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Abstract

A generMization of the entropic formulation of the Uncertainty Principle of Quantum Me-
chanics is considered with the introduction of the q-entropies recently proposed by Tsallis.

Tile conconlitant gener,'dized measure is illustrate(I for tile case of phase and numl)er opera-

tors in Quantunl Optics. Interesting results are obtained when making use of q-entropies as

the 1)asis for constructing generalized entropic uncertainty measures.

1 Introduction

The Uncertainty Princil)le (UP) can be stated quantitatively in the following fashion

u(A,D;,I,) >_t3(A,b) (1.1)

where/2 is an estimation of the uncertainty in the result of a simultaneous measurement of two

incompatible obserwtbles/i and B, when the system is in a state I¢). What the UP asserts is that

such an estimation is limited by an irreducible lower bound, the infimum/3, which merely depends

on both operators. L¢ must attain a fixed minimmn value (blmi,, = 0)if and only if l¢) is a common

eigenstate of A and /_, and/3 vanishes when the obserwtbles share at least one eigenvector.

The extension of Heisenberg's inequality to describe the UP for arbitrary pairs of operators

(when their commutator is not a c-numl)er) has been criticized because its r.h.s, is not a fixed

lower botmd [1]. Much effort has been devoted to present quantitative formulations of the UP

(see, for example, refs. [1]-[8]). A central idea underlying these works is that the most natural

measure of uncertainty is precisely the missing in:formation [9] that remains once a measurenmnt

is made.

Deuts,:h first proposed [l] the use of Shannon's information-theory entropy [9] (S({pi}) -

_ _-_g t'_ in I'_, for m_y probability distribution {p_}) to measure m_certainty, in the following way

u,(A, = s(A;,/,) + s(b;,/,) (1.2)

with the entropies calc,,lated for the distributions {PA,i = I(._1,/,)1")a.d {z'_,j = I(bjl_)12), whid,

correspond to the projections of I'/') onto the bases of eigenvectors of A and/_, respectively. With

reference to an A-meas_trement, a system ill _t state with a probability distribution {6ii0} has a

"minilumn la.ck of it_formation" (or "maximum knowledge"), and then ,5'(A; _/))--,5'mi,, = 0. On
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the other hand, a unifi)rnl distribution {I/N} characterizes a situation of "maxinmnl ignorance",

with S(fi,; lp) = .-¢"max= In N.

It has been shown [1] that L(I satisfies

ut(A,b;¢,) > 2 it, 2-2---- (1.3)
l+c

with c = Sttl)ij I(a lbj)l. It was conjectured first by Kraus [3] and demonstrated later by Maassen

and Uffink [4] that a I)etter bound can be given,

bet(A,/3; ¢) _> 2 In 1 (1.4)
¢

Kraus specifically considered ha.ving two complementary observables: exact knowledge of tide

measured value of one of them implies maximum uncertainty in tide other measurement, and

conseq,tently I(ailbj)l = 1/v_, for a.H i,j = 1,...,N.

It seems natural to look for alternative descriptions of the UP expressed in entropic terms.

In Section 2, we attalyze the quantitative formulation of uncertainty ill tile spirit of hfformation

Theory, with tile a.id of the recently introduced Tsallis' entropy [10], which is regarded as infor-

mation measure [11]. We illustrate with a simple example, namely the l)hase-number uncertainty

measures within tide Pegg-Barnett for'realism, and outline some conclusions in Section 3.

2 Tsallis' entropy as measure of uncertainty

A quite interesting generalization of the conventional entropy form has been recently advanced by

Tsallis [10]. For any normalized probability distribution {p_}, Tsallis' entropy reads

Sq({pi}) = 1- E N,pi q (2.1)
q--1

where q is any real number, cha.racterizing a l)articular statistics. (Tile sum must be carried out

over non-zero probabilities.) The q --_ l limit of (2.1) yields the Boltzmann-Shannon's logarithnfic

expression.

