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1. INTRODUCTION

Thermally sprayed coatings have been extensively used to enhance materials

properties and provide surface protection against their working environments in a number

of industrial applications. Thermal barrier coatings (TBC) are used to reduce the thermal

conductivity of aerospace turbine blades and improve the turbine overall thermal efficiency.

TBC allows higher gas operating temperatures and lower blade material temperatures due

to the thermal insulation provided by these ceramic coatings. In the automotive industry,

coatings are currently applied to a number of moving parts that are subjected to friction and

wear inside the engine such as pistons, cylinder liners, valves and crankshafts to enhance

their wear resistance and prolong their useful operation and lifetime.

Recently, hexavalent chromium associated with hard chromium plating, was

classified as a human carcinogen and environmental pollutant. Aerospace industry has

traditionally used hard chrome plating as a corrosion protection material. Accordingly,

NASA is developing thermal spray coatings to replace the hard chrome plating that is

currently being utilized on the space shuttle main engine. These coatings are made of

tungsten carbide and cobalt, chromium oxide, and FerroTic (iron based material with

titanium carbide) to provide protection against wear, corrosion and hydrogen embrittlement

of the low pressure liquid hydrogen carrying ducts on the shuttle main engine. One of these

sections is the Low Pressure Fuel Turbo Pump (LPFTP) discharge duct used on the shuttle

main engine. The duct carries liquid hydrogen fuel at temperature of-253 o C (-423 °F) to the

High Pressure Fuel Turbopump from the (LPFTP) [1].

In addition to the extensive use of thermal spray in generating protective coatings,

it has been used in the manufacturing of near-net shape parts with customized material and

engineered properties. In these applications, thermal spray is used to build up material(s) to

form the required part geometry. Moreover, thermal spray is used for the repair of worn or

mis- machined mechanical parts.

Despite the considerable advancement in the thermal spray technology, the industry

still faces strong challenges with the coatings quality in the following areas: 1) Delamination

or debonding at the substrate/coating interface and intersplat boundaries - this usually occurs

due to mechanical and thermal residual stresses caused by a mismatch in the thermal

expansion coefficient combined with localized sharp temperature gradient due to a high

cooling rate. 2) The occurrence of voids and porosity within the coatings - is usually caused

by trapped gases and/or powder oxidation during spraying process. This will drastically

weaken both the corrosion protection ability and the hardness of the thermally sprayed

coatings. The porosity will allow the corrosive solution to penetrate the coating to the

interface between the base material and the coating.

Thermally sprayed coatings are formed from the flattened consolidation and

solidification of molten powder particles; thus, the properties of these coatings are highly

dependent on the spraying process itself. Accordingly, the microstructure, porosity, hardness

and bonding strength of the coatings are mainly controlled by the temperature and the
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velocity of molten particles [2]. Critical review of the literature on thermal spray coatings,

indicated that high velocity thermal spray processing conditions offer the best potential to

minimize the occurrence of manufacturing related flaws and provide high quality coatings
[3].

In recent years the High Velocity Oxygen Fuel (HVOF) system has been considered an

asset to the family of thermal spraying processes Fig. (1). Especially, for spray materials with

melting points below 3000 °K it has proven successful, since it shows economic advantages

when compared to other coating processes that produce similar quality coatings [4]. In such

systems that produce high velocity particles, the oxide content of the coatings did not

correlate to the particle temperature or the excess oxygen in the lean fuel conditions, but it

is related to high substrate temperatures [5]. It is believed that the primary mechanism for

the formation oxide inclusions occurs after a particle splat, when the hot coating is exposed

to the oxygen contained in the relatively low velocity boundary layer. The exposure times

of a given splat to the boundary layer are on the order of seconds, a factor of 103 longer than

during particle flight [6]. The usual evaluation of optimized spraying parameters, which

include stand off distance, fuel and oxygen flow rates, powder size, and barrel length, are

based on numerous, extensive, and expensive experiments laid out by trial-and-error or

statistical design of experiments and Taguchi methods [4].
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Figure 1. Thermal Spray processes

The application of simulation techniques to thermal spray processes has grown

steadily over the past years because of the relatively inexpensive parametric analysis and

operations. Once a model of the process is established and validated, system parameters

become evident. The obtained fundamental understanding of the optimization process can

be accomplished with a numerical computer model [4].

