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By introducing a series of mathematical symbols and the phase quantization

condition, we give a new definition of the phase operator, which not only is made

directly in infinite state spaces, but also circumvents all difficulties appearing in the

traditional approack Properties of the phase operator and its expressions in some

widely-used representations are also givert
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I. Introduction
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The phase operator is very/mportant in the quantum optics and field theory. But as

was clearly pointed out by Susskind and Glogower[2], there are many difficulties in

the traditional definition of the phase operator[ 1,2]. The traditional approach required

that the Hermitian number and phase operator were combined in a polar

decomposition of the annihilation operator:
1

and supposed that they satisfied the following commutator

But the commutator(2) gives rise to inconsistencywhen itsmatrix elements are

calculated in a number-state basis and the tmcertainty relation ANA0 > 1 derived
2

from Eq.(2) /replies that a number state has infufite phase uncertainty which

contradicts to the periodic nature of the phase. Furthermore, the extxmential operator

o p(,0)  pp oa h so
there appeared many developments on this problem[3-8]. Especially. Pegg and Barnett

defined a phase operator in a finite-dimensional state space[3,4] and the definition has

been widely used. This definition circumvents the difficulties in the traditional

approach at the price that it is limited to a t'mite state space, the dimension of which is

allowed to tend to infinity only after physically measurable results, such as

expectation _ues, are calculated. It is now often accepted that a weIl-behaved

Hermitian phase operator does not exist in infinite state spaces[2-4]. In this paper we

give a new approach to the definition of the phase operator. We have defined a

HermRian phase operator directly in infinite state spaces. By introducing a series of

mathematical symbols and the phase quantization condition, we have overcome the

above-memioned dLfficulties in the traditional approach. As a result of being defined

directly in infinite state spaces, the phase operator here has very succinct expressions

in some widely-used r_rescnmtions which make it very convenient for use.

II. Def'mition of the phase operator
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We congidcrthe quantizedsingle-mode boson field.In thissystem,the dimension of

the state space determined by the Hamitonian /_ is cotmmblc-infinitc and allthe

cigenstates of the number operator._ make a complete basis. So an operator is well

defined if its action on an arbitrary eigenstate of the number operator is given. We

define the phase operator as the infinitesimal displacement operator of the number

basis. So to determine the phase operator, we first give the following definition of an

unitarydisplacement operator/_ ofthe number basis:

(3)
q0)-

where p, = limm! .Some explanationneed be added to the definitionCcluation(4).

Firstly,one may justsuppose L_0) = 0. But thisidealeadsto.conlradictionItmakes

not unitary.By intuition,the displacement operator L) should U'ansform [0) to

eig of S o y, maylet =).Bm I=)not
well defined because oo is not a simple number. Though p. - 1 is also infinity, the

states [p,- I) and Ioo)stillhave d/scrim/nations.The stateloo)just indicalcs that

the eigenvalue of 2V tends to infinity. It does not show the mode of tendency. For

example, when n _ oo, the states]2n) and 12n-1) can all be writtan as I_) ,bin

thesetwo statesare not same because they are orthogonal.Though the discrimination

between the statesIp,- I) and ]oo)is not important to the finalphysical results

because the statesIn) when n --_oo have no contnl)utionto usual physicalstates,it

plays a important role in defining a self-consistanc¢ Harmitian phase operator because

our definition is made directly in infin/te state spaces and is not in view of concrete

physical stores. The mode of tendency to infin/ty must be dem'mined in this situation.

Equation(4) indicates that b transforms IO) to an eigenstat¢ of _Q with an

eigenvaluc ttmding to infinity and the mode of mndcncy is given by the sequctw_

{n!- 1,(n + 1)!- 1,(n + 2)!- 1,...}. So L3 is completely defined and we will see this

definition of _ makes a good foundation for the definition of a Hcrmitian phase

operatorin_n_-_m sm_ _.

In the number representation L) defined by Eqs.(3X4) has the matrix form

0 1 0 ... 0 O'

0 0 1 ... 0 0

0 0 0 ... 0 0

D = ,,_ .n!. (5)

0 0 0 ... 0 1

1 0 0 ... 0 0j

Its eigcnvalucs have the expression

d = e _° = e i2'_ (6)

When n d oo, the value of r is limited to rational ambers and also e nr with any
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rational r is the eigenvaluc of/). Writing the eigenstate of _ with the eigenvaluc

= (7)
where 0 satisfies the discrete condition

0=2_ (r _R) (8)
and R is the rational number set. Combining Eq.(7)(8) with Eqs.(3)(4), we gel the

transition function between the number and the phase representation

(o1.>-A. (9)
where A is a normalization constant.

Before giving the correct normalization of the states [0), we make two

preparations. Firstly, from the countability of the rational number set, all 0 between

6. and 0s satisfying the discrete condiU'on (8) can be numbered as 0_, O2,..., 0,, ....

