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Abstract

The active microcavity is adopted as an efficient source of non-classical light. By this

device, excited by a mode-locked laser at a rate of 100 MHz, single-photons are generated

over a single field mode with a nonclassical sub-poissonian distribution. The process of

adiabatic recycling within a multi-step Franck-Condon molecular optical-pumping

mechanism, characterized in our case by a quantum efficiency very close to one, implies a

pump self-regularization process leading to a striking n-squeezing effect. By a replication of

the basic single-atom excitation process a beam of quantum photon In>-states (Fock

states) can be created. The new process represents a significant advance in the modern

fields of basic quantum-mechanical investigation, quantum communication and quantum

cryptography

1 Introduction

The generation of non-classical light is an important topic of modern physics since it provides the

basic tools for the investigation of fundamental processes involving the quantum interferometry of

particles. Furthermore, on a more technological perspective, the realization of a reliable source of this

kind of radiation is today considered to be an essential feature of any realistic advanced program

involving quantum cryptographic communication and, possibly in the future, quantum computation _.2

For this purpose the method of pump self-regularization has been adopted in the past within a few

dynamical processes to provide the sub-poissonian character of the generated light 3. These

essentially are: the electron-charge induced antibunching process acting within the excitation of a

semiconductor laser 4 and the Rabi dynamics in resonant-fluorescence with excitation of single atoms

in a beam, in a trap or in a solid host 5,6,7. The use of the latter process is very difficult in practice

because of the delicate high-resolution spectroscopic techniques needed for the resonant excitation

of confined single atoms in space, of the hard problem of discriminating a very weak beam in the

presence of a strong one at the same wavelength and, most important, of the inefficiency of the

process since the weak resonant scattering occurs in all spatial directions. In this letter we

demonstrate that these problems can indeed be overcome by a novel, efficient single-molecule
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pump self-regularization scheme and by making use of a smart combination of optical techniques

partially based on the peculiar properties of the microcavity in the context of atomic spontaneous

emission (SpE) s. The result is a new, efficient generator of a non-classical single-photon state that

can be transformed into a quantum Fock In>-state generator.

2 Experimental setup

Let us outline our method by referring to the single-molecule condition. A single Oxazine 720

molecule absorbing and emitting radiation at _ =2_c/C0p and _,=2xc/c0 respectively, was excited

within a single longitudinal-mode microcavity, with relevant dimension d--m_2, m=l, finesse

f=1600, and terminated by two parallel, plane Bragg-reflectors (or mirrors, i=1,2) highly reflecting at

_, (P,q-Iril 2 _1) and transparent at _ < _,. Because of this last property, the excitation of the

molecule could indeed be localized within a small volume V=d.sp about equal to _? at the intersection

of the cavity active layer with the focal region of a 3 cm f-1 lens collecting the excitation from a

pulsed laser beam operating at _. In the best configuration the device was excited by a collision-

pulse-mode-locked (CPM) laser emitting at _ = 615 nm a sequence of equal pulses, referred to as

"St-pulses", with duration 8t = 0. lps, energy _=0.12 nJ, rate v=(1/At)=100 Mhz. The experiment was

also carried out, successfully but with far more critical requirements for the parameters St, _, at

_=532 nm, with a 8t = 5 nsec, v=20 I-Iz, pulsed beam SHG by a Nd-Yag Q-switched laser. The

selected active system was a molecular solution in ethilene-glycol, a very viscous solvent at

