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Introduction

An automated docking system must have a reliable method for determining range and

orientation of the passive (target) vehicle with respect to the active vehicle. This method

must also provide accurate information on the rates of change of range to and orientation

of the passive vehicle. The method must be accurate within required tolerances and

capable of operating in real time.

The method being developed at Marshall Space Flight Center employs a single TV

camera, a laser illumination system and a target consisting, in its minimal configuration,
of three retro-reflectors. Two of the retro-reflectors are mounted flush to the same

surface, with the third retro-reflector mounted to a post fixed midway between the other

two and jutting at a right angle from the surface. For redundancy, two additional retro-

reflectors are mounted on the surface on a line at right angles to the line containing the

first two retro-reflectors, and equally spaced on either side of the post. (Figure 1) The

target vehicle will contain a large target for initial acquisition and several smaller targets

for close range.

There are other target configurations which might provide information on range and

orientation [for example see Ref. 1, or see the cross-ratio of projective geometry, Ref. 2].

However, these configurations fail to provide reliable estimates of target yaw--the angle

at which the target tilts away from the line of sight. With one of the three retro-reflectors

mounted to a center post aligned (ideally) with the line of sight, reliable estimates of yaw

angles may be computed.

This report will detail the mathematics required in the computation of accurate range

and orientation measurements for a target configured as in Figure 1.

Detector Hardware Components

The target detector consists of a TV camera, frame grabber and associated computer.

The camera contains a lens which focuses an image of the target onto an image plane.

Located in the image plane is a rectangular array of individual photo-detectors called

"picture elements" or "pixels". The amount of light falling on each individual pixel can

be measured and digitized into a number of "grey levels" (in the case of a black and white

image). The number of grey levels is typically a power of two, with 256 being the

highest number of grey levels commonly used, and 2 being the least. The frame grabber

is a digital device which takes successive '.'snapshots" of the image coming from the

camera and stores these "frames" in a block of memory accessible to the associated

computer. The computer is programmed to detect the target in the frame and compute the

range and orientation of the target, and the related velocities.
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Geometric Model of the Imaging System

For the purpose of analysis, the lens of the camera is modelled as.a pinhole. In a

pinhole camera, every object is in focus, regardless of its distance from the camera. For

actual lenses, only objects at a given distance, determined by the lens equation, are in

perfect focus. Points at other distances from the camera are imaged as "blur circles"

whose diameters are proportional to the distance of the point from the ideal distance and

to the lens diameter while inversely proportional to the focal length of the lens. The

target detection system being developed, however, uses the centroids of detected images.

In a statistical sense, the centroid of such an image should be the same whether or not it is

in perfect focus. Thus, for purposes of geometrical analysis, the pinhole model is

adequate.

While the image plane lies behind the lens at a distancefequal to the focal length of

the lens, an imaginary projected image plane may lie at any distance behind or in front of

the lens. For ease of illustration, a projected image plane is frequently used. We will use

a projected image plane lying a distance fin front of the lens (Figure 2). A right-handed

xyz coordinate system is used, with the positive x-axis extending from C through the

center of the projected image plane, and with the positive y and z-axes extending

vertically upward and horizontally to the right, respectively.

Determination of Target Range

In Figure 3, C denotes the geometrical center of the lens, P/, P2', and P; represent the

retro-flectors in the target, and P_, P2, and P3 represent the respective images in the image

plane. The symbols P, ,P2 ,P3,PI',P2, and P_ represent the vectors from C to the

respective points on the target and on the image plane. The vector components of

P,,P2, and P3 are, respectively, (f,al,b,), (f,a2,b2),, and (f,a3,b3). The magnitudes

of the vectors P;, P_, and P_, representing the distances to the retro-reflectors, are r 1, r 2,

and r 3, respectively. The fixed distance from retro-reflector 1 (on the center post) to
retro-reflectors 2 and 3 is D. The fixed distance between retro-reflectors 2 and 3 is L.

The height of the center post is H. The angle between vectors P, and P2 is 0,2. The angle

between vectors PI and P3 is 0,3. The angle between vectors P2 and P3 is 023.

The coordinates of P,,P2, and P3 are determined directly from the output of the

imaging system. The angles 012,013, and 023 are determined by the relations

P! "P2

PI "1'3

cosO.- i
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cos023=

Using the Law of Cosines, it is seen that

El 2 "1-8 `2 --2r, r2 cos0t2 = D 2

r,2 + r32- 2r, r3 COS013 = D 2

r_ + r32- 2r2r 3 c0s023 = L2

In general, a set of three quadratic equations in three variables can have as many as

eight distinct solutions. In this case, however, there are at most four solutions where all

values of the variables are positive, since, if (r 1,r2, r3) is a solution, then so is

(-rl,-r2,-r 3). In point of fact, there are never more than three distinct all positive

solutions. Three solutions occur when 012 = 013. If0_2 ¢ 013 , then there are only two

distinct solutions in which all three variables are postitive. In either case, only one of the

solutions has the reflector on the center post pointed toward the camera. The other

solutions represent situations where the center post points away from the camera. Since

such a target orientation would be undetectible, such a solution may be discarded.

In fact, the method of solution used by Marshall Space Flight Center avoids the

necessity of computing all solutions and then rejecting some. It is assumed that the

image of the point halfway between P/and P3' (the base of the center reflector post)

would lie at the point halfway between the images of those points in the image plane.

While this assumption is not true, it is a good approximation in the case of the correct

solution, and a bad approximation for the spurious solutions. Using an iterative routine

(the Newton-Rafson method), the initial guess is improved upon until the system

converges to the correct solution. The iterative routine also computes the pitch, roll and

yaw of the target. This information, along with the range to the target, is updated and the

corresponding rates of change are computed. All range, orientation and rate of change

information is then passed along to the guidance routines so that necessary course

corrections can be computed for the docking maneuver.

Alternate Solution Method

While the method described above is sufficient, the following method is presented for

possible comparison of speed or accuracy.

Assuming that 012 > 013, Figure 4 represents the target geometry relative to the

camera, with C representing the camera, and PI', P2', and P3' representing the three retro-

reflectors on the target. The segment P'I A is perpendicular to CP' 2. The segment P'2 D is

perpendicular to CP' 3. The segment P'3 B is perpendicular to CP' i . Then
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CP' 2 = CA + P'2 A. Likewise, CP' 3 = CD + DP'3, and and CP' t = CB - P'tB. Using right

triangle trigonometry, and using D and L as defined in the previous section, these three

equations may be rewritten as follows:

r2 = rtcos0t2 + x/D 2 - r_2 sin 2 0t2

r3 = r2 c0s023 + x/L 2 -r 2 sin 2 023

rt = r3c0s013 - x/D 2 - r32sin 2 0t3

r_, r2, andr 3, one makes an initial guess that rt = (L/_2)cot(023/ff2) ,To solve for then

iterates the equations. If 0_2 < 0t3, then the 2s and 3s in the above equations should be
reversed.
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