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INTRODUCTION

Many of the life-limiting structural problems encountered in high-

temperature aircraft and rocked, _ engines result from thermal fatigue behavior.

It has been known for over a hundred years that temperature gradients within a

structure produces internal stresses. These thermally induced stresses can be as

large or larger than the internal stresses generated by the application of external
mechanical loads to the structure. Most aircraft and many rocket engines are

reusable designs which must be able to withstand cyclic thermal and mechanical

stress excursions associated with engine startup and shutdown. For these

reusable designs, low cycle thermal fatigue is the life-limiting failure process for

certain engine components.

A large body of analytical and experimental work has been produced over the

last 50 years concerning the low cycle thermal fatigue behavior of metals.

Halford [1] provides a historical review of work in this area starting in the early

1950's and extending into the late 1980's. The field of engineering fracture

mechanics grew parallel with this field of low cycle thermal fatigue. From an

engineering standpoint, these two fields merge once the component has been

exposed to sufficient thermal stress cycles to allow for formation of a discernible

crack or cracks.

This paper is concerned with the prediction of the low cycle thermal fatigue

behavior of a component in a developmental (ATD) high pressure liquid oxygen

turbopump (HPOTP) for the Space Shuttle Main Engine (SSME). This component
is called the Turnaround Duct (TAD). The TAD is a complex single piece casting

of MAR-M-247 material. Its function is to turn the hot turbine exhaust gas

(12000 F hydrogen rich gas steam) such that it can exhaust radially out of the

turbopump. In very simple terms, the TAD consists of two rings connected

axially by 22 hollow airfoil shaped struts with the turning vanes placed at the

top, middle, and bottom of each strut. The TAD is attached to the other

components of the pump via bolts passing through 14 of the 22 struts. Of the

remaining 8 struts, four are equally spaced (900 interval) and containing a

cooling tube through which liquid hydrogen passes on its way to cool the shaft

bearing assemblies. The remaining 4 struts are empty. One of the pump units in

the certification test series was destructively examined after 22 test firings.

Substantial axial cracking was found in two of the struts which contain cooling

tubes. None of the other 20 struts showed any sign of internal cracking. This

unusual low cycle thermal fatigue behavior within the two cooling tube struts is

the focus of this study.

The fatigue and fracture analysis described in this report closely follows work

performed by Sakon et al., [2] on thermally shocked steam turbine pump casings.

The investigation procedure follows the outline given below.
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A. Establish an approximate analytical relationship between the J-integral for

a cracked body under deformation-controlled loading and the strain-based

intensity factor Ke.

B. Use a linear finite element analysis (FEA) of the TAD structure to determine

the cyclic stress behavior of the "cracked" region. This FEA did not model

the crack(s) and only standard solid elements were employed to represent

the geometry.

C. Determine the functional form of the cyclic J-integral (A J) in terms of the

elliptical crack dimensions using the information from steps (A) and (B).

D. Employ the experimental crack growth data for the MAR-M-247 material

to establish the differential crack growth equation

da/dN = f(AJ). (1)

E. Numerically solve the ordinary, first order, nonlinear, differential equation

(1) for the crack length "a" as a function of the number of thermal cycles
"N".

ANALYSIS

A. Estimation of Cyclic J-Integral (A J)

A number of investigators [3-4] have examined the use of the strain-based

intensity factor to estimate the J-integral value when small scale yielding is

occurring in the vicinity of the crack. Sakon and Kaneko [3] proposed that the

value of J for the inelastic situation can be approximated by the elastic J-

integral, Je, for a deformation-controlled problem, such as thermal fatigue. They

compared elastic and inelastic J-integral values for several cracked plate

specimen geometry's using the FEM to substantiate the J=Je approximation.

Since the elastic form of the J-integral has been assumed for this problem, the

relationship Je = KI2/E may be employed to convert the problem from one of

finding the functional form of AJ to one of finding the functional form for AK, the

cyclic stress intensity factor.
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B. Linear Finite-Element Analysis of the TAD

As part of the TAD design process, the pump designers at the Pratt and

Whitney Division of United Technologies developed a 3-D ANSYS finite element

model of a 1/22nd section of the TAD. This initial model consisted of 39,720

tetrahedral (10 noded) elements and 66,639 nodes (=200,000 DOF). Essentially

symmetric mechanical and thermal loading conditions on the TAD allowed for

the construction of a smaller 1/44th segment model with symmetric boundary
conditions.