T=300°K , with concentration in the range p=10_2+10 _s cm "3, absorption cross-section

op (_Lp)=2.1016 cm 2 and free-space SpE time (TOo - 1/r'0 = 4 nsec at the emission _,=702 nm at

which the microcavity is tuned. Furthermore, very important, the selected molecule had a singlet four-

level optical pumping quantum efficiency 11 very close to one 9. With a calibrated p and well stirred

and highly filtered solution, to avoid any molecular clustering, the search for the single-molecule

excitation condition was accomplished by transversal displacements of the lens focus in the

microcavity active plane. Once found, this condition kept fairly stable in time at T=300°K albeit a

long term stability was obtained by cooling the system at 10°K by a closed-cycle Joule-Thomson

cryostat. According to a useful property of the microcavity with m=l and to its actual geometry,

the light emission took place over two counter-propagating plane-wave modes with vectors k and

k'= -k orthogonal to the mirrors 9. As far as the basic dynamics is concerned, since the quantum-

efficiency of the molecular absorption-emission cycle is 13 =1, we may say that virtually every

pump photon extracted from the laser beam, i.e., with poissonian statistics, at _ is re-emitted at a

different _, over k or k', with an antibunched character because of pump-regularization, and then

detected. Precisely, the overall pump-regularization arises from the synergy of several processes: the

short-pulse excitation of a single molecule and the "cycle self-regularization" due to the finite time
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taken by the excitation to cycle adiabatically through a 4-level system before restoring de-excitation,

as we shall see. The latter process may be somewhat related to the laser squeezing model proposed

by Ritsch et al. to. The statistical character of the output beam was assessed by a Hanbury-Brown

Twiss (HBT) apparatus shown in Fig. 1 while detection was provided by two cooled (RCA31034-A)

phototubes, PMI,2, with quantum efficiencies _1_ _2 _ 0.12, average noise rate _100 Hz. The data

analysis was carried out with a gated SR400 photon-counter or, when necessary, by charge

integration at the PM anodes. In addition to this experiment, an equivalent Hanbury Brown-Twiss test

was also carried out by adopting an active microcavity with R_=R2, with no use of any external

beam-splitter, the two arms of the HBT interferometer being simply provided by the two output

modes k, k', as shown by Fig. 1.
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Fig. 1. Collision-Pulse-Mode-Locked laser-excited microcavity and

Brown-Twiss apparatus.

Hanbury

These ones may be interpreted as corresponding to the two pure momentum-states that form the basis

of the quantum superposition representing any single-photon cavity excitation. This novel experimental

configuration appears conceptually interesting as it suggests to interpret the microcavity as a new

kind of active beam-splitter
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3 Quantum description of the antibunching process

Let's look more closely at the coupling process, by assuming a symmetrical cavity, m=l and a

momentum-state superposition of the polarized emitted photon over the modes k, k' with

corresponding mutually commuting operators: _-ak, a'-_k' n

The normal-ordered Hamiltonian of the system is:

I_I = hc_p6t6 + hc_{fit ,_+fi,t fi,} + _j hc_j _ - i hKp 6t (_') - - i M(" (a t + fi,t ) __ + h.c. (1)

being 6 the single-mode pump field operator, Kp, K oc_/rl appropriate coupling parameters

proportional to corresponding Rabi frequencies tip, ti, rl=3 the microcavity field-enhancing factor,

_,j-lixj I (ij = o to 3) the transition operators relative to the 4 -level system modelling the relevatit

features of the Franck-Condon dynamics of the single molecule. The system evolution is simplified by

analyzing it separately in the two 2-dimensional Hilbert subspaces spanned by states (I 1>, [2>),

([0>, 13>) since their respective dynamics are only connected by a roto-vibrational fast relaxation

process via a single coupling parameter: _/_l/T2 _-5.10 _2 see "t _2 The transition operators are:

 -_=10x3I, I1x21 in the subspaces where the usual spin commutation relations hold for

primed and unprimed operators. This allows a detailed study of the main features of the evolution of

the absorption-emission cycle responsible for the self-regularization dynamics 3. In particular, the

SpE from level-3 is characterized by a cavity-enhanced, quasi-exponential decay parameter:

F=2i] f_l 2[_(Aco)_'(Am)] where _(Ao)) is the complex Heitler's function 13. for our system: y >>F.

