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Chapter 1

Introduction

The National Aeronautics and Space Administralion's interest in viscous, hypersonic flow

[iehl simulalion has grown ill recen! years ill anticil)alion of lhe design needs for space iransporta-

lion and exploration over the nexl three tlecades, e.g., Walberg (ref. 1). Proposed aeroassistetl

space 1,1"a,llsfer ve[licles will use the ul)per layers of planetary almoSl)heres in hyl)ersonic acre-

braking maneuvers. Supersonic combustion ramjet engines are being designed lo propel vehicles

al hypersonic sl>eeds through the Earth's at.mosphere to orbit. Various concepls for a single-

stage-to-orbit (SSTO) vehMe are now being considered. The external flow field surrounding

such vehicles, as well as the internal flow field through the scramje! engine and nozzle, can

be significantly influenced by thermochemical nonequilibrium processes in the flow. Accurate

simulalions of l hese phenomena wouhl provide designers valuable iMbrmalion concerning the

aerodynamic and aerolhermodynamic character of these vehicles.

This user's manual provides detailed instructions for lhe installation and lhe application of

version 4.1 of" the Langley Aerol hermodynamic Upwind Relaxation Algorithm (IAUtlA) (ret_s. 2

and 3). which is a program for obtaining the simulations discussed above. Earlier versions of

LAURA were l)redominanlly research codes, and they had minimal (or no) documentation. This

manual (h,scribes UNIX-based utililies for customizing lhe code for special applications (.hat also

minimize system resource re(luiremellts. The algorithm is reviewed, and the various program

options art, related to specific equa.tions and variables in the theoretical developmenl.

Two major challenges exist to the simulation of flow fields in thermochemical nonequilib-

rium around vehicles traveling a.t hyl)ersonic velocities through the atmosphere. First, these

simulations require modeling of the nonequilibrium processes in the flow; these processes fre-

(tuenlly occur a.t. energies in which the models currently lack sutftcient ext)erimental or analytic

validation. Second, because of the large number of unknowns associated with chemical species

and energy modes and because of disparate time scales within the flow field, these simulations

require algorilhmic innovations to mainlain numerical stability and fully exploit supercomputer

resell rces.

Nonequilibrium processes occur in a flow when the time required tor a process to accom-

modale itself 1o local conditions within some region is of the same order a.s the transit lime

across the region. The equations and the models used in this manual for nonequilil)rium flow

have been documented in reference 4, and they were substantially derived from lhe work of l)ark

(refs..5 and 6) and Lee (ref. 7). (:alibration and validation of the physical models intrinsic to

this code were first discussed in reference S. Other code (tevelol)ment and calibration programs

(e.g. GASP (refs. 9 to 11), (:andler (ref. 12), (:andler and Mac(:ormack (ref. 13), Park and Yoon

(ref. 1-1), Nellerfield (ref. 15). and (:oquel et. a.1 (ref. 16)) are now in progress within the area of

viscous, hypersonic, reacting gas ttow fiehl simulations.



Numerical stability is maintaiued through an implicit trea.tment of the governing equations.

A great variely of implicit treatments is possible. ]:'or problems in which only the steady-state

solution is required, one is free to evaluate any element of the difference stencil at an)' itera-

tion (t)seud()-time) level which facilitates the relaxation process. In the most rigorous implicit

treatment, all variables in all cells are simultaneously solved at an advanced iteration level, thus

requiring tile solution of a linearized equation set involving (7_ × I × .1 × K) equations where
_ is tile number of unknowns at a. cell and I, J, and K are the number of computational cells

in the three respective coordinate directions. The various forins of factored implicit scliemes

an(l line relaxation melhods sequentially solve equation sets involving (It x 1), (7_ × J), and/or

(t_ × K) variables. The point-implicit schemes, as utilized in the present work, sequentially solve

equation sets involving _ simultaneous, linearized equations. Further simplification is possible

in chemical kinetic probleins by linea.rizing contributions to the residual from only the source

lerms to alleviate problems of disparate chemical time scales, thus resulling in methods which

involve no matrix operations.

The essence of the point-implicit strategy is to treat the variables a.t the cell ('enter of interest

implicitly at the advanced iteration level and to use the latest available data front neighbor cells

in defining the "'left-hand-side" numerics. The success of this approach is made possible by the

robusl stability characleristics of the underlying upwind difference schem(,. Even simulations of

thermochemical nonequilibrium flows ill a near-equilibrium state can be handled by this approach

(ref. 17). The algorithm requires only a single pseudo-time level of storage and is efficiently

intplemented on vector or parallel processors (ref. 18). Details of the relaxation algorithm.

including effecls of a gas in thermal and chemical nonequilibrimn, are presente(l herein.

As noted above, there is no requirement to synchronize the evolution of the solution a.l

neighboring points in lhe single-level-storage point-implicit relaxation strategy. Consequently.

algorithm parallelization can be implemented on a subroutine level across several domains with-

out the need to svnchronize tasks or restrict parallel code to a "do loop" level. Scalar (:()de and

conditional logic do not inhibit, parallel efficiency. Dynamic allocation of resources to domains

that are slow to converge is enabled in this environment. These capabilities are exploited on

CRAY class computers and are discussed in greater detail within this manual.
The code and the user interface are structured to make liberal use of FORTRANinclude state-

merits thai tailor the resource requirements for each case to a minimum. System requirements

vary from standard workstations for many perfect-gas applicatiollS to 12_ Mw (megaword) in-

core memory, 128 Mw of "fast disk" (SSD) memory, and more than 100 central processing unit

(CPU) hours to obtain a converged solution on a CRAY YMP for thermochemical nonequilib-

rium flow (seven species) over the Space Shuttle with the thin-layer Navier-Stokes equations

using a grid of 1._)0 × 109 × 60.

This manual is designed to guide the user through the application, beginning with the in-

stallation of the source <'ode on a given machine. (!hapter 2 contains an o_ltline of this manual,

and provides an overview of the LAURA algorithm.

V'



Chapter 2

Overview

Titis chapter provides an overview of the LAURA algorithm, and il can be skipped by 1he

experienced user. (_hapter 3 is a checklist (a brief outline of the entire procedure) which is useful

for (he exl)eriet,<'e(l ,iset" who z,ee(Is a quick review. Chal)(er 4 is a <lui<'k refere),('e gulch' to the

ulilHies and <'o))iman<Is of I,.\UI¢A. (lhal)ter 5 <letails lit(, source-<'o(le installa(ion l)ro<'e<lure.

The setup l)ro('edure for a parti<'ular al)plication is give)) i_) chal)(er (i. ati<l the tltenus of the

slarlul> rout it)(, are given in chal)t('r 7. ('hal)ters S and 9 discuss (he ('otttl>ila(ion at)<l exe('ulio)t

of LAITI_:A. respe('tive]y, arid chal)ter 9 (]escribes the resttllaiH otttl)t)( files. Al)l)roa('hes for a

nullll)er of advanced at)l)lications are presente(I in (lhal)ler 11. The various al)pendixes l)rovi(le

• a saml)lo case (al)l)('t)(lix A)

• the equations for col,if" geometries (al)l)endix B)

• the details of tit(, variotts script files eml)loyed by LAURA (al)l)endixes (' to N)

• atJ in-(lel)th discussion of the LAURA algorithm (al)pendix O)

• the FORTRAN variables discussed in this document (al)I)endix P)

• tit(' FORTRAN flags changed through data (appendix Q)

• the FORTRAN flags changed through start (apt)endix R)

• the FORTRhN flags changed through file edits (appendix S)

Although not a requirement, in hypersonic blunt-body applications, the origin of the coordi-

nat(, system generally sits at or near the stagnation point on the body. with tile z-axis pointing

oul from the t)ody toward the oncoming flow, as shown in figure 2.1. Tile y = 0 plane defines

the swnttletrv plane. Lifting-body al)plications retain this orientation in which the origin of the

coor(linat(, svstettt is a( or ),ear tile vehicle stagnation point, the z-axis points oltt frottl the nose,

aggainst (he tlow. a_ld the negative z-axis tyl)ically runs through the interior of )he vehicle.

(!ontt)utalional coordinates (_, i/, _) run in the direction of if,creasing i-, j-. and _:-indi('es.

resl)ectively, as shown in fig;ure 2.2. The vehicle surfa.ce grid is usually defined I)y (he L' = 1

[)lane (o ellhance ('onvergen('e through the use of over-relaxation of the viscous tertHs and sl)e('ial

limHers when sweeping across the boundary layer, although o(her orietltatiotts are i)ermitte(].
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Figure 2.1. Typical orientation of (art e, lan coordina,te syslem with resl)ecl to blunl body ill

LA(TRA.

j = 1 plane

plane of symmetry

k = 1 plane

surface

Figure 2.2. Typical orientation of computational coordinates over winged vehicle showing two

COlnputational planes.
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Figure 2.3. Suhdirectory layout for I, AURA.

NOTE: Options for a.ulonlatica.lly aligning the grid with the cap!ured bow shock

and resolving the boundary layer require this orientation with L: = 1 on lhe surface.

The first sle t) hi applying LAURA to a p,;iven problem involves installation of the source

code on the conllmter where the conq>utations will he perforlned (chapter 5). LAURA has been

successfully tested on SUN. CRAY. S(,I. and (!ONVEX architectures. The LAUllA package

is distributed as two fles, LAURA.4,1.'car. Z and INSTALL_LAURA.4.1, which should be placed

ill the user's SHONE directory. File LAURA.4.1.tar.Z is a tarfile (tape archival file) which

contains the LAUt_A source code. The tile INSTALL_LAURA.4.1 is a scrip! thai execules the

installation procedure.

NOTE: LAURA requires a UNIX operating system, and assumes the user has some

familiarity with UNIX protocol.

LAURA is base<t on tile prenfise that the bulk of the LAURA source code does not change

from one application to the next. These files, which should rarely require modification, are kel>t

in SHONE/LAURA. 4. :t, which is a read-only directory.

By default. LAURA uses the SHONE/LAURA.4.1 source files, in conjunction with application-

speciiic coding create<t through user-inputs to PRELUDE (the LAURA prepro<'essor). For further

tailoring, the user can create a LOCAL version of any LAURA source file. This LOCAL file will be

used for compilations from this working (LOCAL) directory only. This LOCAL file <'an be converted

to a CUSTOM file if' the user wishes t.o make it tile default (in lieu of the SHONE/LAURA. 4.1 version)

from any working directory. If a CUSTOM version of a fife is encountered during compilation, il is

used ill lieu of the $HOME/LAURA.4.1 version. If a LOCAL version of a file is encountered during

compilation, it is used ill lieu of the SHONE�LAURA.4.1 version and the CUSTOM version (if one

exist s ).

Figure 2.3 shows tile relationship between (and roles of) the various directories employed by

LAURA. The headers on each box are directory names, and the contents of each box are file

types located in thai direr'tory. Solid lines indicate required files and directories, and the dashe<l

lines indicate files and directories whose existence is det>endenl on which advanced features have

been utilized.



To run LAURA interactively,typethe (:ommand

laura < data > ifn)

This command sends the output to file lfn. User control of a given run is provided through the

input files and the include files with the .strt suffix (chapter 9).

A typewriter style is used to denote file names and directories, as well as FORTRAN ¢:odin_;.

Italics are used tbr variable names and for units of measure. Shade(l boxes with thin borders

and sharp corners are used to denote contents of a file. Shaded boxes with thick borders and

rounded corners are used to denote screen prompts. (jOlnmands that the user types are conlaine(1

in smaller shaded boxes with thin borders and rounded corners.

The term LOChL refers to files in the present working (or LOCAL) directory, which will be used

in lieu of the installe(l files within this directory only. The term CUSTOM refers to tailored files

that are use(l in lieu of the insta]le(t files from any workin_ (lirectory.



Chapter 3

LAURA Quick Reference Guide

This ('hapl(,r discusses the inslallalion, the specialization, and the apl)licalion of I,AURA

and is inlen(/ed as a quick refi, ren('e guide.

3.1. Installation

To install I,A['RA, COml)le, le ill(, following stet)s:

• t)la('e fih,s LAURA.4.1.tar. Z and INSTALL_LAURA.4.1 in the $HOME directory (chapter 5).

l:ir(, LAURA.4.1 .tar. Z should I)e read-only; if not, type

(chmod 400 LAURA.4.1.tar. Z)

The file INSTALL_LAURA.4. l should be executabh,: if nol, type

(chmod 500 INSTALL_LAURA.4.1)

• Type the command

(I_ISTALL_LAURA. 4.1 )

to install th(, LA[;RA source co(h, on this machine (chapter 5).

3.2. Specialization

For specialization, (to the following:

• (?reate (and change 1o) a working (LOCAL) directory.

• Type

to ('reale the subdirectories that LAURA requires (chapters 6 and 7). For some advanced

al)pii('ations, the start executable may require tailoring. In such cases, the desired changes

should be made (via LOCAL or CUSTOM source files for sChrt) I)efore I'ulln]llg PRELUDE.

• Type

Io <:Oml)ile laura, the I,A[;RA executable (chapter S). For a.(tvalwed applications, fur-

ther tailoring of I,AURA may t>e require([ (chapter 11) I)efore execuling make. If so, use

LOCALIZE t(> create LOCAL versions of flies for necessary modifications. If CUSTOM files

('onlaining the desired changes ah'eady exist, this ste l) is nol required.



NOTE: Tile laura executablelnusl l)erecompiledafterchangesI.<)any leAITRA
FORTRANfiles( .F, .FOR,.f, .inc, or .strt su_xes).

3.3. Application

For LAURA al)t)lication, complete the following slel)s:

• Review LAURA inpul files (chapter 9) and inodify, if necessary.

• To l'llll interactively, type the conlmand

(laura < data > ifn)

to rUll LAURA and send the outpul to file lfn. Individual runs are controlled via t l|(,

LAURA input files (chapter 9).

• The LAURA output files are discussed it* chapter 10.



Chapter 4

Summary of LAURA Utilities

A summary of I,AURA utilities is given below. The utility is listed in lhe left ('ohnnn. and

its functio, is give, in tile right coltnnn.

ARCHIVE

BLOX

CUSTOMIZE

INITIALIZE

KEEPER

LOCALIZE

RESTORE

SIZEIT

XCUSTOM

saves the LOCAL. CUSTOM. and input files for lhe present working (LOCAL)

<tirectory

exchanges data belween lhe workiug files (RESTART. in a,d TWALL. in)

and their master files (RESTART.MASTER and TWALL.MASTER)

moves the LOCAL file to the CUSTOM direclory: the CUSTOM file will t)e use<t in lieu

of the $HOME/LAURA.4.1 version in fulure LAURA al)l)lications

accel>ts a grid fi'om a file in the PLOT3D format, initializes the flow fiel(I to lhe

fi'ee-stream values, and creates RESTART.in

makes backu l) copies of files RESTART. in, RESTART.MASTER,

TWALL. in. and TWALL. MASTER

creates a LOCAL version of the $HOME/LAURA.4.1 file; it is used in lieu of

the SHOME/LAURA.4.1 version in this LOCAL directory

restores the archived files to the present working (LOCAL) directory

estimates the memory requirements of a given application, based on the values

specified in the files parameter.s'crt and assignJzasks

eliminates a customized file





Chapter 5

Source Code Installation

LAUI{A has been suct'essfully teste(I on SUN, (:RAY, SGI. and CONVEX archi(ectures.

The _irsl step ill applying I, AURA to a given l)roble,, involves the installalion of the SOllrce

code (m (he ('omputer where lhe ('omputations will be l)erformed. The LAURA package consists

of two tiles, LAURA.4.1.tar. Z and INSTALL_LAURA.4.1. which shouhl be placed in the use)"s

$HOHEdireclory. File LAURA .4.1.tar. Zshould be read-only; if no). type

chmod 400 LAURA. 4.1. tar. Z}

The file INSTALL_LAURA.4.1 should be executable; if not, lyl)e

(chmod 500 INSTALL_LAURA.4.1)

The source code for LAURA is contained in LAURA. 4.1. tar. Z, wl,ich is a tarfile (tape archival

file). Typing the command

(INSTALL_LAURA. 4.1 )

executes the relatively straightforward t)rocedure (appendix (:). which is ou(lined below.

1. A subdirectory named LAURA.4.1 is created in the user's $HOME directory.

2. The LA (TR A source code, contained in the following files, is extra c( ed from LAURA. 4.1. tar. Z

and placed in directory $HOME/LAURA.4. I. These filesinclude

(a) Files with the start, root, which contain the source code for start, the LAURA

slarl-up routine (discussed in chapters 6 and 7)

(|)) The scrip! PRELUDE thai serves as the front-end to start

(c) Files with a .F sulfix, which contain LAURA subroutines; these files have a .FOR

suffix on (:()NVEX architectures

(d) Fih, s wl)h a .inc sut_ix, which contain additional FORTRAN coding (such as COMMON

blocks); the information in these files is accessed by various LAURA subroutines

through include statements

(e) The file vinokur.da'ca, which supplies the coefficients for Vinokur's curve-fits

(f) The file mAch+prOc.c, which is a (? program used to determine the machine archilec-

Iure and number of availal)le processors

(g) The data file DEFAULTS, which supplies defaul) vahws to s'cArt
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(h) Tile scriplfilesMakedep, Makedep. awk, and SYMLINKS, which are used I)3'the Makefile

(appendix E); these filesmust be executable

(i) The following utilities (which are detailed ill tile a l)pendixes); these script files must

be executable:

ARCHIVE INITIALIZE RESTORE

BLOX KEEPER SIZEIT

CUSTOMIZE LOCALIZE XCUSTOM

(j) The followhlg FORTRAN source files:

array.f flowinit.f

exchange.f flowinit.inc

makeblk.f

sizeit.f

3. The C program mAch+pr0c is compiled and run Io deternfine lhe nlachine arcl,iteclure and

number of available processors.

