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Abstract

Generalized coherent states for general potentials, constructed through a controlling

mechanism, can also be obtained applying on a reference state suitable operators. An explicit

example is supplied.

1 Introduction

After the seminal works of Glauber, Klauder and Sudarshan [1], relevant generalizations and

extensions of coherent states have been introduced, both in a group-theoretical framework [2],

and in the direction of squeezing phenomena [3].

Moreover, a celebrated approach for general potentials was given in the case of classically

integrable systems by Nieto and collaborators [4].

We have tackled the problem of building generalized coherent states from a point of view which

can be useful also in a wider context [5]. In fact, if an interesting physical behaviour has been

singled out for a quantum system, one can search for a controlling device which allows for its

realization; we call this approach Controlled Quantum Mechanics (CQM) [6].

To this aim we use the methods of stochastic mechanics [7] [8]; however, we will show that

these states can also be obtained in the standard operatorial approach.

2 The coherence constraint

We proceed now to apply the scheme of CQM to the problem of generalized coherent states. We

will use in the following the notations E(.) and <. >, respectively, for the stochastic mechanics

and quantum mechanics mean values, sending back to [6] for the code of correspondence.

We search for states which are constrained to follow classical-like dynamics:

d

d-_< _ >= F(< q >, aq, t)

(I)
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au A# = a(< _ >, Zx_,t),
dt 2

where F, G are known functions and A_ is the dispersion. A particular, but interesting, case is

associated to constant dispersion.

If • denotes the potential associated to our states, the Ehrenfest equation

d

d-/< _ >= - < V¢ > (2)

always holds. Then we can write the above classical-like constraint in the more transparent form

< VO >= V'_(x,t)lx=<o>+ 6F(< _ >,A_,t)

(3)

d 2 ^

a_Aq = a(< 0 >, zxq,t),

where 6F is a known function. We note that for harmonic potentials this condition is always

satisfied in the strict sense, that is with 6F = 0.

However, for non-harmonic potentials the above condition becomes a true constraint. How

this constraint can be imposed?

In the framework of stochastic mechanics the mean deterministic motion of the quantum

process is ruled by the current velocity v(x, t), while quantum fluctuations are associated to the

osmotic velocity u(x, t).

A given choice of v(x, t) singles out a whole class of quantum states, all sharing a common

mean motion. In our case, then, the constraint must be imposed through a suitable choice of the

current velocity.

The natural choice is given by the following form of v(x, t)

d (x- E(q)) d

v(x,t) = -_E(q) + -Aq _Aq (4)

which is associated to the standard harmonic oscillator coherent and squeezed states [9]. We can

expect, in fact, that these states are a sub-set of the whole class of states selected by the form (4),

and that all these states exhibit mean classical-like motion in the sense of Eq.s (3).

Note that, in conventional quantum-mechanical formalism, choice (4) corresponds, through

mv = VS, to the well known quantum mechanical coherent phase

s =< _ > z + (< {0,9} >/2)- < _ >< _ > (z- < _ >)5 + So(t). (5)
2(Aq) 2

In order to find explicitely the form of the searched states, we must take into account the

constitutive couple of equations

O,p = -V(pv),

(6)

m 2 h
- ---mu_- _Vu = -_,OrS + --ffv 2
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that is the continuity equation and the Hamilton-Jacobi-Madelung (HJM) equation respectively.

Inserting expression (4) in the first of the Eq.s (6), the selected states result to be all the states

with a (normalizable) probability density of the ("wave-like') form

, __ x-E(q), (7)
Aqp(x,t) =

with the corresponding form for the associated osmotic velocity

u- (2_) VP - AqG(_).7 (8)

LFrom the expressions (5), (7) for S and p we obtain the wave functions of the generalized states

1 i

• (z,t)- (9/

Now, inserting Eq.s (4), (8) in the HJM equation (6), taking the gradient term by term, and

computing the resulting identity in x =< 0 > (or in x = 0 if the potential is singular), we can

simply verify that the classical-like constraint is fulfilled. Then, our aim is reached.

Finally, the HJM equation, with the inputs of Eq.s (4), (8), gives as output the controlling

potential ¢P.

It is immediately seen, however, that (P must be in general a function ¢(x, tl < _ >, A_) also

of < _ > and AO; namely, in order to control the coherence of the wave packet, it is needed a

feed-back mechanism, which allows for readjusting the system at any time.

