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Abstract

A feasible experinlent is discussed which allows us to prove a Bell's theorem for two

particles without using an inequality. The experiment could be used to test local

realism against quantunl mechanics without the introduction of additional assumptions

related to hidden variables states. Only assumptions based on direct experimental

observation are needed.

The experiment I wish to discuss is represented in Fig. 1. It is a variant of

Franson's two-photon correlation experiment [1]. However, variants of other experiments

could also be considered [2-4]. A source (S) emits pairs of photons (7_ and g2). The

photons are emitted simultaneously [5], but there is uncertainty about the time of

emission. H_ and H 2 are 50%:50% beam splitters. As in an experiment recently discussed

[6], H_, H_, H3, and H 4 are not 50%:50% beam splitters, and have real amplitude

transmissivities T_, T 2, T 3, and T 4, and real amplitude reflectivities RI, R2, R3, and

R 4. M1, M[, M 2, M;_ and M;_' are mirrors, and 91, _2, and 93 are phase shifters.

L2-S2=L1-Sl=CAT is much greater than the coherence lengths of the packets associated

with 71 and 72. This implies that A0)IAT>>I and km2kT>>l, where k_ and k_ 2 are the

uncertainties in the angular frequencies of y! and Yz. However, A(o3_+co2)AT<<I. As is well

known [1], in this case the situation in which both photons follow the long paths is

indistinguishable from the situation in which both photons follow the short paths. In

the present proposal a balanced Mach-Zehnder interferometer for photons 72, constituted

by H 3, H;_, M{', and H 4 has been introduced.
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FIG.I. Experiment proposed.

I will consider four different situations: (A) H't and H 4 are removed; (B) H] is in

place and H 4 is removed; (C) H' 1 is removed and H 4 is in place; (D) H] and H 4 are in

place. The detections relevant to our discussion are only the coincident detections

occuring at sites 1 and 2, 1 and 2', I' and 2, and 1' and 2'. Naturally, the probability

of coincident detections occuring at sites 1' and 2 in situation A, P,_(l',2)=0, since in

situation A YI(Y2) has to follow the long(short) path to be detected at 1'(2).

The probability amplitude of coincident detections occuring at sites 1 and 2' in

situation B is [6]

A_(1,2')= E c03,032 (°t1°_'2+131132) ' (1)

021032

where c03_032 is the probability amplitude of having a photon 7_ with a frequency 03_ and a

photon 72 with frequency 032, c_1= 2-1/: exp(i03_ts)T_ is the probability amplitude of

having a photon Y,(031) following the short path, where ts is the time spent by light to

follow the short path, o_2=2-tZ2TsiR,_exp[i032(ts+t')] is the probability amplitude of

having a photon 72(032) following the short path, where t' is the time spent by light

from H: to H4, _1 "-I/'_ " " '' =_2 -exp(lC0_)exp003_tc)_R t is the probability amplitude of having a

photon 71(03_) following the long path, where tt. is the time spent by light to follow the

long path, and 132=i2-_/:exp(i_:)T2exp[i03__(tt+t')] is the probability amplitude of having

a photon 72(032) following the long path. Using (1) and the condition A(031+022)AT<<l we

obtain
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A_(1,2')=(i/2) _ A6OI6O2(Tff3R2-BRff_.) , (2)

C01(02

where A6o z6o2-c6o j 6o2exp[i6ol ts + i6o2(t s + t')] and B-exp[i(01 + 002)+ i(6o10 + C%o)AT], where 6ol0 and

O)2o are the central frequencies of y_ and Y__. Choosing T_T3Rz=RLT 2 and using the

condition

we obtain

Ic6oj 6o21"-= 1 , (3)

0.)10,) 2

P_(1,2') = ( 1/2)(Tff3Rz)Z(1-ReB) . (4)

In an ideal situation we can have [P_(1,2')]min=0 (ReB=I) and [P_(1,2')],n,x=(TIT3R2) 2

(ReB=-I). This follows from quantum mechanical nonlocality. But in a real situation this

is not so. Let us then assume that ReB=I-e (ReB=-l+c) in the minimum (maximum) case.

Then we can introduce the visibility V B given by

[P_(1 ' ¢ ',2 )],,,,x-[PB(1,2 )]min
V B- - 1-C . (5)

[P_(1 ' c ,,2 )],,,_x+[PB(1,2 )IMP,

Thus,

C ,j 9

[PB(1,2 )],hi,, = ( 1/2)(T_TsR2)'(1 -VB) . (6)

Using a similar reasoning, we obtain

Ac(1,2')= _ c03Lc.o28(P)+P2) .

0,)_ (0 2

where 8=2-tnexp(i6olts), Pl = 2-1/ZTfiR2exp[i6o2(ts + t')]T4,

exp[im2(ts+t')]iR_, which leads to

and

(7)

P', = 2-tniRsexp(i_b3)

Ac=(1/2) _ AtOI6O2(iT3RzT4-CRsR4) ,

0,)1(0 2

where C-exp(i¢_3). Thus, choosing T3R2T4=R3R4 and using (3) we obtain

(8)

Pc( 1,2') = ( 1/2)(T3R2T4)2(1 -hnC) . (9)
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As in (5) and (6), we can introduce the visibility Vc to obtain

[Pc(1,2')],,,i,, = ( 1/2)(T3R2T4) ( 1-Vc) . (10)

In an ideal situation we can have Vc=l and [Pc(l,2')],,,in=0. This follows from the wave

like properties of light.

