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Abstract

The optimum measurement processes are represented as the optimum detection operators

in the quantum detection theory. The error probability by the optimum detection operators

goes beyond the standard quantum limit automatically. However the optimum detection

operators are given by pure mathematical descriptions. In order to realize a communication

system overcoming the standard quantum limit, we try to give the physical meanings of the

optimum detection operators.

1 Introduction

The purpose of the quantum detection theory is to realize a communication system with its

performance overcoming the standard quantum limit (SQL). Standard quantum limit is often

referred as a detection limit achieved by classical detection theory, so that overcoming the SQL

is purely quantum mechanical effect. To go beyond the SQL, the quantum measurement process

must be generalized to the probability-operator measure (POM) [1, 2]. The optimization of

the P0M to minimize an error probability results in "the optimum detection operator"which

expresses not only a measurement process but also a decision process. However the optimum

detection operator works as a mapping from a signal quantum state to a decision result, so that

its physical meaning is not evident. In order to realize a communication system whose detection

performance is quantum mechanically optimum, investigations into the physical meanings of the

optimum detection operators are indispensable.

Recently we have derived some analytical solutions of the optimum detection operators and our

group gave the physical example overcoming the SQL by means of the quantum interference

[3, 4, 5]. In this paper we would like to interpret the physical meaning of the optimum detection

operators as the quantum interference.

2 Summary of Quantum Detection Theory

The significance of the quantum detection theory is the prediction of a receiver whose signal

detection performance is superior to the conventional ones optimized by the classical detection

theory. The bound between the quantum and classical detection theories is well-known as "the

standard quantum limit: SQL" which is rigorously defined as follows:J6]
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Definition. 1

Standard quantum limit is defined as the minimum error probability achieved by the quantum

measurement based on the orthonormal spectrum measure of the signal observable.

Namely, the SQL can be obtained by quantum mechanical re-description of the conventional mea-

surement processes with the optimum decision rule. To go beyond this limit, signal measurement

processes must be generalized quantum mechanically. The generalized measurement process is

represented by the probability- operator measure (POM),//_, which is a non- negative Hermitian

operator satisfying the resolution of identity.

f/j = H_ > 0, (1)

M

?tj = i. (2)
j=l

Because of the resolution of identity, POM can include the meaning of a decision process and such

a POM is called "a detection operator." Therefore, the measurement of a signal quantum state,

_, by a detection operator,//j, gives a conditional probability, P(j[i), as follows:

P(jli) = Tr_,f/j. (3)

This probability represents the signal decision probability to be 'j' while the received signal is 'i'.

The error probability is also given by signal quantum states and detection operators.

M M

P_ = 1 - _ _,P(i[i) = 1- _-_Tr_,_,[I_, (4)
i=1 i=1

where _i is a prior-probability for i-th signal.

The quantum detection theory is the optimization theory for these detection operators to

minimize the above error probability. There are several formulae to find the optimum detection

operators. For example, necessary and sufficient condition for the optimum detection operators

based on the quantum minimax strategy is as follows [7]:

TF_,_, = T_fb_j, Vi,j, (5)

_fI_ [_IPi - _,P,] [I, = O,Vi,j, (6)

> o,vi, (7)

where/_ is called "the Lag'range operator" defined by

M M

(8)
i=1 i=1

A solution of the above formula goes beyond the SQL automatically. The practical derivation of

the optimum detection operators has been carried out for some signal sets consisting of linearly

independent quantum states [3]. In the derivation process, the following Lemma by Kennedy plays

an important role [1, 8].

314



Lemma

When the signal quantum states are linearly independent, the optimum POM for the error prob-

ability is indeed projection-valued.

Therefore in the cases of the quantum signal sets with pure states, the optimum detection operators

are orthogonal projectors on the signal space•

/*/3 = ]w_)(w_] and (wi[w_) = 6ii. (9)

where Iwi) is called "a measurement state." Since the measurement states are the orthonormal

bases in the signal space, signal quantum states, ]¢,) : (_, = ]¢,)(¢,I), can be represented by

measurement states.
M

I¢,)= E _j,l_j),
j=l

(10)

where xji is a parameter defined by
xj,------ (wjl¢i). (11)

Then it is possible to represent the relation between the signal quantum states and the measure-

ment states in the matrix form.

