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Abs_act

A computationally efficient Boundary Integral
Equation Method (BIEM) for the prediction of ducted

fan engine noise is presented. The key features of the

BIEM are its versatility and the ability to compute rap-

idly any portion of the sound field without the need to

compute the entire field. Governing equations for the
BIEM are based on the assumptions that all acoustic

processes are linear, generate spinning modes, and oc-

cur in a uniform flow field. An exterior boundary value

problem (BVP) is defined that describes the scattering

of incident sound by an engine duct with arbitrary pro-
file. Boundary conditions on the duct walls are derived

that allow for passive noise control treatment. The

BVP is recast as a system of hypersingular boundary

integral equations for the unknown duct surface quanti-

ties. BIEM solution methodology is demonstrated for

the scattering of incident sound by a thin cylindrical
duct with hard walls. Numerical studies are conducted

for various engine parameters and continuous portions

of the total pressure field are computed. Radiation and

duct propagation results obtained are in agreement with
the classical results of spinning mode theory for infinite
ducts.
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cylindrical coordinates - stationary frame

time

axial coordinate - stretched, moving

frame

maximum fan radius

radial coordinate of duct exterior

(interior) profile

ambient density

ambient sound speed

forward flight speed

= V F/c forward flight Mach number

= x/l- M _ stretching parameter

number of fan blades

shaft speed

= _m_/_: tip Mach number

axial coordinate of duct trailing edge in

stretched, moving frame

axial coordinate of duct leading edge in

stretched, moving frame

ratio of duct length to duct diameter

circumferential mode number

= mM np characteristic wave number of

m-th circumferential mode

axial wave number for first radial mode

and m-th circumferential mode

= k/13 modified wave number

Eulerian description of total acoustic

pressure field

Eulerian description of scattered acoustic

pressure field

Eulerian description of incident acoustic

pressure field

Eulerian description of normal

component of acoustic velocity field

normal derivative operator in stationary

frame (with respect to outward facing

normal to duct surface)

normal derivative operator in stretched,

moving frame (with respect to outward

facing normal to stretched duct surface)

surface acoustic impedance for duct

exterior (interior)
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Introduction

Ducted fan engine noise is dominated by the fan

component at takeoff and approach. Community expo-

sure to the high levels of radiated fan noise at these

conditions is significant. The reduction of tonal noise

produced by the rotating components of high bypass

turbofan engines is therefore of primary concern to the

aeroacoustician. The design of active and passive noise

abatement technology can be facilitated by advanced
analytical tools for predicting the radiated sound from

engine ducts. To be useful in design studies, prediction

tools should be fast, versatile, accurate, and imple-

mentable on mainstream computer systems. The ability
to compute only a portion of the sound field without the

need to calculate the entire field is an important attrib-

ute in conducting rapid noise predictions. Computa-

tional approaches such as Finite Element Methods

(FEM) and Computational Aeroacoustics (CAA) meth-

ods lack this property. For this reason, farfieid noise

calculations using FEM or CAA require vast amounts
of computational time and computer storage. There-

fore, the use of FEM and CAA for parametric studies in
noise abatement research is limited.

In this paper, a Boundary Integral Equation

Method for the prediction of ducted fan engine noise is

presented. The method is based on the equations of

linearized acoustics with uniform inflow. A scattering

approach is adopted in which the acoustic pressure field

is split into known incident and unknown scattered
components. The source process is assumed to gener-

ate an incident pressure field that can be represented by

a superposition of spinning modes. In a frame of refer-

ence moving with the engine duct and in regions of
space not occupied by acoustic sources or scattering

surfaces, the components of acoustic pressure are gov-

erned by Helmholtz' equation. An exterior boundary

value problem is obtained by the inclusion of boundary

conditionson theductsurfaces.The most generalform

ofthe boundary conditionsallowsfora spatiallyvary-

ing,locallyreactinglinermodel on theductsurface.

By consideringspecialvalues of the specific

acousticimpedance in the boundary conditions,the

classicalDirichletand Neumann boundary valuesare

obtained.The boundary valueproblem isthen solved

by expressingthe scatteredpressurefieldinterms of

double and singlelayerHelmholtz potentialswith un-

known densitiesthatarcrelatedtosurfacepressureand

thenormal derivativeof surfacepressure,respectively.