It is also easy to see that

A_(I,2')= _ cmLm,[)vt(ot+oz)+),.203] ,

COlm-,

where _.) =2l/2exp(imlts)Tl, 01 =2-1aT3iR2exp[ico2(ts +t')]T4,

exp[im2(ts +t')]iR._, X.2= i2-1aexp(iqb t)exp(imjtL)iR j, and

exp[im2(tL+t')]T4, which leads to

(11)

(l 2= 2q/2iR3exp(i_3)

0 3 = i2 l/2exp(i_bz)T2

AD=(i/2)TtTsR2T4 [ AmlCO2(1-B+iC) •

ml0.)2
C

Then, choosing _l and _2 such that P_(1,2')=[PB(1,2)]min,

Pc(1,2')=[Pc(1,2')],,,i,,, we obtain

(12)

and (_3 such that

P/_(I,2')=(1/2)(TIT3RzT4)Z[(3/2)-VB-Vc+VBVc-(1-VB)t/2(1-Vc) l/z] . (13)

To prove a Bell's theorem for two particles without using an inequality we can

consider the ideal situation: VB=Vc=I. I will assign the value i(1) for detections that

occur at sites 1 and 2' (1' and 2). Thus, assuming there can be hidden variables states

(HVS) of the photon pair which mimic quantum mechanics, we can only have: (A)

a_0v)b_0v)=i,-1; (B) a_,()v)b_(_.)=i,1, from (6); and (C) a_(_.)b_,0v)=i,1, from (10). a_,0v)

(b_(),.)) represents the result of a measurement performed at 1,i' (2,2') when HI (H4) is

in place (removed), and so on, the superscript c refers to coincident detections, and ),.

represents the HVS of the photon pair [7]. Assuming locality, that is, that a_(),.) is the

same in A and C, for example, we see that a_,()v)=i-e_b_(_.)= 1--Z-+a_00 =i-C-+b_,(_.)= i. That

is, P_(1,2')=0 (local realism), in disagreement with P_(1,2')=(1/4)(TIT3RzT4) 2 (quantum

mechanics), from (13).

Introducing some assumptions which are based on direct experimental observation the

above argument can be extended to the case of a real (i.e., non-ideal) experiment. Let

us initially consider situation C and select only those events in which detection at 2'
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occurs. In this case, whenever a coincident detection at 1 occurs we know that g_ and 3'2

have followed the short paths. I will assume that: (A1) if H i had been in place

(sit.C---_sit.D) tile nmnber of photons following the short path that would be

coincidentally detected at 1 could not be greater than the number of photons

coincidentally detected at 1 when HI is removed (I will return to this point).

Therefore, the number of coincident detections at 1 and 2' in sit.D which correspond to

the possibility in which YI and Y2 follow the short paths cannot be greater than

C

Nc(1,2 ), the number of coincident detections at 1 and 2' in sit.C.

Let us now consider situation B and select only those events in which detection at 1

occurs. In this case, only the coincident detections at 1 and 2' can correspond to the

possibility in which y_ and Y2 follow the long paths. According to (A1), if H 4 had been

in place (sit.B---_sit.D) the number of photons following path n that would be

coincidentally detected at 2' could not be greater than the nurnber of photons

coincidentally detected at 2' when H 4 is removed. Therefore, the number of coincident

detections at 1 and 2' in sit.D which correspond to the possibility in which y_ and Yz

follow the long paths cannot be greater than N_(1,2'), the number of coincident

detections at 1 and 2' in sit.B. Hence, N_(1,2')-Nc(1 ' _ ,,2)+NB(1,2') or, in terms of

probabilities,

P_(1,2')_Pc(1,2') +P_(1,2') , (14)

since : (A2) coincident detections can only occur when photons of the emitted pair

either (a) both follow the long paths, or (b) both follow the short paths.

Let us examine (A1) closer. It was assumed, when changing from situation C(B) to

situation D, that the number of detections generated by photons Y_(Y2) following path

S_(n) could not be increased by placing a beam splitter HI(H4) in front of the

detectors. Although this may appear to be a nonenhancement assumption [8], this can be

directly verified. For example, by blocking path L_(q) in situation D. Now we are not

assuming that for evety HVS of a photon the probability of it being detected cannot be

enhanced by placing a beam splitter in front of the detector. However, it might still be

argued that when H[(H 4) is in the position represented in Fig. l, in which case photons

from two different directions can impinge on it, its properties are modified, in such a

way that photons coming via path S_(n) become more "detectable" after impinging on

H'I(H4) and being transmitted, whilst photons coming via path L_(q) become less

155



"detectable"after impinging on HI(H4) and being reflected [9]. However, this soundsas

a much too contrived supposition.
To have a rough estimationof the expecteddisagreementbetweenthe local realistic

andthequantummechanicalpredictionsin arealexperiment,wecanmakeVs=Vc=V. Hence,

using (6), (10), and (13), we seethat in order to havea violation of (14) we must have

(TITJ[(1/2)-2V + 2VZl/[(T]+ T2t)(1-V)]> 1. (15)

Then,makingT1= T4= T, R t = R 4 = R, which leads to T 3 = R z, T 2 = R 3 = [-R + ( 1 + 3TZ) m]/2T, we obtain

(T2/4)(1-4V +4V2)/( 1-V) > 1 (16)

We see that the minimum visibility we must have in order to violate (16) is given by

V >0.87 (T= 1). Apparently our best choice would be T= 1. However, this corresponds to the

situation in which H; and H 4 have been removed. In this case the probabilities drop to

zero, and we would have to wait an infinite time to get any result. V=0.90, T=1/(1.2) t/2

----)l.h.s.(16)> 1.3. To have an idea of the time necessary to perform an experiment using

these data we can calculate the ratio between the probability of having a coincident

detection in a Franson's experiment in the case of perfect correlations and the

probability given by (13) in the ideal case (V=I). We easily see that we need about

eleven times more time to have the same statistics as in a Franson's experiment.
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