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Abstract In this paper, the transient photon statistics for single-mode

lasers is investigated by making use of the theory of quantum eleetrodynamics.

By taking into account of the transitive time T,we obtain the master equation

for Jaynes-Cummings model. The relation between the Mandel factor and the

time is obtained by directly solving the master equation. The result shows that

a transient phenomenon from the transient super-Poissonian distribution to the

transient sub-Poissonian distribution occurs for single-mode lasers.

In addition, the influences of the thermal light field and the cavity loss on

the transient sub-Poissonian distribution are also studied.

Key words: single-mode laser; Jaynes-Cummings model; Transient sub-

Poissonian photon statistics.

1 Introduction

As is well known, sub-Poissonian light field is a typical nonclassical light

field. And it has widely applications to the ultraweak signal detection and to

the optical communication etc. E13 According to the usual theory, there is no

sub-Poisonian distribution for single-mode lasers.

In this paper, the transient photon statistics for single-mode lasers is in-

vestigated by making use of the theory of quantum electrodynamies, by taking
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into account of the transitive time T. the master equation for Jaynes-Cummings

model and its solution are obtained.

2 Master equation

First of all, the interaction of one atom with the light field is taking into

account. According to the theory of the quantum electrodynamics, for the

h

Jaynes-Cummings model the Hamiltonion has the following form[Z4](with 2--_--

1)

1 +
H =om+a.+._co0o,+g (aa +a+o-), (1)

where a and a + are annihilation and creation operators of photon ¢ o + and _- are

raising and lowering operators of the atom; co and e0 are the mode frequency

and the transition frequency, respectively! o, is the inversion papurition of the

atom ; g is the coupling constant between the atom and the field mode.

The eignequation of the expcession (1) is given by

H I_>=E I_>, (2)

where

and

E_ = [-co(nd-½)-l-Q.] (3)

here

1 (4)

A
3½

Q.=E (_) 2-l-gZ(n-Y"i)
(5)

A=0_--0_0 (6)

The eignstates corresponding to expressions (3) and (4) are given by

[sinO. 1 [cosO.]
1¢_>-- [cosO.J In,a>+ [sinO. j ln@ 1 ,b> (7)

leg>= IO,b> (8)
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/.--

-_ g _/n&l)

O.--tan( /_ +f_.
(9)

2

where n denoting the photon number: a and b denoting the upper and lower

atomic levels.

All nonzero matrix elements of the evolving operator

U (x)-----exp(--iHT) (10)

in the state In, a>= In>la> (a=a, b) are given by

a.=<n+ 1 ,b [U (x) In+ 1 ,b> = cosZ0.e-_.%+sinZ0.e -m-' (11)

b. = <n + 1 ,b [U (x) In ,a> =sin0.cos0. (e -m.%-e -re:') (12)

C.-- <n ,a IU (x) In ,a> --sinZ0.e-lE._-q-cos Z0.e -_-_ (13)

and

B.(x)= lb.(x) Iz= /_ " sin2( ( )2+g2(n+l)x)

2 I-gZ(n+ 1)

, (14)

Assuming at the initial time t there is no correlation between the atom and the

fidd, thus we have

(15)0, (t) = 0.(t)(_)P(t).

This means that the matrix elements of p,(t) is the combination state In, a

and can be written as

<n, al p,(t) In' ,='>--<n Ip(t) In'><alp.(t) Ia'>.

After x, the expression (15) becomes

ps(t +T) =U (_)p. (t)U-_(T)

and

p(t-l-x) = _>-]<= Io,(t--I-_) I_>
_t

In the photon number representation,

(18) may be given by

p..m(t +x) =

the matrix elements

_-_, <n, m IG(x)Ik ,k'><k Ip(t)Ik'>,
k k _

(16)

(17)

(18)

of equation

(19)

where
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<n, m IG(T)Ik ,k'>-- _ _ _-_,<n, a"lU (T)Ik, a><k' ,a' Iu-'(x)Im,
a _ a"

c_"_P._, (20)

where Im_and Ik_ denotes the photon-number states ,and

p_--_ctl p.(t) Ia' _. (21)

For the arbitrary initialstate of the atom and the light field, using expres-

sions (11)--(13), (20) and (21), we obtain

P.,m (t "at- Z) ---P.. [-anam * P.,m (t) q-b.-lb _-lP.-l,m-1 (t) ]

-lt- Pab [bnam *Pn+l,m (t) "Jr"Cn- Ibm- llDn,m--1 (t) ]

Pba ['anb m* Pn,m+l (t) -I" b.- tC _-lPn- 1,m (t) -]

Pbb Eb.bm * P.+l,m+l (t) q-Cn- ICm-lPn,m (t)_ (22)

Expression (22) is a generol form. For the laser system under considern-

tion, we have

P.b :Pbl _- 0 (23)

By taking into account equation (14) and the following expression

la. IZ+ lb. 12= IC. IZ+ lb. IZ= 1 (24)

then equation (22) can be deduced to the following form:

O..m (t -q- x) -- P= {_/E1- B. (x)] E1 --B. (z)]p..,. (t)

-+- _B.__ (x)Bin-1 (x) P.-l.m-I (t) } -+-Pbb { _/B. (t)B. (t)

• O.+_,m+_(t) + _/[-1--B.-I (t) 31"l--B.-_(t)']O.,. (t) }. (25)