This 1/44th segment model was used to perform the thermal and structural

analyses of the TAD. A transient thermal analysis was done covering the

standard Service Life mission at the 109% power level. The highest temperature

gradients within the TAD structure were observed to occur during quick

acceleration from 0% to the 109% power level and during steep deceleration

from the 65% power level to engine shutdown. Steady state operation at the

109% power level produces low thermal gradients within the TAD structure and

,hence, low thermal stresses.

Examination of the transient thermal analysis results by Pratt and Whitney

engineers lead to the identification of two acceleration time points and two

deceleration time points where the temperature gradients peaked within various

locations of the TAD structure. Linearly elastic structural analyses were

performed at each of these four time points to determine the TAD internal stress

and strain state. This stress (strain) information is necessary to establish the

cyclic stress (strain) history experienced by the TAD structure during the Service

Life mission.

"Hoop" stress (6H) contours acting on the centerline of the strut were

constructed for the four time points of interest. Based on these stress contours

and the observed fracture behavior, two possible crack "paths" are considered

for fracture analysis. The distribution of the "hoop" stress along each of the

assumed crack paths was extracted from the FEM results for all four of the time

points. The stress range experienced by a given point, A, along the crack path is

the difference between the acceleration and deceleration hoop stress values at

point A. Since there are two acceleration and two deceleration time points, four

stress range combinations are possible:

A(YH 1 = OH7703 _ _H7203

A_H 2 = CYH7705 - CYH7203

A(YH 3 - CYH7703 _ _H7205

AOH 4 = OH7705 _ (YH7205
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for each crack path. The largest stress range for any point along crack path #1 is

produced by the stress difference created from time points 7705 (deceleration)

and 7205 (acceleration). This behavior is true for the other three crack paths

and from this point onward in the analysis, the stress range employed to

calculate the cyclic stress intensity value, AK, is that given by A_H -OH 7705 -

aH 7205, for all four crack paths.

C. Functional Form of A K in Terms of Cyclic Stress Range and Crack

Dimensions

The cyclic stress intensity factor, AK can be calculated from the cyclic stress

range, 6_, by use of a method recommended by the ASME Boiler and Pressure

Vessel Code, Section XI.

AKI = (MmAom + MbAOb)_ (2)

Mm - MEMBRANE CRACK SHAPE FACTOR

Mb - BENDING CRACK SHAPE FACTOR

Affm - MEMBRANE COMPONENT OF THE STRESS RANGE AT CRACK TIP

AOb - BENDING COMPONENT OF THE STRESS RANGE AT CRACK TIP

The membrane and bending crack shape factors functions of the crack

dimensions a (depth) and c (length). The formulas for these shape factors was

given by Newman in terms of a and c. From the previously determined stress

range along the crack path, Ao, the membrane and bending stress range

components, A_m and A_b, are known as functions of the crack depth a.

Consequently, AK is now completely determined as a function of the crack depth

a.

D. Experimental Determination of h(AK)

Pratt and Whitney engineers have experimentally determined the function

h(AK) for the MAR-M-247 material and approximated the function as

log[h(AK)] = Clsinh(C21og[AK] + C3) + C4

where C1, C2, C3 and C4 are experimentally determined constants.
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E. Solution of the Crack Growth Equation, da/dN = h(AK)

The Crack Growth Equation is a first order, nonlinear, ordinary differential

equation which was solved using the MATLAB software (Runge-Kutta, 2-3) for

the crack depth a(N).

CONCLUSIONS

1) The present analysis method cannot completely predict the low-cycle

thermal fatigue cracking observed in the cooling tube struts of Unit #9.

a) During thermal cycling the analysis predicts periods of rapid crack

growth, but the total crack length is less than that observed in service.

b) Prediction accuracy could be improved by defining how the hoop stress

varies across the "net" section as the crack grows.

2) The linear elastic FEM analysis indicates that a sufficient thermal stress

cycling occurs to cause substantial low-cycle crack growth, if an initial flaw

exists.

3) More complete knowledge of the thermal environment on the interior of the

strut is necessary to improve the fatigue behavior prediction.
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