyond are of but secondary interest here. 

1.1 The Core Multipolar Power Spectrum 
Lowes [ 1966, 19741 and others (see Cain et al. [ 19891) show the mean square magnetic induction 

configured in potential harmonics of degree n averaged over a sphere of radius r enclosing its sources to be 

The values of Rn form the internal spatial geomagnetic power spectrum. If core and other, mainly crustal, 
contributions to the Gauss coefficients are uncorrelated, then Rn(a) is the sum of the core multipolar 
spectrum %c(a) and the crustal spectrum R,(a). 

1.2 Previous Exponential Forms 

linear regression through values of lnh(a)] calculated from a geomagnetic field model gives 
Following Lowes [1974], lower degrees of Rn(a) are approximated by the exponential A*(~/c*)~"&; 

lnG(a)l = n0n(a/c*)21 + [I~(A*) + 4ln(a/c*)1. (3) 

The slope of this line implies the radius c* at which the model spectrum RT(c*) becomes independent of n 
or "flat". The dipole power Rl(a) seems large compared with other terms and has often been excluded from 
the regression. If Rn* is extrapolated to arbitrarily high degree, then the sum over n of Ri(r) diverges for r 
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I c*; therefore, the extrapolation is not valid below c*. This might be due to failure of the potential field 
representation, so c* might be the minimum radius of a sphere containing the sources. 

Lowes' [1974] estimate &(a) = 4.0~10~~(0.222)~ nT2) becomes flat about 480 km below c = 3480 
km. The exponential fall-off of Ri(c) with n is faster than needed for fiiite mean magnetic energy density 
(n-l-& with E > 0). Indeed, the finitude of Ohmic dissipation within the core and Gubbins' [1975] 
expression for the minimum value thereof imply 

%(a) I (0.2983)" for 6 > 0 and n 2 ND , (4) 

where ND is the minimum degree of the magnetic dissipation range. 
Langel and Estes [ 19821 interpreted the Rn spectrum from the degree 23 model MGST 10/8 1 of 

Magsat data as a core dipole, a non-dipole core field (2 I n I 12), and a crustal field (n 2 16). Their core 
spectrum &,(a) = 1.349~ lO9(O.270)" nT2) becomes flat 174 km below c. Their crustal spectnun @&(a) 
= 37.1(0.974)" nT2) becomes flat 83 km below a. 

Rather than assume zero toroidal magnetic field in the imperfectly insulating mantle, Voorhies [1984] 
considered the mean square radial field component alone as given by MGST 10/81. His core spectrum 
((n+l)Rn(a)/(2n+l) = Bzz(n) = 8.175~10~ (0.2649)" nT2) becomes flat 200 km below c and was used to 
argue against narrow scale, intensely magnetized core spots on the core-mantle boundary (CMB); his 
crustal spectrum (Bm2(n) = 11.91(0.9969)n nT2) becomes flat 9.9 km below a and indicates upper crustal, 
rather than deep lithospheric, sources. 

Cain et al. [1989] used their degree 63 model MO7AV6 of Magsat data to obtain a core spectrum 
(Rlfc(a) = 9 . 6 6 ~  108(0.286)n nT2) that becomes flat 73 km below c; a crustal spectrum (RfIx(a) = 
19.1(0.996)" nT2) that becomes flat 14 km below a; and an estimated noise level. 

1.3 A New View of Power Law Forms 
We questioned the omission of the degree 1 dipole from estimation of Ric; the existence of physical 

sources giving a flat Rn spectrum; and popular,' but unrealized, expectations that the dissipation range 
should begin below degree 14. Examination of Rn from the degree 60 model M102189 of Cain et al. 
E19901 suggested that not only was the dipole power R1 "too large", but that the quadrupole power R2 was 
"too small". Comparatively large R1 and small R2 are thought to be artifacts of undersampling as follows: 
the 1980 dipolar and quadrupolar powers, being derived from but 3 and 5 Gauss coefficients respectively, 
might be fairly far from values obtained by either averaging over, or taking many more random samples 
from, a geologically long time interval. 

So we set c to 3480 km and tried power laws, sca(c)  = KPn'", by fitting lnBn(c)] with a linear 
function of ln(n) for 3 I n I 12. We found a to be 0.94. This seemed close to 1, particularly as crustal 
contributions may lead to a slight underestimate of a. We also vaguely recalled k-l kinetic energy spectra 
for large-scale, energy containing modes of hydrodynamic turbulence (wherein wavenumber k is less than 
in the inertial sub-range or dissipation range). So we then set a to 1, estimated Kp alone, and found that the 

. sum of the squared residuals per degree of freedom was less than when both a and Kp were estimated 
together. We thus learned to expect a core spectrum of the form 

Rnc(r) = {Rncl(r)} = Kp n-l (r/c)2n+4 for 1 5 n 5 NE , 

where the curly brackets represent the expectation value and NE is the finite, maximum degree of the 
magnetic energy range (1 c NE I ND). 
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If expectations akin to (5) accurately repwent statistical properties of the core geodynamo, then one 
must expect deviations [Rn - {Rnc}] eventually relax to zero and perhaps change sign (barring all but the 
slowest changes in KP., a and c due to planetary evolution and omitting weak crustal fields). Finding R1 
substantially higher, and R2 substantially lower, than expected thus forced us to predict relaxation of these 
deviations. So we examined the main field and secular variation coefficients of model GSFC 12/83 &angel 
and Estes, 19851 and found R1 decreasing and R2 increasing as predicted; moreover, for all orders m, 
(atglrn)/glm c 0 and ( i3tg2m)/g2m > 0. The plain chance of such perfect (anti-) correlation of signs is 1/8 
for the dipoles, 1/32 for the quadrupoles, and 1/256 for all eight coefficients together. This otherwise 
remarkable coincidence is here viewed as merely an efficient relaxation of the geomagnetic field towards 
expectation values like (5). 

It turns out that spectral forms similar to (5) were advanced and used over a decade ago by McLeod 
[ 19851 and were derived from theoretical consideration of the dynamo generated core field by McLeod 
[1994,1996]. 

2. McLeod’s Rule 

McLeod‘s Rule WcLeod, 1985; 1994,1996, equation (%a)] for finite degrees n > 1 is 

where both c/a and McLeod’s constant KM = 5x109 nT2 must be determined empirically. The late M. G. 
McLeod derived this form from a spatial power spectrum for the secular variation Fn (obtained using first 
time derivatives of the Gauss coefficients in (2) instead of the coefficients themselves) and a temporal 
geomagetic power spectrum Pn(o) that depends upon spatial degree n and temporal frequency o DvIcLeod, 
1994,19963. The form of Fn is that of horizontal dipoles induced by lateral advection of magnetic field 
line footpoints at the top of a high conductivity liquid core; the form of Pn(o) is appropriate to a two time- 
scale model of the two processes, magnetic flux diffusion and fluid motion, that change the core field and 
are the basis of core geodynamo theory. 

2.1 Remarks on the Theoretical Derivation 
This paper is mainly concerned with the empirical accuracy of predictions based on (6) and ancillary 

hypotheses; however, we must stress that the theoretical foundation of McLeod’s Rule bears carefull 
scrutiny. Firstly, the functional fonn of Fn advanced by McLeod [1994,19%, equation (1111 is appropriate 
to secular variation induced by random fluid motion at the top of a free-streaming, high conductivity core 
mantled by a rigid insulator. The advection of magnetic field line footpoints is mainly horizontal by the 
kinematic boundary condition, as is the locally induced differential dipole moment. Spatial correlations of 
the induced differential moments at well separated points may be either positive or negative for any 
particular realization of core surface field and flow, but we have no kinematical reason to expect such 
correlations survive either an ensemble average or a geologic time average. So the expected form of Fn for 
broad-scale secular variation is that introduced by McLeod. 

Secondly, the functional form for the diffusive time constants CMcLeod, 1994,1996 equation (15)] is 
here viewed as linking empirically unknown vertical length scales of the poloidal field within the core to 
the lateral length scales of the matching scaloidal field outside the core. This view .eases the derivation as 
follows. At the top of the very thin viscous boundary layer separating the free-streaming liquid core from 
the mantle, the fluid motion vanishes by the no-slip boundary condition and secular variation is purely 
diffusive. There the radial component of magnetic diffusion is proportional to the jump in the second radial 
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derivative of the radial field component across the core-mantle interface, denoted 3: BY Ivmhies, 19911. 
This jump in field line curvature is due to core toroidal currents that are the source of the diffusing, ”non- 
scaloidal“ part of the ploidal field. Indeed, with core conductivity o and magnetic permeability p, the 
radial component of McLeod’s [1994,1996] diffusion equation (13) is just atBr = (poc)-lV2rB, = 
(pa)’ 1 3, 2 Br ns . The spherical harmonic coefficients of 3,Br are denoted atBnm; those of aZB:s are 

denoted Bnm(Gm)2. Qualitatively, (%m)‘l is an effective vertical scale height for a harmonic of the 
field within the core; quantitatively, the factor of II: renders bm equal to l/c for the dipole’s gravest radial 
free-decay mode [Moffat, 1978, p39-401. With this notation, each harmonic of the radial diffusion equation 

= (~lo)-1~,m(%m)2. The sum of [(2n+l)/(n+1)1(a~~m)2 over orders o I m I n yield F, = 
@a)’ (7d5.J4Rn, which defines the characteristic radial wavenumber k, for degree n. The characteristic 
timeconstantis2, = v n ) l n  = pa/z 

from theory: we do know that it should be compared with the horizontal 

Apac2/&(n+l). Apart from the factor of A/$, this is McLeod‘s [1994,1996] equation (15). We have 
no reason to prefer aspect ratios that either increase or decrease rapidly with n, or that are either many 
orders of magnitude greater or less than unity, especially when averaged over geologic time. So constant A 
is the natural selection, the postulate, or the theoretical null-hypothesis to be tested. Because the secular 
variation diffusing across the thin viscous sub-layer is essentially that induced by fluid motion at the top of 
the free-stream (with spectrum Fn(c) given by M c W  [1994,1996, equation (1 I)]), this selection implies 
Rn(c) = T ~ ~ F ~ ( C >  = KM/(n + ln), which is McLeod’s Rule. 

Empirically, we calculated, tabulated and graphed numerical values ‘i2 = F A  from model GSFC 
9/80 Fangel et al., 19821 evaluated at epochs 1960,1970, and 1980 (Voorhies 1985, unpublished notes). 
These tabulations, akin to a dispersion relation for secular variation, are at long last of some use. The 
constant aspect ratio hypothesis implies {%i2) = C[n(n+l)12, so ln{Ti2} = InC + Un[n(n+l)]. For each 
of the three epochs, we fitted the form lnC’ + Bln[n(n+l)] to the numerical values of ln(7i2) for degrees 3 
through 12 by least squares. The three estimates of B average to 1.957 0.156 (lo); this is in excellent 
agreement with the constant aspect ratio prediction of f3 = 2. The mean and standard deviation of InC’ 
indicates (C’)-1/2 is within a factor of 1.94 of 26,400 years, so we write the dispersion relation as 2, = 
26,OOO/[n(n+l)] years. 

