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Abstract

The dependence of the quantum fluctuation of the output fundamental and second- har-

monic waves upon cavity configuration has been numerically calculated for the intracavity

frequency-doubled laser. The results might provide a direct reference for the design of squeez-

ing system through the second-harmonic-generation.
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1 Introduction

The SHG is a highly efficient process for producing the squeezed state light. The generation of

squeezed light by SHG in a passive cavity has been studied intensively in theory and experiment [1-3].

Some authors have discussed the nonclassical properties of the output fields from an intracavity

frequency-doubled laser. Most of them consider an idea laser system [4-51.

For the experimental physicists, it is intersting to analyze the nonclassical properties of the

output optical fields from a realistic intracavity frequency-doubled laser system. In this paper,

the intensity fluctuations spectra of the fundamental and the SH wave in output fields have been

calculated. The dependences of the intensity fluctuations on the configuration of the laser cavity

and the losses in the cavity have been discussed. These results will provide a direct reference for

the design of squeezer with SHG.

2 Fundamental and SH fluctuations spectra

The system we consider here is a single-ended resonator that contains a laser medium and a X (2)-

nonlinear crystal. The laser is pumped by a coherent laser source and the fundamental frequency

mode (Wl) and SH frequency mode (w2 = 2wl) are coupled by a X(2)-nonlinearity. Based on Lax-

Louisell laser theory [81 and in the rotating frame, the semiclassical equations of motion for this

system are given by:
g_l

ch = (-71 - iAl)al + kc_lc_2 +
1 + b[all2/g

1 2
as = (-3'2 - iA2)a2 - _k_l

(i)

(2)

where al, a2 is the complex amplitude of fundamental and SH wave, A1 = Wl - a2L and A2 =

w2 - 2_L are the detuning between the cavity modes and the lasing transition WL, 71,_2 are the
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cavity damping rates, g is the pump parameter, b is the saturation para_mter of the laser medium,

k is the nonlinear coupling constant.

1

k- 2X(2) (3)

The constant k depends on the nonlinearity of the cystal and the configuration of the cavity. V

is the mode volume, l is the nonlinear crystal length, L is the cavity length.

It is useful to introduce the real parameters P1 and q1 to describ the real and imaginary parts

of the field a i respectively.

1 (a i _ a;) (4)Pi= 

In the stationary state, the real variables are the solution of the following equations:

--pl + + + ('71- g) = 0 (5)
2"72g

k 2

P2- 2_2 p, (6)

whereas the imaginary parts are taken as zero ql = q2 = 0.

When the pump parameter g approaches the critical value [51

gc = _(2'71 + ")'2) 1 + 1 + k2(2'71 + '72) (7)

the phase variables q_ become unstable and the system presents self-sustained oscillation. We are

interested in the regime below the threshold of the instabilities, in which the equations of motion

(1) and (2) can be linearized around the stationary state given by equations (5) and (6).

At the case of resonance (A i = 0), we obtains expressions for the outgoing amplitude squeezing

spectra of the fundamental and SH wave at the analytic frequency ft. When the phase angles

equal to zero the optimum squeezing can be obtained. Setting zero as the shot-noise level, we

have:

S,(ft)= l-R, (8)
1 - R1 + L1 D

) k21Pll 2
S2(ft) = 1 - R2 8'7R2( IP21- (l+bl_,12/g)_ (9)

1 - R2 + L2 D

where

D= k21  12+ (1+bl l12/g)2-f 2 +f22 '72+ (10)

R i is the reflectivity of the output coupler at the frequency 0;i. L i is the rest losses per

roundtrip in the resonator that include absoption, scattering and residual transmission through

mirrors other than the output coupler. 7nj is the cavity damping rate which only depends on

the output coupler loss (1 - Rj), "7i is total cavity damping rate which depends on total losses

(1 - R i + Li). LFrom the equations, it can been seen that the squeezing increase when the rest

losses are decreased.
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3 Numerical calculation and discussions

Following numerical calculation was processed according to our realistic experimental setup and

parameters. The experimental system is shown in Fig. 1

Fig.1

A Nd:YAG laser medium and a nonlinear crystal KTP are contained in a semimonolithic laser

cavity. One side of Nd:YAG crystal was coated as the input coupler (M1). The length of Nd:YAG

and KTP both are 5mm. The input coupler is high reflectivity for both fundamental and SH

waves and the output coupler (M2) is high reflectivity for the fundamental wave. Former works

[4-sl have indicated that the squeezing increases with pump paramter. Considering g < go, we

chose the pump parameter g = 109s -1, that corresponds to the pump power of 2W in our system,

to discuss the dependence of the squeezing on the configuration of the cavity and the reflectivity

of the output coupler for SH wave (R2). The saturation parameter b of laser crystal is 0.2s -1, the

rest losses of fundamental wave is 0.5% and the rest losses of SH wave is 1%.

Fig.2

Fig.2 shows that the squeezing degree of th SH wave at zero analytic frequency as a function

of the cavity length and R2. Here the curvature radius of output coupler is designated as 30mm.

It can be seen that for the designated curvature radius we can find an optimum R2(R2 = 88%)

and an optimum cavity length (L = 25ram) to get the maximum squeezing ($2(0) = -0.21).

For a certain R2 there is a corrspondent optimum cavity length which is a near half-concentric

configuration.

Fig.3

In Fig.3 the curvature radius of output coupler is taken as 100mm. In this case R2 = 92%

L = 46mm should be an optimum option which is a near half-confocal cavity other than above
near half-concentric.

Fig.4

Fig,4 is the squeezing spectra of the fundamental wave (1) and the SH wave (2) as a function of

analytic frequency 12 at the above-mentioned optimum configurations of the cavity. For Fig.4(a)

p = 30ram, L = 25ram and R2 = 88%; for Fig.4(b) p = 100ram, L = 46ram and Ru = 92%.

In this designed system the squeezing of the fundamental wave is much less than SH wave. The

squeezing bandwidth in Fig.4(a) is larger than Fig.4(b), so that in the experiment the length of

laser cavity should be chosen as short as possible to obtain higher intracavity density of power,

larger squeezing bandwidth and more compact configuration.

371



4 Conclusion

We have calculated the dependence of quantum noise squeezing upon the reflectivity of output

coupler and the length of cavity in the intracavity- doubled laser. The results might provide some

references for designing squeezer with intrazavity SHG.
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Figure Caption

Fig. 1 The laser configuration

Fig.2 The dependence of squeezing at fl = 0 upon the reflctivity R2 and cavity length with

p = 30ram

Fig.3 The dependence of squeezing at f_ = 0 upon the reflctivity R2 and cavity length with

p = 100ram

Fig.4 The squeezing spectra for the fundamental wave (1) and SH wave (2). (a) p = 30mm, (b)

p-- 100ram
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Fig. 1 The las er configuration
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Fig.2 The dependence of squeezing at fl=0 upon the
reflectivity R and cavity length with p=30mm
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Fig.3The dependence of squeezingat fi=0 uponthe
reflectivityR andcavitylength with p= 100ram
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Fig.4(a) The squeezingspectra for the fundamental
wave (1) and sn wave (2) (p=30mm)
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Fig.4(b)The squeezingspactraforthefundamental

wave(I)andSH wave(2)(p=100ram)
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