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Abstract

A quantum key distribution based on coherent state is introduced in this paper. Here
we discuss the feasibility and security of this scheme.

The cryptographic communication has a lot of important applications, particularly in the mag-
nificent prospects of private communication. Asone knows, the security of cryptographic channel
depends crucially on the secrecy of the key. The Vernam cipher is the only cipher system which
has guaranteed security. In that system the key must be as long as the message and must be
used only once. Quantum cryptography is a method whereby key secrecy can be guaranteed
by a physical law. So it is impossible, even in principle, to eavesdrop on such channels. Quan-
tum cryptography has been developed in recent years. Up to now, many schemes of quantum
cryptography have been proposed|1}-[8]. Now one of the main problems in this field is how to
increase transmission distance. ’

In order to use quantum nature of light, up to now proposed schemes all use very dim light
pulses. The average photon number is about 0.1. Because of the loss of the optical fiber, it
is difficult for the quantum cryptography based on one photon level or on dim light to realize
quantum key-distribution over long distance.

Here we introduce a scheme of quantum cryptography based on coherent state. The average
photon number per pulse can be increased, so that we can transmit the key over longer distance.

First of all, we consider the quantum theory of the beam splitter (Fig. 1). Alice sends a
mode a; which is in state |o;) into the beam splitter. Bob sends a mode b; which is in state
|A1) into the BS to measure the state sent by Alice. Suppose the output modes are a5 and b,
which are in state |a;) and |S;) respectively.

According to the quantum theory of BS[9], in Heisenberg picture we have following formula:

’ b Bll Bl a a;
o l=[5 E]la]=ols] 2
Bij=|Bijle*, éu—-éu=¢n-¢nFs

|Bu|? = |Bss|* = cos? 8, |By|*=|By|*= sin? 0

Here U is Unitary Operator of the BS. cos? @ is the reflection rate of the beam splitter.
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In Schrodinger picture, if the incoming state is |¢1) = |ai, 81), then the output state |¢,)
should be |

[¥3) = o3, Bs) = U*|as, B1) 2)
U = e~iLsl#r—4)) e—i3cos~ (11 /%)Ls ~iLs($++4,) (3)

1 1 1
Ly =Z(efes +ajar), Ls=-(afas—ajer), Ls=(afa:1+a]as)

& = 1(¢u —¢1), ¢ = l(ﬁl’n — ¢33 F 7)

Using these formula, we can in principle derive the output state for any incoming state. We are
particularly interested in the following situation:
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FIG. 1. The basic scheme of quantum cryptography based on coherent states.

Suppose input is a coherent state |a;, ;). According to above formula, the output state is also
a coherent state as following,

|$3) = |aycos@ — By sin 8, B, cos 8 + a, sin 8) = |ay)|Bs) (4)
as =a;co880 — Bysinb, By = By cosf + a; sind

So the output state |as) depends on the eigenvalues of incoming coherent states a3, 5; and 4.
Here cos? § is the reflection rate of the beam splitter. Now we use a symmetrical beam splitter,
= %, and let &y = a or @ + 8@, f = a or a + Sa. In this case, the output state |as) is

10) o« = ﬂl
las) = I’C&r) a=a+tda,fi=a (5)
|- % 60) a=a,b=a+ba

That means when Alice and Bob send the same coherent state, output state |a;) is vacuum
state [0). When they use different states, |a;) will be a coherent state and its eigenvalue is

proportional to :i:£6a Therefore, the probability of detectmg photon in state |a3) is given by
this expression,

Po=lolel = | puiesss g ®

These results tell us when Alice and Bob use the same coherent state, there is no photon to
be detected in output state |as). Whereas they use different coherent states, the probability of
detecting photon is not zero. Now we take the value of [§a| is equal to v/21n2. Then we get
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P.=0 (n21)
P=%
when o, # b, {P ZP

a=1

when ay = 5,

That means in this case, proba.bility of detecting no photon is 50%, and the other 50% is to
detect at least one photon.

Now Alice randomly sends a sequence of coherent states |a) or | + éa), and Bob also
randomly use the coherent states |a) or | + éa) to measure the state sent by Alice

Suppose the detecting results after the transmission are shown in Tab.1,

TABLE I. Key distribution using coherent states.

Alice a o a+ba a a+ ba a+ba o a |
Bob o+ ba o a a+ba o+ ba o S a+ bo
detector Yes No Yes No No Yes No No
o X o X X ) X X
Key 1 0 0

After completing the transmission, Bob announces publicly the cases in which photons are
detected, but keeps secret the states he used. Alice and Bob adopt these cases as the key
distribution and translate them into a logical 0 or 1 according to their preexitant agreement.
For example, Alice’s |a) represents a logical 1 and Bob’s |a) stands for a logical 0. By far, we
have established a shared key distribution between Alice and Bob. '

Of course, above results are in the absence of an eavesdropper. Now we consider how to find
the eavesdropper in our system if there is. Suppose there is a an eavesdropper named Eve, she
wants to split the incoming states |a;) from Alice and |8;) from Bob into two parts {|a}), lo®)}
and {|#),]87)} using her beam splitter. Then she sends states |o}) and |8}) to Bob, and keeps,
states |o”) and |8]) for her own measurement. Repeating above calculation, we can get

oy = a; cos p, o] =a;sing

By = Barcos p, Bi = Bisinp

Here cos? p is the reflection rate of Eve’s beam splitter. We suppose that Bob does the same
measurement as before, but in this time he receives the states |a}) and 5)) at the beam splitter.
When o, # B,, the probability of detecting photon P is given by following expression

P =1-exp{-1/26a|*cos’ p} < P (N

Here P is the probability in the absence of an eavesdropper. Now we define a channel disturbance
parameter £ as
£ = P-P
- P

| In order to check if there is an eavesdropper, they can calculate the channel disturbance pa-
rameter ¢ after the transmission. If they discover noticeably £ > 0, they can conclude that
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there must be an eavesdropper and discard this key distribution. In fact, In order not to been
exposed, Eve has to make coso ~ 1. However, in this case the probability of her detecting
photon is : :

P’ — %(l — e'i‘l‘al’lﬁn’?) ) %lsa" Sin, o~ 0
This means that Eve can hardly get any information of the key between Alice and Bob.
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