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Abstract

This paper discusses a physical meaning of the standard quantum limit (SQL) in quantum

decision theory. It will be shown that a necessary condition for overcoming the SQL is

quantum interference.

1 Introduction

The problem of finding the best quantum measurement process in order to distinguish quantum

states is called quantum decision theory which was devised extensively by Helstrom, Yuen and

Holevo as quantum aspect of communication theory. In this theory, the measurement process is

treated as a black box, and it is described by a probability operator measure as a simple math-

ematical generalization of the Born statistical postulate[l]. The discrimination among quantum

states is one of the interesting topics in quantum optics and related fields, because they require

the control of the quantum measurement process to find better measurement apparatus. So it

is interesting to clarify the relation between the abstract description of quantum measurement

processes and its physical correspondence.

Recently, Usuda and Hirota[2] pointed out that the performance of the decision error probability

for binary pure state signals can be improved by means of received quantum state control con-

sisting of the Kerr medium and the conventional homodyne system. Then Sasaki, Usuda, and

Hirota[3] verified that the improvement of the performance is caused by quantum interference

effect. Thus, quantum decision theory has predicted a possibility of overcoming the standard

quantum limit. However, we have not yet understood what it means in general. We shall clarify

in the present paper the physical meaning of the improvement of the decision error probability by

control of the quantum measurement process.

2 Quantum interference

According to the quantum mechanics, any state vector represents a realizable physical state. When

the state is represented by a linear superposition, we can find the quantum interference between

the superposed states as follows:
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Nl<xl(le,>+ le >)l2
= NII<xl_,>J 2 + I<xJ_2>l 2 + 2Re{<xJ_,)<xl_2)'}], (1)

where N is a normalization constant. The third term represents the quantum interference. This

corresponds to the fact that the quantum probability is affected by off-diagonal elements of the

density operator of a coherent superposition state. On the other hand, in the quantum measure-

ment process, if the measurement process itself generates the superposition effect from a standard

basis {[y) },

NI((yl + ( yl)le)l
= N[l(yl_V)l 2 + l(Sy[_)l _ + 2Re{ (yI_')(SyI_P}'}I, (2)

then the resulting interference term represents the macroscopic quantum interference effect by the

quantum measurement itself. Here the macroscopic means that the interference term is clearly

observed.

3 Decision problem for quantum states

We first give a brief survey of quantum decision theory. The theory is formulated on the basis of

the quantum probability describing the quantum measurement processes. According to quantum

probability theory, measurement processes can be classified as standard and generalized processes.

The standard quantum measurement process is described by the spectral theorem of von Neumann

as follows:

AIx)= xlz)
(3)

p(x)dx = Try[x} (xIdx,

where _: density operator, A: observable in the quantum system.

Any observable A and state _ induce a mapping from a quantum state to a classical probability

measure. On the other hand, the generalized quantum measurement process is described by the

probability operator measure (POM) d//(x) which satisfies to the following conditions[l]:

i= fd/I(x) and d/l(z) k 0. (4)

In general, d[/(x) is not a projection-valued measure (PVM). Then the measurement probability

is given by

p(x)dx = Tr_dYI (x) .

Based on the above formulas, one can define the decision operator for decision among the quantum

states. Let {_i} be a set of quantum states representing M signals. The probability of decision is

P(jli) = Tr_i[Ij , i,j e M, (5)

where//_ is called the decision operator. This is a probability operator measure (POM) as follows:
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I=_[/i and /7i>__0. (6)
J

This is the discrete case of the generalized resolution of identity: Eq(4). The optimization in the

quantum decision problem is formulated as follows:

Pe = min ( 1 - _ _JTr(PJ[/J) } "if/j) j

If the decision operators consist of PVM of the signal observable given by a specific basis,

(7)

{ Y/j(sqL)=//j(xd)lz)<xldxE fZ (sQL)=i and  j(sQL)> 0, (S)
i

where fi (Zd) is a Wald's decision function, then they are called the standard decision operators[4].

In this case, the optimization is only for Wald's decision function, and we do not need quantum

decision theory. Decision operator based on different observations of the signal is called "gener-

alized decision operator." In this general case, the role of decision and measurement process is

embedded into a decision operator, and we do not separate out an observable. In general, we have

PVM or POM. The whole process is treated as a black box, and this is called Helstrom-Holevo

formalism[i].

4 Standard quantum limit in decision theory

Here we give the definition of the standard quantum limit. Suppose we fix a single signal observable

and generate the M different signals with different quantum state. Basically, modulation scheme

will be set as such a way. Minimum error probability based on the standard decision operator of the

signal observable will be called the Standard Quantum Limit (SQL) [4]. If the signal observable is a

set of non-commuting observables, then the minimum error probability based on the simultaneous

measurement for such non-commuting observables is called the SQL. Or it is equivalent to that

based on standard decision operator on the Naimark extension space. In this case, the standard

decision operator is constructed by PVM of corresponding signal observables on the extended

space.
Our definition is convenient to evaluate how new scheme is different from it as conventional one

in the measurement process. In this definition, signal quantum state does not play so important

role. We emphasize that the SQL is given for each system with various quantum states.