The objective of this investigation was to develop a computer model that simulates

the thermal and gas dynamics of both gases and particles associated with the HVOF process

to provide predictions of the particles velocities and temperatures. In the HVOF process

oxygen and atomized kerosene are injected coaxially into the combustion chamber, Fig. (2),

where they are mixed and ignited by a spark plug. The hot combustion gases are accelerated

to supersonic conditions in a conversion diversion nozzle. At the exit of the nozzle the
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powder is transversely injected with an argon or nitrogen carrier gas. The powder is heated

and accelerated in the gun barrel and jet region by the hot gas and eventually is deposited on

the substrate. The model was partially validated against the very limited experimental data

collected from Hobart Tafa using the JP-5000 gun and shown in Figure (2).

Fig.(2) Hobart Tafa HVOF/JP-5000 - with showen Numerical Values for Gas and Particle

Velocity and Temperature

2. MATHEMATICAL MODEL

The current model development was accomplished in four main stages as described in the

following •

First Stage: Modelling of the gases flow inside the HVOF system

consideration to the powder flow [7]:

without initial

The generalized flow equations with the influence parameters were used to model the gas

flow in the HVOF system shown in Figure (2). The temperature and Mach Number equations

(1), (2) were numerically integrated for a single phase non-adiabatic friction flow with

variable specific heats [7].

(1+ k-1 M2 ) kM2( 1+k-1M2 )

_ __ + 2 4fdx dkdM2 2 2 dA l+kM 2 dQ + -- (1)

M 2 1 -M 2 A 1 -M 2 CpT 1 -M 2 D k

dT _ (k-l)M 2 dA + (1-kM 2) dQ k(k-1)M4 4f d.__xx

T (1-M 2) A (1-M 2) CpT 2(1-M 2) D
.......... (2)

Equations (1) and (2) above were solved by a numerical computer model and predictions of

the gas velocity and temperature were obtained [7] at all the flow cross sections inside the
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thermal spray system for the inlet conditions given in Fig. (1). Due to the appearance of the

term (1-M 2) in the denominator of equations (1) and (2), the numerical model experienced

some degree of singularity in the vicinity of the throat section. The model quickly recovered

as the solution propagated downstream of the throat area. However, this singularity, problem

could be completely rectified by the application of a Taylor series expansion on these terms

in the throat proximity zone.

Second Stage: Empirical Correlation for the mean axial velocity_ and temnerature decay of

a free supersonic jet plume:

Visual studies such as Schlieren flow visualization showed a "potential core" with

an embedded shock-diamond structure that is formed in the supersonic zone due to the

underexpanded nature of the jet, Fig (3), [6]. Further down stream large turbulent eddies

were generated by the large velocity and temperature gradients at the boundary laver between

the jet and the ambient air. This mixing zone is further subjected to the effect of a large

density difference between the hot jet core and the comparatively cold and slow ambient

atmosphere. Small particles 5 lam or smaller will fully track the turbulent motion of the

fluid, however, much larger particles, such as typical HVOF metal spray powders, are

generally unaffected by the eddies and remain in the relatively high temperature, low density,

and least motion resistance zone near the jet centerline.

STREAMLINES

BARREL _- " __

r.dr,ll,._ _ _ "" __..-_""_ ..f"" -.._. .... ", LARGE-SCALE

,___ -:. ,,--.. ,,..,,  EDD,ES

• • • --JLJ-
Fig. (3) Supersonic Jet Structure

In an attempt to better understand the noise generation mechanism in supersonic free

jets, considerable investigation efforts have been devoted to the measurements of various

flow parameters and the study of how these quantities vary with jet flow conditions [8].

Earlier mean velocity measurements [8] using laser velocimeter and hot-wire anemometer

resulted in an empirical formula which gives the variation of the potential core length, Figure

(3) with the Mach number for both heated and cooled jets, it read as follows:
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X=
- 4.2 + 1.1 Mj2 (3)

D

Another general empirical correlation for the supersonic axial mean velocity decay with

range of validity between Mach Number 0.3 - 1.4., this correlation read as follows [8]:

U 1.35
- 1 - exp [_] (4)

(1_x)
X©

In the HVOF applications the jet mean axial velocity and temperature ranges are between

(1.5 - 2.5 M) and (1500 - 3000 ° K) respectively. The recent study of the heated jets indicated

that the potential core length decreased as the jet temperature increased [9]. Thus,

correlations (3), and (4) were modified to expand their range of validity by correlating recent

measurements of the mean axial decay velocity and temperature obtained from NASA/

Langley [9] and University of Toronto [10]. Figures 4 and 4A show the mean velocity and

temperatures correlations in relation to the measured values respectively. The comparison

of these Figures 4, and 4A for free axisymmetrical jets indicated that the velocity decays

faster that the temperature.