4. The ARCHIVE, CUSTOMIZE, KEEPER, LOCALIZE, PRELUDE. SYMLINKS. and XCUSTOM scriptsare

tailored to this architecture.

5. The program start.f is compiled to creale the executable start. Also, the executables

ArrAy, fl0wInlt, mAkEblk, and sIzgIt are created from !he FORTRAN source tiles listed

al)ove.

.

7.

The data file DEFAULTS is tailored to this machine.

The user's . cshrc file is checked to see if aliases for the supporting script files of I,AURA

have been estat)lished. If not, the user is given the option to add aliases for these scripts

(ARCHIVE, CUSTOMIZE, KEEPER, LOCALIZE, PRELUDE, and XCUSTOM). These aliases allow

execution of these commands fronl any working (LOCAL) directory in the user's account

without having t.o enter the full path name.

At this point the installation t>rocedure is complete.

NOTE: Type

source .cshrc)

t.o activate tile new aliases for this shell.
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Chapter 6

Setup for LAURA Application

After installation, 1he first slep ill applying LAURA to a specitic problem involves creating

a working (LOCAL) (lirectory, eilher in scralch space or in a t)ernlanen_ subdireclory. The tiles

in the working <lireclory, are referred to as LOCAL files in this manual. Within this directory,

PRELUDE is execute<l to create the required infrastructure for LAUllA. PRELUDE also exe<'ules

stArt, whi('h allows the user (o tailor LAUI/A to an at)plit'ation by selecting ilems from a

series of menus (chaplet 7). Defaults for lhese menu prompts are supplied by lhe tile DEFAULTS

(seclion 6.2), while lhe user inputs are written to the ill(' INPUTS (section 6.3). The user-defined

choices tailor LAURA through FORTRAN parameter sla.tenzents, compile directives, and include

tiles. The file Makefile is also conslrucled based on these selections. As a result, only the

code and memory required for this apl)lication are activated during compilation. A lhorough

discussion of PRELUDE is presented in section 6.1. Its analomy is given in appendix D.

For rues1 applications, a successful run of PRELUDE is followed 1>5, the make command, which

compiles the L:\UIIA source code to creale laura (the LAI;P_A executable). The features

of the LAURA Makefile are discussed in chapter 8. Its anatomy is given in appendix E,

sect ion E. 1. For certain advanced applications, additional tailoring (chapter 1 l) may be re<luired

a.fler running PRELUDE. This involves modifying LOCAL copies of LAURA files before <'ompilation,

as described in se<'lion 6.,I.

('hal)ter 9 <lis<',sses actually running LAURA. Specifically, this chal>_er provides details on

lhe inpul files that, give the user control of a given run. The LAURA output files are described

in ella,pier lO.

6.1. Workspace Layout

The command PRELUDE serves a.s the fi'ont-end for sZArt, which performs the following

functions:

• (lase-specific in<'lude files (with .strt suffixes) containing FORTRAN coding are ('reared.

• Up to three inl)U! data files are created by stArt for LAURA, depending on the following

user inputs:

- da'ca: This tile, which provides control of LAURA, is always generated t>y stArt. The

roles of its various entries are discussed in seclion 9.1.3.

- RESTART. in: This is the reslart file for LAURA, which allows the current run to pick

up (he solution where the previous one left off. For externally generate<l grids. )his file
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mustbesuppliedbythe user.Otherwise,start t)rovidesa "cold-slarl" RESTART.in
file (section9.1.1).

- TWALL.in: This is therestartfile for thewall temperaturedistribution(section9.1.5).
It isonly usedby LAURA whenthe "radiativeequilibriumwall temperature"option
is active,and only createdby start whenthat particularoption is selectedby the
user.

• Tile user inputs from this run of start are saved ill files DEFAULTS and INPUTS.

]n addition to activating start, severalother tasks are performed by PRELUDE.

• Subdirectories 0BJfiles and STRTfiles are created illthe working (LOCAL) directory. The

0BJfiles will ultimately contain the object files and executable file, which are crealed by

make. STRTfiles will contain the FORTRAN files (. strt suffixes) crealed by start. PRELUDE

executes start and then moves the resultant files to the STRTfiles directory.

By default, the $HOME/LAURA. 4.1 start executable is used. However, if any LOCAL versions

of start source files exist, compilation is performed to create a LOCAL w, rsion of start (if

it is outdated_. If no LOCAL start source files exist, the existei_ce of CUSTOM start source

files is considered. If they do exist, a CUSTOM start executable is compiled (if it requires

updating).

• Before start is executed, if anv LOCAL case-specific include files (.strt suffixes) already

exist, the user is given the option to retain them.

• If file data, RESTART. in, or TWALL. in already exists in the working (LOCAL) director),, the

user is given the option 1o kee l) the old file or update it.

With each PRELUDE run, DEFAULTS supplies the default values (which are echoed to the screen)

for the user inputs to start (section 6.2). The INPUTS file reflects only those values selected

in the last execution of PRELUDE (section 6.3). If for any reason (file corrul)tion or deletion, for

example) the user needs to repeat this initialization, the command

(PRELUDE INPUTS)

reproduces all of tile files produced by start without further user input.

6.2. DEFAULTS File

The default values for the variables of the start menus are supplied through the LOCAL file

DEFAULTS. These values are echoed to the screen for their respective menus. Initially. this ill(, is

copied from SHOME/LAURA .4.1. With each execution of PRELUDE, DEFAULTS is updated to reflect

user inputs. This feature provides the user with an on-line reminder of previous values.

NOTE: Acceptance of the default values defined in the SHOME/LAURA.4.1 version

of the DEFAULTS file will generate the initial grid and flow fiehl for the case discussed

in a ppez_dix A.

The first section of DEFAULTS contains the LAURA version number a.s well as the machine

time and number of available processors (screen 1). This section is determined during the

installation of the code on a given lnachine. The next section of DEFAULTS contains general

information, including free-stream conditions.
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1

2

1

1

5000.00

O.lO0000e-02

200.000

O.

O.

0

500.000

O.

nprocs ......................... number of processors to be used

newjob ............ O=externally generated, 1=conic, 2=aerobrake

ndim ....................... flow: l=axisymmetric, 2=2-D, 3=3-D

igovern .................. fluid eqns: O=Euler, I=TL N-S, 2=N-S

vinfb ........................................... velocity [m/s]

rinfb ......................................... density [kg/m'3]

tinf ................................ freestream temperature [K]

attack ................................... angle of attack [deg]

yaw ......................................... angle of yaw [deg]

tempbc . Tw BC: O=constant, 1=variable, 2=radiative equilibrium

twall ..................................... wall temperature [K]

ept ......................... wall temperature relaxation factor

_creell ].

NOTE: Ill version =1.1of I,AURA, tile yaw angle is set to !/,w= O.

The nex_ section (screen 2) concerns _he gas mo<le].

0

0

0

n

n

n

n

n

n

n

n

n

n

0

0

ngas ........................... gas model: O=P6, I=E_, 2=NONEQ

ierv ......................... EQ model: l=Vinokur, 2=Tannehill

itherm ............. 1=equilibrium (I-T), 2=nonequilibrium (2-T)

answern ................... species:

answero ................... species:

answern2 .................. species:

answero2 .................. species:

answerno .................. specles:

answernp .................. specles:

answerop .................. specles:

answern2p ................. specles:

answero2p ................. species:

answernop ................. species:

atomic nitrogen (y/n)? ....

atomic oxygen .............

molecular nitrogen ........

molecular oxygen ..........

nitric oxide ..............

ionized atomic nitrogen...

ionized atomic oxygen .....

ionized molecular nitrogen

ionized molecular oxygen..

ionized nitric oxide ......

jtype ................................. catalytic nature of wall

nturb ....... turbulence: Offino, 1=Cebeci-Smith, 2=Baldwin-Lomax

Screen 2.

The third section (screen 3) contains default, values to the controls for the computalionaI
domain.
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1

3O

1

64

4

1

5

5

0

3

nblocks ......................... number of computational blocks

iblk(1) ....................... block 1: cells in i-direction

jblk(I) .......................

kblk(I) .......................

itype(l, I) .............. block

itype(2, 1) ..............

itype(3, 1) ..............

itype(4, 1) ..............

itype(5, 1) ..............

itype(6, 1) ..............

I: cells in j-direction

1: cells in k-direction

1: nature o£ i = 1 boundary

1: nature of i = 30 boundary

1: nature of j = 1 boundary

1: nature of j = 1 boundary

1: nature of k = 1 boundary

1: nature of k = 64 boundary

Screen 3.

NOTE: Initially, defaults are assigned for a single COmlmtalional block. If more

than one block is specified in start, the updated DEFAULTS file will contain the

dimensions and boundary conditions for lhese additional blocks.

The final section (screen 4) contains the geometry information.

0

m

1.00000

O.

O.

3.14159

2.00000

1

20

1

O.

1.00000

1.00000

1.00000

1.00000

1.00000

1

1.00000

0

90.0000

O.

O.

1.00000

1.00000

iunit ...................... units: O=m, l=cm, 2=ft, 3=in, 4=__

unit ........... 1- or 2-character abbreviation for custom units

rflngth ..................... conversion factor for custom units

xcg .................................................. x-cg [m ]
zcg ..................................................z-cg [m ]
refarea .................................. reference area [m "2]

reflen ................................... reference length [m ]

ndimb ............ body dimension: l=axisymmetric, 2=2-D, 3=3-D

ic ...................................... number of cells on cap

konic .... {1=hyper, 2=para}boloid, {3=elliptic-, 4=sphere-}cone

thc .............................. half-angle [deg] of asymptote

b ............................... axial shape parameter for nose

rnose ......................................... nose radius [m ]

rxz ......................... nose radius [m ] in symmetry plane

zmax .......................................... body length [m ]

axfac ......................... axial stretching factor for grid

iafe .......... aerobrake option: O=AFE, 1=hemisphere, 2=custom

scale ................................... aerobrake scale factor

thetaxy .................................. body half-angle [deg]

delta ......................................... rake angle [deg]

tau ............................... shoulder turning angle [deg]

radius .................................... shoulder radius [m ]

epsib ..................................... eccentricity of nose

rbase ................................... base plane radius [m ]

,_('reel, 4.

16



6.3. INPUTS File

Each tinm PRELUDE is successfully run, an INPUTS file is created which contains the user

inputs of that session. As such, il is a subse! of the DEFAULTS file. since no single run will reset

all of the default values. (For example, if perfect gas flow is chosen, lhe user does not choose an

equilibrium curw,-fit.) To illustrate, the INPUTS file (screen 5) for appendix A is shown below.

2

i

1

5000.00

0.100000e-02

200.000

0

500.000

0

0

30

64

1

1.00000

newjob ............ 0=externally generated, l=conic, 2=aerobrake

ndim ....................... flow: l=axisy_etric, 2=2-D, 3=3-D

igovern .................. fluid eqns: 0=Euler, I=TL N-S, 2=N-S

vinfb ........................................... velocity [m/s]

rinfb ......................................... density [kg/m*3]

tinf ................................ freestream temperature [K]

tempbc . Tw Be: 0=constant, l=variable, 2=radiative equilibrium

twai1 ..................................... _all temperature [K]

ngas ........................... gas model: O=PG, I=EQ, 2=NONEQ

nturb ....... turbulence: 0=no, l=Cebeci-Smith, 2=Baldwin-Lomax

iblk(1) ................... cells in streamwise/axial direction

kblk(I) ................... cells in normal direction (maximum)

iafe .......... aerobrake option: O=AFE, l=hemisphere, 2=custom

scale ................................... aerobrake scale factor

Screen 5.

This exalnple eml>loys the self-starting capability for axisymmetric flow aboul a sphere-cone

(specifie<l in f!). The thin-layer Navier-Stokes equations will be solved. The perfect gas, the

laminar flow. an<l a constant wall temperature are specified. The comman<t

(PRELUDE INPUTS)

instructs PRELUDE lo a.ccepl user inputs from file INPUTS, rather than from the screen.

NOTE: Some changes to file INPUTS can result in a differen! question and answer

sequence in start. For example, to change from icrv = 1 to i<'rv = 2, a user can

elect to simply change its value in file INPUTS and type the command

(PRELUDE INPUTS)

Howew, r, this approach will not work for switching from ndim = 1 to ndim = 2,

because PRELUDE prompts for angle of attack with two-dimensional flows, but it does

not proml)t for a.xisymmetric flows. Therefore, it. is recommende<l that only lhe

experience<l user (i.e., one familiar with the prompting sequence of start) alteml>t

to modify file INPUTS, followed by the command

(PRELUDE INPUTS)

All others should type the command

(P  LUD )

an(I provide inpuls to PRELUDE directly fl'om the screen.
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6.4. Tailoring the LAURA Algorithm

For most applications, the necessary tailoring of the LAURA algorithm for a given case can

be accomplished through PRELUDE. As mentioned earlier, however, PRELUDE may not provide

sufficient tailoring of LAURA for some advanced applications. For such instances, there are

several ways to further specialize the LAURA a,lgorithnl (without altering the SHOME/LAURA.4.1

files); these methods are to

* Create LOCAL versions of the include files created by start (.strt suffixes) using the

LOCALIZE colnlnand (appendix K)

• Create LOCAL versions of the LAURA source files Iocaled in $HOME/LAURA.4.1 by using

the LOCALIZE command (appendix K)

• (Ireat.e LOCAL pure-FORTRAN versions of source files (section _.3) by using the LOCALIZE

command (appendix K)

• (Ireate CUSTOM files fl'om LOCAL versions of source files by using the CUSTOMIZE command

(apl)endix H )

These approaches are discussed below.

A numl)er of LAURA's FORTRAN parameters are automatically assigned values by start,

withoul user input, and are written to files with a .strt suffix. An)' of these parameters can

1)e changed by modif_vil|g a LOCAL ('opy of the a.pl)rol)riate lfn file, which is ('reale(I using lhe

coIlllnalld

Vor example, start defaults to first-order extrapolations a.t the bo(ly surface and outflow t)ound-

aries. To switch from first to second order (via. parameter nordbr in file nordbc_assn.strt).

type the command

(LOCALIZE nordbc_assn, strt)

and a copy of file nordbc_assn, strZ will be created in the working directory (appendix K ). Now

edit the LOCAL file, and change "nordbc= 1" to "nordbc= 2". When make is executed, this LOCAL

file will be used in lieu of the STRTfiles version. Moreover, in future runs of PRELUDE within

this working directory, the user will be given the option to save this LOCAL file or to overwril(, i!

with the file created by start.

In other cases, FORTRAN coding can be added to, deleted from, or modified in the LAURA

source files. Tailoring these LAURA source files (. F, . FOR, and . inc suffixes) is done in the sam(,

manner as above: silnply use the LOCALIZE command on a given file from the $HOME/LAURA.4.1

directory and gain the desired modifications to this LOCAL file before compilation.

Pure-FORTRAN versions (. f suffixes) of the baseline subroutine files (. F suffixes) can be created

by the cominand

(make fortran)

This cominand first creates the directory FORTRAN (if it does not alreadv exist ), and then prepro-

cesses each of the subroutine files (fl'om the $HOME/LAURA.4.1, CUSTOM, or LOCAL directories).

Each of the I)reprocessed files is placed in the FORTRAN directory (with a .f suffix instead of a

.F or .FOR suffix). As before, tailoring of these files is accomnlodated through the LOCALIZE

command; this is followed by modification of the resultant LOCAL file.

The CUSTOMIZE conlmand allows a LOCAL file in one working directory to be used for any

LAITRA application (without having to be present in that LOCAL directory) in lieu of the



$HOME/LAURA.4.1 l'ih,. A CUSTOM version of the file Ifn is created in the following manner.

After making the modifications |,o LOCAL version of lfn, type lhe command

(CUSTOMIZE ifn)

The file will be moved to s,bdire<'lory CUSTOM in directory SHONE/LAURA.4.1 (appendix H).

l:ut,re executions of make from ally directory will use this cuslomized version of ifn in lie, of

the original LAURA coding.

NOTE: T<> defeat _his c.stomization in a given working directory, simply copy the

baseline version ()[" lfn from $tiBME/LAURA.4.1 before executing make. This LOCAL

coi)y of the I)aseline lfn will be used instead of the ('.stomized version.

The command

(XCUSTOM lfn)

deletesthe CUSTOM version of ifn (appendix N).

NOTE: I)o not, use CUSTOMIZE on LOCAL versions of files created I)v start ( . strt

suffix ).
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Chapter 7

Menus of start

In lhis section, l},e various menus of start are presenled and annotaled. The menus are

presented in their order of a[)l)earance during start. Each menu is enclosed within a sha<h,d

box to mimic whal the user will see on the computer screen. The <lefaull value for each variable,

which reflects the choice from the last PRELUDE session, is also shown.

NOTE: The user can enter a. comma ( .... ) at any l)rOml)t to accept the defaul!

val ue.