Applicationof the boundary conditionsto the layer

representationyieldsa system of one-dimensional,hy-

persingularboundary integralequationsfor the un-

known layerdensities.The sourcetermsforthesystem

are relatedtothe known incidentpressureand itsnor-

mal derivative. This system of boundary integral equa-

tions and method of solution comprise the BIEM.

The system of boundary integral equations is valid

for engine ducts with arbitrary profile. If, however, the

duct is approximated by an infinitesimally thin cylin-

drical tube, the complexity of the integral equation ker-

nels is substantially reduced.

Analytical results will be presented that separate

the singular and logarithmic portions of the integral
equation kernels from the bounded parts. This analysis

is significant because calculations involving singular

and logarithmic integrals are available in closed form,

thus avoiding time consuming, customized numerical

integration techniques.
To demonstrate the BIEM, the solution procedure

for a thin pipe geometry with hard wall boundary con-

ditions is presented. A collection of spinning point

dipoles located inside the duct are used to simulate the

loading component of the fan noise and generate the

incident pressure field. Several sets of engine operating

parameters are considered in this study. Various re-
searchers t's have employed boundary integral tech-

niques to solve this problem. Differences in the present

work relative to the referenced works appear in the
conclusions section of this paper.

Boundary Value Problem Derivation

In the analysis that follows, all quantities have

been nondimensionalized; length by fm_, mass by

- -3 _,_ - ].Porm_, and time by

We consider an engine fan surrounded by an axi-

symmetric, nondeformable duct of arbitrary profile

translating in the +z (axial) direction with uniform

speed V_ (see figure l). The fan is composed ofN a

equally spaced blades and rotates with shaft speed f_.

The incident acoustic pressure field generated by the

fan is known. Linear conditions are assumed to apply
and the inflow is uniform.

13a 13b z

rg(z) _r t=O

Figure 1: Duct Geometry

(Cylindrical, Stationary Coordinates)
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Governing Differential Equations

The total acoustic pressure in the sound field is

written as a sum of incident and scattered parts.

Pl (r, W,z,t)= pl (r, W,z,t)+ p: (r,w,z,t)(i)

In regions of space that contain no scattering surfaces,

P's is governed by the homogeneous wave equation.

c 2 0t 2 r Or r r2 8W 2 Oz 2 p_=0 (2)

Total acoustic pressure and acoustic velocity are
related through the normal component of the acoustic

momentum equation.

0u, (r,v,z,t) 8p: (r,v, z,t)
= o (3)

0t On

In a frame of reference moving with the duct, all

dependent acoustic variables can be expressed as linear

superpositions of spinning modes. For example, the
scattered pressure has the form

m

p_(r,v,Z,t) = Z P? (r,Z)e _"l_-_') (4a)
m/Na=-a_

and the acoustic velocity is written

u,(r,w,Z,t)= _U_(r,Z)e imlta-v), (4b)
m/Na=-_e

where the stretched, moving axial coordinate Z is
given by

Z= z-VFt (5)
13

The BIEM calculates modal amplitudes in (4) term by

term. For notational convenience, the superscript m on
the modal coefficients is dropped hereafter.

Define the dependent variables Q, and • N by

and

Q, (r,Z)= P, (r,Z)e '_'z (6a)

_N (r,Z) = UN (r,Z)e "M_z, (6b)

with similar definitions for the total and incident pres-

sures. Combining (4-6) with (2) yields the two dimen-

sional Helmholtz equation

1 0(r0]÷ 0: m: 1r_-_, _] 0Z: r 2 +_¢2 Q_ =0
(7)

for the m-th coefficient. Using the definitions in (6),

the momentum equation (3) can be written as

tD N (r,Z) = -e Mr x
c

I ]" -_--'e'M'z l_F[38QtoN, iKMFNzQ , dZ'

(8)

where N_ is the axial component of the outward fac-

ing, unit normal to the stretched duct surface. Equation

(8) is valid for M r >0. If the duct is stationary

(M F = 0), then (7) and (8) reduce to

and

1_- r_- +Sz: r 2 _'k_ P,=0 (9)

10P, (r,Z)
U.(r,Z)+ ic k _ =0. (10)

Equations (7-10) are valid for points not lying on the
surface of the stretched duct.

Boundary_ Conditions

To meet noise certification levels it is necessary to
treat the engine duct with passive noise suppression

technology. In this work, the duct treatment is modeled

by a locally reacting, axially varying liner.