The physics is an extensive one only for q = I [10, 12]. Tsallis' entrol)y is related to the more

familiar R6nyi's entropy by ,5'ff = (In[1 +(1 -q)Sq])/(1- q). A crucial difference distinguishes these

two alternative entrol)ies, however. Tsallis' entrol)y always possesses a definite concavity, being a

concave (convex) function of the 1)robal)ilities for q > 0 (q < 0), which is not the case for R6nyi's

one. It is thus the former the generalized entrol)y recently employed in several distinct physical

contexts. The generalized statistics associated to (2.1) has been shown to satisfy apl)ropriate

forms of Ehrenfest theorem [11], Jaynes' informatiol_-theory duality relations [11], von Neumann's

equation [13], and the fluctuation-dissil)ation theorem [14, 15], among others. H-theorems and

irreversibility have been in this connection a.lso discussed [16, 17], as well as a possible connec-

tion with quantum gr(,ll)S [l,q], for instance. This nonextensive statistics has allowed, within an

astrol)hysical context, to overcome the inability of the conventional, extensive one, to adequately

deal (without infinities) with self-gravitating stellar systems, in what constituted the first physical
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application of tile q -7(: l-theory [19]. A second application refers to L_vy flights, relevant for a

variety of systems [20].

Some properties of the q-entropies are: i) 5,'q >_ 0 for ally q and {pi}, with ,5'q = 0 for Pl = 5ii0

(certainty); ii) Sq reaches the extreme value (1 - Na-q)/(q- 1) for every q and Pi = 1/N

(equiprol)ability); iii) Sq is a non-increasing fimction of q > 0 for each {Pi}; iv) For two inde-

pendent distributions {pl} and {1'_} (such that the joint probability is 1'0 = l'i P_), it verifies that

,.qq({Plj } ) = ,5;q({l'i } ) + ,gq( {I'_ }) + (1 -- q)5',( {Pl } ),5'q( {1'_} )"
We consider tile new entropy as measure of uncertainty. Let us recall first that Heisenberg's

relation, as well as the entropic relations given above, refer to independent measurements.of

tile observables A and /3 on different microsystems in the same state ]¢). The tiP states that

the 1)robability distributions ol)tained when ]_/_) is projected on the corresl)onding eigenbases

cannot be both arbitrarily peaked, given operators A and B "sufficiently non-commuting" [3].

The uncertainty measure al)pearing in eq. (1.2) takes into account the total information entropy

a.ssociated to two independent prol)ability distril)utions. Shannon's entrol)y is additive and/41 is

just ,5'(/]) + 5'(/_). We introduce now Tsallis' entrol)y to measure the amount of uncertainty, in

the same spirit. The generalized expression reads

/at,t(A, B; ,/,) _ ,%'q(A; ,/,) + 5,'q(B; ¢) + (1 - q) Sq(A; ,/,)Sq(B; ,1,) (2.2)

where q is a positive parameter and the entrol)ies are given by (2.1) for the probability sets

{PA._} and {P&i}" It is immediately seen that/gq > 0, with biq = 0 if and only if 1¢) is a common

eigenstate of A and/3. Besides this, blq never exceeds (1 - N '2('-q))/(q- 1 ). (We mention that these

ideas can be extended to deal with pairs of observables with continuous spectra. However, one

must be careful when defining the (generalized) information entrol)y for non-discrete distributions

{v(.)} [17,21].)
A (weak) bound can be imp,,sed on (2..), na,nely

ua(A,b;,/,) > (1
-q--I \

(2.3)

which hohls for any q > 0. By recourse to Riesz' theorem (as used in ref. [4]), it can be demon-

stra.ted that a better bo,md for latq exists, at least in the region 1/2 _< q _< 1:

blqCA,/3;,/_) > 1 1- (2.4)
-q 1

3 Example and conclusions

We shall apply our ideas to the phase and lmmber operators in Quantum Optics. The treatment

of optical states can be accomplished by recourse to the Pegg-Barnett (PB) formalism [22]. This

