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Abstract

We show that the reservoir influence can be modeled by an infinite array of beam splitters.

The superposition of the input fields in the beam splitter is discussed with the convolution
laws for their quasiprobabilities. We derive the Fokker-Planck equation for the cavity field

coupled with a phase-sensitive reservoir using the convolution law. We also analyse the

amplification in the phase-sensitive reservoir with use of the modified beam splitter model.

We show the similarities and differences between the dissipation and amplification models.

We show that a super-Possonian input field cannot become sub-Poissonian by the phase-

sensitive amplification.

1 Introduction

A cavity with imperfect mirrors not only lets the cavity field out but also allows the field outside

to leak into the cavity so that the reservoir surrounding the cavity gradually influences the cavity

field. The mirrors in the cavity can be considered as beam splitters. An arrayx consisting of an

infinite number of beam splitters can model a reservoir coupled to the cavity field [1].

It is convenient to utilise quasiprobability distributions such as the Q function to describe

states of quantum-mechanical systems in phase space. We briefly show that the fields at the

output ports of the beam splitter can be expressed by the convolution of the quasiprobabilities of

the input fields. We then use the convolution relation to derive the Fokker-Planck equation for

attenuation of the cavity field coupled with the phase-sensitive reservoir.

It is known in quantum mechanics that an amplification process is inevitably accompanied

by the increase of the quantum noise in the system. In other words the amplification degrades

an optical signal and rapidly destroys quantum features that may have been associated with the

signal. The nature of the amplifier affects the physical properties of the amplified states of light.

The phase-sensitive amplifier is conceptually based on the establishment of squeezed light and

enables a squeezed input to keep the property for a gain larger than the cloning limit [2].

The amplification process can also be modeled by an array of beam splitters, where the beam

splitters are somewhat modified from the usual sense. We find the convolution relation for this

modified beam splitters and the Fokker-Planck equation is derived from it. We then formaly solve
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the Fokker-Planck equation for the phase-sensitive amplifier for an arbitrary input field and study

the photon statistics of the amplified field.

2 Phase-Sensitive Attenuation

Consider that two fields at the two input ports of a lossless beam splitter are superposed. For

convenience we call one input field the signal and the other the noise (Fig. 1). The input signal

mode b with its annihilation operator b is superposed on the noise mode a with its annihilation

operator 5 by the beam splitter whose amplitude reflectivity^ is r = sin0 and transmittivity

t = cos 0. The two output field annihilation operators _ and d are related to the beam splitter

input fields by the transformation using the beam splitter operator B [3].

/_ )/}t (= r5 / ;
(1)

Fig. 1

d

Beam splitter with the signal input in mode b and the noise field input in mode a.

A field state can be represented in phase space by quasiprobabilities. Let us choose to use the

positive P-representation to describe the fields. The density operators pa and _3u for the noise and

signal fields are then written with the positive P-representationP_,b(a, 7) as

_31 / d2c_ d 2 Pi(°_'"/)la)(7*[,= "r
i=a,b (2)

The fields _c and t_d at the output ports are calculated by the beam splitter transformation:

/_tSa_b _ F3cPa. With use of the transformation matrix Eq.(1) we find that the positive P-

representation for the field at the port d is found in the form of the convolution relation:

1i (Pa(¢, ¢) = _ aaa dZ7 P,(a, 7)Pb ¢ -t ra
¢ - rT_ (3)

t ]

The Q function is another quasiprobability function and is well-defined even for the nonclassical

state. The positive P-representation is defined in four-dimensional space. The Q function, which

is defined in two-dimensional space, is therefore sometimes easier to treat, so we will extend the
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convolution law for the usesof the Q function. The positive P-representation may be defined as

the Fourier transform of the characteristic function. The characteristic function C (p)(_) is related

to the characteristic function c(q)(_) for the Q function as C(P)(() = c(q)(_)exp([([ 2) • By using

the convolution theorem, we can factorise the inverse Fourier transform of the convolution law (3)

as

= . (4)

Using the relation between the characteristic functions, the convolution relation for the Q function

is found as

,/ (-)Qa( )Qb ¢ (5)

We now derive the Fokker-Planck equation for the phase-sensitive reservoir using the model

of an infinite array of beam splitters (Fig.2) [4]. The total duration of time when the field is

coupled with the lossy channel is denoted by T, the total number of the beam splitters by R, and

the interval between the adjacent beam splitters by AT. The beam splitters are first taken to be

discrete components, but their number, R = T/Ar is later taken to infinity in order to model a

continuous attenuating reservoir. Under the assumption that the reflectivity is very small for the

beam splitter, Eq. (5) is written as

Q(a) _ (l + R) f d2a Qa(_) Qb ( a- r_ )t (6)

R beam splitters

'_(r) --/__ -_ '.(r + Ar) -*/_t-- 'o_t

Fig.2 The phase-sensitive reservoir modeled as an array containing an infinite number of

beam splitters. The signal is injected from left and the independent squeezed fields (all with the

same properties) are injected into the other ports. The transmittivity is considered to be nearly

unity.

