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Abstract

Coherent states on the the m-sheeted sphere (for the SU(2) group) are used to define

analytic representations. The corresponding generators create and annihilate clusters of

m photons. Non-linear Hamiltonians that contain these generators are considered and their

eigenvectors and eigenvalues are explicitly calculated. The Holstein-Primakoff and Schwinger
formalisms in this context are also discussed.

1 Introduction

In recent work [1] we have generalised two-photon states into m-photon states. Previously

m-photon states have been considered in [2, 3]. The approach of ref. [2] is related to the

Hamiltonian

H = wa+a + A(a+) m + A*arn (1)

and is known to have several difficulties. Our m-photon coherent states are more related to

those of ref. [3]. Our approach is heavily based on the theory of analytic representations

and it goes far beyond previous work [4-7] in the sense that it uses them in the context of
Riemann surfaces.

In refs. [1] we have studied m-photon states in connection with the m-sheeted complex

plane (for the Heisenberg-Weyl group) and the m-sheeted unit disc (for the SU(1, 1) group).

In this paper we extend these results to the SU(2) case. Using our formalism we calculate

explicitly the eigenvalues and eigenvectors of the Hamiltonian

H = WJz + AJ ('n) + A'J(- m) (2)

where j(+,n), j(_m) are SU(2) generators that move an electron up or down by m steps.

From a mathematical point of view the work is a contribution to the study of highly non-

linear Hamiltonians. It has been motivated by recent developments in conformal field theory

[8], but of course the details are very different here. Only simple cases of m-sheeted Riemann
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surfaces have been considered so far, but the final goal is to extend this work to more complex

Riemann surfaces and solve very large classes of highly non-linear Hamiltonians. We believe

that this can become a major tool in the study of non-linear Hamiltonians.

In the context of condensed matter the Hamiltonians considered here describe m-particle

clustering. Pairing of particles plays an important role in superfluidity and superconductivity

and the more general m-particle clustering studied here, could be useful in the study of new

phases in condensed matter.

2 Analytic representations in the extended

plex plane (SU(2)group)

com-

su (2) coherent states in a fi nite-d imensional Hil bert space H2j + 1, are deft ned in the extended

complex plane (which is the stereographic projection of a sphere) as:

Iz) = (1 + Izl2)-J__6(j,n)zJ+"lj, n)

8(j,n) = [(2j)!1½I(j + n)!(j - n)!]-½ (3)

Let If) be an arbitrary (normalised) state in Hzj+I:

i J

If) = __, f,,13;n) F_, If,,I2= 1 (4)
n=-i n=-j

Its Bargmann analytic representation in the extended complex plane is the following

polynomial (of order 2j):

f(z) = (1 + Izl2)J(z*l$) =

J

_(j,n)fj +" (5)
n= --j

The scalar product of two such functions is defined as:

(fig) - 2Jlr+ 1 f f*(z)g(z)(1 + Izl2)-2Jd#l(z)

d#l(Z) = (1 + Izl2)-2dUz

(6)

(7)

The SU(2) generators are represented as:

J- = Oz, Jz = zOz - j, J+ = -zZOz + 2jz (8)

SU(2) transformations on f(z) of equ(5) are implemented through the Mobius conformal

mappings:
az - b*

w - ; lalz + Ibl_ = 1 (9)
bz + a*

J

f(z) -'-* f(w)(bz + a*) 21 = _ fn6(j,n)[az-b*]J+n[bz +a*] j-n (10)
TL= --j
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3 Analytic representations in the m-sheeted ex-

tended complex plane

The formalism developed in the previous section is generalised here by replacing z by z m.

In order to have one-to-one mappings we introduce appropriate Riemann surfaces: an m-

sheeted complex plane and an m-sheeted extended complex plane. The point z -- 0 is a

branch point of order m - 1 in all three cases. We also have cuts along the lines

z = rw_; l=0,1,...(m-1)

We shall call sheet number s(z) of a complex number z the

s(z) = IP (marg(z)_ ]) (12)

where IP stands for the integer part of the number, s(z) takes the integer values from 0 to

m-1 (modulo m). The Hilbert space is (2j + 1)-dimensional and we only consider cases where

the 2j + 1 is an integer multiple of m

2j + 1 = m(2k + 1) (13)

The states Ijn) can also be relabeled as:

Ijn) = Iml;kh) (14)

h = IP[L_] (15)

l = REM[J_ ----_n] (16)

where IP and REM stand for the integer part and remainder of the indicated division,

correspondingly. The Hilbert space H2j+I can be decomposed as:

rn-1

H2j+I = _ H_ (17)
l=O

Hi = {Iml;kh); -k < h < k) (18)

The SU(2) coherent states of equ(3) are generalised into coherent states on an m-sheeted

covering of the SU(2) group, defined as follows:

k

Iz; m) = (1 + ]zig'n) -k _ if(k, h)(zm)k+h]m, S(Z); k, h)
h=-k

(19)

They are SU(2) coherent states within the Hilbert subspace Hs(z). A resolution of the

identity in terms of these states is written as follows:

2k7r÷ 1/c [z; m)(z; mldp,_(z) = 1 (20)
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d_m(Z) = (1 + Izlzm)-ZmZlzlu(m-')d2z (21)

The metric dp,_(z) comes from the metric of equ(7) with z replaced by z m. Using the states

(19) we define the extended Bargmann representation in the m-sheeted extended complex

plane of the arbitrary state If) of equ(4) as:

k

f(z;m) = (1 + Izl_)k(z*;rnlf) = _ 8(k, h)(Zm)k+hfh,s(z) (22)
h=-k

f(z;m) is a polynomial of order 2km=2j-(m-1) and is analytic at the interior of each sheet.

The scalar product is given as

(fig) - 2kr + 1 fc f*(z; m)g(z; m)(1 + [zlU'*)-2kd#m(Z) (23)

Substitution of z by z m in (8) gives the operators:

j(+m) = -m-lzl+_O z + 2kz m (24)

J(__) = rn-lzl-mOz (25)

j(m) = m-lzcgz _ k (26)

[jz(m),j(.)] = _j(_m) (28)

fl+m)lmt;kh ) = [k(k + 1) -h(h + 1)]½1m, l;k,h + 1) (30)

fl__)lmt;kh) = [k(k+ 1) - h(h- 1)]½1m, l;k,h- 1) (31)

&m)lm/;kh ) = hlml;kh) (32)

They act as SU(2) generators within Ht and therefore they move the state Ijn) upwards or

downwards by m steps. SU(2) transformations on the f(z;m) of equ(22) are implemented as

generalised Mobius conformal mappings:

1

[az m -_ b*]-_w = [bzm + _; ; lalz + Iblz = 1
(33)

/(z;m) _ f(w; m)(bz m + a*) uk (34)

4 Applications to m-photon states

We consider the Hamiltonian:

H = wJz + AJ(+m) + A*j(__m)

Its eigenvectors and eigenvalues are:

1 1)]w + rh}Um(O, ¢)lm/; kh)
HUm(O, ¢)lm/; kh) = {[1 - _(m -

(35)

(36)
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r lOe-_S(.,) !Oe,_,s¢'_)]
U_(O,¢)=exp[-7 + +2 - J

"r = [(win) 2 + 1_12]½

¢ = arg(A)

cos(O) = wma -1

(37)

(38)

(39)

(40)

5 Holstein-Primakoff and Schwinger formalisms

The operators j(+m), j(_m), j(m) studied in this paper can be connected with the creation and

annihilation operators of m-photons at,n, am studied explicitly in [1], through the Holstein-

Primakoff and Schwinger formalisms. In the Holstein-Primakoff case:

1

1

t _
j(m) : am [(2k + 1)-amain ]

j(m) = atmam _ k (41)

In the Schwinger case the operators j(m), j(__), j(m) are expressed in terms of two modes

as:

j(__'_) : amAats

(42)

a?mA, areA are m-photon creation and annihilation operators for the mode A; and at, aB are

ordinary creation and annihilation operators for the mode B. Terms like atmAaB describe

the conversion of one B-photon into m A-photons. Inserting (41), (42) into the Hamiltonian

(35) we get other Hamiltonians whose eigenvalues and eigenvectors we can calculate.

6 Discussion

Previous work on coherent states in the m-sheeted extended complex plane (for the Heisenberg-

Weyl group) [1], has been extended to the m-sheeted sphere (for the SU(2)). They have been

used to define analytic representations and study highly non-linear Hamiltonians that de-

scribe m-photon clustering. Further work should be directed to more complicated Riemann

surfaces and their possible use in the study of even more general classes of non-linear Hamil-

tonians.
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