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Abstract

The amplitude and transverse quadrature component squeezing of coherent light in high

Q cavity by injection of atoms of two-photon transition are studied.

The Golubev-Sokolov master equation and generating function approach are utilized to

derive the exact variances of photon number and of transverse quadrature component as

function of t. The correlation functions and power spectrums of photon number noise and

of output photon current noise are also investigated.

1 Introduction

In this work, the amplitude squeezing as well as the transverse quadrature component squeezing of

coherent light in high Q cavity by injection of atoms are investigated. The interaction is assumed

to be two-photon transition type and the initial mean photon number N is assumed large.

The interaction interval T for individual atom is taken the faverable value _r/g, where g denotes

the effective coupling constant between the atom and the single mode light. This value makes

each incoming atom to emit two photons during passing the cavity.

Our approach is based on Golubev-Sokolov master equation [11. Since this equation was doubted

by Benkert and Rzazewski[21 for it may give negative probabilities. We will do some discussion on

it first. To our view, even if Golubev-Sokolov equation does not have the meaning as a common

differential equation, it is able to give correct mean values, variances and correlation functions of

appropriate quantities, when it is utilized along with generating function method. In this work,

this approach is not only used to derive photon number variance, the power spectrums of steady

photon number noise and of output photon current noise, but also is generalized to study the

squeezing of transverse quadrature component.

In the investigation of photon number variance, we find that, in the case that the steady mean

value of photon _s is much larger than the initial mean value of photon N, the ratio (An(t)2)/(n(t))

will first drop to a value which is much smaller than its steady state value 1/2, and then turns up

to approach 1/2.
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In the investigation of squeezing of transverse quadrature component, we get that its variance

square is expressed by (n(t))/4N, hence the correspondent steady value _o/4N maybe either

smaller on larger thatn the standard value 1/4. It is interesting to note, this steady value is

related to the initial parameter N. Furthermore it does not depend on whether the injection is

regular or poissonian.

2 Model, Golubev-Sokolov master equation and gener-

ating function approach

We assume that the initial state of light in the high-Q cavity is single mode coherent light with

mean photon number N >:> 1. The injected two level atoms are in upper level, they interact with

the cavity field by resonant two-photon transition: w0 = 2w.

The change of density matrix of photon field due to its interaction with a single atom initially

in upper level is described by

(_p)_. = p_. cos(gT¢(m+ 1)(m+ 2))cos(gTv/(_+ 1)(. + 2))

+p,__2,,__2sin(grCm(m--1))sin(g_'¢n(n-- 1))- p,n,_. (1)

For lage N, m and n for important p,_,_ are also large, so that gr¢(rn+ 1)(m+ 2) may be

approximated [a] by gT"(m + ½), etc. If we take the value of r as _ then eq.(1) turns out to be

(2)

which means eacah atom emits two photons during passing the cavity, namely the quantum effi-

ciency of photon production equals one.

We assume that the atoms enter the cavity one by one and at most one atom in the cavity

every moment. Therefore after injection of k atoms, p will change to (1 + fi)kp.

If the injection is of poissonian statistics with r as mean injection rate, the average number of

injected atom during the interval t --_ t +dt will equal K = rAt. Thus Ill

-K Kk
p(t + At) = _ e --_-.(1 + _)kp = e_eatp(t), (3)

leading to

dp(t)
= r@. (4)

dt _,_p

This is just the pumping term in the well known Scully-Lamb master quation.

For regular pumping, k itself is a definite number, k = rat with r denoting the injection
rate.Therefore

p(t + At) = (I + {z)_Atp(t)= erAtI'_(l+C_)p(t), (5)

which leads to II1
dp(t)

dt Ip_,_p = r[/n(1 + _)]p(t) (6)
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for regular injection. By adding the cavity damping term, Golubevand Sokolovgot the equation

d p,_,_ ( t ) l

- r[/n(1 + _)p(t)],,,,, + r[-¼(m + n)p..,,(t) + _/(m + 1)(n + 1)p,-,,+_,.,+_(t)],
dt

in which F denote the cavity damping and the thermal photon is assumed negligable.

Benkert and Rzazewski found 121that this equation gives negative p,,,, when it is solved by

letting dp_,_ = 0 to derive the steady values of p_,,. Let us see where this problem might come

from. For regular injection rAt equals k therefore must be larger than 1. Thus At cannot be

taken as arbitrarily small. This in turn means eq.(7) may not be a differential equation of common

sense, one ought to avoid by setting d_4ebe zero to get the steady value of p. Because of stepwisedt
increase of rt, the strickly steady value of p may not exist.

In practice, one usually only needs to calculate the expectation values, varicances or correlation

functions of some relavant quantities. In this case it is better to evaluate these values directly

rather than through evaluating p,_,_ first. Generating function aproach is especially good for this

purpose. In this work this approach will be used not noly to study the amplitude squeezing

(photon number squeezing) but also generalized to study the squeezing of transverse quadrature

component.

3 Photon number squeezing [41

Golubev and Sokolov, as well as some other authors, expanded the logurithm ln(1 + ¢t) and

trancated at the second order of _:

1^ 2

Io9(1 + ¢_)_ _ - gu . (8)

W.-h.TanISl and the present author 161has shown independently that for evaluating the variance

square (An2(t)), this treatment is correct. The result so obtained is identical to the exact solution,

but it is not so for evaluating (An(t)a). In general, for calculating of (An(t)_), one needs to expand

In(1 + ¢t) to 1 terms to get the correct value I61.