By assuming that at the initial time of any (square) &-pulse, t =0, the molecular excitation is in the

ground state, < _n >=1, the dynamics is analyzed by a Torrey type formulation leading to the

relevant statistical averages involving the field emitted and detected at the retarded time t'=(t+z/c)

by a detector placed at a distance z from the center of the cavity, on its axis 14. For instance, the

intensity <: I (t'):> radiated alter excitation by a sequence of equal &-pulses, with fit<<l -'t and time

interval At ---vq:

<E- (z, t') l_+(z, t') > = K ,, repr<_ + (t)_-(t)>, rePTu(t ) -- )-"_, u(t - nat) is (2)

For t >fit is found:

<fr+(t)_-(t)> = A{ 1- exp(-3_/&/2) cos(k fit) + B exp(-Y),&/2) sin(_,/St)}exp(-F t), (3)

with: (v/2)_l'_',A _- (3/2)[.:lf'Zpl/(l_ pl* +2v=)]_, B  (In, I - Sy2/2)/(3_,_.)for F<< 7.

Note that with the parameters corresponding to the CPM excitation in our experiment, each laser

fit-pulse is a r_-pulse for the overall dynamics, since: f/_*T2_[6 Crpe/(': fit _/imp)] >1, D_,.ft = n.
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St-pulse is a n-pulse for the overall dynamics, since: f2p.T2_[6 ap_/(y fit sp hOp)]'/' >l, D._.fit _ re.

Then, if a single molecule interacts with that pulse, the excitation does not have time to cycle more

than once within the 4-level system, leading to the emission of no more than one photon for each

it-pulse. This is precisely the origin of the mechanism of self-regularization and determines the

mltibunched character of the emitted radiation 16. With the excitation provided by longer pulses

5t_l/F, the re-pulse condition becomes very critically dependent on all parameters and there is the

possibility of multiple cycles within fit with a Poisson-type multiple emission 9. The above analysis

is completed by the evaluation of the degree of second-order coherence:

gO2)(x) = <:i (t')i (t'-_):>/[<: i (t'):>] 2. (4)

This relevant quantity is evaluated, as usual, by first expressing the emission intensity average

<_+(t+x)_-(t+x)> as a linear superposition of molecular raising-lowering operator averages

evaluated at time t . Then, the second-order correlation function appearing at the numerator of

g_2)(x) is evaluated with the help of the quantum regression theorem 16,17. In view of the spontaneous

emission dynamics involving the states [3>, 10>, we may write the intensity average in the simple

form:

<_:+(t+x)_-(t+x)> = 131(x) + 132(x)*<_+(t)_-(t) >, (5)

where 13_ (x), 132(x) are evaluated by solving the master equation accounting for the emission

process. This leads to a straightforward evaluation of gt2)(x ). This quantity is given here for a

4-level molecule, for x <At and for two extreme it-pulse excitation conditions, fit<<l/r" -

(a) excitation by a single fit-pulse: gC2)(x)=[ 131(x) / 131(oo)]=[1- exp(- Fx)]

(b) excitation by a sequence of fit-pulses, rate At"1 • g(2)(x)=FAt.[1 - exp(-Fx)]/[ 1- exp(-FAt)];

FAt>I. We see that in both cases is g(2)(0) = 0, as expected. In order to account formally for the

experimental parameters involved in the HBT test, an equivalent quantum photodetection theory may

be conveniently expressed in terms of the coincidence parameter oL introduced by Grangier et al. _s.

