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This document describes a simple, light weight, and scalable mechanism capable of 
deploying flexible or rigid substrate solar arrays that have been configured in an 
accordion-like folding scheme. This mechanism is unique in that it incorporates a 
Shape Memory Alloy (SMA) actuator made of Nitinol. This paper documents the 
design of the mechanism in full detail while offering to designers a foundation of 
knowledge by which they can develop future applications with SMAs. 

Solar array deployment technology has reached a high level of sophistication via the 
use of traditional mechanical means such as linkages, motors, springs, and dampers. 
Although proven reliable and effective, many deployment means have been found to 
have high weight penalties. In an effort to reduce the weight and complexity of 
deployment mechanisms, a simple, Nitinol-driven deployment means was developed. 

The mechanism described in this paper is the result of a 25 week collaborative effort 
between Stanford University and Lockheed Martin issiles and Space. The 
development effort took place within the context of ate level, project based 
design course called Cross Functional Systems Desi E210). The objective of the 
project was not to deliver a flight-ready mechanism, but rather to explore the possibility 
of applying shape memory technology to solar array deployment. 
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ProDert ies of Nitinol (NiTiZ 
Table 1 summarizes the physical, mechanical, and transformation properties of the 
material. Note in particular the wide range in the yield strength of the material. The 
wide range in the mechanical properties is explained by the strong dependence of the 
material composition to temperature. The ratio of martensite to austenite in the 
material at temperatures close to its transformation determines its exact properties. 
Figure 2 shows stress-strain curves for Nitinol at its fully austenitic (T1 ) and fully 
martensitic (T2) states. 

Stress-Induced Martensite: Obtainina More Travel 
There is a unique and subtle change in the behavior of SMAs when they cool and 
transition from the austenitic to martensitic state. The transition between these states 
during cooling is marked by a dramatic change in material properties. This change in 
material properties is very important in that it allows much easier and effective use of 
the material as an actuator. 

As the material cools from martensite to austenite, the material’s yield strength and 
elastic modulus do not merely change in a smooth, linear fashion. It was found that 
both of these properties drop far below their martensitic material values when loaded 
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a "Using Shape Memory Alloys," Dare1 E. Hodgson, Ph.D. Shape Memory Applications, Inc., CA, 1988. 
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Figure 3. Material yield strength e) for Nitinol vs. 
temperature during cooling from aust 
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When the material is at its transition temperature, a bias stress can be used to induce 
the early formation of martensite, thus creating a soft, malleable state in the material. 
This property can be exploited to obtain larger material deformation without 
overstraining (damaging) the material. The net effect is that large deformations of the 
material can be obtained using relatively small forces for deformation. 

This unique property of the material is exploited by simply heating the material above 
its transition temperature, and then applying a bias stress on it as it cools. As the 
material cools, it will “give” quite dramatically, thus allowing approximately twice as 
much material deformation than possible when trying to deform the steady state 
martensitic structure. 

Whv Use SMAs? 
Nitinol was selected for use as the driver for the mechanism, due to its ability to 
accomplish a large amount of work per ght of material. By heating the material 
above its transition temperatures to ind its shape memory transformation, useful 

ork was accomplished to deploy sola els. The material as able to produce 
very high forces/torques under testing 
properties provided very smooth motion, thus removing the necessity of incorporating 
dampers in the system. 

the material’s inherent 
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itinol torsion bars (only one is needed to deploy, as the actuators are redundant) 
are mounted to the ba 
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lockup system is employed, utilizing sections of re to keep the back 
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e and transmit torque through a ri t-angle drive system, 

Deployment Backbone 
The d @ ~ l o y m e ~ ~  ~ a c ~ ~ o n e  is the cornerstone of the itinol deployment mechanism. It 
serves dual functions in that 
it is deployed. Figure 5 sho 
pulls apart the solar panels to deploy the array. The 

s used to deploy the solar 
a schematic diagram of h 



to the solar array, thus providing outstanding stiffness hen deployed. The backbone 
as the suppoi? structure for all of the other components in the mechanism. 

loyment backbone is constructed of thre 
s. For the sake of this prototype, poplar 

posite laminate 
material due to 

its workability, extreme light weight and high stiffness. In a final space application, 
graphite epoxy composites could be used. 

The three backbone members are 1.3 cm (0.5") thick and 14 cm (5.5") wide. The 
center member is 76 cm (30") long, while the other two members are 40 cm (16") in 
length. The width and thickness of the backbone were determined by the stiffness 
requirements of the array. 

