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Abstract

We present a quantum nonlinear model of two-wave mixing in a lossless photorefractive
medium. A set of equations describing the qaantum nonlinear coupling for the field operators

is obtained. It is found that, to the second power term, the commutation relationship

is maintained. The expectation values for the photon number concur with those of the

classical electromagnetic theory when the initial intensities of the two beams are strong.

We also calculate the quantum fluctuations of the two beams initially in the coherent state.

With an appropriate choice of phase, quadrature squzzing or number state squeezing can be

produced.

PACS numbers:42.654.Hw, 42.50.Dv, 42.50.Lc

1 Introduction

The photorefractive effect in electro-optic crystals, a phenomenon in which the local index of

refraction is changed by the spatial variation of light intensity [1], has been studied extensively for

its potential in many applications. The fundamental process may be described as follows. When

the crystal is illuminated with a spat!ally modulated intensity pattern, free carriers (for example,

electrons) are nonunifromly generated due to the photoionization of impurities (generally, which

may be doped). The impurities that can be ionized and provide free carriers are called donors.

Once these donors are ionized they can serve as trap sites which capture electrons. The electrons

can be transported by diffusion or drift and become trapped at these sites. The trapped electrons

can then be re-excited except for those in the dark region. Thus a space-charge separation is

created, which leads to a space-charge field. Such a field induces a change in index of refraction

via the Pockels effect (linear electro-optic effect), creating an index grating. The presence of

such an index grating will in turen affect the propagation of these beams. Crystals such as

LiNb03, BaTi03, SBN, BSO, GaAs and InP, are efficient media for the generation of the

photorefractive effect with relatively low intensity level (eg., 1W/cm_).

Many different nonlinear optical phenomena in photorefractive media have been studied.

These include wave mixing, phase conjugation, self-oscillation, photorefractive resonance, etc.

The fundamental photorefractive process is two-wave mixing (TWM), in which two beams in-

tersect inside a photorefractive midia. A stationary index grating is formed which is sptaially
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shifted r/2 relative to the intensity pattern. Such a spatial phase shift leads to nonrecipro-

cal energy transfer when these two beams propagate through the medium. The basic classical

electromagnetic theory explaining the nonlinear interaction involved is already well established.

Much attention has been focused on its applications including photorefractive resonatore, non-

reciprocal transmission windows, self-pumped phase conjugators, laser beam clean-up, optical

interconnection, etc. Although a number of cases of TWM have been analysed, a quantum

theory is not available and photorefractive non-classical effects have not been discussed. In this

paper we present, to our knowledge for the first time, a quantum treatment of two-wave coupling

in a lossless photorefractive medium.

2 Quantum model of photorefractive TWM

A typical geometry for studying two-wave mixing is shown in Fig.1. Under certain circum-

Stances, two beams of light can interact in a photorefractive crystal in such a manner that

energy is transferred from one beam to the other. This process is also known as two-beam

coupling. The signal and pump waves, of amplitudes A° and A, respectively, interfere to form

a nonuniform intensity distribution within the crystal. Due to the nonlinear response of the

crystal, this nonuniform intensity distribution produces a refractive index grating within the

material. However, this grating is displaced from the intensity distribution in the direction of

the positive (or effective electrooptic coefficient) crystalline c axis. As a result of this phase

shift, the light scattered from Ap into A, interferes constructively with A,, whereas the light

scattered from A, into A_ interferes destructively with Ap, and consequently the signal wave is

amplified whereas the pump wave is attenuated.

Ap J

C -- axis

_ attanuated
amplified

Fig.1. Typical geometry for study-

ing two-beam coupling in a photore-

fractive crystal.

• Z

An ideal quantum model for degenerate two-wave mixing may be constructed as follows.

Consider the effective interaction Hamiltonian

H°I! = hx'At(ltB + B t A)B + h.c. (1)

where X' is the effective interaction coeffÉcient for the nonlinear process, A end B are the Boson

operators for two modes with frequency wa - ws. Factor (AtB+BtA) represents the interference

of two modes [2]. The TWM can be understood from the following physical picture. Mode A is

generated accompanied by the annihilation of mode B, due to scattering from the grating induced

by the interference. In other words, mode B is "scattered" by the grating in the direction of beam

A, to yield mode A, which is responsible for the energy coupling. The I-Ieisengerg equations
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of motion for the field operators A and B may be easilly obtained from He/f. Making the

conversion z = vt for propagation along the z-axis at a velocity v, we can write the equations

as

dA _ _2ixA_ B2 _ i(x + x*)AB_ B
dz

dB
- 2ix*BtA 2 _ i(x + x*)BAtA

dz

where X = X'/v. We find the field operators satisfy the Boson commutation rules.

equations of motion for the photon number operatore N_ and Nb

dN_ _ 2ixAt2B2 + 2ix,A2B_ 2
dz

(2)

(3)

