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Abstract

A generalized exact optical bright solitary wave solution in a three dimensional dispersive

linear medium is presented. The most interesting property of the sSlution is that it can exist

in the normal group-velocity- dispersion (GVD) region. In addition, another peculiar feature

is that it may achieve a condition of "zero-dispersion" to the media so that a solitary wave

of arbitrarily small amplitude may be propagated with no dependence on its pulse width.

1 Introduction

It is well known that there exist undistorted travelling wave solutions with arbitrarily shape

in bulk linear media in the absence of dispersion effects. We_can call such a travelling wave

solitary wave or soliton on the analogy of its definition in nonlinear science. In the presence of

GVD, it has been proved that transmission of solitary wave or soliton can be achieved in cubic

nonlinear media [1,2]. This research for optical solitons has attracted considerable attention

because of not only the properties of preserving their shape and energy during propagation

through a medium but their potential applications in ultra-high bit-rate optical communication

and ultrafast signal-routing systems [3]. Mathematically, these optical solitons are a particular

solution of the (l+l)-dimensional nonlinear Schr5dinger equation (NLSE) or the equations,

which can be transformed into (1+1)- dimensional NLSE. As is well-known, there exist two

kinds of solitons in the (l+l)-dimensional NLSE: bright and dark solitons [1]. In physics, optical

solitons can be classified as temporal and spatial solitons. In the case of temporal solitons, the

GVD is balanced by self- phase modulation. In the spatial domain, a spatial soliton is better

known as a "self-trapped beam", in which the self-focusing effect counteracts the diffraction [4].

In fact, the space-time analogy between dispersion pulse compression in time and optical-beam

focusing in space has been pointed out early in 1969 [5-6]. When only diffraction or dispersion

effects are considered, their governing equations are of the same structure under appropriate

conditions. Now the four kinds of solitons (i.e. temporal bright, spatial bright, temporal dark,
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spatial dark solitons) have been observed experimentally in optical fibers or in waveguides [2,7-

13]. Besides the (i+l)-dimensional NLSE, it is necessary to deal with the higher-dimensional

wave equation when a pulse propagate in optical media under the combined effect of diffraction

and dispersion. In this case, one would expect that there exist the so-called light-bullets (i.e.

stable; nondiffracting and nondispersing optical pulses) under certain conditions [14]. However,

in contrast to (l+l)-dimensional NLSE, such a spatio-temporal solitonic solution has not yet

been found even in theory due to the mathematical complexity of the higher- dimensional wave

equations. On the other hand, the attempts of searching for multidimensional solitonic solutions

in other kinds of optical media, such as exponential and quadratic media, have also been made

[15-17]. Recently, we have proved, for the first time to our knowledge, that an envelope solitary

wave solution mar exist in a two dim,=nsional dispersive linear medium under certain appropriate

conditions by taking into account the transverse effect and dispersion effect simultaneously [18].

In this paper, we will generalize the results in a three dimensional dispersive linear medium.

It is proved that undistorted transmission of optical pulses in the above mentioned media may

be realized even in the presence of GVD under appropriate conditions. Unlike the conventional

bright solitary wave in cubic nonlinear media, the present bright solitary wave solution can be

obtained in the normal (positive) GVD region. In addition, a peculiar feature of the solution

is that it may achieve a condition of "zero-dispersion" to the media so that a solitary wave of

arbitrarily small amplitude may be propagated with no dependence on its pulse width.

2 Governing Wave Equation

In the development that follows, we consider the propagation of pulses which are narrowly

centered about a given frequency w0, and assume that the refractive index n(w) is a slowly

varying function of w in the vicinity of w0 (which is generally true in situations of-practical

interest). It is convenient to represent the electric field intensity /_(_',t) by a product of an

envelope and a rapidly oscillating terms:

E(_',t) = @A(_',t)e '(q"-_°t} (1)

where _"is the polarization unit vector assumed to remain unchanged during pulse propagation,

q the reference constant of propagation along z direction and w0 the carrier center frequency.

Here we have restricted the development to be a scalar complex envelope function A(_', t).

Now let us consider the propagation of an optical pulse described by Eq.(1) in bulk dispersive

homogeneous linear media. After removing the terms describing inhomogeneity and nonlinearity

of media in Ref. [15], we can obtain the governing equation for the complex envelope function

A(_',t). This three spatial and one temporal dimensions (3+1) linear wave equation with the

GVD term included can be written in the form

[ 0 ]V2_(k_+koko)-d-_+2i(q +koko-_)+k2o-q 2 A(_,t) = 0, (2)

where k - a;n(co)/c is the wave number, the primes indicate the derivatives with respect to

co, and the subscript 0 indicates evaluation at the carrier center frequency _o. Here, as is well
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known (see, e.g.,Ill), k 2 is expanded around coo in Taylor series and only terms up to second

order are kept under the weak dispersion approximation (i.e., the refractive index is a slowly

varying function of coo).