implies working in a finite but arbitrarily large (s + 1)-dimensional Hilbert space _,+l spanned

by the number states ]0),,]l)o,...,Is},, and taking the limit s --_ co at the end. The Hermitian

phase operator is defined as

s 1 s

4, = o,,, 1o,,,)..(o,,,I, Io,,,). - sx/7-4-f E ei"e'"ln)" (3.1)
m:O n:O
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The correspondingeigenvaluesare 0,,, = 00 + 2rm/(s + 1). (Hereafter, tile arbitrary reference

phase 00 will be set equal to 0.) The phase and number operators, t_ and /V, are mutually

COml)lenlentary, with overlap c = 1/v_ + 1.

It is found that, for a system in a state J_b) E 7-("+t, L/t(_,/V; ,],, s) > In (s + 1) which diverges

when s ---* oo. In order to extract some information out of this relation, Abe examined [5] the

entropy differences fi'om a certain reference state before going to the infinit_s limit. Number and

phase eigenstates (which actually saturate that inequality) were chosen. Within the framework

of Tsallis' information entropy, for a given q > 0 and a state I0,,,),, for instance, the entropies are

given by ,5'q(+; 0,,,,s) = 0 and Sq(/Q; 0,,,, s) = (1 -(s + l):-q)/(q - 1). Consequently,

limHq(_,/Q;0,,,,s)= { oo, if 0<q< 1l - (3.2)
_--.oo q_-zi, if q > 1

The same obtains h)r a number eigenstate. We stress that, considering generalized information

entropies with q > 1, tile divergence in the uncertainty fl_r nunll)er or phase states is removed.

Let us consider the genera.lized entropic uncertainty measures for a system prepared in a phase

coherent state (PCS). These states, rec.ently found by I(uan and ('hen [21], are given by

1 _ _'"
,triO

(3.3)

where _; - v/27r/(s + 1) z is a complex ,m,nber and the no,'malizing function is given by e,(z) =

_,=0"c"/n[" The projections of a PB PC'S oil l_hase and numl)er eigenstates are

l I_1_'''
I',,,= I_(0,,_1_>_1_ - e_(l_l_) .,! (3.4)

_l.lld

I,:,= I,(,,,I=)_I_= (._+ I)_,(I_P) _ (3.5)
k=O

respectively, with m, n = O, I,..., s.

The ¢- N Heisenberg's inequality has been discussed for tile s = 1 ca.se [21]. We have analyzed

the slla.pes of the ph_Lse and numl)er q-entropies, for many different values of .._. Within a given

statistical frame of index q, the entropies ,f,'q(_'; z, s) and 5'q(/Q; z, s), will depend on both Izl a,_d
s. The coml_lementariness of _ and/V is clearly seen. Tile pha.se entropy vanishes both for Izl = 0

(as it should for the vacu,ma I)hase state 100))and for Izl sufficiently large. The number entropy

ha.s a minimum in tile intermediate region (those PCS for which the entropy approach zero can

be interpreted as "number-like" states). Those states are also of relatively low uncertainty. It can

be seen that (1 = (s + l)l-q)/(q - 1) is a lower bound for the generalized uncertainty measure

(see eq. (2.4)). This is obtained for arbitrary size of the PB space, .s, or statistical l)arameter, q.

Fig. 1 displays the q-entropies and the uncertainty/4q(+,/V; z, s) as a function of Izh assuming

particular values for both q and s.
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FIG. 1. Phase and nunlber q-entropies and generalized uncertainty measure, for a

PB PCS, as a function of coherence.

As a conclusion, generalized entrol)ies recently introduced by Tsallis have been discussed in

order to establish general uncertainty relations for the measurement of two quantum incompatible

observables. Number and 1)h_tse operators within the Pegg-Ba.rnett forma.lism ha.ve been investi-

gated in some detail. Interesting results are obtained when making use of q-entrol)ies as the basis

for constructing gem_ralized entrol)i¢ uncertainty illeasllles.
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