Thirdly, an eligible theoretical temporal power spectrum should represent the two main dynamo 
processes of magnetic flux diffusion and motional induction. Such a spectrum should accomodate the two 
different, degree dependent, sets of time-scales assigned to these two processes. For each degree the 
spectrum Pn<o) must approach a constant as o approches the lowest frequency; it must also fall off faster 
than at high frequencies to ensure finite total power. These properties should apply to individual 
factors in Pn(o) representing the two main processes. It further seems desirable for Pn(o) to be derivable 
from the difference between two time series so as to represent, in at least a qualitiative way, competition 
between motional induction and magnetic diffusion. The temporal power spectrum advanced by McLeod 
11994; 1996, equation (16)] meets al l  these requirements. 

Finally, McLeod’s derivation of (6 uses the high degree approximations (n + 1/2) = [n(n + l)]-lfl= 
n, so our empirically rediscovered form (5 )  is not in severe disagreement with the theoretically motivated 
(6). Indeed, empirical tests of such slightly different spectral forms might lead to new insights about the 
lower degree, broader scale geomagnetic field. 

When multiplied by 2x, the longest time constant appearing in McLeod‘s temporal power spectrum 
(the dipole diffusive Tal in equation (22a) of M c W  11994,19963) might suggest a period of about 30 . 
kyr. This is near the dominant period of between 30 and 40 kyr in relative paleointensity suggested by the 

2 2  
is a??m 

. 
We do not claim to know 

wavenumber khn = [n(n+l)/c21 9 12. SO we introduce the aspect ratio A = khn2hn2 and obtain 2, = 



spectral analysis of Tauxe & Shackleton 119941. We have no further comment on periodicity, quasi- 
periodicity, and aperiodicity in either the geomagnetic field or records thereof; we do suggest that 
McLeod's Rule has described the field for almost lo8 years and perhaps much longer. 

2.2 Variations 
In and above a source-free mantle (for r 2 c), McLeod's Rule becomes 

Here we use (7) for degrees 3 I n I 12 < NE and occasionally for degrees 1 S n I 12 I NE. We extend 
McLeod's Rule to the core geomagnetic dipole on the hypothesis that, over geologic time, this dipole is 
exceptional in regards to its axiality but not its energy. Those who cannot agree with this hypothesis are 
invited to entertain it as a null-hypothesis against which widely held views favoring exceptionally large 
dipole power might be more firmly established. 

It is thought that McLeod's Rule holds under more general conditions than those from which it was 
originally derived; indeed, the simplified derivation above suggests that it does. Combined with the high 
degree approximations used by McLeod [1994,1996], this leads us to keep a factor of Cn(n + 1)3-lI2 
without approximation by (n + 1/2)-l. So we also work with 

{RncM(r)} = K w  [n(n + l)]-lp (c/r)2nd for 1 5 n 5 NE . (8) 

K M  is about eleven times KM due mainly to the factor ( a / ~ ) ~ .  
Particular spectral forms (5), (7), and (8) are of the general form 

{Rnc(r)} = K q(n) (c/r)2n+4 for 1 I n I NE , (9) 

In (3, constant K is KP and polynomial q(n) is n-l; in (7), K is K ~ ( a / c ) ~  and q(n) is (n + 1/2)-l; and in (8), 
K is K M ~  and q(n) is [n(n + l)]-1/2. The various q(n) are a11 approximately 2/(2n+l), so these forms are 
but minor variations on McLeod's Rule when compared with our extending it to the first degree and to 
geologic time intervals. 

2.3 Core Field Hypothesis 
The statistical core field hypothesis advanced here is that suitably normalized RnC is distributed as x2 

with 2n+l degrees of freedom and the expectation value given by McLeod's Rule (7) or variation (8). This 
will be so if the Gauss coefficients of degree n are random samples of a population with a zero mean 
Gaussian probability distribution function of variance {%c(a)}/[(n+l)(2ri+l)]; however, it may well be that 
some Rnc (notably Rlc) are very nearly so distributed, even though the Gauss coefficients of that degree 
are not normally distributed. Indeed, there are an infinite number of distributions for the individual 
coefficients of any particular degree n that yield the distribution x2 with 2n+l degrees of M o m  for the 
normalized multipole power (2n+1)R&{Rnc}; examples are given for the dipole in Appendix C. This 
situation may arise when the energy flow through the core gdynamo typically produces a mean magnetic 
energy density on the core surface of about { Rnc(c)}/2p per degree n, but geometric effects distribute the 
field abnormally among various orders m within that degree. Earth rotation is the most obvious source of 
such anisotropy. 

The Coriolis pseudo-force does no work on the fluid motion sustaining the core field, so rotational 
polarization of (geologically) turbulent core flow might produce such anisotropy without much change to 
the core surface magnetic energy per harmonic degree as given by McLeod's Rule. To the extent that it 
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results by inductive effects (-Vx(Bxv) for fluid velocity v) that match the geometry of the Coriolis vorticity 
effect (-Vx(mxv) for bulk angular velocity a), such anisotropy would mainly distinguish the axial dipole 
from the equatorial dipoles. In particular, if the radial component of the curl of the Coriolis pseudo-force 
density at the top of the core is negligible (so, for mass density p, roVx(2pQxv) 5+i 0 by the CMB), then the 
core fluid velocity is surficially geostrophic and fluid downwelling implies poleward flow. Fluid 
downwelling can sweep in or attract magnetic field line footpoints to form regions of strong radial field 
known as core spots; the accompanying poleward flow implies poleward drift of such core spots. This 
provides a flux partioning mechanism for axial dipole formation, growth, and fluctuation (as noted and 
described in some detail elsewhere [Voorhies, 1991; 19923). This particular mechanism for inducing 
planetary scale magnetic anisotropy relies on the kinematic boundary condition appropriate to the 
simplified terrestrial case of a rigid insulator mantling a convecting fluid conductor; it might also operate in 
cases where a stably stratified fluid bounds a convecting conductor. It remains to be seen whether or not 
this particular mechanism indicates any deviations from McLeod's Rule (e.g., a shift in magnetic energy 
from the quadrupolar to the dipolar configuration). There may of course be other mechanisms, perhaps 
involving the electrically conducting solid inner core or the mantle, that systematically partition core 
surface magnetic energy unequally among the harmonic orders within a particular harmonic degree for 
intervals of approaching 108 years. 

The specific probability distribution function advanced for normalized core magnetic multipole 
power (2n+ l)RE/{ Rnc } at radii r 2 c is chi-squared with 2n+ 1 degrees of freedom, 

n+1/2 -1 n-1/2 
P [ ( ~ ~ + v R ~ ~ / I R ~ ~ I I  = ~2n+l012> = [2 ~n+1/2)1 k2> exp[-x2/21 7 (10) 

where r is the gamma function and { Rnc} is given by (7) or (8). Standard tables giving the probability of 
obtaining a value of x2 less than or equal X2 also give the probability of obtaining a value of R&{ Rnc } 
less than or equal to X2/(2n+l). It is emphasized that (10) does not imply equipartioning of multipole 
power amongst the various orders within harmonic degree n. 

Because Earth's squared dipole moment mom is mainly from the core and is (47~a~/p~)~CRl(a)/21, 
equation (10) at the first degree predicts that 3mom/{ mom}, which equals 3RIc(a)/{ Rlc(a)}, will be 
distributed as x2 with three degrees of freedom. Because the probability p ( I x I )d I x I of finding I x I in 
the interval [ I x I , I x I +d I x I 3 is p Q2)[dx2/d I x I Id I x 1 , the distribution of absolute dipole moments 
I m I is predicted to be MaxweKi. Then the root mean square dipole moment is 

RMSDM = {m*m}'/2 = 4m3{Rlc(a)/2}1/2/p0; 

the mean absolute dipole moment is 

I D M I  = ImI 1 = 

= 4xa3[4{RlC(a)}/3~]'/2/1L, = (~/~z))'/~RMSDM ; 

and the most probable absolute dipole moment is (2/3)IDRMSDM. Again, the probability distribution 
function for normalized absolute geomagnetic dipole moment is predicted to be equivalent to the 
Maxwellian distributionfor particle speed. 

In following sections, one or two parameters of various spectral forms { Rn} are estimated by least 
squares fits to elementary functions of values of R,. The Rn values are calculated from geomagnetic field 
models derived using truncation as the sole regularization. By (IO), it seems that normally distributed 
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residuals ought not be expected; moreover, the magnitude of the residuals will be large compared with 
expected errors in Rn indicated by geomagnetic field model covariance due to the natural variability of the 
core field over geologic time. Here we use plain least squares for simplicity and can but invite more 
rigorous inversions offering more sensitive tests of McLeod's Rule. Our main goal is to investigate the 
absolute accuracy of predictions based on simple, preliminary calibrations of McLeod's RuIe (and (10)) 
rather than engage in statistical analyses of uncertainty. 

3. Magneto-Location of Earth's Core 

If McLeod's Rule is correct, then the two parameter fit of { Qc(a)} to values of %(a) calculated from 
geomagnetic field models should give accurate magnetic estimates of the core radius, denoted cm, as well 
as the amplitude K. We computed such estimates by fitting ln[{Rnc(a)}/q(n)] from (9) to Rn(a) data 
calculated from the degree 13 model GSFC 12/83 [Langel and Estes, 19853 and, to reduce aliasing of 
residual crustal fields, the degree 60 model M102189 [Cain et al., 19901. 

The top three rows of Table 1 list our estimates of cm for the q(n) shown in the first column. The 
values in the second and third columns were fitted only to Rn(a) for degrees 3 through 12; those in the 
fourth and fifth columns were fitted to degrees 1 through 12. The fourth row shows radii C* obtained from 
the plain exponential form A*(~ /c* )~"~ ;  however, most studies presuming q(n) = 1 exclude the dipole, so 
values obtained by fitting only degrees 2 through 12 are included in parentheses. Such omission of the 
dipole raises c* by about 102 km. 

The top row of Table 1 shows that core radii determined with McLeod's Rule, cM agree very well 
with the independently determined seismologic core radius of 3 8 0  km. The closest agreement comes from 
the fit of McLeod's Rule (6-7) to the Rn(a) values from M102189 for degree 3 through 12. This is 
illustrated in Figure 1 , which graphs Rn(a) (diamonds connected by dashed line segments), the fit (solid 
curve with CM = 3484.5 km and KM(~/cM)~ = 5.3649~10~~ nT2), and the extrapolation to degrees 2 and 1 
(fine dashed curve). The 'errorbars' show the 80% likelihood range deduced from x2 per 2n+l degrees of 
freedom and are thus attached to the theory (solid curve), not the data; as expected, two of the 10 points 
fitted lie just outside the 80% confidence interval. Although R1 is greater, and R2 less, than expected, both 
dipole and quadrupole terms are within the 80% likelihood range attached to the low degree extrapolation. 

Table 1 shows McLeod's Rule (6-7) as most accurate (top row) and variation (8) as almost as 
accurate (second row); even form (5)  gives core radii at most 1.8% high (third row). The average of the 
first two values in the top row of Table 1 is 3488.2 t 10.3 km (20). The four values in the upper left 
quadrant average to 3489.9 2 8.6 km (20). The last two columns show that inclusion of dipole and 
quadrupole terms raises c, by at most 22.3 km. This fact is considered particularly important when 
combined with the ongoing relaxation of the dipole and quadrupole powers towards their expected values. 

