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INTRODUCTION

The High Gradient Furnace with Quench (HGFQ) is being designed by
NASA/MSEFC for flight on the International Space Station. The furnace is being designed
specifically for solidification experiments in metal and metallic alloy systems. The
HGFQ Product development Team (PDT) has been active since January 1994 and their
effort is now in early Phase B.

Thermal models have been developed both by NASA and Sverdrup (support
contractor) to assist in the HGFQ design effort. Both these models use SINDA as a
solution engine, but the NASA model was developed using PATRAN and includes more
detail than the Sverdrup model. These models have been used to guide design decisions

and have been validated through experimentation on a prototypical “Breadboard” furnace
at MSFC.

One facet of the furnace operation of interest to the designers is the sensitivity of the
solidification interface location to changes in the furnace setpoint. Specifically of interest
is the motion (position and velocity) of the solidification front due to a small perturbation
in the furnace temperature.

FIDAP™ is a commercially available finite element program for analysis of heat
transfer and fluid flow processes. Its strength is in solution of the Navier-Stokes
equations for incompressible flow, but among its capabilities is the analysis of transient
processes involving radiation and solidification.

The models presently available from NASA and Sverdrup are steady-state models
and are incapable of computing the motion of the solidification front. The objective of

this investigation is to use FIDAP™ to compute the motion of the solidification interface
due to a perturbation in the furnace setpoint.

ANALYTIC MODEL

A precursor to the numerical model is the development of a comparable analytic
model. This model is not capable of providing information about solidification, but is
useful for comparing numerically computed temperature distributions and gradients in a
solid rod.

A Green’s function approach [1] was used. It is assumed that heat is added
uniformly over discrete sections along the length of the rod. Furthermore, it was assumed
that the rod had constant thermal properties and had an axisymmetric temperature
distribution. For a uniform heat addition over a zone from z; to z,, the temperature at any
point in the rod is
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Here the characteristic values are the roots of J;(B,)=0 , and the ‘*’ notation denotes
dimensionless quantities (r* = /L, z* = Z/L, t* = aW/L’, r'=r/ro, Y=ro/L and q" =q/q..)).

NUMERICAL MODEL

A schematic showing the relevant section of HGFQ to be modeled is shown in
Figure 1. The FIDAP™ model is axisymmetric and includes the SACA detail but not the
quench. The SACA representation includes the Aluminum sample, the graphite ampoule,
the gas gap, and the stainless steel cartridge. Hot and cold loads are not modeled
separateiy but are considered part of the sample. The baseline configuration is the SACA
in a Helium atmosphere, with a furnace setpoint temperature of 1100 C.

[ Sample and Cartridge Assembly (SACA) |

Chill |Gradienf gooster Guard
Quench giock | Zone | Heat Main Heater Heat

FIGURE 1. Schematic of HGFQ

FIGURE 2. Depiction of Computational Mesh

Grid. Several computational meshes have been used in this study, but the latest one
is depicted in Figure 2. This mesh has 2431 nodal points and contains 2682 elements and
is identical to the one used previously except for the addition of a finer grid in the
gradient zone. This fine grid is designed to capture the phase change interface to
facilitate good resolution of its location at any time step.
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Thermal Properties. The required thermal properties for Helium gas, 304 stainless
steel, Graphite, and Aluminum were obtained from NASA [2]. These properties are
consistent with those used in both the NASA and Sverdrup models.

Boundary Conditions. The only specified boundary conditions are the constant
furnace wall temperature (taken as 1100 C in the baseline case) and a constant heat
transfer coefficient and water temperature on the back of the chill block (take as
h=750 W/m%K and 22 C). All other surfaces are assumed adiabatic. However, all
surfaces in the cavity bounded by the SACA and the outer wall are assumed to participate
in grey-body radiative exchange. Radiation within the SACA (between the cartridge and
the ampoule) is neglected.

Modeling Solidification. FIDAP™ provides two means for accounting for phase
change in a transient calculation. The first is an Explicit Front-Tracking method in which
the location of the interface is added as an unknown in the system of equations. Once the
location is determined, the mesh is regenerated so that a prespecified group of elements is
always adjacent to the interface. The second technique is an Enthalpy-based method
where the solidification is accounted for by a variable specific heat. In this case, the
solidification front is found by locating the isotherm associated with the phase change
temperature.

The enthalpy-based method was chosen for the computations for two reasons
associated with the moving mesh. The mesh update algorithm is somewhat primitive and
does not allow specification of “meshable” and “unmeshable” regions within the solid
phase. This means that the ampoule, gas gap, and cartridge might be remeshed in the
process. Secondly, the movement of nodes on the boundaries associated with remeshing
will invalidate the previously computed radiation view factors.

Computations. The computational procedure is a two step process. First, FIDAP™
is used to solve the steady-state problem associated with the SACA at a fixed position
(the 50% processed position was used). The output temperature field for this condition is
saved in the output file. Second, a transient calculation is performed which uses the
steady-state solution as initial condition data. The solution was obtained using a
trapezoidal rule (Crank-Nicholson) integration with Af = 1.0 second over a 120 second
period.

Post-Processing: Position. Once the transient temperature field was obtained, the
position and velocity of the interface were still to be determined. The basis for the
location of the interface at any time was taken to be the intersection of the 660 C isotherm
with the centerline of the sample. The history of this location was determined by using
the “MOVIE” command of the FIDAP™ post processor, and relying on the fact that the
data from any “LINE” plot is echoed to a file. By plotting the centerline temperature
distribution at all times using the “MOVIE” feature, all the centerline 7{x) information at
each time interval was captured in an ASCII file. This file was processed with a simple

“C”-program which used linear interpolation to find the x-location of the 660 temperature
level at each time step.
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Post-Processing: Velocity. Once the Xpon(?) information is known, the velocity of
the front is found as the derivative (slope) of this function. Unfortunately, the
information is available discretely with finite precision, and the challenge of
differentiating a “noisy” function is faced. The differentiation was achieved by three
means: 1) finite-differencing on the Xfon(?) data, 2) differentiating a polynomial curve fit
to the data, and 3) finite-differencing the 5-pois t average of the data.

RESULTS

The results were obtained for a +2 C step in the furnace temperature. Although this
is larger than a perturbation that likely will be seen on the furnace, it will demonstrate the
effect. The position and velocity results are shown in Figures 3 and 4, respectively.
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Figure 3. Front location versus time for +2 C furnace step

A more typical variation in furnace temperature is a +0.2 C step. The results for this case
(both position and velocity) are seen in Figure 5. The effects of limited precision,

associated primarily with the 5-digit accuracy from the FIDAP™ post processor printout,
is evident.

Conclusions

Based on the present results, it is clear that front velocities of 2-3 m/s may be
possible due to a furnace instability of +2 C. It is less certain but apparent that for a
+0.2 C furnace step that front velocities of 0.2-0.3 pm/s may be possible. For each of
these cases, the present analysis indicates a transient associated with the front motion
lasting at least 2 minutes.



{—D—- Num. Deriv.

| — it Poly.

1 —&— Num. Diff (Sm.) ’

Time, seconds

Figure 4. Front velocity versus time for +2 C furnace step
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Figure 5. Position(left) and velocity (right) for +0.2 C furnace step
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