
FOCK STATE GENERATION

FROM THE NONLINEAR KERR MEDIUM

W. Leofiski and R. Tana_

Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University,

Grunwaldzka 6, 60-780 Poznad, Poland.

Abstract

We discuss a system comprising a nonlinear Kerr medium in a cavity driven by an externaJ

coherent field directly or through the parametric process. We assume that the system is

initially in the vacuum state, and we show that under appropriate conditions, i.e., properly

chosen detuning and intensity of the driving field, the one or two-photon Fock statesof the

electromagnetic field can be achieved.

1 One-photon state generation

The model discussed here contains a nonlinear Kerr medium, described as an anharmonic oscil-

lator, placed in a lossless cavity driven by an external coherent field. The coupling of the cavity

field with the external field is governed by the following Harniltonian in the interaction picture

(we use units of h = 1):

/2/,=,. = _ (h + St) , (1)

where e denotes the strength of the coupling, whereas h and h i are the annihilation and creation

operators of the cavity field, respectively. The Hamiltonian corresponding to the dynamics of the

nonlinear Kerr medium in the cavity can be written as follows :

= _(,_- I) , (2)

where A is proportional to the third-order nonlinear susceptibility of the medium and _ is the

photon number operator. Our aim here is to determine the time evolution of the system. We

assume that the system is initially in the vacuum state 10>. Moreover, we assume that the external

field driving the cavity according to (1) is weak, i.e. e << A. In consequence, we can treat the

problem perturbatively with respect to the small parameter e.

Let us express the state of the system in a Fock basis:

OO

I_(t)> -- _ at(t ) IJ> (3)
1=0

This state vector obeys the SchrSdinger equation with the Hamiltonians expressed by eqs. (1,2):

d

i_ I_(t)> - (H/_,,, + H_=t.)I_(t)> (4)
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Applying the standard procedure to the state vector (3) and the Hamiltonians (1,2), we obtain a

set of equations for the probability amplitudes aj. Although this set of equations is infinite, it can

be shown [1] that due to the degeneracy of the Hamiltonian (2) and the weakness of the driving

field the system dynamics is restricted to the subspace of the degenerate states. In consequence,

the evolution of the systems starts from the vacuum 10) and the only state that can be essentially

populated with the driving field, according to (1), is the one photon state 11). The crucial point of
our considerations is the fact that the unperturbed Hamiltonian for the Kerr process (2) produces

degenerate states 10) and 11). In practice, we deal here with a situation analogous to that discussed

in the paper [2] and we can write the following equations of motion for the probability amplitudes:

.d

, a0(t) =
.d

=  a0. (5)

Assuming ao(t = O) = 1 and al(t = O) = 0 we get the following solution for the probability

amplitudes

ao = icos(et) ,

al = sin(et) (6)

We treat eq.(6) as the zero-order solution. For this order the amplitude a2 = 0. To obtain the

formula for a2 we need higher order solutions. We write the first-order formula for a2:

sin , (7)
a2--

where we have removed all terms proportional to e2. Obviously, we are in a position to perform

this perturbative procedure due to the fact that the coupling (1) is weak, i.e. (e << A). Moreover,

since we are interested in finding the time evolution of the probabilities rather than the amplitudes

aj, we neglect the influence of the dynamics of the state [2 / on the system as being proportional

to e2.

To verify these results we shall now perform a numerical experiment and compare its results

with those based on formulas (6). This will be done similarly as in the paper [3].

The history of our system is governed by the unitary evolution operator U(_) defined as follows:

[](t)= exp(-i/£/t) (8)

Hence, the state vector I@(t)) for arbitrary time t can be expressed as:

{,r(t)>= O(t){o>. (o)

For numerical calculations we use the number state basis, which is truncated as to obtain sufficient

numerical accuracy.

Fig.1 shows the probabilities of finding the system in the vacuum 10) and

one-photon states I1). We assume that for the time t = 0 the field was in the vacuum state
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(ao(t = 0) = 1), and that the coupling (1) is weak, i.e., e = 7r/50 << A (in units of A = 1).
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FIG.1 Analytical solutions for the probabilities of the vacuum (solid line) and one-

photon (dotted line) states, and the mean number of photons (circle marks) obtained

from the numerical experiment. The parameter e = r/50 (all parameters are measured

in units of A = 1). X-marks correspond to the probabilities found" in the numerical

experiment.

