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INTRODUCTION

Rapid access to highly accurate data about complex configurations is needed for multi-disciplinary

optimization and design. In order to efficiently meet these requirements a closer coupling between

the analysis algorithms and the discretization process is needed. In some cases, such as free surface,

temporally varying geometries, and fluid structure interaction, the need is unavoidable. In other

cases the need is to rapidly generate and modify high quality grids. Techniques such as unstructured

and/or solution-adaptive methods can be used to speed the grid generation process and to automati-

cally cluster mesh points in regions of interest. Global features of the flow can be significantly af-

fected by isolated regions of inadequately resolved flow. These regions may not exhibit high gradi-

ents and can be difficult to detect. Thus excessive resolution in certain regions does not necessarily

increase the accuracy of the overall solution.

Several approaches have been employed for both structured and unstructured grid adaption. The

most widely used involve grid point redistribution, local grid point enrichment/derefinement or lo-

cal modification of the actual flow solver. However, the success of any one of these methods ulti-

mately depends on the feature detection algorithm used to determine solution domain regions which

require a fine mesh for their accurate representation. Typically, weight functions are constructed to

mimic the local truncation error and may require substantial user input. Most problems of engineer-

ing interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that

the adaptive grid feature detection algorithm be developed to recognize flow structures of different

type as well as differing intensity, and adequately address scaling and normalization across blocks.

These weight functions can then be used to construct blending functions for algebraic redistribution,

interpolation functions for unstructured grid generation, forcing functions to attract/repel points in

an elliptic system, or to trigger local refinement, based upon application of an equidistribution prin-

ciple. The popularity of solution-adaptive techniques is growing in tandem with unstructured meth-

ods. The difficultly of precisely controlling mesh densities and orientations with current unstruc-

tured grid generation systems has driven the use of solution-adaptive meshing Use of derivatives

of density or pressure are widely used for construction of such weight functions, and have been prov-

en very successful for inviscid flows with shocks[2,7,11]. However, less success has been realized

for flowfields with viscous layers, vortices or shocks of disparate strength. It is difficult to maintain

the appropriate mesh point spacing in the various regions which require a fine spacing for adequate

resolution. Mesh points often migrate from important regions due to refinement of dominant fea-

tures. An example of this is the well know tendency of adaptive methods to increase the resolution

of shocks in the flowfield around airfoils, but in the incorrect location due to inadequate resolution

of the stagnation region. This problem has been the motivation for this research.

In this research a NURBS representation is employed to define block surfaces for boundary point

redistribution. The features described have been implemented into Adapt2D/3D. An adaptive grid
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system capable of automatically resolving complex flows with shock waves, expansion waves, shear

layers and complex vortex-vortex and vortex-surface interactions. An adaptive grid approach

seems well suited for such problems in which the spatial distribution of length scales is not known

a priori.

APPROACH TO ADAPTION

The elliptic generation system:
3 3 3

i=1 j=l k=l

= o (1)

where r : Position vector,

gij : Contravariant metric tensor

_i : Curvilinear coordinate, and

Pk : Control function.

is widely used for grid generation [1 ]. Control of the distribution and characteristics of a grid system

can be achieved by varying the values of the control functions Pk in Equation 1 [ 1]. The application

of the one dimensional form of Equation I combined with equidistribution of the weight function
results in the definition of a set of control functions for three dimensions.

(w,)_, (i = 1,2,3) (2)
Pi - Wi

These control functions were generalized by Eiseman [2] as:

+ g0(W;)_;
P; = A.__ _ (i = 1,2,3)

j=l

(3)

In order to conserve some of the geometrical characteristics of the original grid the definition of the
control functions is extended as:

P, = (Pm,,;,,;g...... o) + ci(Pw,) (i = 1,2,3) (4)

where P initial geometry : Control function based on initial

geometry

Pwt : Control function based on
current solution

ci : Constant weight factor.

These control functions are evaluated based on the current grid at the adaption step. This can be
formulated as:

PI ") = P'"-') + c,(P,.) ("-'_ (i = 1,2,3) (5)

where

P('_ = P("_ + c;(Pw,) _°) (i = 1,2,3) (6)
i i

A flow solution is first obtained with an initial grid. Then the control functions Pi are evaluated in

accordance with Equations 2 and 5, which is based on a combination of the geometry of the current

grid and the weight functions associated with the current flow solution[ 11 ].
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Evaluation of the forcing functions corresponding to the grid input into the adaptation program has

proven to be troublesome. Direct solution of Equation 1 for the forcing functions using the input

grid coordinates via Cramer's rule or IMSL libraries was not successful. For some grids with very

high aspect ratio cells and/or very rapid changes in cell size, the forcing functions became very large.