Within the context of our work, this parameter is defined in terms of the probabilities of registering, by

two detection channels 1, 2 relative to the output ports of the HBT beam-splitter, coincidence- and

single-signals for each fit-pulse and within a gate interval At 8 starting at t:

(,2(t, (6)
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For single mode excitation of the beam splitter, Ah<<Ti, we obtain by quantum theory 3.

a(_)- a(0,At=)= Tr{_lq[1- exp(-_i_)][1- exp(-_:fi2)]}

Tr{_lq[1-exp(-_:_)]}. Tr{_l_l[1- exp(-_$:_2)]}

(7)

where _ represents the properties of the source field and 1_1is the normal-ordering operator. By

the n-state expansion: _=_ P,[n)(n[, a is finally obtained for some relevant photon distributions:

1) Chaotic:

2) Coherent:

3) Antibunched:

P. = _n/(1+_)_+"

_n

P. = _. exp(-_)

Po=

ot = [2+_ IT' n'+_R' n ]/[ 1+_ _T' n'+_2 R' n ]

a=l

= -(I-_,T ) -(1-_2R ) ]*a [I+(1-_zT -_2R )

• {[ 1-( 1-_,T' )_][ 1-( 1-_2 R' )s }-i

being R '= [ r[ 2, T,= Itl z the optical parameters of the (loss-less) beam splitter and _" the average

number of photons emitted after each excitation 5t-pulse. By a first order expansion of _ the second-

order correlation function may be expressed in the form: ga)(0) = [ a- B(_)]s[A(ff)] "_ , where:

and,

A(_) - Tr[_,] • Tr[_._2]

Tr{_N[1-exp(-_,t_t)]}. Tr{_l_l[i-exp(-_:_)]}

B(_) = Tr{ _1_1[1- exp(-_l)][1-exp(--_a._a.2)]- 5-_fi_a-_a-2}

Tr{ _l_l[ 1 - exp(-_g:_.,)] } • Tr{ _1(1[1- exp(-_ _.__.2)]}

(8)

(9)

According to the theory, for n=l is: ga)(0) ffi at = 0.

4 Experimental result

The parameter a is plotted in Fig. 2 for the three cases Vs. _" and the molecular p oeff, for our

experimental conditions.
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Fig. 2. Coincidence parameter (z (_') as function of the number of photons

emitted after each exitation pulse and of the molecular concentration. The time-gate of the

HBT apparatus was: Atg = 1 nsec.

Note in Fig. 2 the good experimental verification for n>l of the theoretical curve expressing ct

(_) in the sub-poissonian condition, viz., implying the pure n-state distribution: P. = 8_._. These

results of the HBT experiment show that an increasing sub-Poisson character of the output

radiation is gradually established for p varying over two-order of magnitude, leading for p_7e 1014 cm "3

to the striking figure ot = g(2)(0) = 0 for n=_" =1. This last result has been obtained at T=300°K with

a 50%-50% beam-splitter within a run involving a number of counts equal to 1.5.104 by each

detection channel. Within this run no coincidences were detected. The other experimental points in

Fig. 2 were determined approximately by the same number of counts.

5 Conclusion

All this provides the first demonstration that, under appropriate conditions, it is possible to conceive a

macroscopic quantum device that emits, over a single output radiation mode a single-photon per

pulse, with a quasi deterministic generation of a quantum radiation state, at repetition rates as

high as 100Mhz and with a quantum efficiency close to one. This result leads to a still more

important consequence. The single-molecule excitation process could be straigthforwardly
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reproduced n-times within the same device by multiple focusing within the macroscopic

transverse-extension It of the same field mode tg. Since within that mode the SpE dynamics of the

n excited molecules are strongly coupled by relativistically-causal, superradiant interactions acting

with a retardation time zt shorter than the coherence-time xc of the field emitted by the microcavity

(with f'>>l): "tt=lt/c_2(JL/c)'4f<<'r_(JUc)f, then the indistinguishable emitted n single-photons do belong

to the same space-time extension of the output field-mode, i.e., they form a quantum I n>-state 2o

The experimental realization of these conditions would certainly determine a new exciting

endeavour within the quantum optics community. The preliminary results of our investigation in

this direction are quite encouraging. We acknowledge useful discussions with P. Milormi, J.

Franson and Y. Shih •
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