We see that our analytical results (solid and dashed lines) agree perfectly with those generated in

the numerical experiment (star marks). The system starts to evolve from the vacuum and after

the time t = 25 the probability lall 2 = 1. This means that at this moment of time the field is in

the pure one-photon state. For longer times the system returns to its initial state and starts to

evolve in the same way as from t = 0. Moreover, we have plotted in Fig.1 the time dependence

for the mean number of photons n(t) (dotted line)

-- = o)I UtataO J (t = o)) (I0)

found in our numerical experiment. It is seen that the behavior of n(t) reflects the evolution of

the probabilities and oscillates between 0 ad 1. One should keep in mind, however, that if we

increase the strength of the external coupling the picture changes drastically. For this situation

the perturbation procedure breaks down. In consequence, as it is visible from the numerical
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experiment, higher n-photon Fock states staxt to play a significant role. Fig.2 shows the probability

amplitudes for e = Ir/15. We see that the influence of the amplitude corresponding to the two-

photon state becomes visible and perturbs the dynamics of the vax:uum and one-photon states

significantly. Of course, results of the numerical experiment become different from those obtained

analytically under assumption of week coupling.
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FIG. 2. The probability amplitudes corresponding to the v_cuum (solid line), one-

photon (dotted line) and two-photon (dashed line) states. The strength e = _r/15 and

the remaining pazameters are the sazne as in Fig.1.

2 Two-photon state generation

Now, we consider a system containing the nonlineaz Kerr medium which is parametrically excited

by the electromagnetic field. The parametric excitation seems to be more suitable for the experi-

mental realization of the model than the previous one. In this c_se the system is governed by the

following Hamiltonian:

H= (n-2)+e at,, =

where the fi(r_ - 1) is replaced by _(_ - 2). This replacement can be justified by the appropriate

choice of the detuning. With such, choice of the detuning the states [0) and ]2) are degenerate,

610



and the parametric process, second term in (11), couples resonantly the two states. This suggests

that the dynamics of the system will be restricted to the two states if the coupling is sufficiently

weak. Except for a special choice of the detuning, the system discussed here resembles that

discussed by Milburn [4], and Milburn and Holmes [5]. However, their model involved series of

ultra-short excitations, whereas in this paper we assume continuous excitation.

Applying the same procedure as that for the one-photon state generation case we get the

following equations for the probability amplitudes:

.d

.d

=  V%o. (12)

We again assume that a0(t = 0) = 1. In consequence the solutions for the amplitudes a0 and a_,

to which the dynamics is restricted, are of the following form:

= sin (13)
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FIG. 3. Analytical solutions for the probabilities of the vacuum (solid line) and

two-photon (dotted line) states, and the numerically found mean number of photons

(dashed line). The parameters e = Ir/50, A = 1. Marks correspond to the numerical

experiment results.
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Obviously, formulas (13) are the zero-order solutions analogously as for the one-photon state

(eq.(6)). Moreover, we shall perform numerical experiment and compare its results with those

of eq.(13) again. For this case the unitary evolution operator U is constructed on the basis of

the Hamiltonian defined in (11). Fig.3 depicts the probability amplitudes for the vacuum 10)

and two-photon states [2) obtained from the eq.(13) and from the numerical experiment. We

see very good agreement between the perturbative analytical results and those obtained from

the experiment again. The system starts its evolution from the vacuum state and after the time

t = r� (2v_e) -- 17.7 the two-photon Fock state is reached. Moreover, the numerical results

show that the probability for the four-photon 14) state is proportional to e2 __ 3 • 10 -3 and can be

neglected for the case discussed here.

3 Conclusions

We have shown here that it is possible to generate the one-photon and two photon Fock states by

the use of nonlinear Kerr media placed in a lossless cavity driven by a week external field. This

generation is associated with resonant transitions between two Fock states and can be described

analytically using standard perturbative procedure. Moreover, we have performed numerical ex-

periments that show very good agreement with the analytical solutions. Of course, our considera-

tions are based on a very simple model, and one should realize that many difficulties, for instance

damping processes, can obscure the model and make it difficult to realize in practical experiments.

Although it was not the aim of this paper to investigate the influence of such obstacles, one should

keep in mind the fact of their existence. A short discussion of these problems was given in [3].
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