7.1. Number of Processors

For (!RAY architectures, the upper limit of processors lhal will t)e used during this LAUI{:\

run is specitied through the variable nprocs:

Enter the upper limit of processors to be used during this LAURA run.

Enter choice (I <= nprocs <= nprocmx) {de:fault}:

where nprocmx is the number of available processors on this machine, as determined by mAch+pr0c

(appendix (:, section (:.2).

NOTE: On CRAY machines, a single processor (up,yes = 1) shouhl t>e used fi)r

LAURA runs where grid adjustments will be made. (See NOTE in section 11.5.3.)

This is required because the multiprocessing is asynchronous.

7.2. Type of Initial Grid and Solution

The user has a number of options for automatic generation of a surface and volume grid,

in<:luding an initialized solution (section 9.1.1), for specific parameterize<t body shapes. Alter-

nately, the user can supply an externally generated restart file to LAURA (section .().l.l). The

tyt)e of initial grid and solution is specifie<l through net<job (screen 6):
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Select initialization:

O) use existing "RESTART.in" file,

I) create conic (cone/wedge, paraboloid, etc.),

2) create generic aerobrake

(includes AFE without axis singularity).

Enter choice {default} :

Screen 6.

NOTE: When m wjob = 0 is selected, start will issue a warning if file RESTART. in

does not exist in the LOCAL directory. Since start itself does not use this file, the

user can continue with this PRELUDE session and create RESTART. in afterwards. The

message simply serves as a reminder tirol RESTART.in must exist before executing

laura.

7.3. Flow Dimensionality

The flow (linmnsionality is specified through ndim (screen 7):

Select flow dimensionality:

I) axisymmetric flow,

2) two-dimensional flow,

3) three-dimensional flow.

Enter choice {defa._}:

Screen 7.

7.4. Governing Equations

LA[TRA I)rovides inviscid and viscous flow options. The viscous flow options include thin-

layer and full Navier-Stokes equations (which require more memory for treatment of the cross

derivatives and associated me!rics). Select the governing equations through igot,crl+ (screen s):
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Select governing equations:

O) inviscid flow,

I) thin-layer Navier-Stokes,

2) full Navier-Stokes.

Enter choice {defaull}:

_fl'eel] N.

The thin-layer option includes only tile viscous terms defined by gradients in the coordinate

directions emanating from wall boundaries. The viscous directions are set automatically as

boundary conditions and are input with the variables i_,i.%bih., j_'i%_blh., and kcis_t, ih.equal 1.o 0 for

off and 1 for on in computational block 'nblk (sectioa 9.1.3.1). The user can change the default

values in the file data (which is created by stArt).

NOTE: If i:/ovcrn = 1. defining iris = jvis = kvis = 1 for a given block still omits the

<:ross <terivalive terms from the full Navier-Stokes e<lualions. The user must specify

igo_,_r_ = 2 in stArt to include the full Navier-Stokes terms in lhe COml)ilalion of

laura.

7.5. Free-stream Conditions

Fnter the free-streanJ conditions (screen 9) (in mkgs units):

it,.-

Enter velocity [m/s] {defaull}:

Enter density [kg/m=3] {default}:

Enter freestream temperature [K] {default}:

Screen .9.
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Fortwo-or three-dimensionalflow. tile angleof attack (ottack)mustbespecified(screen10):

I Enter angle of attack [deg] {default}: 1

Screen [0.

7.6. Surface Boundary Conditions

Tile surface boundary conditions are set internally fox' tile monlentunl and global continuity

equations.

NOTE: For nouequilibrium flows (where the global continuity equation is no! solve(t

explicitly), the wall catalysis nnlst t>e chosen to define the surface boundary Coltdi-

lions fox" the species continuity equations (section 7.7.2.3).

NOTE: The inviscid boundary con(litions are crude; they extrapolate pressure,

teml)erature, and tangential velocity conxl)onents to lhe wall and reflec! a normal

velocity component.

For viscous flow (igover_ # 0), a wall I>ouudary condition on the energy equation must be

specified. Prescribe this wall temperature boundary condition through tcmpbc (screen 11):

Select wall temperature BC:

O) constant

1) specified variation

2) radiative equilibrium

Enter choice {default}:

(,,dim # 3)

Screen 11.

The follow-up prompts for tempbc = 0, 1, and 2 are discussed in sections 7.6.1.7.6.2, and 7.(i.3,

respectively.

7.6.1. Constant Wall Temperature

When tcmpbc = O, input the wall temperature (screen 12), as follows:
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Enter wall temperature[K] {&fault}:

Screen[2.

7.6.2. Specified Wall Temperature Variation

"Whenlrml, bc= 1. the wain temperature dislribution is provided it, tile variabletw. This

allows the surface lenlperature t.o be specified by a fixed distribution (fi'om exlmrimenl.al data,

for examl)le ). The entries in tile variabletw are the streamwise surface dislance (in units) and

lenlperalure (K) for each location. They are read in fi'ee format (O11(' ell|l'V 1)er line) by start

(and laler I)y LAURA). In reload. F, these discrete va]ues are [inear]y illterl)o]aled to provide
values al veil fat'(, cenlers along; t.lJ(, surfa,.'e.

NOTE: If file variabletw is not found by stArt, the t'ree-st.reanl lemperalure is

used lo initialize the flow field lemperature distribution. This "'fix" allows this start

session 1o continue, but the initial temperalure distribution is less than ideal. ..ks

a result, the user is strongl.v urged to creale the file variabletw and repeal, the

start-u t) procedure using the command

PRELUDE INPUTS)

NOTE: The specitied wall temperature varialion (t_mpbc = 1) option is currently
no! available for lhree-<timensional flows.

7.6.3. Radiative Equilibrium Wall Temperature

When l_ml, b(.= 2, an initial guess for the wall temperature must be st, i)plied, along with

the relaxalion faclor, lpt (screen 13):

Enter initial wall temperature [K] {default}:

Enter wall-temperature relaxation factor {default}:

Screen 13.

A value of _/'! < I is an under-relaxalio|t (with (pl = () fixing 7_, at the input value) and

_pl = 1 is a straighl substitution. In the early stages of convergence, it is advisal)le to kee I)

_pt = (9(0.01). This va.lue can be increased (it, file data) a.s the equilibrium value of 7;_. is

approached.
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7.7. Gas Model

LAURA has perfect gas, equilibrium, and nonequilibriunl flow capabililies for air.

the nature of the gas through ugas (screen 14):

Define

Select the gas model:

O) perfect gas,

I) equilibrium,

2) chemical nonequilibrium.

Enter choice {default}:

Screen 14.

If" ngas = 0 is specified, no other user input is required for the gas model.

NOTE: The perfect gas is assumed to be air, 1)ut constants appropriate for other

gases can be specified in the include files gas_,model_vars, strt and sthrlnd_vars, strt.

Sut)sequent screen l)rompts for equilibrium and nouequilibrium gas model are discussed in se('-

tions 7.7.1 and 7.7.2. respectively.

7.7.1. Equilibrium

l,'or equilibrium flow ( ngas" = l ), choose which thermodynamic curve fit to use through icrr

(screell 15):

Select a thermodynamic curve fit:

1) Vinokur,

2) Tannehill.

Enter choice {dcfaull}:

Screen 15.

Details of these curve-fits can 1)e found in references 19 and 20, resl)ectively.

7.7.2. Nonequilibrium

For nonequilibrium flows, the thermal state, constituent species, and wall catalysis must be

specified. These constraints are discussed in the subsections thai follow.
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7.7.2.1. Thermal State

l'br .one(luilit)rium th)w (nga._ -- 2), choose the thermal state of the gas through itherm

(screen 16):

r •

Select the thermal state of the gas:

1) equilibrium (one-temperature),
2) nonequilibrium (two-temperature).

Enter choice { d:faull} :

Screen 16.

7.7.2.2. Constituent Species

Next. select which Sl)e('ies will I)e itichtded i,, the air model (scree_l 17):

Will atomic nitrogen be considered? (y/n) {d(fault}:

Will atomic oxygen be considered? (y/n) {d_faull}:

Will molecular nitrogen be considered? (y/n) {default}:

Will molecular oxygen be considered? (y/n) {d(feull}:

Will nitric oxide be considered? (y/n) {d_fa.ll}:

Will ionized atomic nitrogen be considered? (y/n) {default}:

Will ionized atomic oxygen be considered? (y/n) {de/cull}:

Will ionized molecular nitrogen be considered? (y/n) {d6faull}:

Will ionized molecular oxygen be considered? (y/n) {default}:

Will ionized nitric oxide be considered? (y/n) {defaull}:

Screen 17.

An answer of "y'" activates the species, while at, answer of "n" deactivates it. Thus, ally subset

of the total 11 species for air' (N, O, N2, 02, NO, N +. O +, N +, O +, NO +, e-) ('all be specified.
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7.7.2.3. Wall Catalysis

I)hysical models within LAURA are appropriate for weak ionization. Free-stream mass

fractions appropriate for undissociated, low-temperature air are set in block data file air. F and

can be adjusted as required. The catalysis of tile wall is defined through the variable .jlyp(

(screen 18):

Select the catalytic nature of the wall boundary:

O) non-catalytic;

I) "super-catalytic""

2) catalytic to ions

3) catalytic to ions

4) catalytic to ions

5) catalytic to ions

6) catalytic to ions

non-catalytic to neutrals;

Stewart's finite-catalysis;

Zoby's finite-catalysis;

Scott's finite-catalysis;

homogeneous recombination of all atoms.

Enter choice {default}:

Screen 1_.

As shown, options for noncatalytic, finite-catalytic, and "super-catalytic" wall conditions are

available.

NOTE: The super-catalyti(' condition (jtype = 1) sets the mass fractions al the

wall to their free-stream values. This should not be confused wiih a fully catalytic

condition where the surface mass fractions are defined by the equilibrium com posilion

at the given wall temperature.

Details of the jtyp( = 3, .1, and 5 options can be found in references 21, 22, and 23, respectively.

NOTE: In theory, for inviscid flow, an extrapolation of the near-wall mass fractions

to the wall provides the proper catalytic nature of this boundary. In the absence

of this option, selecting the noncatalytic boundary condition (jtypc = 0)is the best

choice.

7.8. Turbulence

Algebraic models are employe(l within LAURA to provide a turbulence capability f<)r perfect

gas, equilibrium, and nonequilit)rium flows. ('ontrol this option through nturb (screen 19):
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Select laminar flow or turbulence model:

O) laminar flow,

I) Cebeci-Smith,

2) Baldwin-Lomax

Enter choice {&faull}:

Screen 19.

Details of tile (let)eel-Smith and t]aldwin-l_omax algebraic models can be found in references 2-1

and 25. respectively.

NOTE: A well-defined boundary-layer edge is required before these algebraic models

can be implemented. Thus, for a given case, a laminar-flow solution is necessary as a

slarter tot lurbulent flow. The laminar solution does not need Io I>e fully c<mverged.

but lhe shock layer should be well-developed.

NOTE: A value of 0.9 is assumed ibr the turbulent Prandtl number. For nonequi-

librium tlows, a turl>ulenl Schmidl number is required as well, and a value of unity

is used.

Specification of transition is discussed in section 9.1.4.

7.9. Flow Field Grid and Initialization

LAURA has an internal grid generation and initialization algorithm tha! provides the user

with a self-starting capability. This feature is limited to select bodies tha! can be described

analytically. However, LAURA will accept externally generated grids and flow field inilializa-

tions, This option allows computations over arbitrary bodies and the use of more sophisticated

gridding lechniques. Use of such external grids is discussed in section 7.9.1. Self-starting grids

are the topic of section 7.9.2.

7.9.1. Externally Generated Grid and Initialized Flow

When z_u,job = 0 is specified, the user must SUl)ply the file RESTART. in for laura. The

format of this restart file is given in section 9.1.1. This file does not nee<l to exist betbre running

PRELUDE, but it. nlus! I)e present before exe¢'utiug laura. Required inl)uls for an externally

generale<t RESTART. £n are discusse(I in the subsections below.

In laura, the grid musl be oriented such thal y = 0 defines the l)lane of symmetry. In

the assumed oriental ion. (he z-axis originates a! the vehicle nose and is dire('te<l toward the

oncoming flow (as shown in tig. 2.1). Such an orientation is common for I)lunt-body applications.

The angles of attack and yaw are reference<l to the negative z-axis, whi<'h yields the following

detinitions for the free-stream velo('ity coml)onents:
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uil_f = sin(attack) * cos(yaw)

vi_f = sin( .qa u,)

wi_f = -cos(attack) * cos(_/au')

NOTE: In laura, l he yaw angle is set to yaw = O.

Tile user will probably encounter externally generated grids with other oriemalions. Ill such

cases, it is recommended that tile user re-orient the grid to conform to the examples shown in

figures 2.1 and 2.2. Afterwards, the utility INITIALIZE can be used to initialize the flow tiehl

and create the LAURA RESTART. in file (appendix I).

If the user prefers nol 1o re-orient the grid, then the definitions of the free-stream velocity

coml)onents can be modified. This approach involves creating LOCAL versions of tiles setup.F

and flowinit .f with the LOCALIZE utility (appendix K). The at)propriate modificalions 1o lhe

(h4initions of _i_f, vi_f, and win]'can be made in these LOCAL files. When the ulilily INITIALIZE

is executed, it will detect the LOCAL version of flowinit.f, comt)ile it. and use the resultanl

LDCAL fl0wInIt executable lo initialize the given PLOT3D grid file.

NOTE: The laura executable must be recompile<l to get the new delinilions from

the LOCAL setup.F.

Alternately, the user can employ the defaull definitions for the free-stream velocity compo-

nenls in conjunction with other grid orientations as long as the angle of attack is referenced to

the negative z-axis. ('onsequently, a value of attack = 0 in the defaul! orientation ('an correspond

1o a value of-90.90, or lg0 deg (specified in file "data") for this ahernalive orientation.

7.9.1.1. Number of Computational Blocks

The flow field domain can be divided into multiple compulational blocks. The number of

blocks is defined throl|g[l the variable nblocks:

I Input the number of computational blocks ( 1 <= ublocks <= 6 ) {default}: 1

7.9.1.2. Dimensions for Blocks

For each })lock _blk ( 1 <_ i,blk 5 nblocks), input tile variables iblk,,t, la., jblk,o,t ,, (3-I) only), and

tcbll,',,,bla.,whi(:h deline tile number of computational cells in this block (screen 20):
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For block nblk, input the number of cells ...

... in the i-direction {&fault}:

... in the j-direction {default}:

... in the k-direction {d(fault}:

(3-I) flow only)

Screen 20.

NOTE: In each direction, the nunlt)er of cells is one less than lhe numl)er of grid

points (cell walls).

7.9.1.3. Boundary Condition Types for Block Faces

If nrwjob = 0, ill(' boundary tyl)e (such as a, solid surface or a free stream) of the faces of

('ach l)lock must be specilied by the user. The boundary type for each of lhe six sides of a give,,

t)lock is (leti)wd through (he varial)le ityp_ (screen 21 ):
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Select the nature of the i = 1 boundary in block nblk:

Select the nature of the i = tblknblk boundary in block nblk:

Select the nature of the j = 1 boundary in block nblk:

Select the nature of the j = )blkT_bl k boundary in block nblk:

Select the nature of the k = 1 boundary in block nblk:

Select the nature of the k = kblk_tblk boundary in block nblk:

O) solid surface,

1) outflow,

2) symmetry across y = 0 plane (3-D flow),

3) freestream,

4) symmetry across x = 0 plane (axisymmetric or 2-D flow),

5) symmetry across y = 0 plane (axisymmetric or 2-D flow),

7) axis (for 3-D flow),

9) boundary shared with another block.

Enter choice (default} :

Screen 21.

NOTE: For brevity, the opt.ion list is shown on tile' k = kblk,_lk screen only.

If a share(t boundary is specified, t.he block witll which the boundary is comnlon must be sl)eci-
fled:

I Enter the number of that block {default}: 1

NOTE: If newjob -¢ O, a single block is created, and defaull values for the boundary

types of the faces of this block are defined autonlalically. N<) user specificalion is
req uire<l.
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7.9.2. Self-Starting Grid and Flow Initialization

When n_w.job _ O, stArt generales tile RESTART. in file. t{e(luired user inputs for this ot)lion
are discussed in the subsections that tbllow.

7.9.2.1. Number of Computational Blocks

The geometry an(l flow field grids are generaled hy using a single conll)utational t)lo('k, which
is based on user inpuls thai are discussed later.

7.9.2.2. Dimensions for Computational Block

First. the size of the grid is detined through i,q. j.q (3-I) only), and l',q (screen 22):

Input iaq, the number of cells in the streamwise direction

along the body.

Enter choice (1 <= iaq <= iaqm) {defaull}:

Input jaq, the number of cells in the circumferential direction

around the body.

Enter choice (1 <= jaq <= jaqm) {defaull}: (3-1) flow only)

Input kaq, the maximum number of cells normal to the body.

Enter choice (I <= kaq <= kaqm) {defaull):

Screen 22.

where iaqm = 200, jaqm = 100, and kaqm = 12g.

NOTE: ff these values are too restrictive, the user can create a LOCALcot)y of the file

start, inc ( using the LOCALIZE command ) and modify these limits. When PRELUDE
is executed, this LOCAL file will t)e used to create a LOCAL stArt executable, which is

then used by PRELUDE in lieu of the default executable. PRELUDE a('conmlodates LOCAL

copies of any of lhe start source files (located in the $HOME/LAURA.4.1 direclorv),

if the user desires to modify start to produce tailored case-specific include files

(. strt suffixes).