Define the surface functions Q_ and _ by

and

Q_(Z)= lim Qt(r,Z) Z_[a,b] (lla)
r-*r_(Z)

O_(Z)= lim On(r,Z ) Z_[a,b] (llb)
_-,,_(z)

with similar definitions for Q_, Q,_, normal velocity,

and all pressure components.

Myers 6 has shown that if _± (Z) represents the

specific acoustic surface impedance, then, in the
stretched, moving frame of reference, the modal coef-

ficients of velocity and pressure satisfy the boundary

equation

*_ kL) + (l +---ff-'_-_) _ = 0 Z e[a,b].(12)
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Equation (12)representstwo boundary conditions,one
for the exteriorsurfaceand the otherforthe interior

surface. The boundary conditionsfor the stationary

casereduceto

P?(z)
-7_=0 Z e[a,b].

(13)

By considering special values for the functions _ t

in (12) and (I 3), several boundary conditions of interest

are derivable. Total sound absorption is achieved if

_* = _- = constant _ 0. (14)

Total sound reflection (hard walls) arises for

÷ = _- = constant _ oo. (15)

Of particular relevance to actual engine ducts, is

the case of a hard exterior surface (_+ -_ oo) and lined

interior. The boundary conditions for this situation are

O_ (Z)= 0 Z _[a,b] (16a)

and

a,;,(z)+I+ z
G-(z)

We now evaluate the momentum equation on the
duct surface to obtain a relation between surface pres-

sure and surface velocity. Let

(c3Qt'_±(z)= lira 3Q,(r,Z) (17)

with normal derivatives of other dependent acoustic

variables evaluated on the duct surfaces similarly de-

fined. Then from (8), (10), and (11) we get

and

K

i_-Tz ×
C

Z

Z_[a,b] M r >0

1 (oP,
u:(z) J

Z e[a,b] Mr=O

(18)

(19)

Classical boundary conditions are obtained for the

stationary case. Combining (13) and (19) yields the

Robin's boundary conditions

;±(Z) ick =0 Ze[a,b]. (20)

Dirichlet or Neumann conditions are obtained by appli-

cation of (14) or (15), respectively, to (20).

We complete the derivation of the boundary value

problem by requiring the dependent acoustic variables

to satisfy the appropriate Sommerfeld radiation condi-
tion. Additional conditions may apply depending on

the smoothness of the duct walls. If there are points on

the duct that do not possess continuously turning tan-

gent planes, then edge conditions specifying the behav-

ior of the acoustic pressure at these points must be
provided 7. Edge behavior is determined from the

physics of the problem together with an asymptotic

analysis of the governing equations in a neighborhood
of the edge. This problem occurs at the leading and

trailing edges of the thin pipe approximation, for ex-

ample.

Summary_

The above analysis describes a uniquely solvable

two dimensional boundary value problem for the scat-

tered acoustic pressure in the sound field. For the sta-

tionary case, the boundary value problem is defined by
(1), (9), (19), (20), the radiation condition, and the edge

conditions (if applicable). If the duct is in motion, then

(1), (6), (7), (12), (18), radiation and edge conditions
completely define the boundary value problem.

Boundary_ Integal Equation Forrrlulation

In this section, we reformulate the boundary value
problem by deriving one dimensional boundary integral

equations in which the boundary functions Q_ and Q_
are unknown, where

(21)

Once the scattered boundary functions are determined,
the scattered pressure in the sound field is calculated

pointwise via a Heimhoitz layer representation that

satisfies the Sommerfeld radiation condition implicitly.

Helmholtz Layer Representation

The Green's function for the two dimensional

American Institute of Aeronautics and Astronautics 4



Helmholtzoperatorin(7)canbewritten

7t

l f e -_RG(r,r',Z-Z')= _-n c°smv R d_/ (22)
0

where

a=_/r 2 +r'2 -2rr'cosw +(Z-Z') 2 . (23)

Using results from Helmholtz potential theory 8 and

(21-23), the solution of (7) is expressed as the sum of
single and double layer Heimholtz potentials with

densities Q_ and Q±,, respectively. Thus,

Q, (r,Z)= s* [Q/_ ](r,Z)-d÷ [Q: ](r,Z) +

s-[Q_ ](r,Z)-d-[Q: ](r,Z)
(24)

Equation (24) is valid everywhere except for (r, Z) on

the stretched duct surface. The field operators s _ and

d ± are defined by

s± [f](r,Z)=

b

-rr(z,,rlira G]J±(Z')dZ 'L,'-_,a(z')
i

and

(25)

d* [f](r,Z) =
b

A
1

(26)

where f is some sufficiently smooth function and

J_(Z')dZ' are the elements of arclength along the

_(z').curves r = r D

If the boundary functions were known, then the

scattered acoustic field could be obtained from (24).