The fourth row of Table 1 shows that plain exponential fits, which violate McLeod's Rule, 
systematically underestimate the core radius by about 200 km. We doubt errors this large result from 
crustal contributions to the Rn(a) fitted, indeed, coestimation of parameters describing recently advanced 
forms for Rnx would very slightly decrease CM rather than increase it. Perhaps a failure of the plain 
exponential form for %(a) has been overlooked by insufficiently well-founded omission of the dipole term 
from previous fits. 

The accuracy of the present core magneto-locations is largely superior to those obtained using Hide's 
method [Hide and Malin, 1981; Voorhies and Benton, 19821. This is not surprising because the latter 
method relies heavily upon the frozen-flux core approximation, uncertain phase information in harmonic 
orders m and, more importantly, upon uncertain secular change information from either secular variation 
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models or main field models at different epochs. The present method, being based upon the more complete 
physics underlying McLeod's Rule, allows for magnetic flux diffusion as well as motional induction, 
depends only upon the power spectrum %, and relies only upon Rn at a single epoch. Indeed, the average 
of 44 core magneto-locations using diverse field models and variations of Hide's method is 3506.2 k 300.9 
km floorhies 1984, equation (3.21)], while the twelve estimates of cm in Table 1 average to 3504.8 5 37.0 
km (20). 

4. Preliminary Calibration, Prediction of Mean Paleomagnetic Intensity, 
and Comparisons with Archeo-Paleointensity Data 

McLeod's Rule enabled accurate estimation of the radius of Earth's core from models of satellite 
geomagnetic data; however, the seismologically inferred value is considered more accurate. So we fixed c 
to 3480 km when estimating the calibration coefficients K appearing in spectral forms (9). To do so, we 
fitted the single parameter ln[K] to values of ln[Rnc(c)/q(n)] computed from the field models for degrees 3 
through 12 only. This restriction enables us to predict expected geomagnetic dipole and quadrupole powers 
by extrapolation to degrees 1 and 2. The results are shown in Table 2; K in the top row is K ~ ( a / c ) ~  and 
c o n h s  that McLeod's constant is about 5x109 nT2 (4.915 2 0.006 (20) x lo9 nT2). 

Figure 2 shows the single parameter fit (solid curve) of variation (8) of McLeod's Rule (so q(n) is 
[n(n+l)]-li2) to Rn(c) from model GSFC 12/83 (diamonds) for degrees 3 through 12 at epoch 1980. The 
curve is not quite a straight line on this log-log plot. As expected, 80% of the ten multipoles fitted fall 
within the 80% likelihood range from x2 per 2n+l degrees of freedom shown as "errorbars" attached to the 
solid curve (not to the data diamonds). The fit is quite close and the trend is clear enough; indeed, it seems 
difficult to consider a degree-independent flat line drawn through these points (but see Constable and 
Parker [1988]). 

Figure 2 shows that R~(c )  is slightly lower, and Rg(c) is slightly higher, than expected 80% of the 
geologic time. This uncommon spectral feature is partly associated with the fine structure of the South 
Atlantic Anomaly. Contour plots of the radial field at the top of the core as a function of the truncation 
level of expansion (1) floorhies, 1984, Figures 3-13-17] show substantial changes, particularly in the field 
topology under this region, when the trunction level is increased from degree 8 to 9, but not from 7 to 8. 
This may well be due to emergence of one or more reversed flux patches in the southern hemisphere, 
perhaps at a mean rate of about -3MWb/yr since the 1600s. 

The prediction for degrees 1 and 2 (fine dashed curve in Figure 2) shows that the epoch 1980 dipole 
has more power, and the quadrupole less power, than expected on the basis of our variation of McLeod's 
Rule and the higher degree multipolar powers fitted. However, both dipole and quadrupole powers are 
clearly within their 80% likelihood ranges. The predicted value of {Rlc(c)} is 3 . 9 0 8 ~ 1 0 ~ ~  nT2, or 55.51% 
of the 1980 value calculated from model GSFC 12/83; yet the predicted expectation value of Earth's root 
mean square magnetic dipole moment 

. RMSDM= {m*m)1~=4xa3{Rlc(a)/2}1~/po= 5.891~1&2~ Am2, 

is 74.50% of the 1980 absolute dipole moment (7.907~102~ Am2 from model GSFC 12/83). Moreover, 
the expected rms magnetic intensity at Earth's surface, the square root of the sum from degrees 1 through 
12 of { Rnc(a)}, is predicted to be { B*B2) 1/2 = 35,578 nT. Are these predicted expectation values for 
Earth's rms dipole moment and rms intensity accurate over the geologic time intervals for which they are 
intended? 
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Table 1: Estimates of Earth’s Core Radius in km from M c W s  Rule and Other Forms 

a n )  GSFC 12/83 M102189 GSFC 12/83 M102189 

3111112 31nS12 1 I n 1  12 1111112 

In + 1/21-1 349 1.79 3484.52 3501.24 3496.04 

[n(n+l)l-1/2 3493.30 3486.03 3506.82 3501.61 

*-I 3511.44 3504.13 3543.06 3537.79 

1 3261.44 3254.65 3208.56 3203.79 

(3311.8) (3306.0) 

Table 2 Estimates of the Coefficient K of McLeod’s Rule 

and other forms (in 1O1O nT2) 

s(n) GSFC 12/83 M102189 

3SnS12 31x1112 

[n + 1~1-1 5.54430 5.49894 

[n(n+l)]-lp 5.52664 , 5.48142 

n-1 5.13595 5.09394 
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Harmonic Degree 
Figure 1 shows the multipole powers Rn(a) from model M102189 [Cain et al., 19901 for degrees 1 I n I 12 

. (diamonds connected by dashed line segments), the two parameter fit of McLeod's Rule (solid curve with 

degrees 2 and 1 (fine dashed curve). Errorbars show the 80% likelihood range from x2 with 2n+l degrees 
of freedom and are attached to the theory (solid curve), not the data. As expected, two of ten powers fitted 
lie outside this range. R1 is greater, and R2 less, than predicted, but both are within their 80% likelihood 
ranges. 

CM = 3484.5 km and KM(~/CM)~ = 5.3649~10 10 nT 2 to degrees 3 through 12, and the extrapolation to 
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Harmonic Degree 
Figure 2 shows the single parameter fit (solid curve) of equation (8) to core multipole powers RJc) of 
degrees 3 through 12 from model GSFC 12/83 &angel et al., 19851 (diamonds) and the extrapolation to 
degrees 2 and 1 (fine dashed curve). The curve is not quite a straight line on this log-log plot. As expected, 
eight of the ten multipoles fitted fall within the 80% likelihood range from x2 with 2n+l degrees of 
freedom (errorbars attached to solid curve, not diamonds). R1 is greater, and R2 less, than predicted, but 
both are within their 80% likelihood ranges. 
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4.1 A Comparison with Archeointensity Data 
Tests of our predictions against archeo- and paleomagnetically inferred intensities are complicated 

not only by the variety of experimental methods used to infer past intensity F = I B(r=a,b,+;t<<1980) I 
from diverse materials, but from the common conversion of archeo- and palmintensities to Virtual Axial 
Dipole Moment (VADM = 4za3F/[p0( 1 +  COS^^)'/^]) or Virtual Dipole Moment (VDM = 4za3[1 + 
3cos2a1/2F/[2p J) for magnetic inclination I) [Nlerrill and McElhinny, 19831. VADMs and VDMs must 
be converted back to F before testing the prediction that the root spatio-temporal mean square of F is about 
35.6 pT, but not all compilations tabulate requisite vaules of 0 (or I) with VADM (or VDM). Moreover, 
the distribution of samples of F should be both fairly complete and uniform in both geographic pi t ion and 
geologic time; these conditions are not easily met! Furthermore, VADM and VDM selection criteria and 
spatial and/or temporal averaging can introduce systematic effects. Indeed, one paleomagnetist expressed a 
conviction that paleointensity data are too imprecise to be predicted accurately. We remain more optimistic 
because predicted expectation values can only be compared with averages over many individual values and 
the averaging can reduce random, if not systematic, errors. 

Consider some results highlighted by McElhinny and Senanake [1982]. For the interval 0-10 kyr BP, 
ten, 1 kyr mean values of archeomagnetic VDMs (VADMs when necessary) average to 8.75 5 1.58 x 1g2 
Am2; for the interval 15-50 kyr BP, four VDMs and ten VADM average to 4.44 5 0.64 x 1g2 Am2. The 
former value is greater, and the latter somewhat less, than our predicted RMSDM, but by (10) dipole 
moments as large or larger than the former are expected about 9% of the geologic time. The standard 
deviations are small enough to indicate that the dipole moment was, on average, different during these 
different intervals; therefore, an estimate of the single spatio-temporal root mean square dipole moment 
should weight the squared average values by the duration of the inkrvals (10 kyr and 35 kyr, respectively). 
The square root of the duration weighted mean square of these two values is 5 . 6 9 ~ 1 0 ~ ~  Am2 or 96.5% of 
our predicted RMSDM. Although not highlighted by McElhinny and Senanake [1982], the rms of their 
twelve tabulated 1 kyr means from 0-12 kyr BP is 8.676~ Am2; the rms of their 14 selected values 
from 17-50 kyr BP is 4 . 5 7 8 ~ 1 0 ~ ~  Am2. The root duration weighted mean square of these two values, 
5 . 9 5 3 ~ 1 0 ~ ~  Am2, is only 1% greater than our predicted RMSDM. 

The foregoing comparisions suggest we have a very accurate prediction of rms archeointensity; 
however, precise tests against archeo- and paleomagnetically inferred intensities are further complicated by 
(i) the likelihood that expectation values change over geologic time with evolving core geodynamo 
boundary conditions and (ii) the difficulty in distinguishing dipole from non-dipole contributions to 
intensity. The former are outside the main focus of this papq as to the latter, the predicted rms intensity of 
35.58 pT would be produced by a purely dipolar field of absolute moment 6.506~ Am2. This is 10% 
greater than RMSDM, so more care is needed to account for the difference between virtual and absolute 
dipole moments. 

To make closer contact with reduced archeo- and paleointensity data, separate B into dipole and non- 
dipole parts and suppose that (i) the dipole is usually mainly axial (so BD2 = Rlc(a)( 1 + 3cos20)/2), (ii) the 
broad-scale, nondpole core field is fairly independent of (e,$) when averaged over geologic time, and (iii) 
the dipole and non-dipole field vectors eventually decorrelate (io very long term averages of 2BD.Bm are 
much less than those of Bm2); then 

= { (3Rfl)ln I” (x2 + k2)ll2dx} 
-1 
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where RD is Rlc(a), RND is the sum of Rnc(a) for n 2 2, x = cos% a k2 is (1 + 2Rm/R~) /3 .  We 
nly, { R m I  = (15,100 nn2; 

however, in (1 IC) we replace R D ~ / ~  with the smaller {RD112} = 29,680 nT and, without fear of much 
error, approximate 2RND/RD by { 2 R m } / { R ~ l ~ } ~ -  The resulting integral is easily evaluated by the 
substitution x = ksinh(z). We obtain {F} = 32.8 pT - less than {F2} lI2 = 35.6 pT in accord with 
Schwartz's inequality. Similar treatments yield {VADM2} ll2 = 6 . 4 3 ~ 1 0 ~ ~  Am2, which is 9.1% more 
than RMSDM, and 

predict {RD} = (32,214 nT) 2 and, summing over degrees 2 through 

4m3 RD(~ + 2 R d ~  + 3 ~ 0 ~ ~ 0 )  
= -u P I  

PO 2(1+ 3cos29) 

2 2 1/2 4m3 +1 x + k  
= -{R5}1/21 [ I &  

PO -1 x2+ 113 

which, after consulting elliptic integral tables, gives { VADM} = 6 . 2 1 ~ 1 0 ~ ~  Am2. This is 11.4% greater 
than the our predicted mean absolute dipole moment I DMI of 5.43~102~ Am2; it is also 5.4% greater than 
RMSDM. More accurate approximations to {F} and { VADM} require more 'R&D on g(RND),. 

