CHIRAL BOSONIZATION OF SUPERCONFORMAL GHOSTS

Shi Deheng Shen Yang Liu Jinling
Department of Foundation, The First Aeronautical College of Air Force,
Xinyang, Henan 464000, P. R. China
Xiong Yongjian
Department of Physics, Xinyang Teacher's College,
Xinyang, Henan 464000 , P. R. China

Abstract

We explain the difference of the Hilbert space of the superconformal ghosts (β, γ) system from that of its bosonized fields φ and χ. We calculate the chiral correlation functions of φ, χ fields by inserting appropriate projectors.

Recently, many authors have investigated the bosonization $\sim \mathrm{f}$ superconformal ghosts β and $\gamma^{1,2}$. Unlike the fermionic ghosts b and c , the bosonization of (β, γ) system have some problems.

Locally, (β, γ) system is equivalent to two scalar fields φ and χ^{3}. Although the chiral correlation functions of β, γ fields have been calculated ${ }^{1{ }^{2}}$, the calculation of the chiral correlation functions of φ, χ fields will be troublesome. Besides the redundant zero-modes of the bosonized fields, the main reason is that φ, χ fields have a large Hilbert space than (β, γ) system. In ref. (4), this enlargement was explained as caused by the freedom of choosing the background ghost charge, the so-called picture, and by introducing projectors which specify the picture of each loop, the Hilbert space of φ, χ fields are restricted to the degrees of freedom of the (β, γ) system. In this paper, we explain this problem from an elementary point of view, and then apply new projector for the calculation of the chiral correlation functions of φ, χ fields.

We consider the (β, γ) system corresponding to superstring theory, i. e. with conformal dimensions $\frac{3}{2}$, $-\frac{1}{2}$ respectively. Locally, (β, γ) system is identified with a scalar field φ and a pair of fermions ζ, η with conformal weights 0,1 respectively.

$$
\begin{equation*}
\beta=\partial \zeta \mathrm{e}^{-\mathrm{i} \varphi} \quad \gamma=\eta \mathrm{e}^{\mathrm{i} \varphi} \tag{1}
\end{equation*}
$$

The φ field is coupled to background charge $\mathrm{Q}=2$, and is described by the action

$$
\begin{equation*}
\mathrm{S}[\varphi]=\frac{1}{2 \pi} \int \mathrm{~d}^{2} \mathrm{z}\left(-\partial_{\mathrm{z}} \varphi \partial_{\overline{\mathbf{z}}} \varphi-\frac{\mathrm{i}}{2} \sqrt{\mathrm{~g}} \mathrm{R} \varphi\right) \tag{2}
\end{equation*}
$$

where, $\mathrm{g}_{\mathbf{z} \overline{\mathrm{z}}}$ is a Riemann metric and \mathbf{R} is the corresponding scalar curvature. We can again bosonizing (ζ, η) system via another scalar field χ

$$
\begin{equation*}
\zeta=e^{i x} \quad \eta=e^{-i \kappa} \tag{3}
\end{equation*}
$$

The χ field is coupled to background charge $\mathrm{Q}=-1$ and is described by the action

$$
\begin{equation*}
\mathrm{S}[\chi]=\frac{1}{2 \pi} \int \mathrm{~d}^{2} \mathrm{Z}\left(\partial_{\mathrm{z}} \chi \partial_{\overline{\mathrm{z}}} \chi+\frac{\mathrm{i}}{4} \sqrt{\mathrm{~g}} \mathrm{R} \chi\right) \tag{4}
\end{equation*}
$$

φ and χ fields are both restricted to taking values on a unit circle $R / 2 \pi Z$; this compactification results soliton configurations on Riemann surface \sum_{g} with genus $\mathrm{g}>0$, and insures the necessary holomorphic factorizations ${ }^{5}$.

The classical soliton sectors can be labeled by the winding numbers for the canonical homology basis (a_{i}, b_{j}). The soliton solutions of φ, χ fields with winding numbers ($\left.n_{i}, b_{j}\right)$ are given by

$$
\begin{align*}
& \varphi_{\mathrm{nm}}(\mathrm{z})=\pi(\mathrm{m}+\bar{\tau} \mathrm{n})(\operatorname{Im} \tau)^{-1} \mathrm{z}+c \cdot c . \\
& \chi_{\mathrm{n} m}(\mathrm{z})=\mathrm{i} \pi(\mathrm{~m}+\bar{\tau} \mathrm{n})(\operatorname{Im} \tau)^{-1} \mathrm{z}+c \cdot c . \tag{5}
\end{align*}
$$