Singular Boundary_ Operator Notation

In order to apply the boundary conditions to the

field equation (24), it is necessary to evaluate the 2-D

layer potentials and their derivatives on the stretched

duct surface. The resulting I-D boundary operators are

singular. For Z e [a, b], define the following singular

boundary operator - kernel pairs:

b

s* [f](z)=Sr(z')s±(z, z')dz '
a

1
S±(Z,Z')=_-_-nJ-+(Z' ) lim G,'-_tz')

r-+r_(Z)

(27)

b

D± [f](Z) = J f(Z')D± (Z,Z')dZ '
a

1 + ,) 8(3
D± (Z,Z') = _-J- (Z lim,'--,,_(z') i_N '

,--,,_(z)

(28)

b

S_ [f](Z) = J f(Z')S_ (Z, Z')dZ'
a

, = _(_,_s_(z,z) !j ,_, lira --
2n r'--_r_ {Z') _N

,-,,_(z)

(29)

b

D_ [f](Z) = J f(Z')D_ (Z, Z')dZ'
a

1 c_:G
D_(Z,Z')=_-J±(Z ') lim,'-_,_(z.) c_qo_/'

r-_r_tZ)

(30)

b

S_ [f](Z)= J"f(Z')S z (Z,Z')dZ'
a

Sz(Z,Z')=_-_-nJ±(Z' ) lim 0G,'_,_(z')
,-_,_(z)

(31)

b

D z [f](Z) = Sf(Z')Dz (Z,Z')dZ'
i

I c_2G "
Dz(Z,Z')=T_-nJ±(Z ') limr'_g(z'l 0ZON'

r-*,_(Z)

(32)

Note that operators are denoted by bold face type. The

kernels are singular for Z- Z' = 0. The nature of the
singularities is examined below.

Singular Kernel Analysis

We list here, without proof, the asymptotic proper-

ties for IZ-Z' I<< 1 of the above kernels. The singular

character of the kernels is obtained by local analyses,

the details of which will appear in a future publication:

S±(Z,Z')=g_3(Z)InIZ-Z'I+K,(Z,Z ') (33)

g;=(z)
D±(Z,Z') =_+

g_,(z) lnlZ- zq+ K2(Z,Z')
(34)

American Institute of Aeronautics and Astronautics 5



s_(z,z')= g_2(z)z--ZT-+
g_ (Z) In]Z- Z' I + K 3(Z, Z')

D_(Z,Z') = g:, (Z) g::(Z)
(Z-Z'y +TzTr +

g:3(z) l.lZ- z'l. K. (z, Z')

S z (Z,Z') = _.gs_(Z) 4-
Z-Z'

g;_ (Z) ln[Z- Z']+ Ks (Z,Z')

g:,(z) gt_(z)
D_(Z,Z') = (Z_ Z,): +-_w -+

g_,(Z)In[Z-Z']+K6(Z,Z')

(35)

(36)

(37)

(38)

where g_, and Ki are known continuous functions.

The leading behavior for the single layer kernel

(33) is logarithmic. Therefore, the associated operator

is weakly singular. The leading terms for the kernels
(34,35,37) are of the Cauchy type. Whilst, the kernels

(36,38) are of the strongly singular Hadamard type.

Consequently, integrals involved with the kernels (34-

38) are divergent and must be interpreted in the finite
t0

part sense .

All of the above kernels have the logarithmic por-

tions extracted. Integrations involving these terms are
def'med but difficult to achieve numerically. This

problem is mitigated by the development of analytical

results for the associated operators. Examples of this,

as well as analytical results for the Cauchy and

Hadamard terms, are presented in the results section.

Calculations involving the continuous portions of
the kernels are performed by straightforward numerical

integration.