With the foregoing adjustments for the expected non-dipole paleomagnetic fields, the predictions 
calibrated using the 1980 non-dipole field can be directly compared with reduced archeointensity data. The 
root duration weighted mean square dipole moment from the 10 kyr average VDM and the 35 kyr average 
VADM highlighted by McElhinny and Senanake [ 19821 is now seen to be 88.5% of our predicted value 
{ VADM2} ln. The root duration weighted mean square of the rms values for the intervals 1-12 kyr BP and 
17-50 kyr BP is 92.6% of this prediction. Allowance for the expected non-dipole field shows our 
prediction overestimates archeointensity by about 10%. This is close enough to sustain a claim of a 
reasonably accurate prediction of archeointensity. 

4.2 Comparisons with Paleohtensity Data 
McFadden and McElhinny [1982] analysed 166 non-transitional VDMs for the past 5 Myr. They 

note reasons to reject a Gaussian, but perhaps not a lognormal distribution of VDMs. They find support for 
a model in which the non-dipole intensity is proportional to a "True Dipole Moment" that has a truncated 
Gaussian distribution with a standard deviation of about 3 .6~  Am2 and a peak at the 8.65 5 0.65 x 
1g2 Am2 "Paleomagnetic Dipole Moment" (PDM). Their lognormal distribution, however, peaks near 
6 . 5 ~ 1 0 ~ ~  Am2. These distributions do not seem to follow from (10). Indeed, (10) predicts that the 
absolute dipole moment will have a Maxwellian distribution that requires no truncation at weak moment, 
falls off much like a Gaussian at very strong moment, and, using our calibration of form (8), has a peak at 
4.81~ Am2. Of course, VDM and VADM distributions'are expected to differ from a Maxwellian, and 
to peak at larger values, because higher degree multipoles contribute to such virtual moments. Our 
predicted (VADM} of 6.21~102~ Am2 is nontheless about 0.68 standard deviations less than the PDM. 

Am2 PDM for the past 5 Myr reported by McFadden and McElhinny [ 19821 is about 
139% of our predicted {VADM}. The 3.9 5 1.9 x 1g2 Am2 mean VADM for the past 4 Myr reported by 
Valet and Meynadier [ 19931 is about 63% of our prediction; they also cite values of 5 5 2 x 1g2 Am2 for 
the past 140 kyr and 4.3 f. 1.5 x Am2 for the interval 15-50 kyr BP. The 4 .8~102~  Am2 difference 
between the 5 Myr PDM and the 4 Myr mean VADM is somewhat larger than the root sum square of their 

The 8.65~ 
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standard deviations ( 4 . 1 ~ 1 0 ~ ~  Am2); this is discussed below. The 4 Myr mean VADM and the 5 Myr 
PDM average to 6 . 2 8 ~  Am2. This is only 1% more than our predicted { VADM} of about 6 . 2 1 ~  1$2 
Am2. Averaging the superior temporal distribution of VADMs inferred from sediments with the reliability 
of VDMs obtained from volcanics shows our prediction to be accurate. 

There appears to be some controversy among paleomagnetists about the Valet and Meynadier [ 19931 
data. The accuracy and stability of the absolute calibration of relative paleointensity inferred from 
sediments would be the main concern here. It seems possible that the reported 4 Myr mean VADM could 
underestimate that obtained via an improved calibration. There also seems to be some controversy among 
rock magneticists about paleointensities inferred from volcanics. Systematic overestimation of 
paleointensity resulting from neglect of small but important curvature in NRM-pTRM curves casued by 
trace concentrations of multidomain grains (as described by Dunlop [xu and Dunlop, 19951) would be the 
main concern here. Whether or not this effect seriously biases the VDM tabulation of McFadden and 
McElhinny [1982] towards large values is not known to us. Their intentional exclusion of a l l  transitional 
moments is, however, expected to make their PDM overestimate the value obtained from a temporally 
uniform sample. We suggest that averaging their 5 Myr PDM with the 4 Myr mean VADM of Valet and 
Meynadier [1993] has led to some cancellation of undesirable systematic effects. 

Tanaka et al. [ 19951 constructed a global paleointensity data base of 1123 volcanic flow means. 
Their mean of 427 VDMs inferred using either Thellier or Shaw methods is 7.4 2 4.9 x Am2; this is 
119% of our reasonably accurate {VADM}. We questioned the accuracy of our prediction based on the 
- +0.24 x Am2 standard error of the mean, but again found more fundamental questions of sampling 
bias. For example, Tanaka et al. [ 19951 judge 87 (20.4%) of these VDMs to be transitional. The mean of 
the non-transitional values is 8.3 5 4.9 x Am2 (about 4 { VADM}/3), so the mean of the transitional 
values is about 3 . 9 ~  Am2. Exclusion of some transitional moments is appropriate if transitions are 
indeed oversampled (in accord with our prediction of excursion and reversal frequencies in section 5). 
Exclusion of some non-transitional moments is appropriate if weak paleointensities from non-transitional 
flows are either undersampled or occasionally not reported, perhaps because they are of less widespread 
interest than transitional flows or are more difficult to determine. Still, the model fitted to (non- 
transitional) VDMs by Tanaka et al. [ 19951 yields F = 3 1.3 pT( 1 + 3cos%) ll2, Averaging their model 
over the sphere gives 6;> = 43.2 pT, some 132% of our predicted {F} = 32.8 pT, and <FqlD = 44.3 pT, 
some 124% of our predicted { F2) 'D. 

4.3 Further Palm-Intensity Comparisons 
To see how paleointensity data might be used to better test precise predictions like {F2} 'I2 = 35.6 

pT, we worked with the McFadden and McElhinny [ 19821 tabulation of 14 1 non-transitional VDMs and 
related parameters. For 1 I k 5 141 we recalculated the intensity Bk = [2pd4xa3] VDMk/[l + 
3cos21k] lfl. The geographically weighted mean square 

is (51.7 V T ) ~ .  The distribution is geographically non-uniform (48% of the samples are from 
Czechoslovakia or Japan) and temporally non-uniform (over 48% of the samples are post-Pleiocene). The 
distribution is geographically biased in that the unweighted mean of sinek is 4% less than the expected x/% 
to the extent that the dipole is mainly axial, this bias towards high latitudes implies a bias towards stronger 
field. The distribution is also biased by the omission of transitional moments. Moreover, the root mean 
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square is more strongly influenced by large outlying samples than is the arithmetic mean. To compensate 
we tried omitting the two strongest VDMs ( a 5 1 3 9  = (49.9 pn2) and then the remaining seven VDMs 
from the 0.5 Myr Hakone Nagao-Toga lavas; this gives -&Si32 = (47.2 PT)~. The 132 value unweighted 
mean VDM of 8 . 4 4 ~ 1 0 ~ ~  Am2 is 6% less than the 141 value mean; therefore, it is much closer to the 
Tanaka et al. [1995] 340 non-transitional mean VDM of 8 .3~102~  Am2. This fact lends credence to our 
selection, as does the fact that e I B I >132 = 43.9 pT is near the 43.2 pT value of <F> calculated from the 
Tanaka et al. E19951 model of non-transitional F. 

Although the &Si32  statistic has the basic geographic weighting needed to estimate mean square 
intensity from the selected lava flow means, we need to estimate the rms intensity averaged over geologic 
time as well as position. When the sampling distribution is neither random nor uniform, the unweighted 
sample mean does not necessarily provide the best estimate of the population mean. We think duration 
weighting is needed to prevent many samples from a sequence of lava flows formed during a geologically 
short interval from overwhelming a few samples from a sequence of lava flows formed over a long inkrval. 
A naive attempt at such weighting gave (45.8 PT)~; however, the sampling distribution is sparse because 
lava cools and is magnetized by the ambient field quickly when compared with geologic time intervals. 
Moreover, the liklihood that the sampling is at least partly random and the central limit theorem indicate 
that having more samples from a particular geologic interval gives a more reliable mean value for that 
interval. 

The 132 samples were therefore divided into 22 groups according to position and time. The group 
mean square intensity was calculated for each group, as was the group mean sine. The weighted average of 
the group mean values of sine, with weights equal to the square root of the number of sample VDMs in the 
group times the apparent duration spanned by the group, is within 0.2% of n/4. The grouping and 
weighting thus reduces the effect of geographic bias. The weighted average of spatio-temporal group mean 
square intensities, with weights equal to the square root of the number of sample VDMs in the group 
multiplied by the apparent duration spanned by the group and by the group mean sine, is (44.95  AT)^. We 
reduce this mean square intensity by 2.05% (2.5% of geologic time multiplied by 1 - [15.10/35.5812) to 
compensate for the omission of transitional intensities and, finally, obtain the experimental rms 
paleointensity estimate cB%lD = 44.49 pT. This is 14% less than the uncompensated value, but remains 
25% over our predicted 35.58 pT. That it is close to the value of cF2>lI2 = 44.3 pT calculated from the 
Tanaka et al. [1995] model of F indicates that efforts to compensate for non-uniformity and bias in small 
data sets can be worthwhile. 

In summary, there is appreciableprimaficie paleointensity evidence to support the hypothesis that 
Earth's magnetic field is, when averaged over geologic time scales, about 25% stronger than we predict. 
We stress that our predictions are based on (i) a low degree extrapolation of a simple variation of McLeod's 
Rule and (ii) further extrapolating one preliminary calibration of this rule with less than one year of 
geomagnetic data to an interval of many millions of years. Nonetheless, our predictions are reasonably 
accurate when compared with archeo- and paleointensity data. This is particularly true when the superior 
temporal distribution of VADMs inferred from sediments is combined with the reliability of VDMs 
obtained from volcanics. As a final example of this, the average of the sedimentary mean VADM 
( 3 . 9 ~ 1 0 ~ ~  Am2 from Valet and Meynadier [1993]) and the non-transitional volcanic mean VDM 
(8.3~ Am2; this is but 1.8% less than our predicted 
{VADM} of 6.21~102~ Am2. 

Am2 from Tanaka et a1 [1995]) is 6.10~ 

4.4 Mesozoic Dipole Low 
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M. Pr6vot has called our attention to the Mesozoic dipole low Pr6vot et al., 19901, provided a very 
helpful review of our 13 November 1995 manuscript, and extended an invitation to comment on non- 
stationarity . 

We have reservations about extending our predictions, which already extapolate McLeod's Rule to 
the dipole, into the Mesozoic. These stem from the intervening normal polarity Cretaceous Superchron, a 
34 Myr interval (84 - 118 Myr) with few if any axial dipole reversals - particularly in its terminal 21 Myr 
[Jacobs, 19943. Based on our prediction for the mean rate of axial dipole reversals (see section S), it seems 
impossible that so long an interval should pass without one by pure chance. Perhaps the superchron marks 
a time of different geodynamo boundary conditions for which the modem day geomagnetic field is simply 
not a very useful guide. 