where τ is the period matrix of $\sum \mathrm{g}$. For simplicity, we have denoted the Jacobi map $\int_{\mathrm{P}_{0}}^{2} \omega$ as z. The corresponding action

$$
\begin{align*}
& \mathrm{S}\left[\varphi_{\mathrm{nm}}\right]=\frac{\pi}{2}(\mathrm{~m}+\bar{\tau} \mathrm{n})(\operatorname{Im} \tau)^{-1}(\mathrm{~m}+\tau \mathrm{n})+2 \mathrm{~S}_{\mathrm{b}} \\
& \mathrm{~S}\left[\chi_{\mathrm{nm}}\right]=\frac{\pi}{2}(\mathrm{~m}+\bar{\tau} \mathrm{n})(\operatorname{Im} \tau)^{-1}-\mathrm{S}_{\mathrm{b}} \tag{6}\\
& \mathrm{~S}_{\mathrm{b}}=\pi(\mathrm{m}+\bar{\tau} \mathrm{n})(\operatorname{Im} \tau)^{-1} \triangle-c \cdot c .
\end{align*}
$$

where, \triangle is Riemann class .
We consider the following correlation functions

$$
\begin{equation*}
\mathbf{A}_{\delta}=\int[\mathrm{d} \varphi \mathrm{~d} \zeta \mathrm{~d} \eta]_{\delta} \mathrm{e}^{-\mathrm{s}[\varphi, \zeta, \eta]} \prod_{\mathrm{a}=1}^{\mathrm{n}+1} \zeta\left(\chi_{\mathrm{a}}\right) \prod_{\mathrm{b}=1}^{\mathrm{n}} \eta\left(\mathrm{y}_{\mathrm{b}}\right) \prod_{\mathrm{c}=1}^{\mathrm{n}} \mathrm{e}^{\mathrm{i} q_{\mathrm{c}} \varphi\left(\mathrm{z}_{\mathrm{c}}\right)} \tag{7}
\end{equation*}
$$

where q_{c} are integer satisfying $\sum q_{c}=2(g-1)$, and δ is a specific spin structure.
If φ and χ are treated independently, the result will be different from that of the corresponding β, γ fields. We notice that
a) the bosonized fields have redundant zero-modes of ζ and η fields .
and b) the (φ, χ) system has a larger Hilbert space than that of the (β, γ) system, since φ and χ are not independent globally. Thus we must have appropriate constriants, otherwise, some global configurations will be computed repeatly.

The first aspect can be resolved by inserting operators $\delta(\zeta(\chi)), \prod_{i=1}^{\mathrm{B}} \delta\left(\eta\left(r_{i}\right)\right)$ to remove zeromodes of ζ, η fields.η has zero-modes at $\mathrm{i}=1, \cdots, \mathrm{~g}$, and ζ has a constant zero-mode, thus χ is an arbitrary point on \sum_{s}. In order to avoid to compute the similar part of global configurations of φ, χ fields, we introduce projector

$$
\begin{equation*}
\delta\left(\mathrm{m}_{\chi}-\mathrm{m}_{\varphi}\right) \delta\left(\mathrm{n}_{\chi}-\mathrm{n}_{\varphi}\right) \tag{8}
\end{equation*}
$$

to restrict φ, χ on the same soliton sector at the same time.
Now, according to Riemann - Roch theorem, (7) must be modified as follow

$$
\begin{equation*}
\mathrm{A}_{\delta}=\int[\mathrm{d} \varphi \mathrm{~d} \zeta \mathrm{~d} \eta]_{\delta} \mathrm{e}^{-\mathrm{s}[\varphi, \zeta, \eta]} \prod_{\mathrm{a}=1}^{\mathrm{n}} \zeta\left(\mathrm{x}_{\mathrm{a}}\right) \prod_{\mathrm{b}=1}^{\mathrm{n}} \eta\left(\mathrm{y}_{\mathrm{b}}\right) \prod_{\mathrm{c}=1}^{\mathrm{n}} \mathrm{e}^{\mathrm{i} \mathrm{q}_{\mathrm{c}} \varphi\left(\mathrm{z}_{\mathrm{c}}\right)} \tag{9}
\end{equation*}
$$