Under the coarse grain approximation, equation of motion for the density

matrix elements are given by

#w

vlav'P(_)Ep.,.(t -t- _) - p.,.(t)] + Lp,,m(t), (26)p,,. ( t )

o

where

p(T')--Ne -_' (27)

denotes the distribution function of the interaction duration _ between atom and

field; N is a normalization constant; v stands for the atomic decay rate.
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Fo_m the norwalization condition

P (z')d z' = 1
0

(28)

we get

V
N -- (29)

1 ne --T

where

T=_ (30)

By substituting expression (25) into (26) and making use of Ref. ['5-],we

finally obtain

-- -- Vop.,.(t){1 -- d z'P ('d )
0

J[1 - B,(¢)-IE1 - B.(¢)3}

f

+ Vop,_l,=_l(t)fdz'P (z') x/B,,._z')Bm-l(¢)
0

I

-- v_p.,_(t) {1 -- fdz,
0

J[l -- B,_1(¥)][1 -- B,,_1(-¢)]}

"t

0

x/ B ,, ( z' ) B ,,, ('r' )

C

2nb[(n + 1 -+-m + 1)p.,.(t) -- 2 _'n-'mp.-i,.-l(t)']

0

-t- _nb['2 _f(n -+- 1)(m -b 1)p.+_,.,+_(t) -- (n "-b m)p.,.,(t)] (31)

where nb is the average photon number of the thermal light field; C is the cavity

loss.

Expression (31) is the master equation for the single-mode lasers.

3 Numerical calculation

In the case of resonance, master equation (31) can be reduced to the fol-

lowing form •

p.,.,(t) -- --vo['l- (A_,= -+- A+=)']p.,=(t)
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C

2n,[(n + 1 + m "1- 1)p.,.(t) -- 2 .f'n-'mP.-1,.,-l(t)-]

C

+ _n,[2

where

_/(n -4- 1)(m + 1)P.+l,.+l(t) -- (n -4-m)p.,.(t) (32)

A_. ---- -_fdeP(v'){4['l- B.(¢)l['l- B.('_)] =t= 4B.(v')B.('_)} =

1

2(1 -- • -r)
0

1 + e-r{A (_r_ + 1 -t-_ + 1)_, [A (_"_ + 1 + _ + 1)T1 --co,EA (../_ + 1 + _ + I)T ]} (33)
1+ [A(,/; + 1± J_-4-ll]"

In particulnr, for the diagonal matrix elements Is3 expression (32) may be

further reduced to the following form:

l_.(o)=p...(o)=--(_-+-_-t-1 U (2n+R1)nb+n A+_uA+__)p.,.(_)

1 + n--n_ _ __A+ + (n+ 1) (nb+ 1))p.+l,.+ l
-_- (_--A.-1-_ R P.-1,.-1 (_) + (_ R

(a) (34)

where

A+=

2X ,------ - 2Xt ,-- 2Xt1 -_-e--T { _n -at- 1sin L _ _/n--t- 1-I--cos ["

_/2R _/2R

1-]>

here

and

2(1--e -T)

n.
R _

C'

ab

A'

a --._ rot;

2Z

I+ [_w/-n_l] z

(35)
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A = 2v,(g--) 2, (37)
Y

A_ = 2v_(L) 2.

The photon statistical properties of the lingt field can be expressed by

Mandel factor Q:

Q=

where

(38)

oo

n _= _-_,nP,,
m=0

oo

< n z >= _-_,nZP., (39)

During the trnnsient processes, Mandel factor Q>0, Q=0 or Q<0 correspond

to transient super-Poissonian distribution, Poissonian distribultion or sub-

Poissonian distribution, respectively.

Time evolution of the Mandel factor may be obtained by making use of the

expressions (34), (35) , (38) and (39). The numerical results are shown in

Figures 1-5.

Figure 1 shows that the transient photon statistical property passes from

super-Poissonian distribution through Poissonian distribution into sub-Pois-

soninn distribution with the increase of o.

Figure 2 shows that the maximum value of the Q drift apart from the right

and decrease. At the same time, the velocity toward the trnnsient sub-Poisso-

nian distribution is also quickened.

Figure 3 indicates that the influence of the loss _t on the Mandel factor is

marked and the transient sub-Poissonian distribution will disappear when the X

increase to some certain value.

Figure 4 indicates that the thermal light photon number not only deerease
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sub-Poissonian distribution but also diminish the velocity for toward sub-Pois-

sonian distribution.

4 Brief discussion

In the present paper, we have studied the transient sub-Poissonian distri-

bution for single-mode lasers. The result shows that for single-mode lasers the

sub-Poissonian distribution may occur not only in the case of stotionary state Is]

but also in the case of transient state.

As is well known, transient sub-Poissonian photon statistics is a character

for the quantum light field. And its appearance would deepen our knowledge of

the light field essence.
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Fig. 1.

Caption of Fig. 1.
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Time evolution of the mandel factor for T-" 1.1t R-"
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Fig. 2.

Caption of Fig. 2. Time evolution of the mandel factor for T-" 1.1t R
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Caption of Fig. 3. Time evolution of the mandel factor for T-----1. 1_ R
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Caption of Fig. 4. Time evolution of the Mandel factor for T-'I. 1!
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