We suggest that a superchron indicates an interval when a stably stratified layer in the upper reaches 
of the outer core prevents convective motion near the top of the core (see Appendix A). Such a stable 
conducting layer may stabilize an axial dipole, but might yield a low degree power spectrum Rn(c) of 
dissipation form K'/n3 instead of the energetic, McLeodian form a n .  As is well known, such a layer 
might form from an excess concentration of buoyant slag liberated during an era of relatively rapid inner 
core solidifkation from the multi-component outer core melt. Latent heat released by solidification of slag 
at the base of the mantle may further stabilize the layer while reducing or eliminating the stability of the 
deepest mantle (D"). If the stabilizing buoyant components solidify onto, or are included into, the lower 
mantle, then their concentration in the layer (and/or the layer thickness) is reduced. Then the stability of the 
layer is reduced until the layer is broken up and mixed by ongoing thermo-compositional convection deeper 
in the core. Both formation and break-up of this (still hypothetical) intermittent layer are considered 
continuous, non-monotonic processes; however, it seems easier to view the layer as if it is either present or 
absent. Reversing (ordinary) or non-reversing (superchron) axial dipole states of the core geodynamo are 
thus viewed as marking the end-members of outer core solidification at its inner or outer boundaries, 
respectively. 

The remarkable tabulation of Thellier-Thellier Cenozoic and Mesozoic paleointensities by Pr6vot et 
al. [ 1990, Table 11 consists of 12 group mean VDMs and contains no data from the Cretaceous Superchron 
B v o t ,  1996 personal communication]. So we suspended our reservations and found the unweighted 
mean of all 12 values to be 6 . 2 ' 7 ~ 1 0 ~ ~  Am2, or 101% of our predicted { VADM} of 6 .21~102~ Am2. The 
weighted average of group mean VDMs, with weights equal to the square root of the number of sample 
VDMs in the group times the duration spanned by the group, is 6.3 lx  Am2; this is 102% of our 
predicted { VADM}. The groups labeled Coniacian-Santonian, Hettangian-Sinemurian, and Early Triassic 
have few samples and uncertain ages (rather than definite durations) and may thus have been over- 
weighted; eliminating these gives a 9 value weighted mean VDM of 5 .88~  Am2, or 95% of our 
predicted { VADM} . All these mean values show our prediction to be quite accurate. Perhaps the 
Mesozoic dipole low is more notable for its contrast with the Cenozoic dipole high. 

5. Prediction of Mean Geomagnetic Dipole Excursion and Reversal Frequency 

Equation (10) predicts that there is a small but non-zero probability of finding Earth with very little 
power in its magnetic dipole (R1 << {Rlc}) and thus with a weak absolute dipole moment. To get a better 
idea of the geomagnetic field during such a time, consider the 1980 field after removal of the dominant, 
axial part of the dipole. From model GSFC 12/83, we find ([(g11)2 + (h11)21/[(glo)2 + (g11)2 + 
(h11)2])1n to be 19.4%. So here we define "geomagnetic dipole excursion" as an interval when Earth's 
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absolute dipole moment I m I is less than or equal to 20% of its 1980 value I m80 I . During such an 
excursion, the geomagnetic field could resemble the present day field with the axial, but perhaps not the 
equatorial, dipole removed. 

5.1 Dipole Excursions Occupy 2.5% of Geologic Time 
We must predict that the probability of finding Earth during such an excursion is 1/40. To see why, 

recall that downward continuatuation of model GSFC 12/83 gives Rl(c) = 7.0401~ 1O1O nT2; yet when 
extrapolated to the first degree, our calibration of (8) from degrees 3 through 12 of this model predicts 

74.50% = RMSDM/I "80 I . By definition, excursional 1 m I < 0.200 1 mg0 I = 0.2684 x RMSDM, so 
excursional Rle I 0.072{RlC} = 0.216(R1,}/3. By (10) with n = 1, 3Rlc/{RlC} is distributed as x2 with 
three degrees of freedom. From standard tables of x2, the probability of obtaining Rlc I 0.216{Rlc}/3 is 
thus 2.596, as is the probability of obtaining I m I I 0.268 RMSDM = 0.200 I m80 I . So the probability of 
finding the Earth in such a geomagnetic dipole excursion is 2.5% or 1/40. 

expected dipole power {Rlc(c)} equal to 3.9079~10 10 nT 2 . It follows that [{Rlc}/R1(1980)11/2 = 

5.2 An Uncertain but Stable Dipole Time-Scale 
We predict geomagnetic dipole excursions down to 20% or less of the 1980 absolute moment occur 

during 1/40 of geologic time. To convert this probability into a mean temporal frequency of dipole 
excursions, we need both a time-scale for changes in dipole power and a model of dipole behavior during 
excursions. From main field and secular variation model GSFC 12/83, at] m I / I  m I is (-1030 yr)-l and [a 
$1/R13 is (-515 yr)-' at epoch 1980. The dipole power time-scale more representative of the present era 
obtained from the average and the difference of models GSFC 12/83 and 1945 DGRF pangel et al., 19881 
is I <Rl>/dtR1>/ = I T1 I = 830 years. Changes in annual values of Rl/aF1 are due to second and 
higher time derivatives of the first degree Gauss coefficients; these have short time-scales (see, e.g., 
McLeod [1996]), so their effect is largely averaged out over the 35 year interval. Still, such variations 
suggest uncertainties up to a factor of 1.4 might accompany our use of the present era dipole power time- 
scale TI. The recent decline of dipole power has been monotonic, so there is no compelling need to adjust 
T1 for vacillations which eventually cause 381 to change sign; this is so even though such changes may 
occur many times during an interval as long as TI. 

It is important to realize that time-scales such as T1 need not, ought not, and arguably cannot, be 
vastly different during excursions than they are in modem times. To see this, recall that the well known. 
magnetic induction equation for a fluid of uniform permeability 1.1 and conductivity 0, 

atB = VX(VXB) + olO>-'V2B , (14a) 

is linear in the field vector. Following Elsasser [1946a], when B is represented as a sum of elementary 
vector modes with amplitude coefficients ri(t), then the induction equation becomes 

at ri = cj qj rj 
where the generalized coupling matrix Z(t) depends upon the fluid velocity as well as magnetic diffusivity 
(po)-l. (Voorhies [1995] offers a simple example confirming that select ri correspond to the Gauss 
coefficients). The solution to (14b) is of propagator form 
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but is discussed in general terms of typical (e.g., rms) field strength B and flow speed v. Time-scales for 
the field, B / b  tB I , depend upon flow speed v, magnetic diffusivity (po)-', and detailed geometric 
couplings that are coarsely represented via a single length scale L for field and flow. Neither the inductive 
time-scale B/ I a tB I = ZB = L/v nor the diffusive time-scale zo = p L 2  depend explicitly upon field 
strength. We have no compelling reason to presume that either L or v are dramatically different during an 
excursion than during other times, so we expect excursional values of both ZB and zo, and thus the dipole 
power time-scale, to be similar to their non-excursional values. Even if such differences were presumed, 
they might largely cancel out so as to leave zB largely unchanged. The twentieth century dipole power 
seems somewhat large, but its relaxation towards the expected value seems efficient. Seeing no anomaly, 
we thus expect the dipole power time-scale during a dipole power excursion to be similar to its 
contempomy value TI. 

The position that T1 can be applied to dipole power excursions may, of course, be viewed as a 
uniformitarian hypothesis to be tested. Because we support this position with a kinematic view of the 
induction equation, it may also be viewed as a subject for core geodynamical debate. Such a debate is 
outlined in Appendix A; it leads to the conclusion that zB, and thus arguably T1, remains independent of 
the field strength in both magnetogeostrophic and geostrophic dynamical regiemes. Appendix A also notes 
why we associate a stable layer in the uppermost core with a superchron and circumstances under which 
stable T1 need not conflict with the view that changes in the axial dipole field are largely decoupled from 
the magnitude of the axial dipole itself. 

5.3 Fast, Mean, Multiple and Reversing Dipole Excursions 
Despite the foregoing demonstrations, the fastest excursion takes not hundreds of years but next to no 

time at all. To meet our defintion of an excursion, dipole power need only reach the threshold value 
0.072{RlC} for an instant before rebounding to larger values. When normalized dipole power f(t) = 
3Rlc(t)/{Rlc} reaches the threshold value fth = 0.216, equal probabilities of 0.5 are assigned to terminating 
and to continuing the excursion. Then half of the excursions are indeed quite short. The other half dwell at 
f(t) < fth for a time which, on average, is the mean excursion duration xex. As such an excursion ends, 
however, there remains the 50% chance that another begins; if so, we have a double excursion and perhaps 
a triple or multiple excursion. Accounting for both zero duration and multiple excursions shows that the 
mean duration for an excursion remains 

' 

One may think of zex as the half-life of geomagnetic dipole excursions. 
We stress that PDF (10) neither predict nor preclude dominant axiality of Earth's vector magnetic 

dipole moment (see Appendix C). It merely predicts that Earth's surface field is mainly dipolar except 
during rare intervals. During such intervals the three components of the dipole moment are each of very 
small absolute value compared with { I m I } . Provided an excursion is not too brief, there is a fair chance 
that one or more of these components, including the axial dipole, will reach zero and change sign - albeit 
not all at the same time. Indeed, given enough time, they may change sign many times (e.g., during an 
unusually long or a multiple excursion). On average, however, brief excursions with durations less than 
zex are expected to be "shallow" in that f(t) I fth but there is not enough time for f(t) to descend to values 
much less than fth; therefore, in accord with the simple thinking underlying (15) whereby half of all ~ 

excursions are quite brief, we predict that one half of all excursions are long enough for such sign changes. 
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(The excursional waveform derived below shows why brief excursions should typically be shallow and thus 
why durable polarity changes typically require excursion durations of zex or more). 

If the axial dipole moment vanishes, then it will eventually return to either the initial polarity or to the 
reversed polarity. We have no excuse to assign other than equal 0.5 probabilities to the post-excursion 
polarities. Of the half of the dipole power excursions that are typically long enough for the axial dipole 
component to reach zero, half will thus result in a durable reversal of the axial dipole moment. So one 
quarter of the excursions are predicted to be durable geomagnetic axial dipole reversals. Such reversing 
excursions are, on average, necessarily predicted to take twice the mean duration of all excursions. The 
remainder are intervals of weak, mainly non-dipolar, field. In particular, with excursional Rle I 
7.2%{Rlc} = (8.64 and Rm = (15.1 P T ) ~  at Earth’s surface, therms intensity during excursions is 
expected to be less than or equal to 17.4 pT. Samples of a field with rms intensity 17.4 pT might be 
mistaken for samples of an equivalent rms intensity dipole field with moment 3 . 2 ~ 1 0 ~ ~  Am2. This is close 
to, indeed 82% of, the 3.9xlg2 Am2 mean of transitional VDMs calculated from the selection of Tanaka 
et al. [1995], suggesting that many transitional fields meet our definition of a geomagnetic dipole power 
excursion. 