A single computational block (Block A) is utilized, where iblkl = iaq, jblk I = jaq, and kblkl = t,:aq.

For two-dimensional and axisymmelric flows, jbl_:l = 1.

If options for grid adaplion and a lignlnenl wilh the captured t)ow shock are to be exercised.

then kblX:l must t)e the numl)er of cells I)etween the t)ody and the free-stream inflow t)oundary.
Furthermore, kbllq should he divisible I)y ,1 if options for coarse-grid initialization of the solulion
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are implenlente<], as is the case when any of the self-starl g_;eoumtry initialization packages are

eml)loyed.

NOTE: For nrwjob = 2 and ndim = 3, tile number of circumferential <:ells (jaq) is

defined as one-half of the nuud)er of strealnwise cells (iaq). If the input value for iaq

is not a mull.il)le of 2, i! is overwritten to iaq = 2 × joq. The resultant values of iaq

and jaq are then echoed to the screen.

7.10. Geometry Definition

LAURA is written using mkgs units. }towever. other units of length can be accommo(tated

through the conversion factor lfll_gth. The value of _fl_gth(and hence, units) for several conlmon

choices is controlled through iunit (screen 23):

Select units for the geometry:

O) meters,
1) centimeters,

2) feet,

3) inches,

4) other units.

Enter choice {default}:

Screen 23.

If iunit # 4, the conversion factor from grid units to meters (rfhtgth) is automatically loaded.

For instance, if the surface geometry and volume grid are detined in inches, then units = in. and

rj't_gth = 0.0254 (since I in. = 0.025-1 m).

For iul_it = 4, the user must explicitly define units an<l rfl_gtt_ (screen 24):
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Enter i- or 2-character abbreviation for this custom unit

of length {&faull}:

The conversion factor "rflngth" is defined such that:

I units = "rflngth" meters

Enter "rflngth" {defaull}:

Screen 24.

This feature allo_s lhe user to define a volume grid based on a nonslan(lard melric. For exalnph,.

a generic I)lunled-cone migh! be detined in units of nose radius (Rx). If R.\. = 2 ft and the

volume grid was created in utfils of nose radius, then units = RN and 7:flngth = 0.6096 (since

I RN = 2 fl = 0.6096 m). Proper speciticalion of t.]lis factor is inll)orlanl because il is used !o

detine the tleynolds number per unil grid lengt], in the solulion.

Required geometry inpuls for externally supplied grids are described in seclion 7.10.1. Self-

slarling conic geomelries (such as cones, paraboloids, and hyperl)oloids) are discussed h, sec-

lion 7.10.2. Self-slarling aerobrakes (such as the Aeroassis! Flight I+_xl)eriment (AFE) and

spheres) are lhe focus of section 7.10.3.

7.10.1. Externally Generated Grid

When mujob = 0. the volume grid (and initial flow field) must be provided by the user.

Section 11.1 gives restrictions on the grid orientation for lwo-dilnensional and axisymmetric

flows.

NOTE: The self-starling fealure of LAURA can be employed to produce grids for

flows over simple analytic shapes (section 7.10.2).

Several metrics of the geometry must be supplied by the user when the newjob = 0 option is

chosen. The variables xc 9 and zcg define the location of the reference cen!er for aerodynamic

moments in grid coordinates (screen 25):

Enter x-coordinate of moment center [units] {default}:

Enter z-coordinate of moment center [unit_ {default}:

Screen 25.
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NOTE: It is implicitly assumed that the flow has y = 0 as its plane of symmetry

with ycg = O.

The variables refar<a and reflen define the reference area and length, resl>ectively, for tile eval-

uation of aerodynamic coefficients (screen 26):

Enter re:ference area :for aerodynamics [units'2] {default}:

Enter re:ference length :for aerodynamics [units] {default}:

Screen 26.

NOTE: For self-starting grids (ne u'job # 0), the values of xcg, zeg, veforea, and

reflel, are defined bv start (along with ycg = 0). The user can change these values

in file data.

7.10.2. Self-Starting Grid (Conic Geometry)

When newjob = 1, the conic geometry must be defined through a series of user inputs.

Based on these values, xcg, zcg, refarea, and r_Jl_7_ are loaded by start (along with ycg = 0).

For ndim < 3 (axisymmetric or two-dimensional flow), the body dimensionality is equal lo the

flow dimensiollality (_dimb = ndim). If 1_dim = 3, then the dimensionalily of the body mus! be

specified through the variable ndimb (screen 27):

r •

Select body dimensionality:

I) axisymmetric,

3) 3-D.

Enl;er choice {default}:

Screen 27.

NOTE: The option of ndimb = 2 is eliminated in this case because the configuration
cannot be two-dimensional when ndim = 3.

The tyl)e of conic section is prescribed through lhe variable keltic. The Ol)tions for ko_ic are a

function of ndimb. The next three sections show the options for keltic based on the value of the

body dimensionality (ndimb).
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7.10.2.1. Axisymmetric Geometry

For ndimb = 1. the options for l:onic (screen 2S) at'(,:

Select axisymmetric body:

I) hyperboloid,

2) paraboloid,

3) ellipsoidally-blunted cone,

4) spherically-blunted cone.

Enter choice {default}:

Screen 2,_.

For konic> 2. lhe value of it-musl I)e specified (screen 29):

Enter choice (2 <= ic <= iaq)

Input the number of cells (axial direction) to be used on the cap.

{ default } :

Screen 29.

Unless ko_tic= 2. tho variable 0 must I)e specified. For konic = 1. tiffs is the half-angle of

tim a syt,tptote of the hyl)erl)oloid:

I nter half-angle [deg] of asymptote {default}:

For ko_dc= 3 aud kookie'= 4, 0 is the body hMf-angle:

I Enter body half-angle [dog] {default}:

For km_i(" = 3. the axial shape l)arameter of the nose (b), which is a, funclion of tire eccen-

tricitv, musl be defined (apl)endix B):
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[Enter axial shape parameter for nose, b

( b > O, where b = 1 is circle ) {default}:

NOTE: _br konic= 4, b = 1 automatically.

The next step is to specify the nose radius and total body length of the geometry:

Enter nose radius [units] {default}:

Enter body length [units] {default}:

7.10.2.2. Two-Dimensional Geometry

For ndimb = 2 (only possible for ndim = 2), the options for konic are:

Select 2-D body:

1) hyperbola,

2) parabola,

3) blunted wedge.

Enter choice { default} :

For ko_tic = 3, the value of ic must be specified:

Input the number of cells (axial direction) to be used on the cap.

Enter choice (2 <= ic <= iaq) {defaufl}:

For konic = 1 or konic = 3, the variable 0 must be specified.

fialf-angle of the asymptote of the hyperbola:

Enter half-angle [deg] of asymptote {default}:

For koni('= 1, this is the
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For kol_ic = 3. O is the body half-angle, and musl I)e speciIied.

shape l)armneter tbr lhe uose (b) must I)e defined (appendix B):

Enter body half-angle [deg] {d_faull} :

Also for ko_zic = 3, the axial

Enter axial shape parameter for nose, b

( b > O, where b = I is circle ) {d_:faull}:

The .exl step is to specify the .ose radius and total body hmgth of the goomelry:

Enter nose radius [unit,s] {defaull}:

Enter body length [units] {d_fault}:

7.10.2.3. Three-Dimensional Geometry

For udimb = 3, the Ol)lions for ko;;ie are as follows:

Select 3-D body:

I) hyperboloid,

2) paraboloid,

3) blunted cone.

Enter choice {default}:

For kot_ic = 3. the value of ic nnlst be specified:

W

Input the number of cells (axial direction) to be used on the cap.

Enter choice (2 <= ic <= iaq) {defaull}:

re_

Unless kolfic = 2. the variable 0 must be specified.

the a,syml_tot, e of the hyperboloid:
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I Enter half-angle [deg] of side-plane asymptote {default}: 1

For konic = 3, 0 is the body half-angle, and must be specified.

shape paranmter for the nose (b) must be defined (appendix B):

Enter body half-angle [deg] in side plane {default}:

Enter axial shape parameter for nose, b, in side plane.

( b > O, where b = 1 is sphere ) {defaull}:

Also tbr konic = 3, tile axial

Tile next step is to specify lhe nose radii, in both tile synnnelry and side planes, along with

the total body length of the geometry:

Enter nose radius [units] in side plane {default}:

Enter nose radius [units] in symmetry plane {default}:

Enter body length [units3 {default}:

7.10.2.4. Axial Stretching Factor

As a, final step for konic _> 3 (tbr all values of udimb), the axial stretching factor (aaf, c) for

the grid must be defined. A message to the screen provides the user with the nfinimum value of

aa_ac required to reach the end of the geometry, based on the previously specified vahms for ic,

iaq, and zmax. This value is the default answer to the tbllowing prompt:

I Enter axial stretching factor {default}: 1

A va,lue of u,afac = 1 yields no axial stretching. To prevenl overstretching, values larger than

approximately aaJ'ac = 1.2 shouhl not be used.
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7.10.3. Self-Starting Grid (Generic Aerobrake)

Whenn(wjob = 2, the a,erobrake geonwtry mus! be defined through a series of user inlmt,_.

Based on these value,_, xcg, z('g, r_farca, and r(.fl(_ are loaded by start (along wi_h ycg = 0).

l:irsl, the type of aerobrake geometry is selected through variable iaf(:

Select aerobrake geometry option:

O) AFE aerobrake,

I) hemisphere,
2) customized aerobrake.

Enter choice {d_fa'ult } :

7.10.3.1. AFE Aerobrake

When iaJ? = O, the aerobrake t)arameters are automatically sol to the A I"E configuralion
(ref. 26) values.

NOTE: Because the Af'E geometry is three-dimensional, a specificalion of left= 0

can only t1(, made if ndim = 3.

7.10.3.2. Hemisphere

When iafi = 1. the nose ra<tius mus! be sl)ecified (in meters):

I Enter radius [m] {dcfault}: 1

7.10.3.3. Customized Aerobrake

When iafi = 2. the parameters that are define(I implicitly for iafi = 0 must t)e explicitly

SUl)t)lied by the user (screen 30).

NOTE: Accel)ting the echoed default values will yield the AFE geomelry.

A graphical representation of a typical body in the plane of symmetry, ilwluding explanations

of lhe various parameters, is provide<l in figure 7.1.
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Enter body half-angle [deg] in symmetry plane {defaull}:

Enter rake angle [deg] of base plane relative to body axis

(enter "90" for axisymmetric body) {defaull}: (3-D flowonly)

Enter turning angle [deg] of shoulder

(usually same as body half-angle) {defaull}:

Enter shoulder radius [units] {defaull):

Enter eccentricity of nose {d¢fault): (3-D flow only)

Enter nose radius [unit_ of blunted cone in symmetry plane {d_faull}:

Enter base plane radius [units] {defaufl}:

Screen 30.

raU.MY..,k."a"_""la "s_....\\, Elliptic nose
turning angle

//' 1:)
noes eccentricity, b/s i" " '

,/ ,' b

R)

RSh shoulder radius / r _ 8 -/

RN nolle radius ,,, , ._ /
Rs base plane radius _,' ,,,'

/ /' 0

," I"

Circular balm plane of radius Rs

Figure 7.1. Parameters for defining generic ])robe shape in LAURA.

42



Chapter 8

Compiling LAURA

Iu an effort l o minimize COml)nl.er memory requirements, LAURA makes extensive use of

include stalements thal allow the ('ode t.o be tailored to a given apl)licalion. This tailoring is

facilitale<l through the execution of start, a preprocessor for LAURA, which is used lo define

array dimensions, governing equations, and gas models according to user inputs. Additional

customization is l>Ossible (hrough <lirect file editing. In the past, this meant tha! a local copy of

Ihe complete LAURA co<te nee(led 1o be presenl before compilation. This arrangenlent left the

working directories cluttere(I wilh source files (many of which had undergone no modification)

an<l obje<'l files. As a result, keeping track of the changes in the source files fl'om case lo case

Was a Cillnbersollle lask.

LAURA is based on the t)remise that the bulk of the LAURA source code does not change

from one a t>plicalion to the nexl. These files, which should rarely require modification, are kepl in

a rea<l-only directory. The relationship between (and roles of) the various directories eml)loyed by

LAURA is shown in tigure 2.;{. Through start, the user defines parameters, compile directives,

and other quantities that <:ommunicate the user's instructions to the $HOME/LAURA.4.1 files

during coml)ilation. The capabilities of start have been expan<led, and as a result, the nee<l

for direct editing of LA[!RA source files has been minimized (eliminated, in fact, for many

applications).

For the most paN, the tailoring is controlled through the files t)rodnced by executing start

(denoted by .strt suffixes). To reduce clutter in the working (LOCAL) directory, subdireclories

are created by PRELUDE (fig. 2.3). The files produced by start are stored in subdireclory

STRT£iles, while 0BJ_iles holds the objecl files produced during compilatioll.

Should a LAURA file (.F, .FOR, .±nc, or .strt suffix) require fllrther tailoring, a LOCAL

cop5' (lfn)is create(l with the command

LOCALIZE Ifn)

and lhen ediled.

NOTE: All tailoring of LAURA should be performed in the working (LOCAL) di-

rectory, thus allowing the installed version to remain intact.

A pure-FORTRAN version (. _ suffix) of a subroutine tile (. F or . FOR suffix) is also accel)table. A

subseqllel)t compilaIion uses this LOCAL file in lieu of the SHOHE/LAURA.4.1 version.

NOTE: The LOCAL directory should contain no files with a .f, .F, .FOR, .inc,

or .s'crt suffix which are nol LAURA source files. Otherwise, extraneous warning

messages may be displayed on the screen when make is executed.
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Theconnnand
(CUSTOMIZE Ifn)

moves a LOCAL file ( .F, .FOR, .f, or . inc suffix only) to directory CUSTOM in $HOME/LAURA.4.1,

and makes it the default instead of the $HOME/LAURA.4.1 version.

8.1. Using make

When the command

is executed, the actual compilation takes place in subdirector.v 0BJfiles.

NOTE: On some machines, the environment variable SHONE is not exported to

make. In such cases, the command

(make HOME=$HOME_

is required to provide make with the value of $HOME.

This fairly sophisticated Makefile is created by stArt, which tailors it not only to the machin(,

architecture, but also to the specific case being run. fbr instance, if perfect gas flow is specified.

the nonequilibrium and equilibrium gas routines are not included in the COml)ilation. In fact,

the start inputs of igover_l, machine, iMim, ngas, and nlurb determine which source files make

is dependent upon. This treatment yields further reductions il, colnpnter memory requirements.

Since this Makefile does more than simply compile the code, the various steps (appendix E.

section E.I) are discussed below.

First, the script SYMLINKS (appendix E, section E.2) is executed to lell make where to find

the source files it needs. Initially, symbolic links are established for the files in $HOME/LAURA .4.1

and STRTfiles. These symbolic links are redefined to the LOCAL and CUSTOM directories for any

files that exist there. In other words, LOCAL and CUSTOM files are used if they exist; otherwise.

the files in $HOME/LAURA.4.1 and STRTfiles are used.

NOTE: If make has been executed previously, a check of these subdirectories is

conducted to see that all LOCAL and CUSTOM files used in that compilatio,i still exist.

If not. the appropriate object files are removed before comt)ilation so that the new

executable reflects this change.

Next, the script Makedep (appendix E, section E.4) is executed to establish the dependencies

of each subroutine file (. F, . FOR. or . f suffix) on the include files. For each source file. Makedep

deternfines which include files (. inc and . strt suffixes) it depends upon. These dependencies

are saved in file CHILDREN, which is in the 0Bdfiles directory. The existence of this file allows

make to recognize when an include file is newer than an object file whose source file depends

upon it. When this is the case, the source file is recompiled.

Now that make knows which source files it needs, and in turn. which include files the), ea(:h

depend upon, the actual compilation begins. More exactly, each subroutine file (.F, .FOR, or

.f suffix) is first l)reprocessed according to the compile directives supplied by start. After

preproeessing, the file is compiled, and the object (.o suffix) tile is saved in 0Billies. When all

of the object files have been created, they are linked to create laura, the LAURA executable.

Although this executable resides in 0BJfiles, it is symbolically linke<l to the LOCAL directory

to facilitate its execution.

The final step performed by make is the removal of the syml>oli(' links located in 0BJ:files.

This ste 1) serves to reduce clutter in the 0Bdfiles subdirectory.
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8.2. Using make debug

For running LAUI{A ill conjunction with the dbx debugger (cdbx on ('RAY architeclures).

the code must first be compiled with the debuggeroplion. Also, the symbolic links should be

retained so lha! dbx ca|l locale the source files. I"() address these needs, lhe command

make debug)

is employed. This command creates a subdirectory DEBUG. establishes the proper symbolic links,

an<l COml)ih,s LAURA using lhe <tel>ugger flag (-g). Further, links are created for files data,

RESTART. in. and TWALL. in (if it exists), which are in the LOCAL direclory, l:or turbulent flows.

links are also cllealed to the LOCAL files transition and variabletw. To run the debugger.

move down 1o lhe DEBUG dire<'torv.