From the

(4)

dNb _ 2ixAt2B2 _ 2ix,A2Bt 2 (5)
dz

we can show that the total photon number is constant throught the process. In the short path

approximation, the solutions of Eqs.(2) and (3) for the field operators with expansion up to the

quadratic (XZ) 2 term is

A(z) = a- 2i(xz)a_b 2- iz(X + X*)abCb

-]XZl2[(4a_a2+a)b_b-(2a'_-a)b_2b2+(at2b2+b'_2a2)a+2ata 2] (6)

-z_[x'(at'_b _+ bt_/2 + btba/2) + x'_(a_bt_+ _bt:b:/2 + _btb/2)]

B(z) = b - 2i(x*z)bta 2 - iz(x + x*)bata

- I XZ 12 [(4btb 2 + b)ata - (2b_ - b)at2a2 + (b_F2a2 + a_2b2)b + 2b_Fb2] (7)

-z_[x'_(bt*bas + at_a2b/2 + arab�2) + Xs(b3at2+ bats_/2 + bata/2)]

where a and b are the input field operators, respectively. It may be seen that, to the quadratic

term, the field operators still satisfy the commutation relation

[A(z),At(z)] = 1, [B(z),B?(z)l = 1 (s)

In order to test our quantum model for photorefractive TWM, we may derive the expectation

values for the photon number in each beam and verify if the result of the quantum calculation

concur with those of the classical electromagnetic theory. When the two beams are initially in

the coherent state Is) and I f_) with

we obtain

X=IX

exp(i6t/2) (10)

ezp(i¢) (11)

(N_)= I c_Is+4sin(¢+6b-_a) IXz II cz/3]2+4IX z Is (I/3 14- feel4)
+S I X_Isl "Z I_ (IZ Is - I" 12)[1+ _o_¢_o_(¢+ 6_- no)]

(12)
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(Nb>---- lal 2 + I/312-<No>

where ¢, 6b and 6a are phase angles, depending on the initialcondition.

and write la ----Ia [2,I_ ----I/312,then obtain

(13)

We take 6b -6_ -- _r

(N_) = I_ - 4sin¢ I Xz i I_h +4 [ Xz t2 (h 2- I_ 2) (14)

(Nb> ---- Ia + h - <No) (15)

According to the classical electromagnetic theory, the coupled equations for photorefractive

TWM can be written as [3]

dI1 Ii 12 (16)
d_-=-'7] r, + 12

dI___12= IlIs (17)
dz "7-Ix + Is

where Il and Is are the intensities of beams 1 and 2, respectively, and "7 is the coupling constant

with

2_rnl " • (18)
"7 = A--_os o S _n cP

Here nl is the depth of index modulation related to the electro-optic coefficient, 20 is the angle

between the two beams inside the medium and ¢ is the phase that indicates the degree to which

the index grating is shifted spatially with respect to the light interference pattern.

By examining the coupled equations, we note that I2 is an increasing function of z, provided

"7 is positive. This indicates that the energy is flowing from beam 1 to beam 2. The direction

of energy flow is determined by the sign of "7, which depends on the orientation of the crystal

axis. The solution for the intensities Ix(z) and Is(z) are

I,(O) + I_(O)exp("Tz)
I,(z) = I,(O) Io

(19)

I1(0) + I2(O)exp("Tz) (20)
Is(z) = I2(O)exp('Tz) Io

where Ix(O) and I:(O) are the input intensities of beam 1 and beam 2, respectively, and I0 is the

sum intensity with I0 = I1(0) + I2(0). In the short path approximation, the solutions can be

expanded to the quadratic ("72) 2 term as

11(0)12(0) + (._z)2Ix(O)I:(O)
Ix(z) = Ix(O)- _z Io 21o2 [I_(O)- Ix(O)] (21)

I2(z) = I0- Ix(z) (22)

Comparing Eqs;(14) and (15) with Eqs.(21) and (22), we find that the results of the quan-

tum theory are consistent with those of the classical theory, so long as 11(0) = Ia, Iz(O) =

Ib, "7 = 4 I X I sin¢Io and I_ >> 1, Ib >> 1. When the input intensities ot the two

beams are strong, the effective Hamiltonian H_lf can give and accurate description of the en-

ergy exchange phenomenon in photorefractive two-wave mixing, as shown in Fig.2. We can
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thus conclude that our quantum model for photorefractive TWM is reasonable and successful.

Na, 11 Nb, Is( x 100)

10000

7750

5500

3250

1000

--._,.

.__-. _

, ,p "TZ

10100

10075

10050

10025

10000
0 0.4 0.8 0

, :_ "/Z
0.4 0.8

(a) (b)

Fig.2. The intensities of two beams versus the effective interaction length (3'z).

Dashed curve: the intensities of the classical electromagnetic theory [1 and /2, from

Eqs.(19) and (20). Solid curve: the quantum average photon number Na and Nb.

The initial intensities I1 = 104, /2 = 10 6, respectively.