5.4 Simple Excursion Models 
We think the approach to a dipole power excursion reflects stochastic driving away from the expected 

dipole power {Rlc} by chaotic core flow and is thus more akin to a pseudo-random walk than, say, simple 
exponential decay of Rlc. In this view, the approach to an excursion takes a long time; however, the 
excursion itself is necessarily brief in comparison. The excursion itself might therefore be modeled as the 
approximately free response of a primed, but otherwise ordinary, dynamical system to a single equivalent 
perturbation. 

One simple model for an absolute dipole moment excursion from threshold amplitude (I m a  I = 
4xa3( { 0.072Rlc(a)/2} lI2/p0 = 1.58~ Am2) to zero and back during the interval ti I t I tf is the 
cosinusoidal form I mth I (1 + cosot)/2 for I m(t) I , where o = 2d(tf - t.$ is the free oscillation frequency 
assigned to the absolute dipole moment. With core flow during the excursion treated as a single equivalent 
initial perturbation, the duration of the excursion is 2Wm. With w taken to be I (at I m I )/I m I I = (1030 
yr)-’ from model GSFC 12/83, one obtains 6472 yr for the approximate duration of excursions that 
comprise 2.5% of geologic time. This would suggest geomagnetic excursions occur at the rate of once per 
258,900 years, or 3.86 per million years, when averaged over geologic time. 

An equally simple model, but for a dipole power excursion from threshold 0.072{RlC} to zero and’ 
back during the interval S t S tf. is the form A(l + cosm’t)/2 for R&), where 0’ = 21~4% - 9) is now the 
free oscillation frequency of dipole power. With o’ taken to be b$X1/R, I = (515 yr)-l from model GSFC 
12/83, the duration of the excursion is 2x/a’ or 3236 yr. If excursions of this duration occupied 2.5% of 
geologic time, then geomagnetic excursions would occur at the rate of once per 129,400 years, or 7.73 per 
million years, when averaged over geologic time. 

The second example gives an excursion firesuency twice that of the first; moreover, when the mean 
1945-1980 rates replace the single 1980 rates, these frequencies are reduced by a factor of 0.62. So these 
examples merely suggest a plausible range of 2-to-8 excursions per Myr. If a simple functional form for 
Rlc(t) or 1 m(t) 1 is presumed, and the time-scale identified with recent secular variation, then an excursion 
frequency can be calculated. Such calculations are not satisfactory because the functional forms presumed 
for Rlc(t) were arbitrary, if not wholly unreasonable, so the resulting excursion frequencies are also 
arbitrary. So let us return to (10) and derive both the mean excursion duration and a more satisfactory 
waveform for excursional Rlc(t). 
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5.5 Statistical Model of Geomagnetic Dipole Power Ekcursions 

threshold value, so f(t) I fa = 0.216 << 1 and (10) for the first degree becomes 
During excursions the positive normalized dipole power f(t) = 3Rlc(t)/{RlC} is less than the 

~ ( ~ R ~ J R ~ ~ } )  = (27~)-1/2 f1n exp[-f/21 

= (27C)-1/2 f1E [l - f/2] 

(1W 

(16b) 

K(27C)-'/2 f1i2 (W 

where the factor K =  0.9364 maintains the 2.5% probability of finding Rlc I 0.072{R1,} via 

0.2 16 2~(0.216)~/2 

0 3(2~$/2 
0.025 = ~ ( 2 7 ~ ) ' ~ / ~  f1/2 df = 

Note K is close to unity because (16c) is a good approximation to (10) at very low dipole power. 
During an excursion, dipole power declines from the threshold value to some lesser value and then 

recovers. The variation need not be monotonic; however, a bitonic symmetric excursion consistent with 
(16c) is derived in Appendix B to provide a prototypical, if not archetypal, excursional waveform. An 
alternate excursion model might involve a pseudo-random walk in normalized dipole power f(t) from the 
initial, threshold value f($) = fb down to a value near zero f(to) = 0, whereupon f(t) returns towards f(9) = 
fth by a similar process. For any particular excursion, the dwell t h e  at sub-threshold dipole power is then 
a sample of a distribution of excursion durations with mean value T~~ to be predicted. 

Statistical properties of excursional waveforms f(t) I fth follow by renormalizing (16c) into the 
conditional, excursion-specific distribution function 

with mean {flex = 3f@ and variance ( 12/175)fth2. During decay from fh to near zero values of f, the 
mean value of atf is fth/(to - $); during regrowth to fth, the mean value of atf is fth/(tf - td .  The single 
value of I a tf I characterizing the excursion is thus 2fb/ 1 tf - $ I . This is also the expected value of I at f I 
for the excursional waveform derived in Appendix B. 

5.6 Prediction of 9.04 Dipole Power Excursions and 2.26 Reversals per Million Years 
To predict the mean duration of dipole power excursions, recall that (i) the expected value off during 

an excursion is 3fth/5 and (ii) the characteristic absolute rate of change off during an excursion is just 
2fdI  9 - 9 I . Because ff - is rex, the dipole power time-scale during the excursion is 

For the reasons stated above, we equate this with the time-scale T1 = 830 years for the present era dipole 
power, thereby obtaining the predicted mean duration of geomagnetic dipole excursions 

zeX = 10T1/3 = 2767 years. (19) 
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Because we predict that, on average, excursions occupy 2.5% of geologic time, excursions are, on average, 
predicted to occur every 110,667 years (40 x 2767 years). So the predicted frequency of geomagnetic 
dipole excursions is 

vex = 9.04 per million years (20) 

One excursion in four is expected to be accompanied by a durable change in the sign of the axial dipole 
moment, so we predict the mean frequency of geomagnetic axial dipole reversals to be 

vrev = 2.26 per million years. (21) 

On average, such reversals are expected to take 22, = 5534 years. Are these predictions consistent with 
paleomagnetic data? 

6. Comparison with Paleomagnetic Excursion and Reversal Data 

We predict geomagnetic excursions down to 20% of the 1980 absolute dipole moment at an average 
rate of 9.04/Myr. Jacobs [1994, Figure 4.9 after Champion and others] shows 12 named paleomagnetic 
events in the past 1 Myr. The paleointensity record of Valet and Meynadier [1993, Figure 31 shows the 
same 12 named events, but occuring over 1.1 myr. Nine events (Laschamp, Blake, Jamaica, Levantine, 
Biwa 111, Emperor, Big Lost, Delta, and Kamikatsura) appear to be excursions; three events 
(Brunhes/Matuyama, the end of the Jaramillo, and the beginning of the Jaramillo) appear to be durable axial 
dipole reversals. If our interpretation of these events is correct, then the geologically recent rate of dipole 
excursions is 12/Myr, or 33% faster than predicted; however, one quarter of the excursions are reversals as 
predicted. This agreement over lo6 years is close enough to sustain a claim of reasonable accuracy when it 
is recalled that our prediction used but the single time-scale from the mid-twentieth century. 

Valet and Meynadier [1993, Figure 31, identify 25 named events in 3.8 Myr, 11 of which appear to be 
durable polarity changes. This gives 6.6 named events per million years and 2.9 durable axial dipole 
reversals per million years. The former figure is 27% less than our predicted excursion frequency; the latter 
is 28% more than our predicted axial dipole reversal frequency. 

Our definition of excursions implies expected VADMs of about 3 . 2 ~  1G2 A/m2 or less during an 
excursion. By laying a straightedge across the paleointensity record of Valet and Meynadier [1993, Figure 
31 at a VADM of 3 . 0 ~ 1 0 ~ ~  A/m2, we counted 17 intervals below this value in the first Myr and about 64 in 
3.8 Myr. The event rates of 17/Myr and 16.8/Myr, respectively, seemed large - as did the amount of time 
spent below this moment. Purely subjective counts gave 53-13 events in 3.8 Myr, or about 14/Myr. Recall, 
however, that the mean VADM of this record, 3% is less than our predicted { VADM) of 6.21~102~ 
Am2. The scale factor of (3.9/6.21) is needed to fairly test our excursion frequency prediction, as distinct 
from our paleointensity prediction, against this record. (We stress that these predictions are distinct: the 
mean paleointensity prediction depends upon extrapolation of McLeod’s Rule for multipole power to the 
lowest degree, but not upon the PDF assigned to normalized multipole power (2n+l)Rnc/{ Rnc}; the mean 
excursion (and reversal) firesuency prediction depends upon the PDF assigned to normalized dipole power, 
but only uses a particular value of {Rlc} to scale our definition of threshold dipole power to 0.072{RlC)). 
Because 3.2(3.9/6.21) = 2.01, only intervals Valet and Meynadier [1993, Figure 31 show with VADMs of 
2.0 x 1$2 or less are counted as excursions. We then count about 40 excursions in the past 3.8 million 
years. The average observed rate of such excursions, about lOS/Myr, remains 16% more than the predicted 
rate of 9.04 excursions per Myr, but demonstrates that the prediction is indeed fairly accurate. 
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Because only one quarter of geomagnetic dipole power excursions are expected to be accompanied by 
durable reversals of the axial dipole, the frequency of durable axial dipole reversais is predicted to be 
2.26Myr. To test this prediction, we used the polarity time scale of Cande and Kent [19921. Their Figure 
29 shows 186 reversals in 84 million years, so the observed mean rate of reversals is 2.21Myr. Our 
prediction of 2.26/Myr is therefore quite accurate. The observed rate is, however, not constant; the eight, 
10 million year intervals give rates of 4.8,3.6,4.0,2.0,0.9, 1.4, 1.0, and 0.8 per Myr (see Appendix A). 
The total 185/80 Myr average rate of 2.31/Myr nontheless confinns the absolute accuracy of our prediction. 

M. Prevot (1996, personal communication) calls attention to the work of Kristjansson [19851, who 
found the average transition time for durable geomagnetic polarity changes recorded in Icelandic lavas over 
the past 10 Myr to be 5-6000 years. His statistically estimated mean transition time of 5500 years shows 
our predicted mean duration of 5533 years for durable axial dipole reversals to be quite accurate. The 
agreement seems particularly remarkable because the polarity transitions are defined by detailed 
paleodkction data, while our prediction is derived from a PDF for normalized dipole power and the 1945- 
1980 dipole moment. 

7. Summary and Conclusions 

In geomagnetically source-free regions, Earth’s magnetic field can be represented mathematically by 
spherical harmonic expansions of scalar magnetic potentials. The mean square value of the magnetic 
induction represented by potential harmonics of degree n averaged over a sphere gives the spatial magnetic 
power spectrum at degree n on the sphere. McLeod’s Rule for the magnetic fieid generated by Earth’s core 
says that the internal spatial geomagnetic power spectrum of the core field at the core surface, RnC(c), is 
expected to be inversely proportional to (2n + 1) for finite degrees 1 c n I NE [McLeod, 1.985; 1994,19961 

The distribution x2 with 2n+l degrees of freedom is assigned to (2n+l)Rnc/{Rnc}. We extend this 
even to the first degree on the hypothesis that the small tilt of Earth’s magnetic dipole moment relative to 
its rotation axis is mainly a geometric, rather than an energetic, effect of the Coriolis pseudo-force on outer 
core field and flow. Such anisotropy is consistent with the x2 distribution in that there are an infinte 
number of triads of probability distribution functions for the three dipole components that give the 
distribution x2 with three degrees of freedom for normalized dipole power. 