8.3. Using make fortran

The <'onmrand

(make :fortran)

preprocesses each of the fileswith a .F or .FOP, suffixwithout actualh' compiling and linking

them to i)ro<luce the I,AI'RA executable. :ks wilh lhe standard make, symbolic links to the

proper files are established. 111addition 1o l)rocessing the compile directives, lhis command also

pipes in the include files. Each resultant pure-FORTRAN file (which has the too! name of the .F

file and a .f suffix) is pla<'ed in subdirectory FORTRAN. As in section S. 1, after prel)ro<'essing, the

symbol|<" links are removed.

The make fortran feat ure is useful for testing new <'ode, since such new coding can be added

l o a tile tha! is ah'ea<lv tailored to the desired apl)lieation. 1,br example, in an equilil)rium flow

a,pplicalion, make fortran produces subroutine files (.f suffixes)in which the perfecl gas aim

none<luilibrium flow co<ling has been omitted. _Vithout these extraneous litres of FORTRAN, the

user can more easily focus attention on the active (in this ease equilibrium flow) sections of the

various roulines. Files of interes! can I)e cop|ell to lhe LOCAL directory, too<lifted, and used in

subsequent comi>ilations since, as mentione<l earlier, a LOCAL file wit it a .f suffix is reco_;nized

by make as a repla<'ement for the default subroutine file (.F or .FOR suffix).
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Chapter 9

Controlling LAURA

Tile LAURA inpul and case-spe<'ific include files (. sort suffixes) are the files through which

the user can mo,_t readily control the options of LAURA. Typically, ill fact, excel>l for some

advanced allt)lications, these are the only files that tim user shouhl have to alter for a giw, n case.
These files can l)e groupe<l in the following two classes:

• (!ontrol via execution. The LOCAL mandatory files (data, RESTART. in) and application-

dependent files(assign_tasks, transition, TWALL.in, variabletw) are rea<lby laura

(the I_AURA exectltable) al rllll t]ule. Therefore, laura does not need to ])e reconlpile(]

when these files are altered. These files are discussed in section 9.1. To run LAURA

hlleraclively, type tile c<)mnland

laura < data > l:fn)

This command sends the outpu! lo file ifn. User control of a given run is provided through
the inpu! files and the include files with the .strt suffix (chapter 9).

(:ontrol via compilation. Changes to tile files created by start are communicated during
compilation of laura. Tile files consist of compile directives (in HEADER. strt ) and FORTR.t.N

parameter statements (in a number of files with .strt suffixes). Tile files are discussed

in seclion 9.:2. :ks with tile LAURA source files (.F..FOR, and .inc suffixes), il is rec-

ommended that ally changes to these files be made on a LOCAL copy (using the LOCALIZE

command), rather than the STRTfi'les version. Subsequent PRELUDE runs will preserve

these lailored files, rather than simply overwriting them ill STRTfiles. Rememt_er, to

reflect a change in any of these files, laura must be recompiled.

First consi<ter those files that provide user control during execution. The files data and

RESTART. in are required inputs for ally LAURA run. The file data contains a se! of parameters

(Dee-stream conditions included) which give the user a certain degree of control over LAURA

withoul lhe need for recompilation. As its name implies, RESTART.in is tile file t hal gives

LAUt¢A a restar! capability. A third file. TWALL.in, supplies the surface temperature distril>u-

tiou wheu the radiative equilibrium wall temperature (tempbc = 2) option is exercised. If the

speci/ie<l wall temperature variation (tempbc = 1) option is exercised, the surface distribution is

provided lhrough file variabletw. When turbulent flows are calculated, the onse! of transition

is supplied throuNh file transition. The file assign_tasks can be used to control processor

allocatio,s to <'onu>utational blocks, as well as sweeping directions. Details of these files are

given in sections 9.1.l through 9.1.6. Both RESTART.in and TWALL.in are binary files. The

other input files are ASCII format au<t can be modified through <lirecl editing. The contents
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of assign_tasks, data, transition, and variabletw are echoed to standard output wilh each

execution of laura. This documents which LAURA options are active for a given run.

Now consider those files that provide user control during compilation. In genera h the safest

way to modify a file with a .strt suffix is through PRELUDE. However, for some advanced

applications (chapter l 1 ), direct editing of LOCAL versions of these files (created via lhe LOCALIZE

command) is necessary. Some specific recommendations for modifying these files are giw, n in

sections 9.2.1 through 9.2.10.

NOTE: There is actually another option h)r tailoring these files with . strt suffixes.

As mentioned in section 7.9.2. PRELUDE can accommodate LOCAL or CUSTOM copies

of start source files, which in turn gives the user the abilily t.o produce tailored

case-dependent include files (.strt suffixes). If any LOCAL start source files exist,

PRELUDE will use them in conjunction with any CUSTOM files to create a LOCAL start

executable. If CUSTOM start source files exist, but no LOCAL start source files are

present, PRELUDE creates a CUSTOM start executable. This approach is especially

useful for any modifications that will be repeated on a regular basis. This option

is useful when changing the flow field initialization for a "cold-start" solution, for

example.

The contents of HEADER. strt, as well as files

algnshk_vars.strt

gas_model_vars.strt

issd_assn.strt

iupwind_assn.strt

mtaska_assn.strt

nordbc_assn.sZrz

parameter.strt

source_vars.strt

sthrlnd_vars.strt

are repeated in LOCAL file ECHOSTRT (appendix E, section E.2). This file is created by make,

and serves to document the LAURA options that are active for a given conq)ilation. During

subsequent executions of laura, the contents of ECIt0STRT are echoed to standard output.

NOTE: The file ECHOSTRT should not be mistakenly edited in an a tteml)t to effect

changes to the laura executable. Modifications shouhl he made via PRELUDE or

through a LOCAL version of the above files, followed by a recompilation of laura.

9.1. Control Via Execution

9.1.1. File RESTART. in

The LAURA restart capability requires that the binary file RESTART. in be preserved be-

tween runs. This file is unformatted to minimize memory requirements. The file RESTART.in

contains the grid, along with the primitive variables, for the entire flow field. As a result, in

subsequent runs, LAURA can pick up the previous solution where it left off. The RESTART. in

file is overwritten at the conclusion of each successful LAURA run.

NOTE: Files RESTART. in and TWALL. in are overwritten at the end of each execu-

tion of laura. A backup capability exists through the command

(appendix J), which simply copies RESTART. in to RESTART.backup and TWALL. in to

TWALL. backup.
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LAITRA alwaysexpectsto find RESTART.in, even for cohl starts. If n(u,job _ 0 (conic

or aerot)rake _eome_ry) is specified wherJ ruunin_ PRELUDE, then RESTART. in is automatically

genera te(l |)y start. 01herwise, the user must supply an externally gel_erate(] restart file for

laura. This fib, does not need to exist, before rllllIlhl_ PRELUDE, but it must I)e present before

execu'_in_ the command

(laura < data)

The flow tield (lomaiH can be (livi(led into multiple compulational I)lock._, and this is re-
flected in the reslarl file. LAURA obtains information from RESTART.in for each block, l:or

nolw<luilihrium flow, lhe sequence for a 7.;iven block (screel_ 31) is:

read (24) ix, jx, kx, ls

read (24) (((

&

&

u(i,j,k)

((( v(i,j,k) ,

((( ,(i,j,k) ,

(((temp(i,j,k) ,

(((tempv(i,j,k) ,

(( (ri(i,j,k,s),

(( x(i,j,k) ,

(( y(i,j,k) ,

(( z(i,j,k) ,

, i=l ix ), j=l,jx ), k=l,kx )

i=l ix ), j=l,jx ), k=l,kx )

i=l ix ), j=l,jx ), k=l,kx )

i=l ix ), j=l,jx ), k=l,kx )

i=l ix ), j=l,jx ), k=l,kx )

i=l ix ), j=l,jx ), k=l,kx )

s=l,ls ) ,

i=1,ix+l), j=l,jx+l), k=l,kx+l),

i=l,ix+l), j=l,jx+l), k=1,kx+1),

i=l,ix+l), j=l,jx+l), k=l,kx+l)

Screen 31.

where ix, jx, kx are iblL jblk, and kblk, respeclively, for block :r, and ls is the number of species.

Further. temp is 7'. tempv is Yv, and ri(s) is p_; u, v, and w are velocity <'omponents; and x, y,

and z are (!artesian coor'dinales. This rea<l se<lueuce is repeat, e<l for each I)lock.

NOTE: For ea<'h block, laura che<'ks the values <)[ ix, jx. kx. and ls a_ainst

the maximum dimensions alh)wed (as specified in parameter.strt). If lhese upper

limils are exceeded, an error messa_;e is issued, and the job is terminated.

For l)erfect gas and equilibrium flows, the sequence [or a given block (screen 32) is as folh)ws:
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read (24) ix, jx, kx, is

read (24) ((( u(i,j,k)

((( v(i,j,k)

((( w(i,j,k)

& (((temp(i,j,k)

& ((( e(i,3,k)

((( ri(i,j,k,l)

((( x(i,j,k)

& ((( y(i,j,k)

((( z(i,j,k)

i=l,ix ), j=l,jx

i=l,ix ), j=l,jx

i=l,ix ), j=l,jx )

i=l,ix ), j=l,jx )

i=1,ix ), j=1,jx )

i=l,ix ), j=1,jx )

i=l ,ix+l), j=l,jx+l)

i=l,ix+l), j=1,jx+l)

i=l,ix+l), j=l ,jx+l)

) k=l,kx ),

) k=l,kx ),

k=l,kx ),

k=l,kx ),

k=l,kx ),

k=l,kx ),

k=l,kx+1),

k=1,kx+1),

k=l,kx+l)

Screen 32.

For perfect gas and equilibrium flows, air is treated as a single species (ls = 1 ), which is reflected

above in the read sequence. As a result, p_ = Pl = P. This read sequence is repeated for each
block.

As mentioned above, RESTART. in is autonlatically generated ['or ncwjob _ 0 (conic or aer-

obrake geometry). This cold-start file is a function of a number of user speciIications (such as

R;eometry or free-stream conditions). In start, the flow field variables are initialized as [bllows

(screen 33):

efactor = 8314.3 / ( bgas * wgas * vinfb**2 )

do 50 k=1,ka

etal = ( k - I. ) / ka

do 50 j=l,ja

do 50 i=l,ia

u (i,j,k) = etal * uinf

v (i,j,k) = eta1 * vinf

w (i,j,k) = eta1 * winf

temp(l,j,k) = etal * tinf + ( I. - etal ) * twall

e (i,j,k) = temp(i,j,k) * efactor

50 continue

Screen 33.

where umf, vi@ and u,i_fare the u-, t,-, and w-components of the free-stream velocity, respec-

tively, tinfis the free-stream teml)erature, and twall is the wall temt)erature. In addition to the

above assignments, Tv = T and p._ = p_,,_, initially.

NOTE: The above quantities are normalized in the following manner. The velocities

(u, _,, u,, uhtf, vir_f, and u,inf) are nondimensionalized by the free-stream total velocity,
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while the internal energy (t) is divided by this quantity squared. The species densi!ies

(ri) are normalized by the free-slream density. All temperatures are in degrees I(.

while x, !/. and z are in grid units.

NOTE: As seen above and mentioned earlier, the self-starting feature of start

employs a single computational block witll the /,:-direction normal to t.he body.

9.1.2. File assign_tasks

The AS('I[ file' assign_tasks gives tile user COlltro] over several facets (which follow) of the

L.\UI{A algorithm via live paralneters (nbk. ,,,bk, Islrt, Islop, and mal,cpu):

• Partitioning of computational blocks

• Number of processors assigned to individual blocks

• Swee I) direction for each block

These five parameters, discussed in section 11.5.2, are enlered on a single line in free forlnal. A

sample file is shown below (screen 34) for a five-block, eighl-processor case:

1 3 1 20 1

2 3 1 20 2

3 3 1 20 3

4 3 1 20 4

5 3 1 20 5

1 3 21 40 6

2 3 21 40 7

3 3 21 40 8

4 3 21 40 1

5 3 21 40 2

1 3 41 60 3

2 3 41 60 4

3 3 41 60 5

4 3 41 60 6

5 3 41 60 7

Screen 34.

Ilere kblk,, = 60 for each block n, with lstrt and Istop defined as shown in the third and fourth

columns, respectively. A k-directiona.1 sweep (mbk = 3) is specified for all tasks in l he second
CO]t111111.

NOTE: The solution for a. given block may be "frozen," while others are, advanced by

simply omitting that block from assign_tasks. 1:'o1"instance, in lhe above example,

if" the assignments for Block C (nbk = 3) were no! included, then computations would

be performed on the other four blocks while the Block C flow field remained fixed.
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9.1.3. File data

The most direct user control for a given LAURA run is through the AS('H file data, which

contains a number of parameters. Each entry is followed by a brief comment (i.e.. variable name,

short description, or acceptable values). LAURA receives these instructions through a series of

free-tormatte<[ read files from data. Tile values for parameters that appear in data can I)e

modified by the user through direct editing of the file. However, as a rule, lines should not t)e

added to, or deleted fi'om, file data to run different cases. Rather, the PRELUDE session shouhl

be repeated to create a new file data.

A sample data file is shown below (screen 35).

0 0 1

.50000E+04

.10000E-02

.20000E+03

0

.50000E+03

0.000

1.0000

0.000000E+00

0.000000E+00

0.314159E+01

0.200000E+01

100

20

0

1

0.300

0.010

10.00

2.00

1.00

VERSION=LAURA.4.1

nord ...................... 1(st-) or 2(nd-) order spatial accuracy

ntrnsprt ............ iterations between transport property updates

njcobian ...................... iterations between jacobianupdates

{i,j,k}vis . O=off/l=on for {i,j,k} TL N-S viscous terms in block 1

vinfb ................................... freestreamvelocity [m/s]

rinfb ................................. freestreamdensity [kg/m'3]

tinf ................................... freestream temperature [K]

tempbc ....... {O=constant, 1=variable, 2=radiative equilibrium} Tw

twall .......................... if tempbc=O: wall temperature [K]

ept ..... if tempbc=2: temperature relaxation factor (0 < ept < I)

rflngth ..... conversion: grid units ==> meters (1 m = 1.0000 m)

zcg ........................................ axial cg location [m ]

xcg ..................................... vertical cg location [m ]

refarea ............................. reference area of body [m "2]

reflen .............................. reference length of body [m ]

iterg ............................. maximum iterations for this run

movegrd ............................. frequency of grid adjustments

maxmoves .......... maximum number of grid adjustments (O=no limit)

iabseig .............................. {O--normal, l=scaled} limiter

epsa ........................................... eigenvalue limiter

errd ............................. error criteria for grid doubling

hrs .................................. time limit for this run [hr]

rfinv ................... inviscid relaxation factor, (rfinv > 1.5)

rfvis ................... viscous relaxation factor, (rfvis > 0.5)

Screen 35.

The above file is actually the initial data file for the sample case presented in apl,endix A.

The first line of data is a header thai can be tailored by the user. Since this file is echoed

in the LAURA output, the header serves as an identifier. The contents and length of (number

of entries in) data are application-specific and thus will differ from case to case. The variable

ifrozeu is only included for nonequilibrium flow. Values for iris. fl,i._, and kvis are defined for
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Table 9.1. Dependence of data or, ncwjob

l I I L()()( 2o

each comt)ulational block. Tile variable attack is only included for three-dimensional flow. The

variables t(mpb¢', hvall, and _pl are excluded for inviscid t]ow (since a I)oulldary condition for

)he energy equation is 11oi required). In other words, the choi('es for UilaS, ndim. and igo'_,erl_

wil bin start will determine whi('h enl.ries are present in data.

NOTE: The exclusioll of inactive varial)les serves as a safeguar(l to l)reven) the user

from wasting (:PIT lime wi(h changes thal have no effect on the sohltion.

NOTE: Any enlry in tile data can l)e m<>dilie<l by e(liling the ill(' (lireclly. For

exa,ml)le, changes ill free-slrean) conditions are easily ma(le in this ma,lmer. ]lowever,

if a l)articular entry is no) presen! in the eurren) [ile data. )hen the user is advised

to rerun PRELUDE to make 1he changes. For examph,. SUl)pose afler converging a

solulion ior inviscid tlow. the user wishes l.o use lhal solulion lo initialize a viscous

flow. As menlioned above, 1.t1(' variables t_ mpbc, tu,nll, and (pt are nol t)resenl in the

file data for inviscid (low, so Ill(, user should rerun PRELUDE to specify lhese values.

9.1.3.1. Initialization

An initial version of data is l)roduced by start. The following variables are &,lined directly

through user int)uts:

attack rinfb tc mpb(' _pl

I,infb tinf lwall

The variable rfln.gth is supplied 1)3, stArt, based on the unils specitied by' tile user. The following

initializations are supplied by stArt:

iflvz(n = 1 epsa = 0.3 trim, = 2

maa:movc._ = 0 ¢rrd= 0.01 rfl,is = 1

iabs<ig = 1 hrs = 10

(:hanges to these variables must be made by editing file data.

Based on the neu'.job specification, stArt makes the initializations shown in table 9.1. If

n_u,job = 0, the user must supply the cg-location (a:cg, zcg), reference area (rcfarea). and reference

length (rtflcn) for the geometry. These values are provided by start for ntu,job ¢ O. (!hanges

to variables listed in table 9.1 must be made by editing file data.