Inserting our projector

$$
\delta(\zeta(\mathrm{x})) \prod_{\mathrm{i}=1}^{\mathrm{g}} \delta\left(\eta\left(\mathrm{r}_{\mathrm{i}}\right)\right) \delta\left(\mathrm{m}_{\varphi}-\mathrm{m}_{\chi}\right) \delta\left(\mathrm{n}_{\chi}-\mathrm{n}_{\varphi}\right)
$$

we have

$$
\mathrm{A}_{\delta}=\left\langle\prod_{\mathrm{a}=1}^{\mathrm{n}} \zeta\left(\mathrm{x}_{\mathrm{a}}\right) \prod_{\mathrm{b}=1}^{\mathrm{n}} \eta\left(\mathrm{y}_{\mathrm{b}}\right) \prod_{\mathrm{c}=1}^{\mathrm{n}} \mathrm{e}^{\mathrm{i} \mathrm{q}_{\mathrm{f}} \varphi\left(\dot{\mathrm{z}}_{\mathrm{c}}\right)} \cdot \delta(\zeta(\mathrm{x})) \prod_{\mathrm{i}=1}^{\mathrm{g}} \delta\left(\eta\left(\mathrm{r}_{\mathrm{i}}\right)\right) \delta\left(\mathrm{m}_{\chi}-\mathrm{m}_{\varphi}\right) \delta\left(\mathrm{n}_{\chi}-\mathrm{n}_{\varphi}\right)\right\rangle_{\delta}
$$

For the δ-functions with fermion arguments, $\delta(\zeta)=\zeta, \delta(\eta)=\eta$, and labelling the arbitrary X as $\mathrm{X}_{\mathrm{n}+1}$, we get

$$
\mathrm{A}_{\delta}=\left\langle\prod_{\mathrm{a}=1}^{\mathrm{n}+1} \mathrm{e}^{\mathrm{ix}\left(\mathrm{x}_{\mathrm{a}}\right)} \prod_{\mathrm{b}=1}^{\mathrm{n}} \mathrm{e}^{-\mathrm{ix}\left(\mathrm{y}_{\mathrm{b}}\right)} \prod_{\mathrm{c}=1}^{\mathrm{n}} \mathrm{e}^{\mathrm{i} \mathrm{q}_{\mathrm{c}} \varphi\left(\mathrm{z}_{\mathrm{c}}\right)} \prod_{\mathrm{i}=1}^{\mathrm{g}} \mathrm{e}^{-\mathrm{ix}\left(\mathrm{r}_{\mathrm{i}}\right)} \delta\left(\mathrm{m}_{\chi}-\mathrm{m}_{\varphi}\right) \delta\left(\mathrm{n}_{\chi}-\mathrm{n}_{\varphi}\right)\right\rangle_{\delta}
$$

This result can be written as a soliton sum $\Lambda_{\text {wl }, 8}$ multiplied the amplitude of zero soliton sector A_{∞}

$$
\begin{equation*}
\mathbf{A}_{\delta}=\Lambda_{\text {sol, }} \delta \cdot \mathbf{A}_{\infty} \tag{10}
\end{equation*}
$$

A_{00} is the result of the single-valued part of φ, χ fields. It is trivial that ${ }^{5}$

$$
\begin{align*}
& A_{00}=\exp \left\{2 \pi \operatorname { I m } (\sum X _ { a } - \sum Y _ { b } - \sum r _ { i } + \sum q _ { c } z _ { c } - \triangle) (\operatorname { I m } \tau) ^ { - 1 } \operatorname { I m } \left(\sum X_{a}-\sum Y_{b}\right.\right. \\
& \left.\left.-\sum r_{i}+\sum q_{c} z_{c}-\Delta\right)\right\} \times \left\lvert\, \frac{\prod_{c} \sigma\left(z_{c}\right)^{-2 q_{c}}}{\prod_{c_{1}<c_{2}} E\left(z_{c_{i}}, z_{c_{2}}\right)^{q_{c} q_{q_{2}}}} \cdot \frac{\prod_{b} \sigma\left(y_{b}\right) \prod_{r_{i}} \sigma\left(r_{i}\right)}{\prod_{a} \sigma\left(x_{a}\right)}\right. \\
& \times\left.\frac{\prod_{a_{1}<a_{2}} E\left(x_{a_{1}}, x_{a_{2}}\right) \prod_{b_{1}<b_{2}} E\left(y_{b_{1}}, y_{b_{2}}\right) \prod_{r_{i}<r_{j}} E\left(r_{i}, r_{j}\right) \prod_{b<r_{i}} E\left(y_{b}, r_{i}\right)}{\prod_{a_{2}} E\left(x_{a}, y_{b}\right) \prod_{a_{1}, r_{i}} E\left(x_{a}, r_{i}\right)}\right|^{2} \tag{11}
\end{align*}
$$

