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Abstract

For small photon numbers, trapping states are difficult to detect
due to the influence of the collective effects. We find that if the atoms

are injected with atomic polarization, the micromaser becomes more
insensitive to these effects. In particular, the squeezing properties of

the cotangent states are basically unchanged.

Recent work studied the effects of having two simultaneous and fully inverted

atoms in the one photon micromaser cavity, and found that the trapping

states were strongly disrupted by these effects for a low photon number[2, 3].

Here we will describe the cooperative effects of polarized atoms on the trap-

ping states and squeezing properties of the cotangent states[,_][1].

The Hamiltonian of the two atom field system, in the Dipole and Rotating

wave approximations is:

VT_=hg{(aa_+atal)®12+(aa_+ata2)®ll} , (1)

where g is the one atom- field coupling constant and al and a_ the atomic

Pauli spin operators for atom one and two respectively. Here we assume
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exact resonancebetween the field and the atoms.

Let us denote by [e)i and ]g)i, i = 1,2 the excited and ground state of the
i-th atom.

The system can be described by the basis:

le),lg)=,Ig)ll ) , Ig)llg)2}

The time evolution operator of the system can be calculated in a simple way.

A -iaS -iaS B )

U2(Ar) = -iSat D E -iSa
-iSa* E D -iSa

B t -iatS -iatS _t

It is:

(2)

where

A= l+a(C-1)a t B- a(C-1)a 1
A A D= _(1 +C) (3)

E=-2(1-C ) C = cos(v/-2gArv'_ + l) A=2n+l (4)

S = sin(v/'2gArv_+ 1)/x/_ + 2, A= 1 +at(C - 1)a/A, (5)

where Ar is the interaction time during which the 2 atoms are present in the

cavity.
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We assume that at t = 0 a first atom enters the cavity and a second one At

seconds later.

The state of the system at the instant just before the first atom leaves the

cavity is given by:

p(At +/',r) = V_(A',)po_(At)V_(at)

p_S(/',t) = Vl (at )p_(O) ® po(O)UI(at )

(6)

where UI(At) is the time evolution operator of the Jaynes-Cummings Model

and p_ is given by:

_. i_1_ , (7)

that describes the initial state of the atom. Next, we trace over the first

atom and get the atom 2 -field density matrix. The evolution of the present

system is governed by the Jaynes-Cummings model. Two possibilities arise.

One is that the atom 2 leaves before a new atom enters the cavity or a new

atom enters before atom 2 leaves.

We may define various sequences as described by Figure 1. Sequence (a) (010)

corresponds to no atom-one atom-no atom sequence. Similarly, we may have

a sequence (01210) (Figure l-b) or (0121210) corresponding to Figure 1-c.

We discard events containing three or more simultaneous atoms.
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Figurel .Poissonian injection of atoms. The arrow pointing upwards indicates

an atom entering the cavity and a downwards arrow means that it leaves.

(a)Ati m rcand we have either zero or one atom inside the cavity. (b)Ati -< rc

and Ati+_ >- rc.(c)Ati -_ r_, Ati+l -_ rcandzXti+2 _ re.

For each of these sequences, it is possible, through a tedious but straightfor-

ward procedure, to write the field density matrix elements in terms of the

relevant parameters of this system.

In order to numerically simulate the process described above in a realistic

fashion,we consider that the atomic arrival obeys a Poisson distribution. We

characterize the atomic flux by a parameter p = (Ar)/r_, where (Ar} is

the average time between consecutive atoms and r_ the atomic flight time

through the cavity. We also define the usual one photon trapping condition

by _ + lgrc = q_r, q being an integer number.

Next, we describe some numerical results. The parameters used are p =

15.6, N_ = 10, lal = 0.9.

In Figure 2-a we show the field density matrix elements after 1000 atoms

crossed the cavity, and one can already see a small hill between n= 12 and

18, clearly indicating that a the trap had already a small leak. This effect

is of course more dramatic, as one increases the atomic numbers to 2500

(Figure 2-b) and N=to,,, = 5000 (Figure 2-c). This set of three Figures clearly
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Fig. 2. Reduced field density matrix for p = 15.6, N,, = 4 and I<_12= .9. (a)

N, tom = 1000. (b) N, tom = 2500. (c) N,,ton, = 5000.
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display the probability diffusion in phase space.

The most important result in this work is shown in Figure3, where the Y-

quadrature variance is shown versus atomic Number. The dotted line cor-

responds to the squeezing of the cotangent states[q], and the full line to

the present case. We observe that even for a relatively large atomic flux

(p = 15.6), the squeezing property of the cotangent states are eztremely ro-

bust to the cooperative effects, that otherwise seem to be very destructive.

In a future work, we would like to explore how the atomic measurement at

the outside of the cavity affects all the properties of the field discussed here.
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Figure3.Variance of the field quadrature Y versus the number of atoms of the

cotangent state(dotted line) and the present case(full line). The parameters

are the same as in Figure 2, except N_=10.
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