Third Stage: Momentum Transfer Mechanism Between Gas and Particle

The momentum equation, for either solid or liquid particles, are solved in a

Lagrangian frame of reference moving with the particles. The equation of motion for the

particle is written as [11]:

dVp _ 1 P. ApCo (V=_Vp)IV=_Vpl _ Up Vp (5)
mp dt 2

Where m r is the mass of the particle and Vp is the velocity vector of the particle, Cois the

drag coefficient, and the particle motion in two-phase flows depends upon the gas properties,

particle properties, and pg , Vg , P are the density, velocity and pressure of the gas,

respectively. Ap is the particle surface area and Vp is the particle volume. All particles are

assumed to be spherical. This equation of motion for a particle accounts for the

acceleration/deceleration of the droplet, due to the combined effects of drag from the gas

flow, and local pressure gradients in the gas. Because the gas flow pressure change is small

in the friction flow inside the gun barrel and the free jet plume, the gas pressure gradient

effect on the particle motion is neglected in comparison to the drag force. A literature survey

in the area of two-phase flows reveals that a number of drag coefficient equations have been

used to calculate particle .motion in supersonic flows [12]. Because the particles are initially

injected into a supersonic flow, each particle will have a shock wave on the upstream side.

The drag induced on these particles in this supersonic flow is calculated with the following
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empirical correlation:

dVp _ 3 Co (P=) (V=-Vp)IV=-Vpl ........... (6)
dt 4 pp d

The drag coefficient for the particle is based on the local Reynolds number of the particle and

is evaluated as:

R e

p I Vg-Vpl dp

p

here p. is the molecular viscosity of the gas. The variation of the gas viscosity was evaluated

from the graph and empirical formula shown in Figure (5). The following correlations have

been found to be valid for a wide range of Reynolds number [11]; it reads as follows:

24
C D - forRe< 1

R,

_ 24 __ o.saz
C o (l+0.1bN. ) forl<Re<lO 3

Re

Co = 0.44 for R, > 10 a

Fourth Stage: Heat Transfer Mechanism Between The Gas and The Powder:

The coefficient of heat transfer (h) between the particle and the gas can be determined

from the following Ranz-Marshall semiemperical equation:

hdp "SPr°'Ssss Cp=lJ=Nu - - 2+ 0.6 Re , Pr -
ks ks

Where % is the specific heat of combustion gases given by correlations shown in table (1),

d v is particle diameter, and kg is the coefficient of gases thermal conductivity - it was
evaluated from a correlation as a function of the temperature as shown in Figure (6).

Considering that the particle maintained its spherical configuration all through the process,

the temperature of the particle was calculated from the following expression:
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3. RESULTS AND ANALYSIS

The model predictions showed an expected sharp increase in both of the particle

velocity and temperature when the powder was initially injected in the barrel, Figures (7A)

, and (8A). The particle velocity reached almost half the gas velocity at the end of the barrel.

Meanwhile, the particle temperature closely approached the gas temperature at the same

section. This indicates that the heat transfer mechanism between the gas and the particle is

more efficient than the momentum transfer mechanism. The model predictions of particle

and gas velocities and temperatures in the jet plume Figures (7B) and (8B) showed that the

gas maintained its velocity and temperature over the potential core zone, that extends up to

X/D approximately equals 8 to 10, due to a very small amount of ambient air entrainment.

At the end of this zone, both the gas velocity and temperature experience rapid decrease as

they cross below the particle velocity and temperature curves shown in Figures(7B) and

(8B). This is attributed to large entrainment of a comparatively much cooler and slower

surrounding atmosphere in the mixing turbulent region of the jet generated by the shear

boundary layer and the density difference between the jet and the environment. The overall

effect is that the jet is cooled, spread, and decelerated as depicted in Figures (7B) and (8B).

Also, the same two Figures showed the velocity and temperature predictions of two different

particles, Tugesten Carbide (WC) and Inconel 718. The predictions showed the expected

trends as the lighter Inconel 718 particle with a density almost half that of the WC particle

gained and lost both heat and momentum faster than the WC particle as clearly shown in

Figures (7A), (7B), (8A), and (8B).

5. CONCLUSIONS

(1) The model predictions showed the expected velocity and temperature trends for both

particle and gas.

(2) The model was partially validated against a very limited measurements provided by the

manufacturer

(3) After model validation, it could be used for parametric study and optimization of HVOF

systems.

(4) Singularity due to the (1-M 2 ) term, very briefly affected the model prediction around the

throat area but the'model quickly recovered.
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6. RECOMMENDATIONS

(1) Measurements of velocity and temperature of gas and particle are necessary, for the
model validation

(2) The model should be used to perform parametric study and system optimization

(3) Rectify the singularity, problem due to the appearance of the term (1-M 2) in the

denominator - Use Taylor series expansion
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