The parameters ivi,_, .]vi.< and kvi._ toggle (0 = off/1 = on) the viscous terms in the i-, j-, and

k-direction, respectively. For increased flexibility, file data contains a set of these toggles for each

computational block. If Euler equations are specified, i_,is = jvis = kvis = 0. For full Navier-

Stokes equations, iris = .iris = k'vis = 1. For thln-layer Navier-Stokes equations, viscous terms

are included only in the body-normal direction. The self-starting feature of LA[rRA assumes

(he ],:-direction is normal to the body and therefore sets iris = O, .fl,i._. = 0, and kt,is = 1. The

values of i_is. jr,is, and ],'vis can be modified by editing file data.
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NOTE: If thin-layer Navier-Stokesequations(igovcrn = 1) havet)eenspecified,
simply defining lois, = jvis = t'vi._ = 1 DOES NOT yiehl the full Navier-Stokes

equations because the cross derivative ternls are omitted. The user must spe(:it_'

iqoccrn = 2 in start to activate (during compilation of laura)the full Navier-Stokes

ternls.

NOTE: If thin-layer Navier-Stokes equations (igovern = 1) haw' been specified.

setliug ivi.+ = .iris = kvis = 0 yields the Euler equations. However. the boundary

conditions are still those of viscous flow. Furtber, pasl investigations have shown

that if a viscous solution is used as the initialization for inviscid calculations, the

boundary layer does not completely disappear unless the grid stretching in the body-

normal direction is redefi ned according to inviscid parameters (which is acconq)lishe<l

through a call lo algnshk. F).

9.1.3.2. Guide to File dal:a

Typically, after LAURA is tailored to a given application, the path fl'om initialization to

convergence requires no additional compilations, Moditications to file data are the user's pri-

mary conlroI over I:AURA runs. Some "rules of thumb" for these parameters are given below.

ltol'd:

For a cold-start initialization, the first-order accurate (nord = 1) schenle is more

robust than the second-order finite-<lifference representation, ttowever, after jus! a

few hundred iterations, the switch to second order (nord = 2) shouht be made.

NOTE: Although a first-order solution is an iml)rovement over the cold-

start initialization, it is computationally wasteful (and. in fact. counter-

l)roductive) to fully converge the tirst-order solution before switching to

nord = 2.

flY).TC lt:

Tiffs toggle controls tile chemical and thermal source terms for nonequilibrium flow.

By default ifrozcn = l so that the source ternls are turned on. With ifr'ozen = O,

the chemically and thermally frozen flow is calculated. In such a case, there is no

dissociation, but the fluid is not treated as a l)erfect gas (constant _ ).

_trl_sl,'t, and njcobian:

As the solution is driven toward convergence, key flow field quantilies vary less

from iteration to iteration. Thus, a reduction in the frequency of updates to these

variables can yield a savings in computational costs. For a cold-start, the Jacobian

aud transport properties are ul)dated for each iteration (_ocobian = ntrn.+prt = 1 ).

As t|le residual drops, these numbers, which sl)ecify the number of iterations between

updates, can be increased.

iris, jvia, and kvis:

These are the toggles for tile thin-layer viscous terms in the i-, j-, and k-directions,

respectively. Each computational block has its own toggles. Setting iris = jvis=

kvi_ = I for a given block DOES NOT yield the full Navier-Stokes equations

(section 9.1.3).
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a/tack, vi_@. ri,fb, and ti,f:

The free-stream conditions can be altered al any time along the path lo convergence.

tc mpbc. twall, and cpt:

The wall temperature boundary condition can be altered at any lime along the path

to convergence. For a conslanl wall temperature, set t_mpbc = 0 and define twoll. For

a specified wall temperature variation, sel t_mpbc = l and supply the file variab].etu

( section 9.1.6 ). li'or t he radialive equili bri um wall tern pera! u re dis1 ribution ( t( mpbc =

2). the user must SUl)l)ly file TWhLL.in (section 9.1.5).

rflrl.gth, zc 9, .re9. r@_r_,, and r(fl¢n:

The reference quantities for the geometry can be altere(t at any time ak)ng the path

tO COllVeF_Oll('e.

ile rg:

This parameter provides a maximum iteration limit for the currenl run.

NOTE: The curren! job is terminated when either ilcrgiterations have

been COml)leled or lhe hrs time limit is reache(l, whichever comes first.

tltov(gyd, a lid llla.l'mov( _:

For a given run, tile flow field grid is reMigned after every movegrdileration(mov_grd =

0 yields no adjustments) u t) to maxmovca times. If maxmoves = 0, the grid will be

adjusle(l every mov_grd ileration for the duralion of the run.

ia b._ ig:

This paranmter controls the eigenvalue limiter scaling option. Although lhe default

is i,b._cig = [ (scaled), a switch to iabscig = 0 (normal) can be required for some

l)roblenls early in the relaxation process to survive difficult transients as the solution
evolves.

('p._a:

This para.meter controls the fraction of the local maximum eigenvalue which is use<t

as a. lower limit for defining the upwind dissipation. For iabse'ig = 1, the Daction is

further reduced in directions where iris = 1, jvis = 1, or kvis = l to substantially

eliminate adverse effects on the computed heating and skin friction levels.

('I'll:

If the self-starting feature of LAURA is eml)loyed, the initial grid contains only one-

quarter of the cells sl)ecified for the k-direction. As the shock layer develops, and

the residual drops, the number of cells in this direction is doubled twice. These

enrichmenls are performed a.utomatically when the residual drops below the value

of _rrd. In general, the timing of this doubling is not critical, so the (lefaul_ value is

satisfactory. If the solution sta_nat.es at a residual level al)ove this value, however.

the user (;all increase (rrd t.o hasten the adjustment.
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h F_:

Ij/'J'H'

This parameter provides the time limit for the current run. Its value should be

lnatched to any time limit dictated by the machine or queue since it determines

when tile restart files are created. If tilt, writing of these files is z_()! completed when

the limit is reached, the run will have to be repeated.

NOTE: The current job is terminated when either ite'r_.l iterations have

been completed or the hrs time limit is reached, whichever comes first.

and 7fl,is:

These factors multiply the inviscid matrix ML.INV and the viscous matrix ML.VIS,

which are the Jacobians of the inviscid and viscous flnx vectors, respectively.

(Eq. (0.76) in appendix O.) These factors have no influence on the converged so-

lution (in the sense lhat lhey do not alter the expression tbr the residual vector),

but they do affect the path to a. converged solution. The change in the solution

vector caused by changes in tile inviscid contributions to the residual is inversely

proportional to </i,_r. In a. similar manner, changes to the solution vector because

of changes in the viscous contributions to the residual are inversely proportional to

l_fl,is. Their lower bounds are rfinv = 1.5 and t_fvis = 0.5. Although the defaults are

,:tiny = 2 and rfcis = 1, increasing these to _Jim, = 3 and _fl,is = 2 (or possibly more)

cart be require<t early in lhe relaxation process for some problems to survive difficult

transients as the solution evolves. The relaxation factors carl also be increased in

cases in which the convergence stalls because ofa limi! cycle induced by the use of the

minmod function in the TVD scheme. Values significantly higher than these shouhl

not be required. As a general guide, low values tend to a('celerate convergence after

very large initial transients have passed. Larger values are appropriate if' large initial

transients are destabilizing or if the convergence has slalled because of limit cycles

(probably in the vicinity of a caplured shock) which are induced by the minmod

function.

9.1.4. File transition

1,br turbulent flows (_turb = 1,2), the location of the onset of transition (str) is st)ecitied

through the AS(:II file transition.

NOTE: This location (surface distance from the nose of the geometry) should be

defined as str= 0 for the cah'ulation of fully turbulent flows.

NOTE: The present coding assumes that the i- and j-coordinates are measured in

the streamwise and circumferential directions, respectively, along the body. Further.
i! assumes that

, the nose point (s = 0) lies in Block h

* Block A is active

A sample file is shown below for transition at str = 1.0 grid m_it:
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9.1.5. File TWALL. in

t:or t_mpbc= 0 (constanl wall tempera!ure), the wall temperatur(, value is provided through

file data (section 9.1.3). For ttmpb('= 1 (specified wall lemperalure varialion ). the wall temper-

ature (list rit)ution is defined through file variabletw (section 9.1.6). l:or h mpbc = 2 (radiative

equilibrium wall tetllperatllre), the wall leillt)ei'atllre distribulion is initialized through binary

file TWALL. in. The size of this file is a function of the 7|11711[)07'of blocks (ld, lock._), tim number

of surfaces (,i._r_, and the array dimensions. The read sequence for lifts unt'ormatted file is:

read (45) isrf

do 35 nn=l,lsrf

read (45) imax, 3max

read (45) ((twallv(i,j,nn), i=l,imax), j=l,jmax )

35 continue

where lsrf in the number of surfaces and imax and jmax are lhe grid dimensions along a given

surtace. This distribution is adjusted with each global ileration in LAURA. The adjustment is

sol a straig]ll substitution, but rathe|' i1 is a relaxation controlled by parameter _pl, which is

read from file data. "_Vith the completion of a I,AURA run, TWALL.in is overwritten to reflec!

I:]7(, current distribution.

NOTE: The file TWALL. in must exisl when l(mpbc -- 2. tlowever, its overwrite

only occurs if ept :_ 0. This allows the wall boundary condition 1o I)e frozen al

any time during the solution l)rocedure. This specification can also allow a flow field

distribution with a fixed wall t)oundary condition to be used to initialize a I_mpb(. = 2

('ase. For example, suppose that a fixed wall distribution (t_mpbc= 0,1: _pl= 0) is

st)ecilie(I for the early stages of flow field development. In a later run, set _pl 7_ 0 to

create a TWALL. in file. In the subsequent run, set t_ntpbe = 2 (since TWALL. in now

exisls), and the solution picks up where it left off. except that the wall temperature

is ite|'ative[v determine(l as I)arI of the solution.

9.1.6. File variabletw

When a sl)ecitied wall temt)erature variation is desired (for comparison with exl)erimen-

tal data. for instance), the wall temperature distribution must be SUl)plie<t in the AS(_II file

variabletw. The surface distance and the temt)era.ture are specified at discrete h)catiol|s down

the body (which is assumed to be in the /-direction). A free format is used to rea(l in this

distrit)utiol7 (one or<lore(1 pair [.s, T] t)er line) fl'om file variabletw. LAURA interpolates these

values to l)rovide the prol)er distribution for the grid specified in RESTART. in.

NOTE: ('urrently, this option (ttmpbc = 1)is not available for three-dimensional
flows.

NOTE: The present coding assumes tim/-coordinate is measured in the slreamwise

direction along the body.

A sample file is shown below for a streamwise temperature distribution lhal varies from T,, =

313.9 K to I',,. = 2_,_.3 K as a function of the surface distance from .% = 0.0 to .% = 12.5 grid
units (screen 36):
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0.0 313.9

0.5225 310.0
1.0475 313.9

1.5700 329.4

2.0950 331.7
2.6175 316.1

3.1425 298.9

3.5775 290.6

3.9775 288.9

4.9775 287.8

5.9750 288.3
6.9725 287.8

7.9700 287.8

9.4675 287.2

10.4650 287.2

11.4625 288.3

12.5 288.3

Screen 36.

9.2. Control Via Compilation

9.2.1. File HEADER. strt

During make, each file in tile LAURA source code is preprocessed before it. is passed to lhe

FORTRAN compiler. This preprocessing eliminates those sections of code which will be inactive

for this case (as determined by user inputs). File HEADER. strt consists of a series of "#define"

stat.enmnts for variables that control the compile directives. The numt)er of definitions and their

values are controlled by the user through start. The options for these definitions are given

t)elow, along with the FORTRAN variable that gives the user control over them.

During the INSTALL_LAURA.4.1 procedure, mhch+prOc identifies the machine architecture,

and this is in turn rellected in the frst definition in HEADER.strt, as follows:

.d. in.CRAY RCHIT C RE} (0#define SUN_ARCHITECTURE for machin( = 1

#define SGI_ARCHITECTURE 2

#define CONVEX_ARCHITECTURE 3

The nexl definition is dependent on ndim:

.d. in.AXISYMMET IC' 0W/ {'#define TWO_DIMENSIONAL_FLOW for ndit_ = 2

#define THREE_DIMENSIONAL_FLOW ;1

This definition retlects the vahle of ngas:

.de ine,E ,ECTOAS}{ '#define EOUILIBRIUM for ngas = 1

#define NONEQUILIBRIUM 2
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Irbr equilibriun) flow, 1he value of icre provides a definition:

#define TANNEHILL 2

t.br nouequilibrium flow. ithcrm is reflected in a definition:

t"

#define ONE_TEMPERATURE _ for ith.e_'w = _ 1

#define TWO_TEMPERATURE j [ 2

The user also has an option for laminar or turbulent flow (through nturb):

#define LAMINAR2LOW

#define TURBULENTILOW }for _zturb = { 01.2

If lurl)ulent flow is chosen, lhere ix presently a. choice of two models (also a.vailat)le throug;h

nh, rb):

#define CEBECLSMITH _ for 'nlu, rb = : 1

#define BALDWINLOMAX j [ 2

If"9_t._= 2 and ns = I.then a,na,ddilionaldefinitioniscreated:

#define ONE_PECIES

The la.sl (lelinilion is a. function of igovern and specities the governing equations:

,d. ineI VISCID} {#define THIN_LAYER for i9o_r. = I

#define NAVIER_STOKES 2

NOTE: Although this file can be modified directly, the user is strongly urged to

make all changes by rerunning PRELUDE and modifying the variable that controls these

definitions. This prevents misspellings, but more importantly, the definitions of cer-

tain variables are interrelated. For example, if "EOUILIBRIUM'" is defined, then either

"V'fNOKUR" or "'TANNEHILL" must also be defined. Remember, if file READER. strt is

moditied, make must be run again to reflect the new specitications.

9.2.2. File algnshk_vars, strt

The file algnshk_vars.strt contains a llulnber of parameters that control tim bnplenlel,-

ta.lion of algnshk.F (section 11.1.1 ). The default algnshk_vars.s'crt file is shown below

(screen aT):
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parameter ( retell = I. )

parameter ( jumpflag = i )

parameter ( fctrjmp = 1.5 )

parameter ( fsh = .8 )

parameter ( fstr = .5 )

parameter ( betagrd = O. )

C NOTE: epO not used if betagrd < 1

parameter ( epO = O. )

C parameter ( epO = 25. / 4. )

! cell Re at wall

! flag for jump property

! factor for jump property

! fraction of grid _ithin shock layer

! fraction of cells in stretch region

! stretching function control

! no shock clustering

! recommended max. value

Screen 37.

These parameters shouhl I)e changed I>y e<liting a LOCAL copy of algnshk_vars, strt and running

make again.

9.2.3. File gas_model_vars, strt

The file gas_model_vars, strt cot_tains a number of parameters thal reflect LA l;]{ A <lefa.ults.

The default gas_model_vars.strt file for the sample case presented in apl)endix A is shown

below (screen 3S):

parameter ( bgas = .4 )

parameter ( _gas = 28.86 )

C:: PERFECT GAS VARIABLE:

parameter ( prandtl = .71 )

! gamma - 1 (used for PG, EQ)

! air mol ,eight (used for PG, EQ)

! Prandtl Number

Screen 3S.

For nonequilibrium flows, the perfect gas Prandtl number a ssignmenl is replaced with the fol-

lowing flags in gas___odel_vars, slzr'c (screen 39):
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C:: NONEQUILIBRIUM FLAGS:

parameter ( kmodel = 3 )

parameter ( jtype = 0 )

parameter ( nsz = 11 )

parameter ( nsp = 16 )

parameter ( nrz = 27 )

! kinetic model option (I-5)

! ! wall catalysis option (0-6)

! number of species defined in air.f

! number of collision partners (kinetic)

! number of allo.ed reactions (kinetic)

Screen 39.

The value of jtyp: is defined by the user in start. This value can be modilied by rerun-

ning PRELUDE or' by editing a LOCAL copy of gas_model_vars.strt. Th(, olher 1)arameters

should be <:hanged I)v ediling a LOCAL copy of gas_model_vars.strt. Remember, i[ file

gas_model_vars.strt is modified, make must be run again lo/'erie('! the new specificalions.

9.2.4. FiLe issd_assn, strt

The file issd_assn, strt contains the flag that toggles the solid-state device (SSI)) on (:I_A'_"

architectures. The default issd_assn.strt file is shown below:

I parameter ( issd = 0 ) ! O=off/l=on for SSD ]

The value of is._d should |)(, changed by editing a LOCAL copy of issd_assn.strt and running

make again.

9.2.5. File iupwind_assn, strt

The file iupwind_assn, strt contains the flag thal controls which T\:I) limiter is used. The

default iupwind_assn, strt file is shown below:

parameter iupwind = 0 ) ! option (0,1,2) for TVD limiter

The value of i_lpwiml should be changed by editing a LOCAL copy of iupwind_assn.strt and

running make again.

9.2.6. File mtaska_assn, strt

The file mtaska_assn, strt contains the flag that toggles the adaptive partitioning of tasks.

The (tefault mtaska_assn, strt file is shown below:

parameter ( mtaska = 0 ) ! adaptive partitioning of tasks
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The value of mtaska should be changed by editing a LOCAL copy of mtaska_assn.strt and

running make again.