Using Possion summation formula, we get

$$
\begin{align*}
\Lambda_{\infty 01, \delta}= & (\operatorname{detIm} \tau) \exp \left\{-2 \pi \operatorname{Im}\left(\sum \mathrm{x}_{\mathrm{a}}-\sum \mathrm{y}_{\mathrm{b}}+\sum \mathrm{q}_{\mathrm{c}} \mathrm{z}_{\mathrm{c}}-\sum \mathrm{r}_{\mathrm{i}}-\Delta\right)(\operatorname{Im} \tau)^{-1} \cdot \operatorname{Im}\left(\sum \mathrm{x}_{\mathrm{a}}-\sum \mathrm{y}_{\mathrm{b}}\right.\right. \\
+ & \left.\left.\sum \mathrm{q}_{\mathrm{c}} \mathrm{z}_{\mathrm{c}}-\sum \mathrm{r}_{\mathrm{i}}-\Delta\right)\right\} \cdot \mid \sum_{\mathrm{p}_{x}} \exp \left\{\pi i \mathrm{p}_{\mathrm{x}} \tau \mathrm{p}_{\mathrm{x}}+2 \pi \mathrm{ip}_{\mathrm{x}}\left(\sum \mathrm{x}_{\mathrm{a}}-\sum \mathrm{y}_{\mathrm{b}}-\sum \mathrm{r}_{\mathrm{i}}+\Delta\right)\right\} \\
& \cdot\left|\sum_{\mathrm{p}_{\varphi}} \exp \left\{-\pi \mathrm{i}\left(\mathrm{p}_{\varphi}+\delta^{\prime}\right) \tau\left(\mathrm{p}_{\varphi}+\delta^{\prime}\right)+2 \pi \mathrm{i}\left(\mathrm{p}_{\varphi}+\delta^{\prime}\right)\left(\sum \mathrm{q}_{\mathrm{c}} \mathrm{z}_{\mathrm{c}}-2 \Delta+\delta^{\prime}\right)\right\}\right|^{2} \tag{12}
\end{align*}
$$

Herc, $\delta^{\prime}, \delta^{\circ} \in\left(\frac{1}{2} \mathbf{z} / \mathbf{z}\right)^{\mathbf{s}}$, and $\delta=\left[\begin{array}{l}\delta^{\prime} \\ \delta^{\prime}\end{array}\right]$
From (11) and (12), holomorphic anomaly factors of A_{∞} and $\Lambda_{\text {wit. }}$ can cancell each other. Thus we can have chiral correlation functions

$$
\begin{align*}
& A_{\delta}^{\text {chiral }}=(\operatorname{det} \operatorname{Im} \tau)^{\frac{1}{2}} \frac{\prod_{b_{0}=1}^{n} \theta[\delta]\left(-y_{b_{0}}+\sum x_{a}-\sum y_{b}+\sum q_{c} z_{c}-2 \Delta\right)}{\prod_{a_{0}=1}^{n+1} \theta[\delta]\left(-x_{a_{0}}+\sum x_{a}-\sum y_{b}+\sum q_{c} z_{c}-2 \Delta\right)} \\
& \cdot \frac{\prod_{a_{1}<a_{2}} E\left(x_{c_{1}}, x_{a_{a}}\right) \prod_{b_{1}<b_{2}} E\left(y_{b_{1}}, y_{b}\right)}{\prod_{a, b} E\left(x_{a}, y_{b}\right) \prod_{c_{1}, c_{2}} E\left(z_{c_{1}}, z_{c}\right)^{q_{1}, a_{a}} \prod_{c} \sigma\left(z_{c}\right)^{2_{c}}} \tag{13}
\end{align*}
$$

Thus, by inserting appropriate projector to remove the zero-modes of ζ, η fields and restrict φ, χ on the same soliton sector, we get the correct chiral correlation functions of φ, χ fields. As compared with ref. (4), our approach is more comprehensive.

References

[1] E. Verlinde, H,Verlinde, Phys. Let., B192, 95 (1987)
[2] A. Losev, Phys. Lett., B226, 62 (1989)
[3] D. Friedan, E. Martince, S. H.Shenker, Nucl. Phys., B271, 93 (1986)
[4] U.Carow-Watamura, Z. F. Ezawa, K. Harada, A. Tezuka, S. Watamura, Phys. Lett., B227, 73 (1989)
[5] E.verlinde, H. Verlinde, Nucl. Phys., B288, 357 (1989)