It is well-known that in the absence of GVD (k o = 0), there are "complete" solitary wave

solutions in Eq.(2). If the GVD does exist (k o ¢ 0), there will be no "complete" solitary wave

solutions in Eq.(2). It is generally believed that the pulse shape will be distorted during its

propagation. However, one will see in the following analysis that there may exist steady-state

envelope solitary wave solutions in Eq.(2) under the combined action of transverse and dispersion

effects.

3 A solitary wave solution and its property

In order to obtain a o: tical envelope solitary wave solution, let's introduce an ansatz with a

hyperbolic secant function profile

A(_',t) = AoSech( t- _" i')e'(ge+A_t),
T

(3)

where A0 is the maximum amplitude of the optical envelope solitary wave solution. The param-

eter c7 is the inverse of the group velocity, ff describes the change of the wave vector, and Aw is

the frequency shift.

After substituting the ansatz (3) into Eq.(2), we can obtain three equations for the parameters

_,/T, and Aw:

_. s = k;_+ koko, (4)
tf t_. 5' = (k;_+ koko)a.,- koko, (s)

II t

j'. _' = (k;_+ koko)a_o_- 2kokoaco+ k_ (6)

where the p_rameter j= {Z_,Z_,Z_}h_ been replaced by 9 = {_,,Z_,9_ + q}.
If all of the parameters are reasonably chosen, we can expect to obtain the optical solitary

wave solutions described by Eq.(3). Fortunately, one can prove that all of the parameters may

physically choose reasonable value. Therefore, an optical envelope solitary wave solution can

exist in Eq.(2).

According to the vector relation [c7 II/¢ I--- _" _', substituting Eq.(4)-(6) into the relation, after

tedious algebra calculation, we can obtain the condition:

tt

ko >_o. (7)

This means that it is only in the normal (positive) dispersion region that there may exist opti-

cal envelope solitary wave solutions in a dispersive linear medium. This property is contrary to

that of (l+l)-dimensional NLSE, in which the sech-like solitary wave solutions exist only in the

anomalous (negative) GVD region. The existence of present solitary wave solution indicates that

the physical effects of transverse confinement seems to counteract the effect of normal GVD.

From Eq.(4)-(6) one can see that the parameters A0 and r are not included in them. This
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implies that the maximum amplitude A0 is independent of pulse half-width r. Therefore, the

optical envelope solitary wave solution (3) may propagate through a medium with an arbitrarily

small amplitude. This means, such a solitary wave has no limitation of threshold.
II

Additionaly, in normal case, there is always dispersion in a practical medium, that means k 0 _ 0,

this will lead to that the relation I ff II if' I_: if'if' is always satisfied. This implies that the prop-

agating direction of envelope amplitude does not coincide with that of wavefront. Therefore,

the optical envelope solitary wave solution (3) represents an inhomogeneous wave. The angle 0

of the two directions between envelope amplitude and phase can be written by:

0 : arcco8 -- (8)

Comparing with the nonlinear method of utilizing the nonlinear dependence of refractive on pulse

intensity suggested by Hasegawa and Tappert, the present one has three features as follows: For

the first, the optical bright solitary wave can be achieved in the normal (positive) GVD region.

Thi_ feature can greatly extend the range of optical wavelength for realizing transmission of the

bright solitary-wave. It is unnecessary to search for special light source, of which the wavelength

lies in the range of anomalous GVD for optical guide materials. For the second, it may achieve

a condition of "zero-dispersion", in which a solitary wave of arbitrarily small amplitude may

propagate with no dependence on its pulse width. While the pulse amplitude A0 is proportional

to the inverse of pulse half-width r for the nonlinear refractive index case. This implies that

the pulse intensity will increases rapidly with the decrease of pulse half-width (to the second

order). Therefore, in realizing ultra=high bit-rate optical soliton communications, it will finally

meet the limit set by the damage threshold of optical guide materials and other nonlinear

effetts. This difficulty may be overcome easily in our case as one may achieve ultra-high bit-rate

transmission of pulses in optical soliton communication systems, in which the pulse half-width

is narrow enough while the intensity still keeps at a low level. Besides above mentioned, it

may conveniently utilize all of the advantages of linear techniques (e.g. wavelength division

mult_lex)in the future optical soliton communication systems. However, it should be noted

that this solitary wave is homogeneous. What influence on the optical communication is it? It

should be considered in the next work.

4 Conclusion

In conclusion, We have obtained an optical envelope optical solitary wave solution in (3+1)-

dimensional dispersive linear wave equation. It is of the following features:

1) It is only in the normal (positive) dispersion range that there exists the solitary wave solution

described by (3) in a dispersive linear medium.

2) The optical envelope solitary wave solution represents an inhomogeneous wave.

3) It may achieve a condition of "zero-dispersion", in which a solitary wave of arbitrarily small

amplitude may be propagated with no dependence on its pulse width.
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