Let us give some examples. For a single observable, the binary PSK with cohe_'ent states is a
^

typical example. In this case, the signal observable corresponds to the quadrature amplitude Xe

or )(,. The SQL is given by a homodyne receiver corresponding to ]xc}(x¢] or Ix,,) (x,,]. However,

if we send more than two classical phase information of light wave, for instance, ternary PSK and

quarternary PSK, then the SQL is given by a heterodyne receiver or an optical costas-loop system

based on homodyne. When the quantum state is squeezed state, the SQL is for the squeezed

state. But the measurement process which give the SQL is the same homodyne receiver. So we
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say the SQL is for a system with squeezed state. If the state for the fixed modulation scheme is

different, we will say it is the SQL for that state. Our problem is that when the signal observable

or modulation signal is prepared, by controlling the measurement process we get performance

better than expected in classical communication theory. Here we are concerned with the physical

meaning of overcoming the SQL. We would prove the next conjecture:

"In order to overcome the SQL, the quantum interference effect by the quantum measurement

process is necessary."

The proof is following: The SQL average error probability is

Pe(SQL)= 1-- E • (9)
J

Here, from Eq(8), the SQL means bounds when quantum fluctuation can be treated as a classical

noise and a classical decision theory is applied to them. As a result, a generation of a quantum

effect is required by different measurements to get result better than the SQL. To overcome the

SQL, for Pe < Pe(SQL), one has

fjTrA_(f/_(sqL)-/_/j)< O. (10)
J

Since the decisionoperators can involvea classicaleffect,we should choose operators representing

a quantum effectfrom the variousmeasurement schemes. From thispoint,to choose the different

schemes from the standard decision process, which give a quantum effect,has a possibilityto

bring a resultbetter than the SQL. That is,we can say that the quantum effectwhich does not

have classicalinterpretationisan essentialrequirement to overcome the SQL. However itisclear

that the differentmeasurement schemes from the standard do not mean better measurements.

LFrom now on, we discusswhat kind of quantum effectis necessary. If [f/j,Hj(SQL)]= O, then

f/j can be represented by the same PVM as the signalobservable. Since [/j(SQL)isthe optimum

among; the classof decision operators consistingof the PVM of the signalobservable,we require

[-f/j, Hj(SQL)] -_ 0 to overcome the SQL. The detail logic of the proof was given by Ban[5]. We

check physical meaning of the above statement. Let us discuss here only case that the signal

observable is a single one and the non-commutativity of standard decision operators and new

operators can be described by applying a certain unitary operator as follows:

Here we require from Ban's result

(ii)

[O_'/_rj(SQL)O, /Ij(SOL)] _t O. (12)

It means that [l must be generated by operators which do not commute with the signal observable

and also commutation relation of the generator of U and .4 is not c-number. The unitary operator

is represented from Stone's theorem by
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-= /exp[ig(y)]dE,(y)= / K(y)dE,(y). (13)

Then

[-I2-= / f2(Xd) l_ K* (y)(ylx}dyly) f K(y)(x[yl(y]dy} dx (14)
= /f2(Xd) K'(y)h°(x,y)dy]y)/K(y)h(x,y)(y]dy}dx,

where h(x,y) = (x[y).

If we want to overcome the SQL, at least each term of error probabilities must satisfy the following

inequality:

<
(15)

and

=

(16)

= f k(xd)l(xl¢ }l 2dx"

These inequalities are the requirement for the new decision process to get below the SQL. We can

see [Ut//_(SQL)0, f/j(SQL)] # 0 in order to obtain the error probability below the SQL, because

if it is commutative operator, the inequality becomes inverse. Thus the requirement to be the

non-commutativity is clear. Furthermore, in order to hold the inequalities, the probability of the

overlapped region of the both signals must be reduced. It is possible by only quantum interference

effect (see Ref.[6]). The f K(y)h(x,y)(yl¢l)dy in Eq(15) is, in general, regarded as the superpo-

sition on the coordinate of y. The superposition has a potential to give a quantum interference,

because this corresponds to Eq(2). By the square of the absolute value of the above term, the

modified measurement probability of the original probability: [(¢1 Ix} [2 based on the quantum in-

terference may be obtained. We can easily understand, however, that even if the decision operator

is non-commuting with _f[j(SQL), we cannot always obtain the macroscopic quantum interference.

For example, even if {x andy} are physical quantities with non c-number commutator, it does not

always give the macroscopic quantum interference which shows reduction and increase of prob-

ability on the standard basis. That is, it sometimes provides only a kind of transformation of

function. In this case, we have no hope to overcome the SQL. This means that we must find a

decision operator which gives the macroscopic quantum interference from non-commuting decision

operators.
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5 Conclusions

We have clarified the followings:

1. The physical meaning of the SQL is given.

2. To overcome the SQL is caused by the quantum interference effect in the quantum measure-

ment process.

3. A physical meaning of the POM involves the quantum interference in the quantum mea-

surement process, though it has been regarded as unsharp measurements like the random

decision, convolution effect or cross correlation effect with other uncertainty[7, 8].
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