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In this paper by employing the weight conservation and the diagrammatic techniques we show

that the solutions associated with the 10-D representations of SU (4) are standard alone.

1 Introduction

It is well known that the quantum Yang-Baxter equations (QYBE) play an important role

in various theoretical and mathematical physics, such as completely integrable system in (1 + 1)-

dimensions, exactly solvable models in statistical mechanics, the quantum inverse scattering method

and the conformal field theories in 2-dimensions. Recently, much remarkable progress has been

made in constructing the solutions of the QYBE associated with the representations of lie algebras.

It is shown that for some cas_ except the standard solutions, there also exist new solutions, but

the others have not non-standard solutions. In reference 11, we derived the braid group repres-

entations associated with the 10-dimensional representation of SU (4) and corresponding trigon-

ometric and rational solutions. In this paper, the classical limit of the braid group representations

is checked. Then it is shown that the solutions associated with the lO-dimentional representations

are standard alone.

2 Classical Limit

It is well known that in the classical limits as q--_ 1

thath°] [S =P [I+ (q-l) r ] +o[ (q-l) 2]
q--," I

and

*frO,= Cv = 2CR -C_v

the standard solution of QYBE require

(2. 1)

(2. 2)

where P is the permutation operator and ®v stands for the normalized classical eigenvectors, r is

the classical r-matrix, C__and C_, are the Casimirs . The eigenvalues are given by

2= (+) qC, (2. 3)

In Ref. (11), We have derived the braid group representations associated with the 10-D
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representatiom of SU (4) . The Casirnir eigenvalues of S- matrix were given by

21=q 3 , 2, =-q, ;t3=q3 (2.4)

From the result of Ref. (l l) we know that there are some fundamental submatrices , Am, A_ "_

A3 "), A, t_, A, m and /% t2_, and otheas can be expressed by direct sum of the furndamental su-

bmatrices. So we discuss only the classical limits of this submatrices.

For example, we discuss only A3 "_-

A3 (1) __
0 0 q

0 q-' qw

q qw (1 - q2) w
(2.5)

(1)[ =A3 q_ 1

0 0 q

0 2-q 4 (l-q)

q 4 (l-q) 0

(2. 6)

r 3
(1) __ 1

0

0

-4

-1

0

0

4

1

(2. 7)

and

1 1 1

(Z)IT--_ (1 2 1), @2r- qr_ (1 0 -1), @_-

*V'r, c,__= C,=
3 v=l

, 1 v=2

3 v=3

Theaefore the solutions of QYBE are standard.

3 About absence of the nonstandard solution

From Ref . (11) we have known that so long as

solution. In Ref. (11), we have

u4qs2 ,,.,, + Wl 0 (4.6) p82,,.,, = w_° (4.6)

=U_ 6 ,

t2. o (4. 6) U? "-" U4WI0 2 ta. o + Wl 0u_8 2 + wt0

u_= P,0 "" 6) P6 2''''

(4. 6)

(1 -1 1) (2.8)

(2. 9)

there exists the alone

(3. l)
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(2. 6)

j u6P =p,o 2('°

(2.6) __ 2(2.4_

u2P8 -P_

(-5. -4)
2t_6

U-5 q-io -" -'I-W-9

(3. 2)

(- 5. -4)

p_ 102 (-6. -4) _. W_ 9
2 (-6. s)

P-II

2(6.-5) (-5.-4)

u_4q_ 1o + W-9

2 (__. _,)
U_?-- W_ 9

( -5. -4)

U_5-+- W_9

/
'/
/

(-6. -5)

u_52=p_n

(-6. -4) 2 (-6.-5)

U-6 P-IO =P-I1

( -6 . -4) 2 (-s.-,)

u-4P- 10 "- p- 9

2(_6.o) ("6.0) 2(_6 o -- (-6. 0)
Uoqo + w-6 Po - w-6

LJ. 2(-6 o)_o +Uo_W_'°' _ =UoW6_'°"+_° _

(-6. o)

Uo2=p(O. 6) P-6

U_ 6190 ( - 6. 6) =p-62 ,_,. o)

U6Po(-6.6) =p62,o,)

(3

(3

.3)

• 4)

(3. 5)

(3. 6)

Fromeq. (3. 1), we have

(4. 6') n(2 4) =P_ou4=PI0 ' 1"6"

From eq. (3. 2) +eq. (3 . 6), we have

U 2 = U 6

(3

(3.

.7)

8)
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U_s=p_ 9 (-5. -4) , P-9 (-5. -4) =P-I_ (-6. -5) (3 . 9)

U_4=U_6 (3.10)

(0. 6) (0. 6) (-6. 0)
u0=P6 • P6 =P-6

U_ 6 -- U6

From eq. (3. 8), (3. 10) and (3 , 12) we have

U6"-- U2-- U_4-- U_ 6

Therefore the solutions of the QYBE are standard alone.

(3. Ii)

(3. 12)

(3. 13)
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