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Abstract

The optical Schroedinger cat states are simple realizations of quantum states having non-

classical features. It is shown that vibrational analogues of such states can be realized in an

experiment of double pulse excitation of vibrionic transitions. To track the evolution of the

vibrational wave packet we derive a non-unitary time evolution operator so that calculations

are made in a quasi Heisenberg picture.

1 Introduction

The analog of the classical harmonic oscillation in the quantum mechanics is the coherent state

[ c_) defined as an eigenstate of the annihilation operator b [ a) = c_ I c_). Both in the position and

in the momentum representations the absolute square of its wave function has a Gaussian shape.

It performs harmonic vibration in time with an amplitude that depends on the initial excitation.

The superposition of two coherent states [1]

I+) = NI+>(I I (1)
1

NI+) = x/2 + 2e -2_2'

situated sufficiently far from each other in the phase-space can be considered as the superposition

of two macroscopically distinguishable quasiclassical states called Schroedinger cat state.

Recently great interest has been paid to such superposition states in quantum optics [2-11].

Non-classical features of Schroedinger cat states i.e. squeezing, [4] sub-Poissonian statistics, oscil-

lation in photon statistics, etc. were discussed rather widely. It was shown [5, 7] how the quantum

interference between the coherent states involved in the superposition leads to the occurrence of

non-classical features. Due to the interference a fringe pattern appears between the Gaussian bells

representing the coherent states in the Wigner function picture. This fringe pattern is transformed

characteristically when the positions or the number of the coherent states changes. There are sev-

eral promising schemes to produce nonclassical states of light using the concept of Schroedinger

cat states [8, 9].
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A wide interest was addressed to wave packet formation and motion during Franck-Condon

transitions in both theoretical and experimental points of view [4, 10, 11]. In this paper we shall

discuss the possibilities of producing Schroedinger cat like superpositions of the vibrational states

during Franck-Condon vibrionic transitions ill molecules or in crystals. As we shall see such states

can be created by two short pulses separated in time appropriately.

2 The model Hamiltonian

Let us consider a one-vibrational-mode model specified by the adiabatic Hamiltonians

/32 Mw,?.
f/i = ei + _-_ + --_(_ + q_)2, (2)

fa2 Mw_ A2
/2/_ = e_ + _- + ----_q , (3/

corresponding to the molecular vibrations in initial (i) and excited (e) electronic states. Here ei,_

are electrolfiC energy levels and wi,_ vibrational frequencies.

In terms of the annihilation phonon operators b associated with the vibrational potential of

the excited states,

(_=_/2-_w (bt+t)), i6=i h_(bt-D),

the Hamiltonians of Eq. (2,3) have the forms

Mw_ 2 l_(coi/:/_= e' + --_q_ + _{4 _ +

+_(_'
¢0 e

w_)(_t_ + _t)+

h,4q, f-i-"_o,_t
"¥)(YY_,+_'_)}+---Z-V-gU _ +_,)

(4)

(5)

1h _t_+ _t). (6)

The Hamiltonian of the initial state can be diagonalized by the unitary operator

= e-g(_,l-t,) e_[b2-_,t21/2' (7)

g=qi V _--_ , r= w_--"

Here g and r are displacement and squeezing parameters correspondingly. The vibrational ground

state of the initial electronic level is

10), = E I 0)o, (8)

where ] 0)_ is the vibrational ground state of the excited electronic level.

The Hamiltonian f/'(t) describing the interaction with the external field has the form

1 $ ld.
fl'(t) = -_di¢E(t)h_5, + -_ ,_E'(t)h_a_, (9)
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where

E(t) = c(t)_xp(-iaot), (10)

fi;(_) is the annihilation operator of the i(e)-th electron level, die the dipole matrix element of the

electronic transition, I e(t) 12 and f_0 are the envelope function and the central frequency of the

exciting pulse.