Jump Relations from Potential Theory_

Using the above operator notation, we state conti-

nuity properties for the single and double layers as a

field point approaches the surface from the exterior of

* (exceptthe duct. For sufficiently smooth f and r D

possibly at Z = a, b), we have the following results s for

Z _(a,b).

lim s± [f](r,Z) = S* [f](Z) (39)
_-._(z)

lim d*[f](r,Z)= I f(Z)+D-_[f](Z) (40)
r__rt_{Z ) -- "_

0 . 1 f(Z)+S.
lim--s-[f](r,Z)=]- _[f](Z) (41)

lim -_-_ d_[f](r,Z)=D_[f](Z)
,-,4tzl ON

(42)

Boundary_ Integral Equations

A system of integral equations for Q_ and Q_ is

derived by applying the boundary conditions (12) and

(18) to (24) and (39-42).

We begin by deriving some preliminary results.
From (1), (6a), (i la), (24), and (39-40) we write

and

Q_ (z)= Q_ (z)+s± [Q_ ](Z)

+(l-D*-)[Q_](Z) Z_[a,b]

8Qt_ (Z) 8Q'_ (Z)+S_.[Q: ](Z)aZ =_-z-

aQ_ D_[Q_](z) z+-_--(z)- _[a,b]

(43)

(44)

Combining (1), (6a), (I 7), (24), and (41-42) yields

Z = Z+

(,+sZ)[Q:](z)+n_[QZ](z)z eta, b]
• (45)

by

Define the unknown surface vector functions ?:1_

:t T
ffi*(Z) = (Q: (Z),QN (Z)) . (46)

Combining the boundary conditions (12) and (18) with

results (33-46) yields the system of integral equations

z _i __L_z,

fe _ K:[_-_](Z')dZ'
-ec

+K_[_:](z)= _:(z) z _(a,b)

(47)

for the four unknown surface functions. The vector

function ?:1_ is known from the incident pressure field

and the integral operators K _ and K _ have the general
form

American Institute of Aeronautics and Astronautics 6



A(Z)4 (Z)+B(Z +
b

f b -± :c(z) +,(48)
ii

41

b

r(z)j (Z')lnlZ-Z'Idz'+K.[n ](Z)
a

where A ..... E are matrices of known functions and K B
is an integral operator with continuous kernels. The
matrix functions are determined from the coefficients in

(33-38) and depend on the surface impedances and the

duct curves r=rt_(Z' ). Explicit expressions are

lengthy and will not be presented here.

Examination of (48) indicates that (47) is a system

of one dimensional, hypersingular, integro-differential

equations of the second kind. As indicated previously,
(47) must be augmented by a set of edge conditions if

applicable. The authors are not aware of any theory

that describes the solvability of (47). This subject is a
matter of ongoing research. However, for certain sim-

ple cases, one of which is described in the next section,

(47) is greatly simplified and solvability theorems do
exist.

The characterization of the integral equation ker-
nels by (48) greatly simplifies the numerical solution of

(47). Analytical results for the logarithmic, Cauchy,
and Hadamard kernels are available in many cases l_
and the continuous portions of the kernel can be com-

puted by straightforward numerical integration.

Results

In this section, we consider the scattering of inci-
dent sound by an inffmitesimally thin cylindrical duct of

unit radius. The duct can be stationary or in motion.
The interior and exterior walls of the duct are assumed

to be hard. For this case, the complexity of the bound-
ary integral equations is reduced significantly.

Boundary_ Integral Equation Formulation

From (12) and (18) the boundary conditions are

Z

)-i--Z'

e M, Z' dZ' = 0 Z_[a,b]. (49)

Differentiating (49) with respect to Z and using the

relationships between total, scattered, and incident

pressures yields the boundary equations

=Q_+ =0 z_ a,b. (50)

Since the incident pressure and its derivatives are con-

tinuous across the duct surface we add the exterior and

interior equations in (50) to get

Q_+Q_ =0 Z _[a,b]. (51)

Equation (51) is used below to simplify the field equa-
tion (24).

Define the jump in scattered pressure across the
duct wall by

AQ, (Z) = Q_ (Z)-Q: (Z) Z a[a,b]. (52)

Referring to (25-26) observe that

and
d- [f](r, Z) = -d" [f](r, Z) (53)

s- [f](r,Z) = s+ [f](r,Z). (54)

Thus, applying (51-54) to (24) produces the field equa-
tion

Q, (r,Z)= -d[AQ, ](r, Z). (55)

Therefore, the scattered acoustic pressure in the sound

field is written as a double layer with density given by
the scattered pressure jump. Since the interior and ex-

terior duct surfaces are the same, we have omitted the

superscript on the double layer operator.