As did in Ref[1], we introduce the generating function for (An2(t)} as

oo

G(z,t) = Y_ p..(t)z", z < 1. (9)
_0

By utilization of eqs.(7) and (8), we get the equation for G(z,t) as

OG(z,t)
Ot

,OG(z,t)
-- r(3- 2)(1 - z2)G(z,t) + r(1 - Z) UzZ

(10)

This is a partial difference equation of first order, its general solution is expressed by one of
...... oc(z,t) r(1 - z)_. Theits special solution mutiplied by the general somuon oI equa_mn _ = oz

latter will be determined by the requirement of initial condition. The desired solution so obtained

expressed by

a(z,t) = o(v, (11.1)
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where

y = 1 + (z- 1)e -rt,

r 3 2 1 1

f(z,t) = _{3(z - y)+ _(z - y_)- 5(23- y3)- _(z4- ¢)].
The values of (n(t)) and (An2(t)) are easily obtained from G(z, t):

(n(t)) - Oz ]z=l=_+ g--- e -rt,

(11.2)

(11.3)

(12.1)

(An_(t)l_ o_a(z,t) 0a(z,t) r1,0G(z,t)]_
Oz 2 lz=l+ Oz l_:x- L Oz Jz:l

= _+ N- e-rt+_e .

The steady values of (An(t)) and (An2(t)) exist.By letting t = c_, one gets

2r r

(n)s = --F--, (An2(t))s = _. (13)

If we define rj(t) as (An2(t))/(n(t)), then its steady value r/_ will be ½, the same as one photon-
transition subpoissonian lasers.

Eqs.(12) can be checked in the special case of ideal cavity (F = 0) N.

The r/(t) defined above has different behavior for x( =- W;/N) > 1 or < 1. In the latter case

r/(t) drops from its initial value and monotonically tends to the steady value 1/2. In the former

case r/(t) first drops down to a minimum value r/,,i,_ less than 1/2 and then turns up to approach

1/2. For x >:> 1, r/mi,, "_ _ << 1, therefore the correspondent state may be closed to the photon
number eigen state.

The steady state correlation function g(t) defined as following

g(t) = tr [ps_ttH(O)StH(t)_tH(t)_tH(O)] , t > 0 (14)

can also be evaluated by a generating function F(z,t). F(z,t) satisfies the same differential

equation as eq.(10), but has different initial conditions:

F(z, O) : E(n -_ l)pn_t_l,n_t.lZ , (15)
n

The g(t) so attained is

OF(z,t) 1 (n)_e_rt ' t > 0. (16)
g(t)- Oz [_=l= (n)_--_

The power spectrum of the steady state output photon current noise is related to g(t), in the

case that the damping of the cavity field is mainly due to output, its expression will be

O22

PI(_) = r(n), 2+ r2. (17)

The correlation function (An(h)An(t2)) for arbitrary tl and t2 can also be calculated by similar

approachN. /,From it we obtain the power spectrum of steady state photonnumber noice as

F

P,(w) = (n)sw2 + F2 , (18)

which mainly lies in low frequency region, in contrast to Pj(w) given above.
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4 The squeezing of transverse quadrature component.

We are now generalizing the generating function approach to investigate the squeezing of quadra-

ture components of f.

Let a, the eigen value of _ for the initial photon state, be real number, then fl = !(& + flit)2

a2 = ±(a - fit) will be the longitudinal and tranverse quadrature components respectively.2i

The mean value of longitudinal quadrature component is given by

(al(t)) ----_ _ + lp,,.,,+,(t).
n

In our model (up),,,,_+1 = -p_,-2,,_-1 - p_,,n-1, which absolute value is not small as compared with

]P,,,,,+ll. Actually it is almost twice as large as ]p,,,,,+l]. And the sign of [(1 + fi)kp],,,,,+_ varies

alternately between positive and negative as k varies. Because of these features, the evolution of

(Sl(t)) could not be described by differential equations. The situation of transverse quadrature

component is different. In our case (a2(t)) remains to be zero. We may generalize the generating

function method to investigate its variance square, which is expressed by

1 1 1
(Aa2(t) 2} = _ + _ _-_p,_(t) - -_ _ _/(n + 1)(n + 2)p,,,_+2(t).

n

(19)

3
As before, _,, _/(n + 1)(n + 2)pn.,_+2(t) may be approximated by E,_(n + _)p,_,n+2(t). Define

C2(z,t) = ___pn,,,+2(t)z n, z _ 1, (20)
n

then

3 t OG2(z, t) 3 G
_(n + _)p_,_÷_() - Oz Iz--,+ _ 2(z,t)lz=,. (21)

We see that only first order derivative appears in eq.(21), therefore it is enough [61'[41to take just

one term in the expansion of ln(1 +_). The equation of G2(z, t) can be derived accordingly, solving
3

it as before, we get _2_(n + _)p_,_+2(t), which in turn yields

(Aa2(t)2}_ (n},+l__(1 I _\n_,)e_rt - (n(t)) (22)
- 4--_ ,_ ---_- --_--_-

This result may also be checked in the special case of ideal cavity. Setting e -rt _ 1 -Ft in eq.(22),

we get
1 rt

(Aa2(t)2} = 4 + 2--N'

which is the same as that given in Ref[3] by a completely different approach.
1

One may show from eq.(22) that (Aa2(t) 2) - _ may be positive or negative, depending on

whether (n_)/N is larger or smaller than one. The steady value of (Aa2(t) 2) is given by

(Aa2(t)_)_ = (n)s
4N'

(23)
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which may be much larger or much smaller than 1/4. The latter means, in certain sense, deep

suppression of phase noise.

It is interesting to note that the stationary value (Aa2(t)2)_ is still related to the initial pa-

rameter N.

It is also interesting to note that (Aa2(t)2), unlike (An(t)2), has no concern with whether the

injection is regular or poissonian, since in the above derivation, ln(1 +fi) is allowed to be replaced

by ft.
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