I¢1}

ICM}

Xll

XlM

• . . XMI

• •

• . . XMM

[o.,1)

i_M)
(12)

Inversely, the measurement states can be represented by signal quantum states.

1! = [zj,]-' : (13)

Hence the problems for the optimum detection operators, Eqs.(5-7), are turned into the algebraic

equations for parameters {xji}.

As an example, let us consider the Binary Phase Shift Keyed (BPSK) signal with coherent

states. The signal quantum states are given by [¢_) = [a), [¢2} = [ - a). The optimum detection

operators can be obtained as follows [3]:

f/l-- 1

f/2-- 1 {(1- _)[a)(a[ + (1 + l_--Z'_- _2) [ - a)(-a[

-_ (1_)(-_1+ I- _)(_1)}.

(14)

The measurements by these optimum detection operators show the error probability going far

beyond the SQL. These optimum detection operators look like the SchrSdinger Cat states [9]

consisting of the signal quantum states, [a) and I - a), so that the quantum interference may be

occurred there.
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In general cases, the optimum detection operator can be also represented by a coherent super-

position state with signal quantum states from Eq.(13).

M M

[/j = Iwj)(wi] = _ _ tikt;tlCk)(¢t], (15)
k=l l=l

where t_i is an element of a matrix [t_i] representing the inverse matrix [xji] -1. The conditional

probability given in Eq. (3) becomes

P(jli) =

(16)

Here we can see the off-diagonal elements generated from the optimum detection operator. Then

there is a question "Can we regard this measurement process as a quantum interference by exis-

tence of these off-diagonal elements?" According to the general sense of the quantum interference

off- diagonal elements should be generated from a density operator representing a signal quantum

state. Hence in the following sections, we verify whether the optimum detection process can be

interpreted as a quantum interference.

3 Quantum Interference

To specify what is the quantum interference, we follow the conventional definition [10]

Definition.2

When the quantum probability is affected by the off-diagonal elements of a density operator

representation of some coherent superposition state, it is called the quantum interference.

In detail, a coherent superposition state is represented by

1¢>= k.l¢.), (17)
n

where k_ is a normalization constant. Then its density operator representation is as follows:

n

(18)

The quantum probability obtained by a certain measurement, dE(x), results in

p(x) = Tr_dE(x) = Tr _ _ k,.,k_l¢,_)(¢_,ldE(x ). (19)

When the off-diagonal elements remain in the quantum probability, it is called "a quantum inter-

ference," where the off-diagonal elements are given in the form

TrlCm)(¢,_ld/_(x) m _t n. (20)

316



Therefore the quantum interferencecanbe in sight by existenceof the off-diagonal elements
from a densityoperator. In the caseof the optimum detectionoperators,however,the off-diagonal
elementsaregeneratedfrom a measurementprocessas itself. If the notations of density operators
and the optimum detection operators can be exchange,then we can interpret that the physical
meaningof the optimum detection operator is the quantum interference.

4 Density Operators and the Optimum Detection Oper-

ators

The conditions for an operator to be the optimum detection operator are as follows [1]:

1. Non-negative Hermitian operator (condition to be POM).

//=//t > o. (21)

2. Projection on the signal space (after Kennedy's Lemma).

1"/2 =/'/, and Tr/'/= 1. (22)

On the other hand, the features of density operators are [11]

1. Non-negative Hermitian operator.

/5 = _Sf >_ O. (23)

2. Trace is equal to unit.

Tr/_ = 1. (24)

As a result, it is possible to exchange the notations of the optimum detection operators and density

operators.

{ P' _ //" (25)

Applying this operation to the conditional probability in Eq.(16),

P(jli) = Tr#,fIj

we can say that the above conditional probability contains the off- diagonal elements from the

density operator, _. Hence we can say that the optimum detection process generates the quantum

interference. In other words, when the error probability by the optimum detection goes beyond

the SQL automatically, the quantum interference is also used there automatically. The optimum

measurement state plays an equivalent role of the Schr6dinger Cat state as itself.

317



5 Conclusions

The physical interpretation of the optimum detection operator which represents the optimum

measurement process has been investigated. It is the quantum interference caused by the optimum

detection operator as itself. Because the optimum detection operator is represented by a coherent

superposition state consisting of signal quantum states. While this result is derived under the

restriction that signal quantum states are linearly independent, we assume that any optimum

detection operator generates the quantum interference as itself and uses it as much as possible to

reduce the error probability.
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