A single integral equation for AQ s is obtained
from (49) as follows: Use (42) to evaluate the normal

derivative of (55) on the exterior wall, then combine

this result with the exterior boundary condition in (49)
to give

e DN [AQ, ](Z')dZ'=

-o_

Z

-, _--z, c_Q.___, ')dZ' e[a,b]
e M, (Z Z

(56)

It is advantageous to rewrite (56) as the system of
equations

0Qi I (Z) Ze[a,b] (57a)[:,q,
and

American Institute of Aeronautics and Astronautics 7



g[AQ,]= Co. (57b)

wherethefunctionalg isdef'medby

a . K

g[f]--f e-_z D_ [f](Z')dZ'
-ao

(58)

and

-,-z. _, (Z')dZ'.
Co = e M, _ ,:l

(59)

Equation (57a) is obtained by differentiating (56), and

(57b) by evaluating (56) at the trailing edge. No infor-

mation is lost by this reformulation. For the stationary

case, (57b) is satisfied trivially. By performing a local

analysis on the kernel in (57a) it can be shown to have
the form

DN(Z_Z,) = A *
(Z-Z') _ ,

BIn[Z-Z'[+K_(Z-Z')
(6O)

where A and B are known constants and the kernel K B

is continuous and simple to evaluate numerically.

To obtain a unique solution to (57a, b), the behavior

of the pressure jump at the duct leading and trailing
edges is required. It is known that the jump in pressure

has the following asymptotic behavior:

-_7-_)z-.,a"
AQ = O/ M): b.fb_-Z]

I. t,bdV_-Z+ J
Z--). b-

(61)

Based on (61) we assume a solution of the form

b-Z
AQ, (Z) = cc_-__ a +

)

4(b-Z)(Z- a) 7(Z)

(62)

where a is an unknown constant and y is an unknown

continuous function. Note that if the duct is stationary,
then ct = 0.

A method is now developed in which the determi-

nation of ), is separated from the calculation of o_.

This yields an integral equation for y that is relatively

simple to solve. Use (62) in (57b) to obtain

where

Co-g(_'_)[r]
ct = (63)

gi_.__)[1] ,

g("_) [f] : g[(Z-a)n (b-Z) _ f]. (64)

The notation in (64) will be used with other integral

operators in the remainder of this analysis. Substituting

(62-62) in (57a) gives the In'st kind integral equation

K(H'%) [_' ](Z) = q(Z) Z ¢[a,b], (65)

where

and

K(n'Y')b](Z)=o_/"_)[_](z)-

g(z"z')['_]o_'/'"_)[l](Z)z_[a,b]

o_Qi

q(Z)=--_-I,.,(z)-

Co D_"_)[I](Z)Z_[a,b]"
g(_,-'A)[_]

(66)

(67)

The kernel for the operator in (66) has the same form as

(60). After solving (65) for _,, (63) is used to calculate
Or..

N_lmerical Solution

Due to the edge behavior associated with y, it is

natural to expand ), in a series of Chebyshev polyno-

aremials of the second kind. Thus, constants y j j=o

sought such that

where

7(Z) = ZyjUj 2Z-a-b
j:o b-a '

sin[(j+_)cos-'x]
u,(x)=sin(cos-'x)

(68)

(69)

Goiberg 9 has shown that if K is not an eigenfrequency

of K, then a unique convergent expansion such as (68)

exists for integral equations with kernels of the type

given in (60).

American Institute of Aeronautics and Astronautics 8



To solve (65) numerically, we truncate the expan-

sion in (68) and apply the collocation method. Other

popular projection techniques, such as Galerkin's

method, require an additional numerical integration

relative to collocation. With proper choice of colloca-

tion points and numerical quadrature scheme for the

continuous portion of the kernel, Goiberg 9 has shown
that the accuracy obtained by Galerkin's method and

collocation are equivalent for this problem. Thus, col-
location yields the same accuracy as Galerkin's

method, but with substantially less computational work.

The numerical solution begins by choosing the

number of terms in the expansion (68), N O + 1. This
number is a function of the modified wave number K.