The use of any differencing scheme other than the one used to evaluate the metrics, such as the hybrid

upwind scheme[8], would result in very large mesh point movements. An alternative technique for

evaluating the forcing functions based on derivatives of the metrics was implemented[3].

1 (gtl)_i_i 1 (g22)_'ti 1 (g33)_i_i
- + +--- (i = 1,2,3) (7)Pi 2 gtl 2 g22 2 g33

This technique has proven to be somewhat more robust, but research efforts are continuing in this

area.

WEIGHT FUNCTIONS

Application of the equidistribution law results in grid spacing inversely proportional to the weight

function, and hence, the weight function determines the grid point distribution. Ideally, the weight

would be the local truncation error ensuring a uniform distribution of error. However, evaluation

of the higher-order derivatives contained in the truncation error from the available discrete data is

progressively less accurate as the order increases and is subject to noise. Determination of this func-

tion is one of the most challenging areas of adaptive grid generation. Lower--order derivatives must

be non-zero in regions of wide variation of higher-order derivatives, and are proportional to the rate

of variation. Therefore, lower-order derivatives are often used to construct a weight function as a

proxy for the truncation error. Construction of these weight functions often requires the user to spec-

ify which derivatives and in what proportion they are to be used. This can be a time consuming pro-

cess. Also, due to the disparate strength of flow features, important features can be lost in the noise

of dominant features. The weight functions developed by Soni and Yang [7] and Thomburg and Soni

[8] are examples of such efforts. The weight function of Thornburg and Soni [8] has the attractive

feature of requiring no user specified inputs. Relative derivatives are used to detect features of vary-

ing intensity, so that weaker, but important structures such as vortices are accurately reflected in the

weight function. In addition, each conservative flow variable is scaled independently. One-sided

differences are used at boundaries, and no-slip boundaries require special treatment since the veloc-

ity is zero. This case is handled in the same manner as zero velocity regions in the field. A small

value, epsilon in equation 8, is added to all normalizing quantities. In the present work this weight

function has been modified using the Boolean sum construction method of Soni [7]. Also, several

enhancements of an implementation nature have been employed. For example epsilon has been

placed outside the absolute value operator. This eliminated the possibility of spurious gradients in

the weight function in regions where epsilon was nearly equal and opposite in sign to the local

normalizing flow variable. Also, the normalizing derivatives have been set to an initial or minimum

value of ten percent of the freestream quantities. This alleviates problems encountered in flows

without significant features to trigger adaption in one or more coordinate directions. Otherwise a

few percent variation would be normalized to the same level as a shock or other strong feature. The

current weight function is as follows:

W t 142 W 3w = • _9
max(W'. W2, W3) max(W% W2, W3) max(W _,W% W3)
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Where,

W_: = 1+

k=1,2,3, and

Io l+e I (ou) I+e I (ov) I+e I (ow) I+e

' ° 1+']max (g7 %?]max kl (_ _))rna x _' (_3 ?+7]m_x

I0°,°,I I I I t I
I o I+e [ (Ou)I+e I(ov) I+e I (Ow)I+e

0 _]rnax (Ou) l+e]max ( (Ov)_k_'[_ _(Ow)_k_' 1__i]
(-_ i ¥ e- max max

(8)

The symbol • represents the Boolean sum. Note that the directional weight functions are scaled

using a common maximum in order to maintain the relative strength. For the results shown, the

weight function used is the sum of the weight function defined by Eq. 8 and the one defined in [8].

The weight function defined in [8] is Eq. 8 evaluated without using the Boolean sum.

Flow past a wedge at Mach = 2.0 is used to illustrate the enhanced detection capabilities of this newly

developed weight function. Figure 1 presents weight functions evaluated using the previous proce-

dure, lower half plane, as well as the current procedure, upper half plane.

WEIGHT WITH/WITHOUT BOOLEAN

Figure 1. Comparison of Weight Functions.

ADAPTED GRID WITH/WITHOUT (BOOLEAN)

(_,50,5)

Figure 2. Comparison of Adapted Grids.

It can be observed that both weight functions clearly detected the primary shock. It can also be seen

that the expansion fan, boundary layer, and the reflected shocks are much more clearly represented

in the current weight function. Adapted grids using both weight function formulations are presented

in Fig. 2. The high gradient regions of the expansion region are only reflected in the adapted grid

using the new weight function. The reflected shock is also much sharper. Figure 3 compares the

solution obtained using the current adaption procedure with that obtained using the original grid.

The enhanced resolution is clearly evident.
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ADAPTEI_ORIGINAI SOLUTION (BOOLEAN)

pRE_IIIF

,, ; [

Figure 3. Comparison of Solutions Using Adapted Grid.
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