McLeod’s Rule (equations (6) and (7)) was verified by using it to locate the core-mantle boundary 
with single epoch main field models of satellite geomagnetic data. This method is more accurate than other 
core magneto-location methods, with the estimated core radius of 3485 km being very close to, and within 
0.2% of, the seismologic value of 3480 km. With three minor variations of McLeod‘s Rule, two main field 
models of Magsat data, and using both degrees 3 through 12 and degrees 1 through 12, we obtained 12 
estimates of the core radius with mean 3504.8 t 37.0 km (20). All the estimates are within 1.8% of the 
seismologic value, even those including Earth’s magnetic dipole and quadrupole powers. McLeod‘s Rule 
thus enabled accurate magneto-location of Earth’s core. 

With the core radius fixed at 3480 km, preliminary calibrations of McLeod’s Rule and similar 
spectral forms were performed using main field model values of Rn for degrees 3 through 12. By 
extrapolation to the lower degrees, we predict the expectation value of Earth’s dipole moment to be 
5 .89~102~  Am2 rms (74.5% of its 1980 value) and the expectation value of geomagnetic intensity to be 
35.6 pT rms. Archeo- and paleomagnetic intensity estimates show this and related predictions to be 
reasonably accurate, though our non-expert analysis of a volcanic paleointensity data subset suggests it is 
20% low. By treating the dipole as axial, the expected multipolar powers were converted to a prediction of 
Earth’s expected Virtual Axial Dipole Moment {VADMJ = 6 . 2 1 ~ 1 0 ~ ~  Am2. When the mean virtual 
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dipole moment from a temporally well-distributed 4 Myr sedimentary record Walet & Meynadier, 19931 is 
averaged with that from reliable, geographically better-distributed volcanic records [McFadden & 
McElhmny, 1982; Tanaka et al., 19951, the result is within 1.8% of our prediction. Our prediction is also 
within 5% of various mean virtual dipole moments calculated from the Pr6vot et al. [19901 tabulation of 
group mean Thellier-Thellier paleointensities from the Mesozoic and the Cenozoic. (This tabulation 
appropriately excludes intensities from the Cretaceous superchron, which we suggest was a time of very 
stable stratification in the upper reaches of the outer core when McLeod’s Rule for the low degree 
multipole powers may have given way to a dissipation limited n-3 spectrum and a more axisymmetric, 
perhaps more Saturnian, field). Simple extension of McLeod’s Rule to the first degree thus enabled 
accurate prediction of geomagnetic intensity averaged over geologic time intervals. 

Our extension of McLeod‘s Rule and multipole power PDFs forced us to predict that exceptionally 
weak absolute dipole moments ( ~ 2 0 %  of the 1980 value) will occur during 2.5% of geologic time. We 
predicted the mean duration of such major geomagnetic dipole excursions, one quarter of which feature 
durable axial dipole reversal, using the dipole time-scale from modem geomagnetic field models &angel et 
al. 1985; 19881 and a statistical model of dipole power excursions. Use of the modern dipole power time- 
scale for other epochs is justified and is indicated by the convective core geodynamo hypothesis; an 
excursional dipole waveform was derived from the statistid model. We predict a mean excursion duration 
of 2767 years, 9.04 excursions per million years, and thus about 2.26 axial dipole reversals per million 
years with a mean duration of 5533 years. Paleomagnetic data show this purely geomagnetic prediction to 
be quite accurate. Our non-expert analysis of the Valet & Meynadier 119931 record gives a mean rate of 
10.5 power excursions per million years over the past 4 million years; this is 16% more than predicted. The 
polarity time scale of Cande and Kent [ 19921 shows the mean rate of durable dipole reversals for the past 
84 Myr to be 2.21 per million years; this is within 2.3% of our prediction. The average polarity transition 
time determined by Kristjansson 119853 is 5500 years; this is within 1% of our prediction. Simple 
extension of McLeod’s Rule to the first degree thus enabled accurate prediction of the frequency of 
geomagnetic excursions and reversals averaged over geologic time intervals. 

McLeod’s Rule for the core field led to (1) very accurate magneto-location of the core-mantle 
boundary; (2) reasonably, and it seems very, accurate prediction of paleomagnetic field intensity; and (3) 
fairly accurate prediction of the mean frequency of major absolute geomagnetic dipole excursions, 
including very accurate prediction of the mean frequency of durable axial dipole reversals. It also enabled 
remarkably accurate prediction of the mean duration of durable axial dipole reversals. The accuracy of 
these predictions serves to unify geomagnetism and paleomagnetism and indicates that McLeod’s 11994, 
19961 model correctly relates the inductive basis of core geodynamo theory to geomagnetic observation. 
We conclude that McLeod‘s Rule provides bonafide a priori information required for stochastic inversion 
of paleo-, archeo-, and/or historical magnetic measurements. Some caution in applying it to the first and 
second harmonic degrees is nontheless advised, particularly for historical times; moreover, it might not 
hold during polarity superchrons. We hope that McLeod’s rule will not only be better used, but better 
tested, by geomagnetists and paleomagnetists in the future. 
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Appendix A 
Core Field Time Scales and Superchrons 

We see no reason to presume that geomagnetic dipole power excursions represent extraordinary 
core thermal, compositional, or stress boundary conditions, and thus do not presume exceptional thermo- 
compositional buoyancy forces during excursions. These forces are thought to drive the core geodynamo, 
but pressure (-Vp), Coriolis ( ~ ~ Q x v ) ,  and Lorentz (JxB) forces may be of similar magnitude. If so, and 
with a strong field of curl ClJ, rough magnetogeostrophic balance indicates I JxB I = B2/@ = 2pQv = 
I 2pBxv I . The inductive time-scale becomes zB = L/v = ZppL2L2/B2, which might seem to increase as 
the field decreases; however, uncompensated buoyancy due to non-hydrostatic density perturbations p’ is 
the driver, so (except near the poles) I p ’g I = I 2pnxv I = I JxB I , B2 = pLp’g, and ZB = 2psLL/p’g 
remains independent of the field strength. 

In contrast with the qualitative excursion scenario outlined by Voorhies [1992], Lorentz forces 
might be uncommonly weak during an excursion. This depends upon the importance of the poloidal dipole 
compared with other poloidal and the toroidal field multiples within the core. Yet values of TB (and TI) 
need not be altered if deep core flow is more nearly geostrophic than magnetostrophic during an excursion. 
Even such a profound change in the dynamical balance might alter flow geometry rather more than typical 
flow speed. Moreover, with I p’g I = I 2pQxv I (except near the poles), v = p’g/2pB, and ZB = 2pQL/p’g 
remains independent of the field strength. 

The foregoing order-of-magnitude reckonings show that if the core geodynamo is driven by 
uncompensated (e.g., thermo-compositional) buoyancy, then the inductive time-scale ZB ought not, indeed 
cannot, vary greatly with field strength. Our predicted excursion h d  reversal frequencies use the modern, 
emiprical dipole power time-scale T1 during geologically remote times. The accuracy of our predictions 
for geomagnetic dipole power excursion (and reversal) frequency might thus be viewed as lending support 
to the convective core geodynamo hypothesis. In fact, the accuracy of our predictions merely provides no 
evidence against this hypothesis; however, the accuracy does seem higher than might reasonably have been 
anticipated by advocates for this hypothesis. 

Curiously, our position regarding the stability of T1 need not conflict with the view that changes in 
the dipole field are largely &coupled from the magnitude of the dipole itself because near surface core flow 
is largely tangentially geostrophic mMou&, 19843. Analysis of the present day field shows that the mean 
square radial core surface field is about equally divided between dipole and resolvable non-dipole fields 
(through degree 12) [Voorhies, 19841, so T1 = <Rl(c)>/<apR,(c)> = Rm(c)/[a$1(c)] = T*. By (10) we 
do not expect the non-dipole field to be unusually weak during excursions: however, if this were so, then 
time-scale T* could remain on the order of many hundreds of years. 

Although we do not presume that geomagnetic dipole power excursions represent extraordinary core 
thermal and compositional boundary conditions, these boundary conditions likely evolve with Earth’s 
mantle and inner core. If boundary condition evolution increases the amplitude of uncompensated density 
perturbations p’, one anticipates increased convective speeds, a reduced inductive time-scale, reduced T1, 
reduced mean excursion duration by (191, and thus an i n k e d  frequency of geomagnetic dipole power 
excursions and axial dipole reversals. In contrast, buoyancy braking in a stably stratified uppermost outer 
core reduces convective speeds there, increases the inductive time-scale, increases TI, increases a mean 
excursion duration indicated by relations akin to (19), and thus decreases the frequency of dipole power 
excursions and axial dipole reversals. If thick enough and sufficiently stable, such a layer might eliminate 
convective motion and drive the excursion and reversal frequency to zero. This indicates a polarity 
superchron. 
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Whether or not either McLeod's Rule or (10) holds during such an era of superficial stability 
remains to be seen. More nearly zonal toroidal flow in such a layer may suggest different inductive time 
constants than used by McLeod, while more complete suppresion of motion suggests increased importance 
of possibly lengthened diffusive time constants. It is conceivable that dynamo action might fail in the 
stable layer; if so, the I$, spectrum for the field outside the core might be fairly described by extending the 
diffusive range down to the fist  degree (so {Rn} = Kn-3), Turning to the PDFs consistent with (10) 
derived in Appendix C, it may seem unlikely that a form like (C5) would succeed; however, as oy 
approaches zero, (C5) approaches (Cl). The limiting axial dipole PDF (Cla) actually vanishes at zero axial 
moment, as does its slope; this may describe inhibition, or perhaps prohibition, of axial dipole reversals in 
the special case of small, or perhaps zero, equatorial dipole. So it is conjectured that, by decreasing reversal 
frequency and hastening diffusion of higher order multipoles, the hypothetical stable layer renders 
superchrons a time of almost purely axial dipole field 

As to the nonstationarity suggested by a non-constant rate of reversals inferred from the Cande and 
Kent [1992] polarity time scale, it may well be that the formation and removal of the layer should be 
viewed as a long and complex geologic process rather than a sequence of simple catastrophies. 

If, eventually, the density perturbations become too small to drive convection, then the relevant 
time-scale for the field would become the diffusive, rather than the inductive, time scale and the core field 
would decay away. 