9.2.7. File nordbc_assn, strt

The file nordbc_assn.strt contains the flag that controls 1he spatial accuracy of surface

and outflow boundary conditions. The default nordbc_assn, strz file is shown below:

parameter ( nordbc = 1 ) t 1st- or 2nd-order BC [

The value of nordbe shouhl be changed by ediling a LOCAL copy of nordbc_assn.szrZ and

running make again.

9.2.8. File parameter, strt

"]'his file parameter.szrt contains a numl)er of parameters *hal ,'effect user inputs during

the compilation of laura. TiLe structure of parameter.strt is shown below (screen 40).

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

parameter

( ns = 1 ) ! air is treated as I species for Pfl, EQ

( neq = 5 ) ! ...thus, there are 5 governing eqns

( nblocks = 1 ) ! number of computational blocks

( iaq = 30, ias = iaq + I ) ! block I: "i"-cells

( jaq = I, jas = jaq + i ) ! I: "j"-cells

( kaq = 64, kas = kaq + I ) ! i: "k"-cells

( isjs = iaq * jas ) ! max dimension of sweep plane

( nsrf = I ) ! number of surfaces

( isrf = 30, jsrf = I ) ! max surface dimensions

Screen 40.

The contents and length of (number of entries in) parameter.strt is application-specific

and thus will differ from case to case. In addition to the above entries, the dimensions iaqf and

.jaqf are included for full Navier-Stokes calculations. Also. the dinletlsions 'maxi. max j, and maxk

are defined for turbulent flow.

NOTE: The dimensions of each computational block must I)e specified (e.g.. iaq.

jaq, and kaq for Block h and ibq, jbq, and kbq for Block B).

The parameter us,f defines the total number of solid surfaces in all computational blocks. The

parameters is_fand jsrfgive the maximum values for the first and second indices, respectively,

of any active wall boundary. These parameters, along with in@ ja@ no'q, and ns, are defined

by start based on user inputs. Direct modification by the user via editing a LOCAL version

of parameter.strg is unnecessary and discouraged. Changes to these parameters are best

accomplished through running PRELUDE.
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The t)aramet.eri._j._ is also defined l)y stArt, based on user inl)uls. A k-directional sweep is

a.ssun,ed. If an i- or j-directio),al sweep will be employed, lhe value of i._j._ can be ('hanged 1)v

editin_ a LOCAL copy of" parameter.strt (section ll.3).

PRELUDE shoul<t be rerun when the numl)er of compul a.).ional t)lo('ks (l_blo:'k._)is )o t)e chang;e<l.

This allows start to crea.le Ill(, a.pprol)riate l)a.ranleters for the I)lock dimensions. The block

dimensions (hemselves (such as ioq and .#tq) also can be cl,allg;ed by editing a LOCAL copy of

parameter, strt.

I_elnenlber. ]_" file parameter.strt is )nodifie<l. make mus! I)e run ag_ain )o reflec! l]le new

st)ecifications.

9.2.9. File source_vars, strt

The file source_vars, strt <'ont.ains flap.;s used in file source. F (nonequilibrium flows only).

The <lef'aull source_vats, strt file in shown I)elow:

parameter ( imptemp = i )

parameter ( icharge = I )

! O=ex/l=implicit T dependence

! toggle for el continuity eqn

The.se t)aratnel.ers shouhl be change<l by editing a LOCAL Col;y of source_vats, strt and runnit)K

make a_ain.

9.2.10. File sthrlnd_vars, strt

The file sthrlnd_vars.strt contains the coefficients for sthrlnd. F, which is Sulherlaud's

la,w (use<t for perfect _;as flows only). The defaul( sthrlnd_vars, strt ill<' is shown below:

I parameter ( vlgas = 1.4643e-6, v2gas = 112.222 ) [

These parameters shoul<t I)e chang;e<t t>y e<li(in_ a LOCAL copy of sthrlnd_vars, strt and runninp_;

make again.

NOTE: llemember to use constants that are al)l)ropriate for temperature in K.
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Chapter 10

Output From LAURA

In addltio), )o the standard (screen) ouipul, a number of files are genei'aled during and a) the

end of a su('('essful laura run. h,formatio)l is wri(tell to the files algnshk.out a li(I cony.out

during lh(, laura run. J\l (he ('on(-hlsioll of the run, 1he files RESTART. in and TWALL.in at(,

Ul)(lated. Next, the ill(' grid. out is ('realed. The information contained in the.s(, tiles is dis('usse(I

in lhis chaplet. Outpul froth the sample case (apliendix A)is shown.

10.1. Screen Output

Tile LA(TRA a/gorithnl is exe('llt.e(I interact(rely wit/i l he coninian(l

(laura< data)

The progress of an interactive job cat( be nionilored lhroli_]i the outplll lhal is written 1o the

screoli (standard ouiput). This Olll, pul ('a, li t)o redh'eeled 1o file :H:n wiih lhe ('Olllliialid:

Oaura < data > Ifn)

The sian(lard outpu( for ihe iniiialrun of the sample case isdisplayed and discussed in the

pages iha( follow.

NOTE: In actuality,the contents of a number of filesare echoed to lhe screen al

lhe start of a run. The following information iscontained in this preamble:

• The ('olltellts of file data

• The contents of file variabletw (tempbc= I only)

• The contents of file transition (nturb > 0 only)

• The contents of file ECHOSTRT (section 9)

• A ]is) of any LOCAL or CUSTOM files used in the compilation

hi l.he inlerest of I)revit.v, lliis preamble is not shown here,

The free-sl, realil pressure and similarity pa, ra, tlleters (which are ca, lculated based Oll liSel' inputs)

and lhe value of ttie (:ouranl liuniber for this run are oulplll (screeli ,|1 ):
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pressure 0.57618E+02

Mach number 17.605

Reynolds number 0.37693E+06

Knudsen number 0.78917E-04

Courant number O.1E+07

N/m_2

Screen ,l 1.

A header identifies elements of the main screen output a.s follows:

tsk task number

blk block nund)er for this task

ms sweep direction (mbk) for this task

iter iteration number

L2 norm running total of L2 norms for all tasks

tsk norm 1.2 norm for this task

inf norm maximun_ residual for this task

i, j, k, m index of cell (i,j,k), and equation number (m),
where the maximum residual for this task occurs

time value from system timer

strt I._trt ff)r this task

stop lstop tbr this task

In addition, as each l)rocessor comes on line, the message "('PI: number __ starting" is issued

to (he screen (screen 42):
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tsk blk ms iter L2 norm tsk norm inf norm i j k

CPU number Ol starting

1 1 3 1 1.113E+O1 1.113E+O1 4.060E-01 7 1 2

1 1 3 2 3.800E+01 3.800E+01 1.050E+O0 6 1 1

1 1 3 3 1.200E+01 1.200E+01 7.042E-01 5 1 1

1 1 3 4 2.107E+01 2.107E+01 6.712E-01 7 1 1

1 1 3 5 9.462E+00 9.462E+00 5.502E-01 5 1 1

1 1 3 6 1.459E+01 1.459E+01 4.923E-01 9 1 1

1 1 3 7 7.563E+00 7.563E+00 4.525E-01 7 1 1

1 1 3 8 1.095E+01 1.095E+01 3.884E-01 10 1 1

1 1 3 9 6.207E+00 6.207E+00 3.740E-01 7 1 1

1 1 3 10 8.557E+00 8.557E+00 3.164E-01 11 1 1

1 1 3 11 5.223E+00 5.223E+00 3.130E-01 8 1 1

1 1 3 12 6.853E+00 6.853E+00 2.647E-01 12 1 1

1 1 3 13 4.490E+00 4.490E+00 2.659E-01 9 1 1

1 1 3 14 5.584E+00 5.584E+00 2.265E-01 13 1 1

1 1 3 15 3.924E+00 3.924E+00 2.290E-01 10 1 1

1 1 3 16 4.612E+00 4.612E+00 1.976E-01 15 1 1

1 1 3 17 3.478E+00 3.478E+00 1.994E-01 11 1 1

1 1 3 18 3.860E+00 3.860E+00 1.750E-01 16 1 1

1 1 3 19 3.125E+00 3.125E+00 1.753E-01 13 1 1

1 1 3 20 3.277E+00 3.277E+00 1.568E-01 17 1 1

...Grid adjusted after iter = 20

m time strt stp

1 0.85 1 16

1 1.32 1 16

1 1.80 1 16

1 2.27 1 16

1 2.76 1 16

1 3.24 1 16

1 3.71 1 16

1 4.19 1 16

1 4.66 1 16

1 5.13 1 16

1 5.61 1 16

1 6.08 1 16

1 6.56 1 16

1 7.03 1 16

1 7.51 1 16

1 7.98 1 16

1 8.46 1 16

1 8.93 1 16

1 9.41 1 16

1 9.88 1 16

Screen 42.
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.Grid

.Grid

21 3.872E+00 3.872E+00 3.412E-01 18 I 8 i 10.50 1 16

22 2.514E+00 2.514E+00 2.371E-01 18 1 8 1 10.98 1 16

23 1.876E+00 1.876E+00 1.974E-01 10 I 9 1 11.46 1 16

24 2.058E+00 2.058E+00 1.461E-01 11 1 9 I 11.94 1 16

25 1.489E+00 1.489E+00 1.361E-01 10 I 9 1 12.42 I 16

26 1.880E+00 1.880E+00 1.148E-01 14 1 1 1 12.90 1 16

27 1.415E+00 1.415E+00 1.065E-01 14 1 1 1 13.38 1 16

28 1.820E+00 1.820E+00 1.297E-01 20 i 1 1 13.85 1 16

29 1.421E+00 1.421E+00 1.195E-01 20 1 I 1 14.33 I 16

30 1.681E+00 1.681E+00 1.432E-01 22 1 1 1 14.82 I 16

31 1.357E+00 1.357E+00 1.272E-01 22 1 I 1 15,29 I 16

32 1.444E+00 1.444E+00 1.474E-01 24 I 1 1 15.77 1 16

33 1.208E+00 1.208E+00 1.265E-01 24 1 1 1 16,25 1 16

34 1.169E+00 1.169E+00 1.428E-01 26 1 1 1 16.72 1 16

35 1.020E+O0 1.020E+O0 1.192E-01 25 I 1 1 17,20 1 16

36 9.127E-01 9.127E-01 1.314E-01 27 1 1 1 17.67 1 16

37 8.452E-01 8.452E-01 1.080E-01 27 1 1 1 18.14 1 16

38 7.073E-01 7.073E-01 1.174E-01 27 1 1 1 18.62 1 16

39 7.070E-01 7.070E-01 9.617E-02 27 1 1 1 19.09 1 16

40 5.588E-01 5.588E-01 1.011E-01 28 1 1 1 19.57 1 16

adjusted after iter = 40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

2.646E+00 2.646E+00 2.781E-01

1.387E+00 1.387E+00 1.421E-01

1,082E+00 1.082E+00 1.146E-01

7.598E-01 7.598E-01 1 014E-01

6.750E-01 6.750E-01 8 246E-02

5.215E-01 5.215E-01 8 600E-02

5.348E-01 5.348E-01 7 471E-02

4.059E-01 4.059E-01 7 023E-02

4.587E-01 4.587E-01 7 235E-02

3.383E-01 3.383E-01 5.551E-02

4.222E-01 4.222E-01 7.845E-02

3.072E-01 3.072E-01 6.533E-02

4.148E-01 4.148E-01 8.061E-02

3.013E-01 3.013E-01 7.083E-02

4.249E-01 4.249E-01 9.626E-02

3.104E-01 3.104E-01 7.890E-02

4.442E-01 4.442E-01 1.093E-01

3.285E-01 3.285E-01 9.024E-02

4.687E-01 4.687E-01 1.139E-01

3.518E-01 3.518E-01 9.626E-02

adjusted after iter = 60

16 1 12 1 20.20 1 16

17 1 10 1 20.67 1 16

11 1 12 1 21.15 1 16

28 1 I 1 21.62 1 16

28 1 1 i 22.09 I 16

29 1 1 1 22.56 1 16

9 1 Ii 1 23.04 I 16

29 1 1 I 23.51 1 16

9 1 12 1 23.98 1 16

9 1 12 I 24.46 1 16

9 i 12 I 24.93 I 16

9 i 12 1 25.41 I 16

9 1 12 1 25.88 1 16

9 1 12 1 26.35 1 16

8 1 13 1 26.80 1 16

8 I 13 1 27.27 1 16

9 1 13 i 27.74 1 16

9 1 13 1 28.21 I 16

9 1 13 1 28.67 1 16

9 1 13 1 29.14 1 16

Screen 42. Concluded.
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As shown,messagesarealsoissuedwhenalgnshk. F is called. Here, shock adjustment has

been re<luesled after ea('h 20 ileralions. Tire confirmation message is "...(;rid adjuste<t after iler
.... '" (screen 43).

1 1 3 61 8.506E-01 8.506E-01 2.808E-01 15 1 13 1 29.77 1 16

I 1 3 62 5.473E-01 5.473E-01 1.369E-01 15 1 13 1 30.24 1 16

1 1 3 63 6.346E-01 6.346E-01 1.604E-01 15 1 13 1 30.72 1 16

1 1 3 64 4.670E-01 4.670E-01 1.063E-01 15 1 13 1 31.20 1 16

1 1 3 65 6.021E-01 6.021E-01 1.322E-01 15 1 13 1 31.66 1 16

1 1 3 66 4.598E-01 4.598E-01 1.017E-01 15 1 13 1 32.13 1 16

1 1 3 67 6.027E-01 6.027E-01 1.198E-01 15 1 13 1 32,61 1 16

1 1 3 68 4.678E-01 4,678E-01 9,944E-02 15 1 13 1 33.09 1 16

1 1 3 69 6,136E-01 6.136E-01 1,114E-01 10 1 14 1 33.56 1 16

1 1 3 70 4.816E-01 4.816E-01 9.485E-02 15 1 13 1 34.05 1 16

1 1 3 71 6.289E-01 6.289E-01 1.164E-01 15 1 14 1 34,52 1 16

1 1 3 72 4.976E-01 4.976E-01 9.597E-02 15 1 14 1 35.00 1 16

1 1 3 73 6.457E-01 6.457E-01 1.228E-01 15 1 14 1 35.47 1 16

1 1 3 74 5.137E-01 5.137E-01 1.032E-01 15 1 14 1 35.94 1 16

1 1 3 75 6.616E-01 6.616E-01 1.228E-01 15 1 14 1 36.41 1 16

1 1 3 76 5.283E-01 5.283E-01 1.052E-01 15 1 14 1 36.89 1 16

1 1 3 77 6.745E-01 6.745E-01 1.180E-0_ 15 I 14 1 37.36 1 16

1 1 3 78 5.400E-01 5.400E-01 1.032E-01 15 1 14 1 37.83 1 16

1 1 3 79 6.831E-01 6.831E-01 1.098E-01 15 1 14 1 38.31 1 16

1 1 3 80 5.477E-01 5.477E-01 9.786E-02 15 1 14 1 38.78 I 16

...Grid adjusted after iter = 80

1 1 3 81 9.475E-01 9.475E-01 2.255E-01 24 1 14 1 39.41 1 16

1 1 3 82 6.263E-01 6.263E-01 1.435E-01 24 1 14 1 39.88 1 16

1 1 3 83 7.138E-01 7.138E-01 1.328E-01 23 1 13 1 40.35 1 16

1 1 3 84 5.545E-01 5.545E-01 1.133E-01 23 1 13 1 40.83 1 16

1 1 3 85 6.716E-01 6.716E-01 1.173E-01 23 1 13 1 41.30 1 16

1 1 3 86 5.327E-01 5.327E-01 1.024E-01 23 1 13 1 41.78 1 16

1 1 3 87 6.443E-01 6.443E-01 1.108E-01 16 1 14 1 42.25 1 16

1 1 3 88 5.147E-01 5.147E-01 9.525E-02 17 1 14 1 42.73 1 16

1 1 3 89 6.182E-01 6.182E-01 1.058E-01 17 1 14 1 43.20 1 16

1 1 3 90 4.956E-01 4.956E-01 9.285E-02 17 1 14 1 43.68 1 16

1 1 3 91 5.917E-01 5.917E-01 1.012E-01 23 1 14 1 44.16 1 16

1 1 3 92 4.751E-01 4.751E-01 8.863E-02 18 1 14 1 44.63 1 16

1 1 3 93 5.648E-01 5.648E-01 9.614E-02 23 1 14 1 45.11 1 16

1 1 3 94 4.536E-01 4.536E-01 8.516E-02 18 1 14 1 45.60 1 16

1 1 3 95 5.375E-01 5.375E-01 9.005E-02 23 1 14 1 46.08 1 16

1 1 3 96 4.313E-01 4.313E-01 8.051E-02 19 1 14 1 46.55 1 16

1 1 3 97 5.100E-01 5.100E-01 8.575E-02 16 1 15 1 47.02 1 16

1 1 3 98 4.083E-01 4.083E-01 7.585E-02 19 1 14 1 47.53 1 16

1 1 3 99 4.823E-01 4.823E-01 8.431E-02 16 1 15 1 48.00 1 16

1 1 3 100 3.849E-01 3.849E-01 7.109E-02 16 1 15 1 48.48 1 16

...Grid adjusted after iter = 100

Screen 43.
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The self-starting feature of LAURA is emt)loyed for this sample case. As mentioned in

section 9.1.3, the initial grid contains only one-quarter of the ceils specified for tile /,'-direction.

As the shock layer develops, and the residual drops, the number of (:ells in this direction is

doubled twice. With each doubling, the message "...Grid donbled after iter .... '" is issued.