If _- denotes the approximate solution, then

._(z)--_u_ 2 b
j=o

(70)

_" "_N0+ I

The collocation points, LZj Jj°l are given by the ze-

roes of the N O+ I-th Chebyshev polynomial of the first

kind and the numerical integration scheme for the con-

tinuous kemel is chosen as Gauss quadrature with

weights and nodes based on second kind Chebyshev

polynomials. Evaluating (65) at the collocation points
yields the linear system

No

E v'K(_'_)[u' ](zJ) = q(zJ),.0 , (71)

j=i ..... No+l

for the unknown expansion coefficients. The inverti-

bility of the linear system has been established by Gol-
berg.

To compute (71), integrals of the type

1

f x_-x'2Uj(x')dx' x_(-_,l],(x_x,)_
(72)

I

1lg/-S_x,2
-I

U,(x')lnlx-x'ldx' x _(-oo,1], (73)

I

i +x,dx,-x' (x_x,)2 x
-I

(74)

and

f_' lnlx-x'ldx'x_(-.,1],
_l-x'

-I

(75)

are encountered. Analytical results are obtained for

(72-75) by applying the Plemelj-Sokhotski theorem 7

and its logarithmic analog to the complex function

1
with branch cut

IRe(w)l < 1 lm(w) = O.

The branch is defined such that (w 2 -i) _ is real and

positive ifw is real and greater than one. This analysis
yields the following results:

I

f l-x/_x':Uj(x')dx'_x-x,7 ---_(J+_)×
-I

U_(x) x _[-i,1]

,/Vx_i x<-I

(76)

1

j'_Uo(x')lnlx- x'ldx' =
-I

1 _[-I,i]_-T2 (x)-ln 2 x

_ X+ +

ln(-x+ x<-,

(77)

I

J _- x'_Uj (x')lnlx- x'ldx' =
-I

Tj+2 (x) Tj(x)

j+2 j

( x_-r-_-l) "__ x+

2
j+2

x<-I j>0

, (78)
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I

I xdxx, (x- x,)2
-I

x [-1,1]l71 -:1
X<-I

(79)

and

!

x' lnlx-x'ldx'--
V1_-77r

-1

x+ln2 x_[-l,l]

-n x+ln2__x 2_1+
x<-I

(80)

In the above, Tj is the j-th order Chebyshev polynomial
of the first kind

Tj(x)=cos(jcos-'x). (81)

The analysis leading to the BIEM is independent of

the fan noise source description. For illustrative pur-

poses, it is expedient to assume simplified source

mechanisms with analytical expressions for the incident

field. In the results presented here, a collection ofN s

equally spaced point axial dipoles of unit strength lo-

cated inside the duct at a radial distance 0.9r D and

spinning with angular speed _ are used to simulate the
loading noise produced by the fan (see figure 2). An

analytical description exists for the incident field in-
duced by this configuration I. The use of more sophisti-

cated source processes is considered in the conclusion
section.

To demonstrate the versatility of the BIEM, several

studies were conducted for the above problem. In each

study, continuous portions of the total acoustic pressure

field in the unstretched, moving frame were calculated.
The numerical methods described in (66-81) were im-

plemented on a Cray YMP computer at NASA Langley

Research Center. For each set of parameters consid-

ered in the studies, the computational time for both

field and integral equation calculations was 2-8 min-
utes. The acoustic fields displayed are composed of

20,000-50,000 observer point calculations.

In the first study, N B = 20 point sources with tip

Mach number Mxt F = 1.2, were used to simulate the

fan noise. Four forward flight Mach numbers (M r =

0.0, 0.2, 0.4, and 0.6) were considered. Field calcula-

tions in a plane perpendicular to the fan plane and

parallel to the duct axis are presented in figure 3a-d.

An examination of the pressure fields inside the

duct reveals that the wavelengths of axial modes propa-
gating in the direction of motion decreases with increas-

ing M r . A spectral analysis of the axial wave structure

is beyond the scope of this work. However, the number

of waves per unit length of the dominant axial mode

present can be approximated by visual inspection. In
table 1, these observations are compared to the axial
wave numbers for the first radial mode from classical

spinning mode theory for ducts of infinite length. If

v represents the smallest zero of the function J _, then

the theoretical axial wave numbers are given by the
formula j2

(82)

where J _ is the m-th order Bessel function of the first

kind. Only propagating modes are considered. Note

that k_ < 0 corresponds to axial waves traveling from

the fan face to the inlet. The computed results appear

to be in agreement with theory.

It is also noted that the angle between the line of

peak noise and the duct axis decreases with increasing

Math number. This agrees qualitatively with the re-
sults of Rice, etal. ]3.