3 Quantum statistic of photorefractive TWM

To discuss the photon number fluctuations of the quantized field we consider the variance

(ANj2(z)} or the Fano factor

ri(z ) - <AYi2(z))
<AN#(z)) (23)

where (ANj2(z)) = <Nj2(z)) - <Nj(z)> 2 and j = a,b. To obtain the above expression we need

to find the expectation values for (ANa2(z)) and <ANb_(z)). When the input fields are in the

coherent state ] a) and ] #), after some tedious calculation we may obtain the expectation values

(_N2(_)) = I_-S_;_¢ I ×z I I_h+Slxz I_ I_[2L,2hcos(2¢)+2I, h2(l+sin2¢)-h2-I_ 2} (24)

<ANb'(z)) = h+S_in¢ I Xz IIoh+8 I xz 12h[2h_hcos(2¢)+2hI_2(l+sin2¢)-I_-h 2] (25)

where we have taken 6s - _ = r. Here ¢ = -t-_ corresponds to the maximum energy coupling

between the two beams. Eqs.(14) and (15) show that the energy flows from beam A to beam

B when ¢ E [0, r]. This indicates that A is the pump beam and B the signal beam. Let ¢ = _,

we rewrite Eqs.(24) and (25) as

(AN2(z)>= I_- S IXzII_h ÷ S IXz I_ I,,[-2I_h + 4I_h_+ h _ - I,, 2] (26)

(ANb2(Z)) = h + 8 I XZ I Iah+ 8 I Xz 12 h[-2h2I_ + 4hI_ 2 + I,, 2 - h _1 (27)

The Fano factor plotted against the effective interaction length -yz is shown in Fig.3, where

= 4 I X I sin¢Io. We see that the pump mode A can be in a squeezed number state, whereas

the signal mode B becomes super-Poissonion at the some time.
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Fig.3. Fano factors of beams A and B versus

effective interaction length "7z for coherent state

inputs. Dashed curve: F,, solid curve: Fb. The
• • . 1,d0} 1

initial ,ntenmty raho rn = _ = _. F, shows
the sub-Poissoinan statistic_-'feature

Moreover, the signal mode can never becomes squeezed(at least for our solution expanded to

the second order). The degree of squeezing in the pump mode depends on the initial intensity

ratio m (here we define m = t,,(0) • If m is large (for example, 100), then the degree of squeezing

will be very small (in the short path approximation). This is reasonable as the energy coupling

has little effect on the intensity of the pump modes, so the quantum fluctuations will not be

reduced greatly.

The quadrature phase amplitudes of the two beams are defined as

Xa : A(z)+At(z) Ya = A(z)-At(z) (28)
2 2i

Xb = s(,,)+Bt(z) Yb = B(z)-Bt(.) (29)
2 2i

When the input field are in the coherent state, the field variances may be determined explicitly

to be

1<axo_(z)) = _+ I xz Ih,i-(¢ + _b)+ 2 tx= I=h[h + Z._o,=¢- 1o¢O,_.(1+ ¢o,_¢)
-(21o+ h)co_¢_o_(¢ + _,)]

(30)

(/,,Y/(z)> - '- _- I xz [ h_i,_(¢ + 6,) + 2 Ix= Is h[I_ + I.cos=¢+ hcos6.(1 + cos=C) (31)
+(214 + I,)cos¢cos(¢ + 6,)1

<aXJ(z)> = '
i + I XZ I hsin(_. - ¢) + 2 I XZ 12h[I_ + hcos2¢ - hcosSb(1 + cos2¢) (32)
-(2Ib + I,)cos¢cos(6,- ¢)1

1

(A_2(z)) - i IxzlI.sin(_.-¢)+2l×zl2I.[L+hc°s2¢+hc°s_,(1+c°s_¢) (33)
+(21, + I,)cos¢cos(_,- ¢)1

With an appropriate choice of phase, both modes can produce quadrature squeezing. For exam-

ple, when¢ = 7r/2, &b = _r and &4 = 0, it is obvious that (AX,2(z)) and (AX_2(z)) may be less

1 in the short path approximation. The variances plotted against the effective interactionthan i

"_z are shown in Fig.4. We see that both modes can be in the squeezed state. Furthermore, there

is strong dependence on which of the input modes is strong. The degree of squeezing in the pump

mode is great when the initial intensity ratio m is small, as shown in Fig.4. In the reverse case,
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if the pump mode A is strong, then the degree of squeezing in the signal mode B will be great.
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Fig.4. The variances (AXa2), (A]_2), (AXb2), and (AYb 2) when both input field
1 Dashed curves: the variances ofare initially in the coherent state, with m = 1_6'

X component, which show quadrature squeezing. Solid curves: the variances of Y

component.

4 Conclusion

In conclusion, we have presented a quantum model of photorefractive TWM, which can well

describe the energy exchange phenomenon in TWM. A set of coupled mode equations is obtained

and solved in the short path approximation We have also calculated the quantum fluctuations of

the two modes and find that when both modes are initially in the coherent state, the pump beam

can become sup-Poissonian, due to the photon flux in the energy transfer. The same qualitative

result was also obtained in our previous approach from a set of simplified field equations [4].

With an appropriate choice of phase relationship, quadrature squeezing can be produced.
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