We introduce a symbol called discrete integration indicated by _ d,0 to represent the

mean value of the function f(O) over all 0 between 0_ and 0s satisfyingthe

discretecondition,et.al.,

:(o), oo)
Or, -0,, ao, ,,--_ n _=l

The definition domain of the function f(O) can be extended analytically to the real

number set (the function after analytical extension is unique and will be still indicated

by /(0). ) B_u_ the _o_ number set is d_nse in the real number set,. it is

evident that

I _o.:(O)d,O=f(O)= 1 _f(O)dO
0s-0o Ob-O. (II)

So the discreteintegrationcan be expressed by the realintegration.Secondly, we

introduce a periodic 8- ftmetion (indicated by 6 r ). The defittition of 8 r is

dr(#) = 8r(0+2_) , (12)

8r(0)=0 (O¢2k_r,k _Z),. (13)

f:
The symbol Z in Eq.(13) rep_sents the integ_ set.Ifthe definitiondomain of the

func_on #r(O) isI/m/tedto all 0 satisfyingthe discretecondition,itbecomes the

p_odic discrete#- functionand the integrationinEq.(14) shouldbe replacxxlby the

discretein_gratio-

Having these preparations, we can prove that the states I0) satisfy the normalization

(e,lo_)=s,.(o_o_) (t5)
and the complete equation

f:°+'"le>(0I' ,o = /
0

when we make the normalization cons*ant

1 (17)
A = --_-.
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Equation (15) and 06) suggest that the states 10) /n an atbitrasy 2_ interval

[00,00 + 2tr] satisfying the discrete condition make an orthogonal and normalized

complete basis.

With above preparations, the phase operator now can be easily Oven. _ coneslxm_

to the infmitesimal displacement operator of the number basis and it has the following

relationwith the displacx'ment operator ._

b= _-tnb. 08)
i

So from Eq.(7)inthe phase representationb can be expressedas

_= [oo.2_ _O_O[drO, (19)
as0 --

where 0o isarbitrary.The arbitrary00 ismerely the reflectionof the periodicnature

ofthe phase.

From the definition,we know the eigenvaluesof _ cannot be any realnumber, it

must be 2_r times a rational number. This confiction can be called phase quantization

condition and its explicit form is given here for the first time. This condition suggests

that the eigenvalues of 0 cannot change continuely though their change can be

infinitzsimal. This picture is different from that given by the classical phase, but it is

natural and necessary. Here the phase operator is defmed in a cotmtable-infin/te state

space, in which the number of indelguadent vectors cannot be beyond countable-

infinite, but the eigenvectors of £7 with different eigenvalues are orthogonal and

independent, so the eigenvalues of _ cannot be continue and at most be countable-

infinite. This leads to the phase quantization conditio_ The condition is very

important for a self-consistence definition of the phase operator in inf-mite state

spaces.

Ill. Phase-number commutator and

expressions of the phase operator in some widely-used representations

Starting from the phase operator defined in the above section, we can give the

expression of the number operator in the phase representation and the phase-number

commutator. Firstly we introdace a symbol called discrete differentiation

f(o, f , (20)
wh_ f(_)_ the,,_y_ _-_ionoff(O,)to_ r_ .u_b__t._ the
number OlgCa_ in the phase representation has a succinct form:

::=
From Eq.(21), we get the phase-number commutator

(21)

(22)

If we limit the phase value to [00,00 + 21r] in the classical case , ti_ ¢omm_nAt_r

given by Eq.(22) just equals i8 times the classical Possionian bracket[4]. This fact

212



shows that the definition here is reasonable. The mean value of Eq.(22) over a

physical state p) gives the result obtained in Ref [4]

where p(#o)=l(#0ip_ 2 is me probability, that me phase of the ,_tate is 8 0 . The

phase-umber uncertainty relation is

Further we give direct expressions of the phase operator in the number and coherent

representations. They have sur_inct and useful expressions which benefit from the

fact that we have defined the phase operator directly in infinite state spaces.

In the number representation the phase Operator have the following expression

_-X t, (25)

where the symbol __8 r_'senls the discretediferentiationdefined by Eq,(20).

z&n

function f(n) there may appears a difference 2kTr • This fact also results from the

periodic nature of the phase _d we avoid the arbitary 2br by limiting the mean

_ueof/_ in_.(25)to[e0,e0+2,_].
Equation.(25) is very com,enient for use because usual physical states are easy

expanded by Fock states and then using Eq.(25) we can analyse phase properties of

the states by simple differentiation.

Now we give an approximate form of the phase operator expressed by the

annihilation and cretion operators _,_* when the mean photon number (:r) >> 1. The

result is

1.
lua - ln(a÷d + I)" (26)i

where the symbol : : r_resents normal product. Using Eq.(26) we get the approximate

expression of the phase operator in the coherent representation when the mean photon

number is large.

1 a llna _r 2 -;sl -=(I
* This project is supported by the National Natural Foundation of China
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