M r K k _ (Theory)

0.0 24.0 -1.44, +1.44
0.2 24.5

0.4' 26.2

0.6 30.0

k z (Observed)

-1.5, +1.5

-2.47, +0.88 -2.5

-4.23, +0.59 -4.0

-7.59, +0.43 -7.5, +0.5

Table 1: Propagation Properties for Figure 3 Results

(Mro=l.2 LD=I.0 m=N B)

Using the same source configuration as above, the

effects of increasing tip Mach number for fixed flight

Mach number M r = 0.8 were examined (see figure 4a-

d and table 2). With regard to propagation and radia-

tion characteristics, similar comments as in the previ-

ous study apply for cases 4a and 4b.

In cases 4c-d, the waves moving forward in the

duct are in agreement with the theoretical results.

However, waves traveling toward the exit are present
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thatarenotaccountedforin thetheory.Themodified
frequenciesfor thesetwocasesarerelativelycloseto
someeigenfrequenciesfortheinteriorDirichletprob-
lem.Thatis,theeigenfrequenciesareoccurringatthe
zeroesof Jm" There appear to be resonant radial modes

present. Condition numbers for the linear system (71)

at these frequencies increase significantly. The numeri-

cal results are therefore questionable. This phenome-

non has been well studied in the literature and is usually

associated with ficticious interior eigenfrequencies

while solving exterior problems. The interested reader
is referred to the work of Kleinman and Roach 14 for a

comprehensive theoretical discussion on the removal of

the ficticious eigenfrequencies. In the present work, the

interior is real and the eigenfrequencies are not neces-

sarily ficticious. Research into the subject is ongoing.
The authors believe that the ill conditioning can be

mitigated by the use of singular value decomposition
methods. We further contend that acoustic treatment of

the duct interior will eliminate the problem entirely.

M TIP K k z (Theory)

0.5 16.7 none

0.7 23.3

0.9 30.0

1.1 36.7

k_ (Observed)

none

-2.06, -6.84 -6.5

-1.02, -11.71 -il.5, +3.0

-4.29, -15.52 -15.0, +6.0

Table 2: Propagation Properties for Figure 4 Results

(M r =0.8 L D=0.5 m=Na)

The third example was chosen to demonstrate the
capability of the BIEM to computer higher harmonics

and different portions of the acoustic field (figure 5a-c).

In this case, N B = 16, M F =0.2, and Mnp = 1.7. The

kinematic properties and the observer locations were
selected to correspond to those used for tests conducted
with the Langley ducted propeller simulator 15. Direct

comparisons with the results in reference 15 are not

possible because of the simplified source model used
for the BIEM. The results do show, however, the abil-

ity of the BIEM to compute the sound field in regions
of interest.

Conclusions

The results presented here demonstrate that the
BIEM is a versatile and computationally efficient tool

for predicting ducted fan engine noise. Qualitative ra-

diation and duct propagation results can be obtained by
using simplified source models such as spinning point

or line sources. By tuning the strengths of the resulting

monopoles and dipoles to account for fan loading and

thickness effects, it is believed that the BIEM can pro-
duce results that are useful for quantitative studies.

Other boundary integral techniques have been de-

veloped for the problem of scattering of incident sound

by a thin duct with hard walls 15. The BIEM developed

here is valid for many situations of interest and features

extensive mathematical analyses on the integral equa-

tion kernels. The analyses yield expressions for singu-

lar and logarithmic integral operators that can be
evaluated in terms of known functions and continuous

portions that can be evaluated by simple numerical

quadrature schemes. This versatility and depth of

analysis, absent in the referenced works, simplify the

calculations considerably.

Realistic duct geometry is included in the boundary
integral equation formulation. Implementation of an

arbitrary duct profile requires the solution of a system

of two hypersingular integral equations. The inclusion

of a duct centerbody produces another integral equation

with the same properties. Both the duct profile and
centerbody have interior regions that produce ficticious

eigenfrequencies for the Neumann or Dirichlet bound-

ary value problems. This difficulty can be alleviated in
several ways. The method of Burton and Miller _6 ap-

pears to be adaptable to the BIEM presented here. Fic-

ticious eigenfrequencies are not present if the engine

components are acoustically lined.
The use of passive noise control techniques are

included in the BIEM. A spatially varying, locally re-

active liner model appears in the boundary conditions.

This property makes the BIEM attractive for active and

passive noise control design studies.
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