Deploy mei 
Backbone 

n 

Backbone provides 
stiffness to the array 
after it is deployed 

Figure 5. The deployment backbone deploys the solar array by pulling 

backbone's orthogonal orientation stiffens the array after 
apart the solar panels as it straightens or unfolds. Notice how the 

The backbone members are connected together by simple, discrete, single pivot 
hinges. These hinges were designed to allow for the 2.5 cm (1") gap required when 
fully folded (stowed). The hinges also prevent the backbone from over rotating during 
deployment, by constraining the backbone to a maximum 180" of rotation in the fully 
flat (and open) position. When the backbone is folded and stowed, a 2.5 cm (1") gap is 
required between the members to allow for mechanism component clearance. Once 
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es this function 

is formed. 

-shaped bar is constructed from 1.3 cm (0.5") aluminum shaft and 6.4 mm (0.25) 
stainless shaft. The aluminum shaft is tapped through the middle of its length and the 
stainless shaft is scre ed in orthogonally through the entire thickness of the aluminum. 

The actuation subsystem applies the motive force 
thus deploy the array. This subsystem integrates 
system, a right angle drive, and a push ar. Figure 9 sho 
actual i on subs yst e m . 
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torque necessary to unfold the backbon 

through the right angle drive, thus rotating 
ckbone member. 
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Due to the high actuation torques and large rotation 
system, the stress-induced martensitic transformation 
means that the torsion bars are first heated above their 
slightly stressed during the cooling of the material back 
for deployment. This bias stress, applied as a torque of approximately 2 N m  (1 8 in- 
Ib), allows the material to be deformed well beyond 270' of rotation. Since the 
actuator has no force at the end of its travel, it is preset with 90" of rotation to assure 
full deployment of the array. At start-up, the actuation torque of the torsion bars has 
been measured to be greater than 11.3 Nom (1 00 in-lb)! 

The transition temperature of the actuators is set at 79°C (175"F), as requested by 
Lockheed for Nitinol actuators used in space applications. Heating of the material 
higher than this temperature is required to obtain full recovery of the material strain. 

Flexible Heating Systems 
Integrated, flexible, electrical heater systems are used to heat the Nitinol torsion bars 
above their 79°C (1 75°F) transition temperature. These heaters are constructed by 
impregnating resistive heating elements into a silicone RTV matrix and bonding them 
to the surface of the actuators. The heaters keep the material heated until the array 
has fully deployed and locked up. Since the Nitinol actuators deform during 
deployment, the heating systems must be able to flex and move with the actuator. This 
is to assure that intimate surface contact is maintained during heating. (essential for 
conduction, since convection does not occur in space) 

Right Angle Drives: Miter Gear Boxes 
The right angle drives are used to transmit the torque from the Nitinol torsion bars, 
around a 90" angle to the axis of rotation of the backbone members. These drives 
must be very smooth and must have very low friction to insure proper operation of the 
actuators. 

The drives are merely 90" miter gear boxes that were purchased off the shelf from W. 
M. Berg, Inc. The particular units applied have no gear reduction, and were chosen by 
virtue of the fact that they were the smallest gear boxes capable of transmitting the 
high torques supplied by the S A torsion bars. 

Push Bar 
The function of the push bar is merely to apply a force on the backbone to make it 
unfold during actuation. Due to its configuration, it is only capable of applying force to 
deploy the array. Even if the push bar rotated all the way back (for example, in the 
case of two way memory) no force could be applied to the backbone by the push bar. 
This is due to the fact that the push bar is not rigidly connected to the adjacent 
backbone member that it pushes against. It is allowed to retract from contact with the 
adjacent member, and actually rotate through the member that it is mounted on (a hole 
has been cut out of the member it is mounted on specifically for this purpose). The 
actuator bar is shown in the actuation subsystem overview, Figure 9. 
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prototype. 

A lenticular structure (named after the lentil) is a structure with a slight curvature along 
its length. This curved cross section creates high stiffness due to the increased section 
properties produced by the curvature. However, when a lenticular structure is bent, it 
loses its section and provides little resistance to bending. This unique property of tape 
measures was exploited to provide a simple, passive lockup means for the 
deployment mechanism. 

Nitinol Torsion Bar Training 
The behavior of the Nitinol actuators was predetermined by the process used to “train” 
them. In this particular application, the rods were trained to have one-way memory. 
The training process for the torsion bars was extremely simple. The 0.48-cm (3/16*’)- 
diameter drawn, Nitinol stock was cut down to two 38 cm (1 57 lengths and then placed 
into a fixture that constrained them in a straight position. The rods were then heated to 
a temperature of approximately 81 5°C (1 500°F) for ten minutes. The heating of the 
rods annealed the material, thus releasing all residual stresses. The net effect of the 
annealing process was to set the trained or remembered shape to the straight 
configuration. 

After training, the m 
tem pe ratu re) state. 
shape (assuming th stressed less than 8%). If s induced martensite is 
used, then material eformed a great deal more 
material . 

sled and deformed when in the martensitic 
ove 79°C (175”F), the rod returns to its strai 

ut overstraining the 



way memory in the material, although s 
ay memory is trained into the material by intentionally OV 

material over a repeated set of load cycles. 