To calculate the effects of attenuation, we need an expression for the output signal operator in

terms of the input operators. To simulate an attenuator, we consider the beam splitters forming

a continuous array by taking the limits R ---* oo, Ar _ 0, and R _ 0 . These limits cannot

be taken independently: RAt should be kept constant. Also, the total energy loss within T

is described by 1 - exp(-_T), where t¢ is the attenuation coefficient, and this loss should be

equivalent to the beam splitter loss so that R _ _¢AT.
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Let us define Q(T; el) as the Q function of the signal field incident on the beam splitter at

time r, Q_q(_7) as the Q function for the noise added to the signal at the beam splitter, and

Q('r-#-AT; Ol) aS the Q function for the signal leaving from the beam splitter. The squeezed

thermal fields produced by the independent stationary sources act as noise in our model.

From Eq. (6), we obtain the relation

where _ _ a+ n

argument:

(°.) °. (oo ..o.Q -r, -t = Q +Oai 2 +R _ 2 +20aT''

- rE)" (7)
t ]

With the Taylor expansion for a function having a complex

+ + , (8)
OOt 10'C_2

where the real and imaginary parts of a and _ are respectively denoted by al, a2 and ]?l, /32. The

function Q is the simplified notation of the function Q(r; a). Substituting Eq. (8) into Eq. (7) we
obtain

dr -- 2 (alQ) + (a2Q) d2Z Qsq(fl)

Taking the squeezed thermal state as noise we substitute the simple Gaussian integration of

Q_q(/3) into Eq. (9) and obtain the Fokker-Planck equation for the field coupled to a phase-sensitive
attenuation reservoir:

- a, + --a,cOa2 + (1 + N + M)_-_a12 + (1 + N- M) Q(r,a), (10)

where N is the mean photon number for the squeezed thermal field and the phase-dependent term

M is zero when the field is not squeezed [4]. The Fokker-Planck equation is relatively simple and

observables can be calculated as correlations of the quasiprobability function.

3 Phase-Sensitive Amplification

The amplification process can also be modeled by an array of beam splitters similar to that for

dissipation. In their experiment with phase-sensitive amplification, Ou et al. have a nondegenerate

parametric amplifier where the signal field is amplified and the idler mode is coupled with the

squeezed vacuum [5]. As in their experiment a two-mode parametric optical amplifier is modeled

here by an amplification beam splitter matrix. For a two-mode parametric amplifier the signal

input b is transformed into the amplified output d with unavoidable noise St:
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where g > 1 is the infinitesimal amplification factor. We are going to build a beam-splitter-like

relation for amplification, and consecutive application of an infinite number of Eq. (11) will give the

final amplification result. The actual gain G by the amplifier will, thus, be proportional to g. The

unitary amplification beam splitter operator has been introduced in analogy with the two-mode

squeezing operator as BI = exp[i0a(gtDt + 5b)] with cosh01 = _ and sinh theta_ = v'g- 1.

To analyze the beam splitter transformation for the amplifier, let us assume that the input

fields are expressed as a weighted sum of diagonal coherent components:

(12)

where Pa and PD are respectively the Glauber P-representations for modes a and b. Tracing the

output field over mode c, we find the output density operator for mode d:

Pd = f d 2c_ d2_ P,(a)Pb(_)Dd(5)DthDJ(6) ; 5 = i_/-g- 1 _' + x/_ f_ (13)

and Pth is the thermal field density operator for the mean photon number _ = g - 1. Even when

both the signal and the idler fields are in the vacuum state, i. e., c_ = _ = 0, the amplifier

brings noise into the fields. The density operator for the thermal field can be written with its

quasiprobability PT(¢) as

Pth --_ d2¢ PT(¢)1¢>(¢[ ; PT(¢) -- g-- 1 exp --- . (14)

By using Eq. (14), we find the Glauber P-representation for the output field as convolution of the

three P-representations

(15)

The inverse Fourier transform of the Glauber P-representation gives the characteristic function

for the output field in the form of the product of the characteristic functions for the input modes

a and b and the thermal field. We can simplify this relation using the relation between the

characteristic functions for the various quasiprobabilities. The Fourier transformation of this

shows that a modified convolution between Qb for the signal Q function and P_ for the noise

P-representation results in Qd for the output field:

Qd(_) = glJd2APa(A)Qb(_-i_A)V_
(16)

The convolution relation for amplification differs from that for attenuation (5) because of the

unavoidable extra noise due to the thermal field (14).