Suppose the electronic transition takes place instantaneously. The emerging vibrational wave

packet is described by Eq. (8). The time evolution of the wave packet in the excited level is

driven by the unitary operator exp[-(i/h)[f¢t]. So the evolution of the vibration from -to until

t is described by the unitary operator

6'(t- to) = e-k&('-'o)_. (11)

Let us assume that initially, at t = -c_ the system is in the ground state I i) ] 0}_. After the

exciting pulse has passed according to the first order perturbation theory the electronic-vibrational

wave function takes the form:

I k0,t) =l i,t) I0)i - iE°di_-_- Ie,t) I {E(t)})_. (12)

Here I {E(t)})_ is unnormalized vibrational wave function of the molecule in the excited electronic
state:

?I {E(t)})o = drE(r)eiA'G(t- ",) I o)e, (13)

where ,5 = _ + (w_ - wi)/2, _l = (e_ - ei)/h. The timedependent part of ([;(t) is the exponential

of /:/e. Assume the pulse duration is short compared with the observation time t. In this case

we can put the upper limit of the integration to infinity. This condition means we perform

measurements after the excitation pulse has passed. The integration in Eq. (13) can be done

explicitly. Separating the operator in Eq. (13) in front of the vacuum the non-unitary time

evolution operator is

(&/h- _)_]2-_;b(t) = exp (-h/2/et) ex p E, (14)

where 5 = A -- Fro.

In the following sections we shall investigate the properties of the vibrational wave function of

Eq. (13) considering twin exciting laser pulses. For the sake of simplicity we suppose that there is

no change of the vibrational frequency due to the electronic transition (we = wi = w). In this case

the operator E in Eq. (13) simplifies to a displacement operator /) and the excited vibrational

wave function has the form

I{E(t)}}e =exp --_wefit exp 2u 2 Ig)_o_, (15)

where [ g}coh is a coherent state with respect to the phonon operator b.
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3 Double pulse excitation

Let us consider two identical Gaussian shaped pulses following each other by an interval T1

E0 _ _(t-_)_-in0(t- _)-_
E(t) = Z°_-4('+_)_-'_°('+_)2_ + 2_--7_

here ¢ is a possible additional phase difference between the subpulses.

The vibrational state produced by such a twin pulse excitation has the form

(17)

T, T,

I_,,t) = exp -g_o_at exp - 2u2 Ig)coh (101

To investigate the quantum properties of the superposition state of Eq. (18) it is convenient

to consider its Wigner function

w(_) ± [ _,'°-,°" ' _ ' '= -3 ({u,T,¢} l e"b e-' b I {u,T,C})_d2rl. (20)
7["2 j e

For extremely short pulseswe have coherent superpositionstateswhich are the vibrationalana-

log of the so calledopticalSchroedinger cat states.The Wigner function and the time dependence

of the absolute square of the wave function are shown in Fig. la and Fig. Ib correspondingly. The

Wigner function consistsof two bellsof the superposed coherent statesand an interferencefringe

between them. Ifthe coherent statesare far away the fringehas a lot of well-pronounced peaks.

On the contrary,ifthe coherent statesare near enough the fringehas only few peaks. In thiscase

the fringecan partiallymerge with the bellsand, depending on the phase between the component

states,may decrease the uncertainty of one of the quadratures )(+ - b + bt or )(_ -- -i(b - bt)

below the vacuum level.

4 Discussion

Baumert et. al. first excited the Na_ molecule by a short laser pulse [12]. Applying a second laser

pulse they excited the state once more. Depending on the time delay between the two successive

pulses they had a molecule on another excited leve[ or dissociated fragments. We suggest a similar

experiment with a double pulse primary excitation leading to a Schroedinger vibrational state on

the level e (Fig. 2). Applying a third pulse when the two parts of the Schroedinger cat state are

furthest from each other one obtains a superposition of a molecule with its fragment.

This chemical cat state can lead us very near to the original paradox of Schroedinger. Let

us suppose that this molecular superposition is superposition of the undamaged form of a virus's

DNA with a denaturalized variant of the same virus. The resulting 'Schroedinger virus state'

would be, in fact, a quantum mechanical superposition of a "living" and a 'dead' virus.
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Fig. 1 The Wigner function (Fig. la) and the time-dependence of the absolute

square of the wave function I f2(q) 12 (Fig. lb) of the Schroedinger cats state. The

prominent fl'inge structure between the coherent states' Gaussian bells of the Wigner

function is caused by the quantum interference between the two parts of the superpo-

sition state. A similar interference fringe of the wave function can be found around

t = i T , otherwise in the bigger part of the period If'(q) t2 consists of two Gaussians

representing the two superposed coherent states.
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Fig. 2 The schematic terms for creation of a chemical superposition state. First

either by double or appropriately chirped single pulse one prepares a vibrational su-

perposition state on level e. At some moment of its separation by some secondary

pulse(s) one can transfer the molecule into molecule A represented by the upper left

term and simultaneously into molecule B shown as the upper right term, creating this

way a chemical "Schroedinger cat" state.
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