Appendix B 
Excursional Waveform 

Consider a special ensemble average of many particular dipole power excursions f,(t) whereby 
idiosyncratic features of individual excursions can cancel out, yet a single mean excursional waveform 
consistent with (I&) can remain. This archtypal excursion must initiate at the threshold value f(G) = fth, 
decrease to the minimum at f(to), and finally return to f(k) = fth; therefore, the ensemble averaging is a 
variation of superimposed epoch analysis keyed to minimum f. A symmetric waveform can be ensured by 
averaging each particular excursion record with its reflection about its minimum. The waveform must 
account for the fact that p (f=O) = 0, but is non-zero for other f; therefore, it has a cusp at f(to) = 0. To 
construct this cusp, individuaI records that do not descend to exceptionally small values off must be cut at 
their minimum f and the two parts separated in time; in effect, such records receive zero weight in, 
constructing the portion of the waveform near the centered cusp. We can but suppose that the resulting 
symmetrized waveform will decline monotonically from fth to the cusp at zero f and then grow 
monotonically back to f& 

During the interval [to, +I, the probability that a monotonically increasing function M(t) is in the 
range [a, a&], denoted P[a = M(ta) I Mt) I M(ta+$ = a&], is proportional to taG - ta; indeed, 

A sufficient condition for M(t) to satisfy (Bl) throughout the interval to I t I tf is p O d M  = V(t - C), or 
,p (M) = VdVdM, where V is the probability of finding M(t) in range [M(b), M(Q)] divided by the duration 
of the interval and C is a constant (e.g., tJ. 
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The probability for finding f(t) I fth and increasing is half that given by (16c), but by symmetry such 
epochs occupy but 1.25% of geologic time. For monotonic growth from an f(to) of zero to the threshold 
value f($) = fth = 0.216, (16c) and the sufficient condition for (Bl) give 

2/3 t-to 2/3 
f(t) = [3(~/2)~’~/(40K)I I [-I I = fthITI 2/3 

t f - to  
where z = (t - to)/(tf - to). A similar analysis applied from the onset of an excursion at $ = 2t0 - tf to its 
minimum at to shows that (B3) specifies the symmetric bitonic dipole power excursion model during the 
entire interval [$, $1. The cusp in (33) at z = 0 is singular in that a& approaches infinity as t approaches to. 
In fact Rlc(t) must change at a finite rate; this unphysical property of the statistical dipole power excursion 
model (B3) merely reflects the zero probability (10) assigns to having all three dipole components vanish 
simultaneously. If not wholly impossible, a complete dipole power outage thus last no time at all. 

Because the cusp in (B3) at to is singular, the duration of an excursion waveform reconstructed from 
(B3) is lessened but slightly if f(t) does not quite reach zero. For example, model (B3) spends but 3.2% the 
excursion duration below 10% of the ftk The typical form of very brief excursions is reconstructed by 
cutting out a very large portion of form (B3) centered on to and pasting the wings together. This form for 
brief excursions is minimum at values off that are not much less than fth. Brief excursions are thus 
expected to be shallow and, as also mentioned in the text, are therefore less likely to include a change in 
sign of one or more of the vector dipole components. Again, brief excursions are expected to be shallow, 
axial dipole reversals typically require excursion durations of zex or more, and only half of all excursions 
have a 50% chance of becoming a durable reversal. 

Excursional waveforms reconstructed from (B3) have afinite jump in atf(t) where the wings of are 
joined. This is thought to be an artifact, but may suggest an alternate view wherein the jump indicates a 
sign change in a dipole component, The reverse is not always true, for spinning a tilted dipole need not 
change fat all. 

In excursion model (B3) I f(t)/i+f(t) I = 3 I t - to I /2, dipole power varies as I t - to I 2fl, and absolute 
dipole moment varies as 1 t - to I ll3. Indeed, the accompanying model of an absolute dipole moment 
excursion at Earth’s surface from the threshold down and back is 

lt-tol 1n 
Irn(95 t 5 tf)l = 1.58~102~ Am2 [- 1 (B4) 

tf-to 

It might be possible to test excursion model (B3-B4) against ensemble averages of data recorded during 
many geomagnetic dipole power excursions, provided effects of the expected 15.1 pT rms non-dipole field 
could be reduced. 

Appendix C 
Chi-squared from Abnormal Distributions 

If 2n+l independent random variables xi are drawn from identical, zero mean Gaussian probability ’ 

distribution functions of unit variance, then the probability distribution function (PDF) for the sum of their 
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squares, Z##, is well known to be chi-squared with 2n+l degrees of freedom. It is apparently less well 
known that the reverse is not always true. For example, consider three independent real variables (X, Y, Z) 
on the open interval (-cop) with PDFs 

p@) = ( z I c ) - ~ ~  x2 exp(-x2/2> (CW 

@D(Y) = s(Y) (Clb) 

@D(z) = 8(z) (CW 

where p M is the bi-Maxwellian and 8 is the Dirac delta function. There is no chance of Y and Z being 
anything but zero and X can be either positive or negative, so X2 + Y2 + Z2 = x2 is distributed as 

where r is the gamma function. PDF (Cld) is chi-squared with three degrees of freedom. 
The difference between example (Cl) and the usual case of three normal distributions with equal 

variance is important. If one replaces (X, Y, 2) with suitably normalized dipole coefficients (X + glo/D, 
Y + 0,Z + 0), then the example would describe a dipole with a zero mean bi-modally distributed axial 
component, variance { (g1°)2} = 3D2, and negligible tilt; this approximates a planetary magnetic field 
dominated by an axial dipole. The usual case (with (X, Y, Z) + (gl0/o, g1 *lo, hl l/o)) would describe a 
dipole with no preferred direction at all and seems even less relevant to Earth than example (Cl). That this 
isotropic case with typical dipole tilts of order tan-l([2] ll2) = 54.7’ degrees may be of some interest for 
Uranus and Neptune, while case (Cl) may be of some interest for Saturn, helps motivate derivation of 
potentially more Earth-like, intermediate distributions. 

There are an infinite number of sets of three PDFs for three independent variables which give the 
distribution x2 with three degrees of freedom. To see this, consider the possibly singular distributions for 
independent variables (x, y, z) on the interval (-, +=) 

where (4, Ay, 4) are normalization constants and (pX, py’ pz) are power law indicies which are less than 
one and sum to zero. Clearly 
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while similar PDFs for y2 or z2 follow by replacing x in (C2d) with y or z, respectively. The PDF for e2 = 
x 2 2 2  +y + z  is obtainedintheusualwayvia 

and the fact that the offset delta-function is the inverse Lapalace transform (denoted Ldl )  of the 
exponential of its offset 

where s is the Laplace transform domain variable. Substituting (C2a) and (C3b) into (C3a), and 
introducing u = x2, v = y2 and w = z2, yields 

With k, E (1 - px)/2 and 

-(l+px)/2 4 2  G-1 -a -4 
M U  e 1 = La(u e ) = r@&+1/21 

it follows that 

Comparison of (C4d) with (Cld) shows that E,2 is in fact distributed as chi-squared (x2) with three degrees 
of freedom. The conditions that (kx, ky, kz) are all positive definite and sum to 3/2 is, in (C2a-c), 
equivalent to the condition that (px, py, pz) are all less than 1 and sum to zero. There are an infinite 
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number of triplets for (pX, py' pz) that satisfy these conditions. The form of PDFs (C2a-c) is A I x I -p exp(- 
x2)] and is, in retrospect, one half the chi-squared distribution with typically fractional degree of freedom 
(1 - p) reflected abut a zero mean; for p = (1 - a), the corresponding A is 1/[2krg~]. 

It has been demonstrated that supposing some variable e2 to be distributed as chi-squared with 2n+l 
degrees of freedom does not necessarily imply that it is the sum of 2n+l normally distributed variables of 
equal variance. It particular, there are an infinite number of sets of three PDFs for the three degree 1 Gauss 
coefficients that imply the distribution of chi-squared with three degrees of freedom for normalized dipole 

which, in turn, sum to 3D2; then 3Rlc/{Rlc) is [(g10)2 + ( g ~ l ) ~  + (h This would be identified 

PDFs would then be (C2a-c) with px = -3/2, p - pz = 3/4; however, with px = -2 + E for the axial dipole, 
py = pz = 1 - ~ / 2  for the equatorial dipoles, then any one of the infinite values of real E such that O < E < 2 
gives an eligible triplet of PDFs. Indeed, as E approaches zero the PDFs (C2a-c) seem to approach (Cla-c) 
and the dipole becomes axial, while as E approaches 2 the PDFs (C2a-c) approach the usual, normal 
distributions and the dipole tilt becomes random. It is perhaps amusing to consider &/2 as a 'tilt control 
parameter' that not only describes the distribution of dipole tilts of some class of astronomical objects, but 
which might be diagnostic of, and perhaps determined by, the character of convection within a stellar or 
planetary interior. Alternately, slow evolution of a single astronomical object effecting evolution in the 
style of its internal convection might yield an evolution (non-stationarity) in the distribution of dipole tilts 
that could be described via timeevolution of E. 

We see no immediate problem with trying forms Iike (C2a-c); however, the variance of such forms 
is restricted by the selection of the power law indicies (and is 2lj2r(k + 1/2)/r'(k)). Moreover, we feel 
uncomfortable with the singularities in PDFs (C2b-c) for 1 > p = pz > 0. These are not the intermediate 
cases we had sought! Furthermore, it seems worth foHowing Constable & Parker [ 19883 in so far as 
assigning normal distributions to 81' and h l l  in the terrestrial case. If this is done, then (Cla-e) makes it 
intuitively obvious that the PDF for gl0 yielding chi-squared with three degrees of freedom for the 
distribution of normalized dipole power will be a linear combination of Gaussian and bi-Maxwellian 
distribution. This is in fact the case, as shown by the following derivation. 

Denote [(dc) g1 , (dc) g1 , (dc) h l  I by [x, y, zl and the variances of independent (x, y, z) by 

power 3Rlc/{Rlc}. To see this explicitly, denote the variances of (g O, gl l ,  hll) by (o?, by 2 2  , oz ) 

with c2 in (C4d) if (x, y, z) in (C2a-c) were identified with (glo/D, g1 1 /D, hl 'LO). One eligible triplet of 

Y -  

Y 

3 0  3 1  3 1  
(ox 2 2  , oy ,022). The axial dipole hypothesis would have the means of y and z be zero, while isotropy of 

the e q u a t a  dipole would have oy and oz be equal. We replace ((2-c) with distributions 

P ~ ( Y ) ~ Y  = (2m,2)-'n exp(-ib,?)dy (C5b) 

g J Z ) ~ Z  = (2xo2)-1n exp(-&o:)dz 

where V 2 2 2  = ox + o + oz2. With e2 = x2 + y2 + z2 = V2x2/3, the problem is to derive (C5a) for g Jx) 

(C54 

Y 
given normal distributions (C5b-c) and 

(C5d) @(52>d(t2) = (23/2~<3/2)1-'[3k2N21 1De~p[-35 2 2  DV I@/V 2 2  )d(S 

subject to the constraint that the dipole is mainly axial, so o 2  >> o? = o;. For independent (x, y, z) 
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or, using (C3b) and resetting u = x2, v = 3, w = z2, 

exp(-su - w/ts:)exp(g2) dudvdwds . 
Recognizing and evaluating the Laplace transforms gives 

(s + 1/2Cq)(s + 1/20?) 
~a[g;(u)l = a,a,(3/2V2)1/2 [ 1 1/2(3/V2) 

(s + 3/2V2)3 

In the special case oy = oz, 

and the inverse transform gives 

Because x can be of either sign, @ ,(x)dx is but half @ .'(x2)2xdx and (C7c) in fact reduces to the linear 
combination of a zero mean bi-Maxwellian and a zero mean Gaussian (C5a). 

two peaks on either side of the local minumum at gl0 = 0 corresponding to normal and reversed axial 
dipole polarity. A suitable index of anisotropy, or 'tilt control parameter', for PDFs (CSa-c) is now E E 

purely equatorial dipoles. We conjecture that the probability distibution functions (C5a-c) describe the 

In (c5a) note that ~2 - 3aY2 = crx - by > 0; with ox 2 >> oY2, this distribution (C5a) enjoys the 

[(ax2 - oy 2 2  )/V 1, which is 1 for purely axial dipoles, zero for randomly oriented dipoles, and -1/2 for 
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terrestrial dipole with fair accuracy; however, they are but one class of PDFs consistent with the 
distribution chi-squared with three degrees of freedom advanced for normalized dipole power in the text. 
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