Let us now look with greater detail at the problem of spreading. Two choices are possible,

that is constant or time-dependent dispersion.

a) Constant dispersion

If we require Ac} = const., the general relation

d

Aq_Aq = m{E(qv) - g(q)E(v)} (10)

forces the current velocity to assume the "classical" value v = dE(q)/dt =_ E(v), which is exactly

expression (4) when dAq/dt = 0. Then our states in this case are the unique solution of the

problem. Note that the right member of the last equation is connected to the quantum average

of the position-momentum anticommutator [9].

b) Squeezing

If a time dependence is allowed for Aq, one can ask the following question: are states (9) the

natural generalization of the harmonic oscillator squeezed states? The answer is positive, due the

following considerations.

First of all, a "stochastic squeezing condition" AqAu = Kh/2m is satisfied, where K 2 =

(4m2/h2)E(G2(_) ).

Moreover, if we consider the whole quantum uncertainty product for our states, it is immedi-

ately proved [10], using Eq.s (4), (8), (10), that

(A_)2(A/5) _ - rn2(Aq)2{(Au) 2 + (Av) 2} = tf2-_ - + (Aq)2(Aq) 2. (11)
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We see,then, that the uncertainty structure in this casehas the sameform as in the harmonic
oscillator squeezingstates,with the only differenceof a rescaledtIeisenbergpart.

Finally, the dispersionsatisfy the equation [10]

d 2 K2fi2 q- < q >

dt 2A_I- 4m2A_ 3 < A_ V_ >, (12)

which is the natural generalization of that of the harmonic case [9].

Eq.s (11), (12) assure controlled squeezing.

3 Displacement and squeezing operators

One can now asks two questions:

-can we construct states (9) directly in the standard quantum mechanical formalism?

-how we can choice in the whole class of states (9) the physically interesting states?

We can answer both questions in the following way [10].

Consider a reference stationary state _o, for example the ground state of a physically relevant

potential V.

Consider moreover the standard displacement and squeezing operators

D_ = exp{aa t - a'a},

(13)

_,_ = exp{_(a _- ate)),

which are used to construct the harmonic oscillator coherent and squeezed states, and write them

in terms of the position and momentum operators

i i ^ i ^

D_ = exp{-_ So(t) }exp{ -_ Pq }exp{--_Qp },

with

g(t)
S_4 = exp{i[L-_-{q,P} +

A_0-----_q It,/$

Q=<O>-<q>o , P=<p>,

1, A 0 _----.[1 -I_A0f(t) = -_n_o , g(t) = _ - 2f(t)] _0

Then it is simple to verify that the states

*c(x,t)=(D,,*o)(x,t)

(14)

(15)

(16)
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and

(/9=SA_q2o)(X, t) (17)

belong to our class (9) respectively in the case of constant dispersion and in the case of squeezing.

This answers not only the first question, obviously, but also the second one. In fact, we now

have the following scheme, which will be clarified by the subsequent example.

Given a physical system described by a potential V, we can choice as reference state, for

example, its ground state q20.

Applying on it operators (14), we obtain generalized coherent packets, whose centers follow

the classical dynamics ruled by the potential V.

Inserting then the current and osmotic velocity associated to these states in the HJM equation

(6), we obtain the controlling potential ep which allows, through the feed-back mechanism, to

retain states (9).

V and (I) must not be confused: the first (V), in fact, is the original potential, for example a

molecular one, for which we want to construct generalized coherent states, while the second ((I))

simply describes the controlling device, that is it supplies the feed-back prescriptions needed to

retain coherence.

4 Example

We develope now an explicit example.

Putting for simplicity h = m = 1 in the following, let us consider the potential

1 1
V(x) = 2+ --

2 x 2

and choose as reference state its ground state

i 2 1 2
_Po(X) = No_X exp{--_wx }

where No is a normalization constant.

Applying on (19) the operators (14), we obtain the generalized coherent states

- l exp{n( )}exp(is)
v_q

where S is the phase (5) and

R(_) = -a_ 2 + 2 In(a_ 2) + In b,

(18)

(19)

(20)

(21)

with a, b suitable functions of w.

Inserting in the HJM equation (6) expression (4), and the osmotic velocity associated to (20)

through Eq. (8), we obtain for the center the classical equation

dt </3 >= -w_(t) < c}> Jr 7(t) (22)
( (_ >3'

33



and for the controlling potential the form

¢P(x, tl < _ >,A_) = _J(t)x 2 + h(t)x +
1
2 (x- < >)5

+ g(t), (23)

where
d 2

w2(t) = 2[a 2- A0-1_-_A0] , "_(t) = 6(A_) 4. (24)

We see from Eq. (22) that the center follows just the classical motion associated to the potential

V, Eq. (18), as previously claimed.
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