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Abstract

Dynamics of two-level atoms interacting with their own radiation field in a single-mode

high-quality resonator is considered. The dynamical system consists of two second-order

differental equations, one for the atomic SU(2) dynamical-group parameter and another

for the field strength. With the help of the maximal Lyapunov exponent for this set we

investigate numerically transitions from regularity to deterministic quantum chaos in such

a simple model. Increasing the collective coupling constant b - 8_rNod2/h_z we observed
for initially unexcited atoms usual sharp transition to chaos at bc -_ 1. If we take the

dimensionless individual Rabi frequency a = 9//2w as a control parameter, then a sequence

of order-to-chaos transitions has been observed starting with the critical value ac __ 0.25 at
the same initial conditions.

1 Introduction

When studying field-matter interactions it is usually of interest to consider the possibility of

controlling the temporal behavior of the field and/or the atomic subsystems. Say, in resonator

quantum electrodynamics, it is important to drive the interaction between atoms, moving through

a cavity, and a quantizied field mode ill such a way to attain specified states of the electromagnetic

field (Fock, coherent, squeezed, and so on) in the cavity and/or desirable states of atoms leaving

the cavity. It is inexplicitely supposed that we are able, in principle, to attain any desirable state

(which is accessible, of course, in quantum mechanics) under an appropriate control.

However, it has been shown in resent years [1] that beyond the rotating-wave approximation

even the simple model, consisting of N two-level atoms interacting with their own radiation

field, may demonstrate impredictable temporal behavior in the sense of deterministic chaos. Our

previous results [2] have shown that even slight modification in a model, describing this interaction,

could create dramatic artifacts. The purpose of this work is to treat the routes to deterministic

chaos in the framework of the dynamical-symmetry approach which has been proved to be useful

in investigating regular dynamics of a variety of quantum models [3],[4].
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2 Dynamical SU(2) model

We consider an ensemble of N identical two-level atoms placed in a single- mode high-quality

resonator with the volume V. Each two-level system is described by the SU(2) Hamiltonian

H = hwRo - h_e(t)(R+ + R_), (1)

in which the operators satisfy the usual commutation relations

R+]= [R+,R_] = 2Ro, (2)

and w is the atomic transition frequency that coincides with the resonator frequency. The indi-

vidual Rabi frequency fl is given by
dEo

n- h' (3)

where d is the dipole moment of the atomic transition. Atoms interact self-consistently by dipole

interaction with an electric field, whose strength is written in the form

E(t) = Eoe(t), (4)

where Eo is the constant amplitude and ¢(t) the dimensionless variable, 0 < e < 1.

We treat the field ab initio semiclassically, assuming that it satisfies the usual Maxwell equation

_E
-- + w2E = 4rw279, (5)
dt 2

where 79 = Nod < R+ + R_ > is the polarisation created by atoms, No = N/V is tile density of

atoms in the resonator. Substituting 7- = wt, we can write tile eq.5 in the dimensionless form with

the derivative with respect to r

bw

+e = -ff < R+ + R_ >. (6)

We have introduced following to [1] the dimensionless constant

8r Nod 2

b - hw ' (7)

characterizing the energy exchange between the atomic ensemble and the field.

In addition another dimensionless constant

fl

2w
(8)

will be used to investigate transitions from order to chaos in our model. The expression (8) is

simply the dimensionless individual Rabi frequency.

In the dynamical-symmetry approach, each two-level atom is governed by the following single

equation for the SU(2) complex-valued group parameter [5]

- +i g +(2a_)2g = 0, g(O) = 1, g (0) = 0. (9)
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Tile derivatives in (10) are also defined with respect to r.

Thus we have two coupled oscilators (9) and (6) describing tile sell-consistent interaction

between two-level atoms and a single-nmde classical field. Rewriting (9) and (6) ill tile equivalent

first-order form, we obtain the following nonlinear dynamical system

xl = 2aey2,

x2 = --2aeyl,

Yl = --Y2 + 2aex2,

Y2 = Ya -- 2aexl,
= _72,

= e _: _(xmy, + x2y2).

(10)

Signs - and + in the last equation of (10) refer to the initially unexcited and excited atoms,

respectively.

The atom-field system (10) obeys two conservation laws

It should be noted that the variables xl = Reg and x2 = ling are not independent [5]. Therefore

we have three independent real variables, that is the minimum required for chaos [6].

For two-level atoms the dynamical system (10) is equivalent to the usually adopted Maxwell-

Bloch equations. Let us introduce the components of the Bloch vector

u(t) = " •ClC2 + ClC 2,

v(t) = i(c;c2 - c,c_),

w(t) = -
(13)

where Cl and c2 are the probability amplitudes of lower and upper states respectively. On tim

other hand these components can be expressed in terms of the variables x and y as follows

I) =

W =

2(xlyl + x2y2),

2(zig2 - x2yl),
y12+y22-xl 2 - x2 2.

(14)

Thus we Call rewrite (10) in the standard Maxwell-Bloch fo,'m

i_ = u + 4aew,

iv = -4aev,

k = -P,

P= e-_u.

(15)

435



3 Numerical results

Our model possesses two control parameters a and b. We will numerically treat here transitions

from order to chaos varying one of them in a certain range and keeping another constant. Chaos

will be diagnosed with the help of the nlaximal Lyapunov exponent A, which is a quantitative

characteristic of deterministic chaos describing the mean exponental rate of divergence of two

initially adjacent trajectories in a phase space [6]. The sign of A gives up a reliable criterion to

distinguish between regular and chaotic dynamics of a system in question. When it is neglibly

small the motion is said to be regular. If A becomes positive for a certain range of values of a

control parameter a system is chaotic for this range. Chaos may also be confirmed by continuous

power spectra.
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Fig.1 The maximal Lyapunov exponent as a function

of the control parameter b for initially unexcited

atoms, a=0.25 • 10 "e
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Fig.3 The maximal Lyapunov exponent as a function
of the control parameter a for initially unexcited
atoms, b=l.
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Fig.2 The maximal Lyapunov exponent as a function
of the control parameter b for initially excited

atoms, a=0.25 • 10 "e
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Fig.4 The maximal Lyapunov exponent as a function
of the control parameter a for initially excited
atoms, b=l
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By varying the collectivecouplingparameterb we, in fact, change the density of atolns No in

a cavity. Numerical integration shows that the maximal Lyapunov exponent A becomes positive

when b exceeds a critical value be. Its magnitude depends essentially on initial conditions. It is

seen from Fig. 1 that bc "_ 1 for initially unexcited atoms. For initially excited atoms (Fig.2) the

maximal Lyapunov exponent becomes positive for much smaller critical value of b.

We have observed a quite different transition to chaos with chaotic regimes alternating among

regular regimes when varying the individual dimensionless Rabi frequency a and fixing the pa-

rameter b. Fig.3 and Fig.4 demonstrate such a behavior for initially unexcited and excited atoms,

respectively.

4 Outlooks

We have demonstrated two possible routes to chaos in the interaction of two-level atoms with their

own radiation field. From a more general points of view, we have observed numerically order-to-

chaos transitions in the system of two coupled nonlinear oscillators (6) and (9). At last, from an

abstract point of view, we have treated such transitions in a system consisting of the "driven"

SU(2) group treated as a nonlinear dynamical system. Thus, the results, obtained in this work,

are applicable in a more general context. They may be applied with slight modifications to any

driven physical (chenfical, biological, ecologicaL, etc) system with the underlying £'l,_(2) dynamical

symmetry.
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