The solar array needs to have its first bending normal mode at a frequency greater 
than 0.1 Hz to assure that it does not interfere with the attitude control system of the 
satellite. The following calculations are based on the prototype as designed, 
extrapolated to a 6 m (20') full-sized array. 

The extended solar array wing was modeled as a beam, with the moment of inertia 
calculated from the backbone and mass calculated from the entire system. The 
following equation was used to calculate the natural frequency of the system.: 

0, =J" 
(0.23m)Z3 

Where E-17 GPa (2500 ksi), I=113 cm3 (6.9 ins), and m=24 kg (52 Ib) for the solar 
array. 

The natural frequency, on is calculated as 3.7 Hz. 

Figure 12 shows the relationship between the length of the array and its 1st natural 
frequency. It was analytically determined that the current design could be extended up 
to 30 m (100 ft.) without violating the 0.1 Hz first bending requirement. 
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design space of possib tr us, 
a1 at 

o pull out the arrays. 
atrix in the figure cross section of the concepts developed for specific 

requirements. 

orp~o log~ca~  Chart was used by the design team to generate 
ideas for su -systems within the design project. 

From this vast array of ideas three concepts were chosen as superior concepts 
because they provided both deployment and lockup/stiffness. Each of these concepts 
was prototyped to confirm feasibility. These three concepts were the Nitinol Semi- 
lenticular Spring, the Nitinol Mast, and the Nitinol Backbone Deployment System, 
which has already been described. 

itin ~~~enticular  ~rototype b 
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Figu~e 

The semi-lenticular spring concept is a thin strip of Nitinol that is trained into a semi- 
circular cross section. The element is flattened and rolled onto a drum in the stored 
position, and it can be extended by heating the Nitinol strip to return it to the trained, 
curved shape. As the strip tries to regain its curvature, it pushes on itself, extending 
very much like a tape measure does. The semi-lenticular structure is also called a 
STEM (Storable Tubular Extendible Member) element in the aerospace industry. 

SMA 
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The motion of the itinol mast is similar to the current m 
stro Aerospace or AEC-Able 
al members are replaced by 

by a motor, the 

From these promising concepts, the Nitinol Backbone was chosen as the concept for 
further development. Although all could be applied effectively to solar array 
deployment, the Backbone was deemed to be more unique and exploited the 
properties of Nitinol better than the other concepts. The other concepts were also 
problematic due to the fact that they rely on the Nitinol to provide lockup stiffness. 
Nitinol exhibits a severe dip in stiffness as it cools from the austenitic to the martensitic 
state, thus leaving these concepts unsuitable for the combination of deployment and 
lockup. 

erf ormance Results 

The Nitinol Backbone deployment met and exceeded all the requirements set by the 
project constraints. The most poignant results are the comparisons between the 
Nitinol Backbone and the current state-of-the-art, the Astromast from Astro Aerospace. 
The table below makes direct comparisons for major performance criteria. 

Table 
Astron 

2: Comparison of key performance characteristics between 
nast and the Nitinol Backbone mechanism. Weight, volume, 

the 
and 

The table clearly indicates the advantages of using Nitinol over current technologies. 
It also achieves the required stiffness with a natural frequency of 3.7 Hz at 6 m and 
above 0.1 Hz at 30 m. The kinematic constraints create a natural redundancy in the 
actuation. If one actuator moves, the entire array will deploy. Should one of the many 
actuators fail , the remaining actuators are sufficient to deploy the array, increasing the 
reliability of the design. The deployment can be easily controlled for smooth motion by 
varying the heating rate of the torsion bars. As a result, no additional dampers are 
necessary. This further reduces the cost of the system. 

Using a 207 g (1.5 oz) piece of Nitinol, it is possible to deploy a 1.5 m (5 ft) wing with 
actuation torques up to 1 1.3 N*m (1 00 in-lb) over 180" of travel. Such performance is 
only possible with Nitinol. The backbone system exploits Nitinol in many different 
ways, including utilizing the natural damping of Nitinol, the little known Stress Induced 
Martensitic transformation, and the simplicity of one way memory. In this 25 week 
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as successfully developed to apply the use of itinol to solar array 

Nitinol. The development of this prototype has not only seen the creation of a better, 
lighter, and cheaper deployment system when compared to the current state of the art, 
but also the conceptualization of many possible "spin-off" ideas using Nitinol that can 
be applied to other mechanisms. This work has shown the development of a superior 
deployment technology, providing the rationale and analysis necessary to foster 
further development of other mechanisms exploiting the unique properties of Nitinol. 

ugh still in the prototype stage, significant improvem 
plexity, efficiency, and system cost are foreseen th 
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