Consider an array of R beam splitters which satisfy the transformation relation (11). To

simulate an amplifier we will take R --, c_ and let the infinitesimal amplification factor for each

beam splitter be given by g = 1 + e _ 1. After a signal passes through the R beam splitters, it is

amplified by the factor of G = e _T = (1 -t- c)_, where 3' is the amplification coefficient. By using
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the Taylor expansion of Q function (16) to the second-order under the assumption e _. 0 (we had

r _ 0 for attenuation), we obtain the Fokker-Planck equation for amplification:

dQ(7",a) _ 3' 0 02 1 (N- M)-_a _ Q(7",a) (17)d v 2 - a x - -_a 2 a 2 + (N + M ) -ff-_a_ + _

The Fokker-Planck equation (17) is solved for an arbitrary signal amplified in the phase-sensitive

reservoir. The Q function corresponding to an arbitrary input field can be written as a weighted

integral of Gaussian functions:

Qs(a) = -_1/ d2#d2vp(#,u)exp[_(a, _ A) 2 - (a2 - B)_], (18)

where A = _ (# + v), B = _ (#- u) and P(#, v) is the positive P-function for the field. It has been

recently shown that if the initial Q function of the quantum system is (complex) Gaussian, then

the solution of the Fokker-Planck equation (17) is also Gaussian with time-dependent parameters.

The Q function (18) is a weighted integral of complex Gaussian functions, so one can obtain the

time evolution of the input state

Qamp(C_, T) =
f

d2#d2uP(#,v)
_/(gx(r) + 1) 2 - M,(v) 2 j

{ [ax - A('r)] 2 [a,-B(r)l' }x exp 1 + Nl('r)- Ml('r) -- 1 + Nl('r) + Ml('r)
(19)

where the time-dependencies of the amplification parameters axe

A(t) = Av/'G= Ae _ , B(t) = Bv_, NI(r) = (N + I)(G-1) and MI(r)=M(G-1).

(20)
The inverse Fourier transformation of the Q function (19) shows that the characteristic function

C.(_. for the Q function of the amplified field is the product of the characteristic function C_)

for the P-representation of the squeezed thermal field and that C_(q) for the Q function of the

amplified signal without noise

ca(qm)p(_) = C(_P)(iV_ - 1 _)Ovs(q)(v/_ i)" (21)

The convolution relation for this relation is then in a form analogous to Eq. (16) for the amplifi-

cation beam splitter superposition of two input fields.

The antinormally-ordered moments can be calculated from the characteristic function C(q):

(a"(at) "_)
t=o k=o g k

x (v/-G)_"+"-'-k(a'-k(at)_-')s . (22)

We can also consider the phase-sensitive amplifier which can be implemented as a stream of

three-level atoms in a ladder configuration with equispaced levels injected into the cavity where

the initial state of the field has been prepared. We denote the population in the uppermost state
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by p_, the population in the lowest state by poe and the coherences between them by p_e and pro.

The atomic coherences p_¢ and p_ bring about the phase-sensitive effect in the two-photon linear

amplifier. The parameters N and M can then be represented by the atomic variables

P,a (G- 1), Ml('r)- I--P--_c! (G- 1). (23)
N_(-,-)- p.. _ pc¢ p,_ - pcc

The normally-ordered photon number variance, : (An) 2 :, where (An) 2 = (n s) -- (n) 2, measures

the deviation of the photon number fluctuations from the Poissonian photon statistics. The Pois-

sonian field has the normally-ordered photon number variance zero, while the quantum mechanical

sub-Poissonian field has it less than zero. It is larger than zero for the noisy super-Poissonian field.

With use of Eq. (22) we find the normally-ordered photon number variance

where the additive noise is

: (An)Imp := G2: (An)J: +(_, (24)

(G- 1)2 - 2
¢ - (p-E.- p---_-c)_tP_+ I;'_1=)+ ;.. - pc_

G(G- 1)[2p,_(ata),_ ip_cl((a=)"+ ((at)2),]. (25)

If the additive noise is negative, the amplified field has less photon number fluctuation than the

input field. It is clearly seen that if the atomic coherence, p_c, is zero the additive noise is always

positive. However as the atomic coherence is nonzero we can have the negative noise to enhance

the signal to noise ratio.

If each atom injected into the cavity is in atomic coherences we have the relation p_p_¢ = [p_¢l 2

and the additive noise (25) can be written as

= (:7(C- 1) clp=cl + 2C(a P_- p_c P_ (26)
p__p_ -1)F_-1-7£1(ata)'"+(C-1)=(p_-pcc)='

where

c= 2(ata)i. - ((a2)in -f- ((at)2)in), ('2,7)

which has to be negative to have the additive noise negative. The bosonic operators a and a t have

a simple restriction, 2(ata} - ((a 2) + ((at)S}) >_ -1. It is thus required that

- 1 < c < 0 (2s)

for the noise reduction in the amplified signal. The noise reduction in the photon number fluc-

tuations seems to be possible if the input field satisfies Eq.(28). However we should not fail to

notice that the condition (28) is related to the initial photon number fluctuations. Because the

expectation value of an operator times its hermitian conjugate is again positive,

c _> " (An)2" : (29)
(a'a)

It. is easily seen from Eqs.(28) and (29) that tl_e input field should be sul)er-P(,i,_._,, ;i:t_, ,_, i,_Lv,.,

a l)ossitoility to ieduce the photon nunlber ftuctuatAons by the amplification. If d_c i_I_,_ ii...id i::

Poissonian there is no int, erscctiop, bel, weel_ the t.wo conditions (28) and (29) sc) tlaat wc (':m s_ty

that the Poissonian field does not become st_b-t'oissonian during the amplification.
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