After the specitied /,'-direction is achieved, further calls to algnshk.F will be accompanied by a

warning message if the criteria tot the cell Reynolds number at the wall is no! met. As staled in

section 9.1.3.2, the variable maxmoves controls the number of times algnshk. F is called. When

this value is exceeded, no further calls to algnshk.F are made, and the message "...Turning off'

algnshk after ___ adjustments" is issued. Each of these messages can be viewed in contexl in

appendix A. where this sample case is discussed further.

As each task finishes, a coniirmation message is issued:

V"

CPU 1 terminated at 48.64 seconds (after 100 iterations). I

Routine taskit. F outputs the integraled surface quantities (screen 44):

Aerodynamic coefficients cx, cy, cz, gy and

mass and energy flux through surfaces

for each of I tasks are presented below

No assumption of a half-body computation is

is made here; consequently, cx, cz, and gy

will need to be multiplied by 2 to obtain

the correct aerodynamics when only half of

the body is computed.

integrated surface quantities:

cx = 0.10319546E-01

cy = O.O0000000E*O0

cz = 0.13448360E-01

gy = -0.55733500E-02

summdot = 0.32861283E-03

sumheat = -0.I0528496E-02

Screen 44.
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Rout i,e wrapup. F outputs several reference quantities (xcg, zcg. 'rtfar_ e, and r<fh n) as shown
in screen 45:

x/rflngth = O.O0000000E+O0

z/rflngth = O.O0000000E+O0

area/rflngth'2 = 0.31415901E+01

length/rflngth = 0.20000000E+01

END ! END ! END ! END ! END ! END ! E_D ! END ! END ! END

Screen 45.

NOTE: The call 1o routi_e outputa.f is currently "'(:ommenled out." If this ex-

tended oult>ul is desire<l, simply reinstale this call in a LOCAL version of wral)Ul>.

10.2. File algnshk.out

The ill(, algnshk.out coutains inh)rmation fi'om each call to algnshk. F.This file is over-

written with each laura run (provided algnshk. F is called). The outpu_ for the initial run of

the sample case is displayed (screen 46) and discussed in |he pages that tollow.
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...Grid adjusted after iter = 20

norm. wall

j hminl dist. stretch

1 1 .5489674E-05

2 1 .5470985E-05

3 1 .5527656E-05

4 1 .5630268E-05

5 I .5780112E-05

6 1 .5982895E-05

7 1 .6246614E-05

8 1 .6577184E-05

9 1 .6984580E-05

10 1 .7481306E-05

11 1 .8081044E-05

12 1 .8803757E-05

13 1 .9672593E-05

14 1 .1071551E-04

15 1 .1196553E-04

16 1 .1346256E-04

17 1 .1525572E-04

18 1 .1740257E-04

19 1 .1997267E-04

20 1 .2304558E-04

21 1 .2671226E-04

22 1 .3106547E-04

23 1 .3620289E-04

24 1 .4221089E-04

25 1 .4915655E-04

26 1 .5708405E-04

27 1 .6600447E-04

28 1 .7591113E-04

29 1 .8692797E-04

30 1 .9837127E-04

174746 2.212342

174609 2.213022

175025 2.210968

175771 2.207308

176844 2.202096

178264 2.195280

180060 2.186795

182235 2.176711

184810 2.165040

187808 2.151805

191242 2.137085

195146 2.120900

199547 2.103314

• 204471 2.084415

• 209941 2.064320

.215980 2.043154

• 222617 2.021041

.229871 1.998128

.237766 1.974556

,246317 1.950493

• 255529 1.926113

• 265379 1.901645

.275833 1.877309

• 286822 1.853358

• 298248 1.830044

• 309998 1.807590

• 321944 1.786181

.333975 1.765927

.346152 1.746634

.357733 1.729310

max. location of

stretch maximum

4.168002 .004896 ( 5)

4.169779 .004890 ( 5)

4.164412 .004908 ( 5)

4.154848 .004941 ( 5)

4.141229 .004988 ( 5)

4.123418 .005050 ( 5)

4.101244 .005129 ( 5)

4.074893 .005225 (5)

4.044396 .005339 ( 5)

4.009813 .005473 ( 5)

3.971347 .005626 ( 5)

3.929052 .005803 ( 5)

3.883098 .006003 (5)

3.833714 .006228 ( 5)

3.781201 .006481 ( 5)

3.725892 .006762 (5)

3.668108 .007074 (5)

3.608233 .007418 ( 5)

3.546637 .007796 (5)

3.483757 .008210 ( 5)

3.420050 .008660 ( 5)

3.356112 .009146 ( 5)

3.292519 .009667 ( 5)

3.229931 .010220 ( 5)

3.169010 .010801 ( 5)

3.110333 .011404 (5)

3.054391 .012023 ( S)

3.001463 ,012650 ( 5)

2.951048 .013291 ( 5)

2.905780 .013904 ( 5)

Screen 46.

Each carl to algnshk. F is annotated with the iteration count at the time of tile call through

lit(, message "...Grid adjusted after iter ..... " A header i(lenlilies the quantilies conl.aine<l in

this out.put (screen 46):

i.j
hminl

norm. dist.

wall stretch

max stretch

location

station index

height (dimension in k-direction) of cell adjacent to wall

normalized distance from surface t.o outer grid boundary

grid stretching factor aJ the wall

maximum value of grid stretching factor used in the

st retching region

normal distance from body to point of maximum grid

st retching ( k-index in parent heses)
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NOTE: Tilt, target value for normalized distance is ssl = 1. A value of less

than unity indicaled thai the criterion for r_cellcould not be met. In such cases,

algnshk. F stretches the grid by a faclor of I/.s._.l to encompass the bow shock. As

a resull, the a.clua[ value of _,c_ll is greater than unity. If r_c_ll is of order 10 or

grealer, lhen healing resulls may be SUSl)ecl.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

...Grid adjusted after iter = 40

norm. wall max. location of

j hminl dist. stretch stretch maximum

.3131174E-05

3073462E-05

3053028E-05

3046536E-05

3000777E-05

2988069E-05

3026658E-05

3095165E-05

3187141E-05

3320904E-05

3528920E-05

3828609E-05

.4074159E-05

.4354005E-05

.4711490E-05

.5175733E-05

.5786571E-05

.6567679E-05

.7450395E-05

.8442363E-05

.9649611E-05

.1117308E-04

.1305955E-04

.1532536E-04

.1806137E-04

.2145109E-04

.2605639E-04

.3138540E-04

.3727448E-04

.4341805E-04

.153732 2.328307 4.471033

.153089 2.332290 4.481442

.152860 2.333721 4.485180

.152787 2.334177 4.486374

.152267 2.337429 4.494869

• 152122 2.338341 4.497254

.152562 2.335583 4.490047

• 153332 2.330782 4.477502

.154347 2.324522 4.461143

• 155786 2.315771 4.438275

•157941 2.302921 4.404697

•160890 2,285834 4.360046

• 163183 2.272920 4.326299

.165677 2.259228 4.290522

.168700 2.243113 4.248410

.172387 2.224126 4.198796

.176890 2.201875 4.140651

• 182173 2.176993 4.075630

187625 2.152600 4.011889

193224 2.128798 3.949692

199434 2.103756 3.884253

206523 2.076767 3.813727

214403 2,048581 3.740074

222863 2.020242 3.666021

231969 1,991729 3.591513

.241988 1.962495 3,515120

.253949 1.930186 3.430694

.266064 1,900001 3.351817

.277881 1.872723 3.280536

.288897 1.849009 3.218566

.004002 (5)

.003975 (5)

.003966 (5)

.003963 (5)

.003941 (5)

.003935 (5)

.003953 (5)

003985 (5)

004027 (5)

004087 (5)

004177 (5)

004302 (5)

004399 (5)

.004505 (5)

.004634 (5)

.004794 (5)

.004990 (5)

.005222 (5)

.005464 (5)

.005716 (5)

.005997 (5)

.006323 (5)

.006688 (5)

.007085 (5)

.007518 (5)

.008000 (5)

.008582 (5)

.009180 (5)

.009770 (5)

.010326 (5)

Screen 46. (?outinued.
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

...Grid adjusted after iter = 60

norm. wall

j Iminl dist. stretch

1 .3508999E-05

I .3354738E-05

1 .3344006E-05

1 .3339437E-05

1 .3350345E-05

1 .3404264E-05

1 .3503191E-05

1 .3640314E-05

1 .3796423E-05

1 .3991909E-05

1 .4272193E-05

1 .4685001E-05

1 .5097616E-05

1 .5487607E-05

1 .5779021E-05

1 .6047434E-05

1 .6394840E-05

1 .6905384E-05

1 .7591859E-05

1 .8422231E-05

1 .9356654E-05

1 .1032634E-04

1 .1139707E-04

1 .1272952E-04

1 .1439538E-04

1 .1631982E-04

1 .1871878E-04

1 .2174829E-04

1 .2533116E-04

1 .2964231E-04

157739 2,304114

156143 2.313620

156030 2.314300

155982 2.314590

156097 2.313898

156661 2.310516

157680 2.304464

159058 2.296386

160581 2.287596

162426 2,277146

164960 2.263126

168482 2.244259

171784 2.227184

174731 2.212417

176836 2.202134

178709 2.193165

181045 2.182201

184318 2.167248

188455 2.148994

193115 2.129250

197980 2.109495

•202675 2.091215

•207506 2.073150

•213086 2.053168

•219506 2.031263

.226297 2.009260

•234010 1.985600

•242811 1.960183

•252170 1.934827

•262271 1.909196

lax.

stretch

4.407815

4.432655

4.434431

4.435188

4.433381

4.424542

4.408728

4.387619

4.364650

4.337342

4.300707

4.251406

4.206786

4.168198

4.141326

4.117891

4.089240

4.050166

4.002467

3.950871

3.899251

3.851483

3.804276

3.752060

3.694821

3.637323

3.575498

3.509079

3.442820

3.375843

location of

maximum

.004169 (5)

.004102 (5)

.004098 (5)

.004096 (5)

.004100 (5)

.004124 (5)

.004167 (5)

.004224 (5)

.004289 (5)

.004367 (5)

.004474 (5)

.004625 (5)

.004767 (5)

.004895 (5)

.004987 (5)

.005069 (5)

.005172 (5)

.005317 (5)

.005501 (5)

.005711 (5)

.005931 (5)

.0O6146 (5)

.006368 (5)

.006627 (5)

.006927 (5)

.007248 (5)

.007616 (5)

.008039 (5)

.008495 (5)

.008992 (5)

Screen 46. Continued.
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...Grid adjusted after iter = 80

norm. wall

j hminl dist. stretch

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

3O

t .3443899E-05

1 .3344942E-05

1 .3335160E-05

1 .3350440E-05

1 3385750E-05

1 3459766E-05

1 3586949E-05

1 3762755E-05

1 3981143E-05

1 4236447E-05

.4544717E-05

.4961024E-05

.5386835E-05

.5902483E-05

.6528443E-05

.7167620E-05

.7747829E-05

.8422861E-05

.9293064E-05

1031082E-04

1144234E-04

1268032E-04

1402284E-04

1551981E-04

1731760E-04

1948574E-04

.2071425E-04

.2373317E-04

.2726277E-04

.3143247E-04

157072

156040

155936

156098

156468

157235

158526

160256

162326

164644

167311

170713

.173984

.177705

.181919

.185932

.189357

.193118

.197661

.202602

.207703

.212888

.218118

.223546

.229596

.236328

.239910

.248119

.256834

.266164

2.308067

2.314240

2.314862

2.313892

2.311670

2.307096

2.299488

2.289457

2.277706

2,264856

2.25O453

2.232659

2.216117

2 197951

2 178161

2 160043

2 145106

2 129235

2 110768

2,091492

2.072429

2.053863

2.035905

2.018033

1.998973

1.978750

1.968385

1.945602

1.922780

1.899761

max.

stretch

4.418145

4.434276

4.435899

4.433365

4.427559

4.415607

4.395726

4.369513

4.338807

4.305227

4.267592

4.221092

4.177866

4.130398

4.078684

4.031340

3.992305

3.950834

3.902576

3.852207

3.802392

3.753877

3.706950

3.660248

3.610441

3.557596

3.530511

3.470978

3.411340

3.351189

location of

maximum

.004141 (5)

.004098 (5)

.004094 (5)

.0O41O0 (5)

.004116 (5)

.004148 (5)

.004202 (5)

.004275 (5)

.004362 (5)

.004461 (5)

.004575 (5)

.004721 (5)

.004863 (5)

.005025 (5)

.005211 (5)

.005389 (5)

.005542 (5)

.005711 (5)

.005917 (5)

.006142 (5)

.006377 (5)

.006617 (5)

.006862 (5)

,007118 (5)

.007405 (5)

.007727 (5)

.007899 (5)

.008297 (5)

.008724 (5)

.009185 (5)

Screen 46. ('ontinued.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

3O

...Grid adjusted after iter = 100

norm, wall

j lminl dist. stretch

max.

stretch

1 .3029219E-05 .152591 2.335401 4.489572

1 .2933087E-05 .151489 2.342341 4.507707

1 .2936879E-05 .151533 2.342063 4.506979

1 .2960495E-05 .151806 2.340337 4.502469

1 .3003706E-05 .152301 2.337219 4.494321

1 .3081789E-05 .153183 2.331710 4.479927

1 .3205760E-05 .154550 2.323279 4.457895

1 .3374143E-05 .156346 2.312398 4.429461

1 .3584373E-05 .158500 2.299639 4.396121

I .3842867E-05 .161026 2.285059 4.358021

1 .4162814E-05 .163986 2.268471 4.314673

I .4581392E-05 .167620 2.248814 4.263307

1 .5011667E-05 .171112 2.230609 4.215737

1 .5448393E-05 .174442 2.213848 4.171937

1 .5972503E-05 .178192 2.195623 4.124314

1 .6650755E-05 .182708 2.174544 4.069232

1 .7315495E-05 .186823 2.156110 4.021062

1 .7972187E-05 .190633 2.139664 3.978085

1 .8791758E-05 .195083 2.121156 3.929722

1 .9810880E-05 .200221 2.100679 3.876214

1 .1100337E-04 .205769 2.079562 3.821031

1 .1234660E-04 .211527 2.058660 3.766412

1 .1386875E-04 .217536 2.037866 3.712074

I .1561514E-04 .223879 2.016961 3.657447

I .1764181E-04 .230639 1.995773 3.602080

1 .2002684E-04 .237925 1.974096 3.545436

1 .2206557E-04 .243682 1.957754 3.502732

1 .2543164E-04 .252418 1.934175 3.441117

1 .2930744E-04 .261525 1.911032 3.380641

1 .3366429E-04 .270807 1.888812 3.322577

location of

maximum

.003955 (5)

.003909 (5)

.003911 (5)

.003922 (5)

.003943 (5)

.003979 (5)

.004036 (5)

.004111 (5)

.004201 (5)

.004307 (5)

.004433 (5)

.004588 (5)

004738 (5)

OO4883 (5)

005047 (5)

005246 (5)

0O5429 (5)

005599 (5)

.oo58oo (5)
006033 (5)

006288 (5)

OO6554 (5)

006835 (5)

007133 (5)

007454 (5)

007804 (5)

008082 (5)
008507 (5)

008955 (5)
009416 (5)

Screen 46. C,oncluded.
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10.3. File conv.out

The tile cony.out contains a running convergence hislory for the laura runs wilhin the

LDCAL directory. With each laura run, new information is appended to lhis file. The out pul for

the initial run of the sample case is <tisplaye<l and discussed in (he pages /hal tbllow.

A header i<lentities (he quantities contained in this output:

tsk (ask number

iter i(era,tion number

L2 norm running total of L2 norms for all tasks

time (!PU time. s

In a<ldi(ion, surface pressure values a( two s(ations are ou(1)ut for each iteration (screen -17).

NOTE: l:0r viscous calculation,',, sur[ace heating is output a( (hese same stalions.

body pressure body heating

tsk iter residual time(sec) (stag) (end) (stag) (end)

1 1 111251E+02

1 2 380023E+02

1 3 119971E+02

1 4 210671E+02

1 5 946205E+01

1 6 145876E+02

1 7 756324E+01

t 8 109528E+02

1 9 620669E+01

1 10 .855677E+01

1 11 .522298E+01

1 12 .685348E+01

1 13 .448989E+01

1 14 .558383E+01

1 15 .392410E+01

1 16 .461184E+01

1 17 .347849E+01

1 18 .385990E+01

1 19 .312473E+01

1 20 .327746E+01

1 21 .387234E+01

1 22 .251388E+01

1 23 .187591E+01

1 24 .205793E+01

1 25 .148929E+01

0.490 .576182E-02

0.960 .731007E-02

1.440 .182999E-01

1.910 .310216E-01

2.400 .522144E-01

2.880 .744622E-01

3.350 .106214

3.830 .137500

4.300 .180147

4,770 .219581

5.250 .271032

5.720 .316603

6.200 .374367

6.670 .423743

7.150 .485712

7.620 .536903

8.100 .600625

8.570 ,651774

9.050 .713986

9.520 .762802

10.140 .819925

10.620 .664872

11.100 .625742

11.580 .644236

12.060 .658604

.576182E-02 0. O.

.577053E-02 -.123807E-05 -.382043E-07

.580280E-02 -.177536E-04 -.107455E-06

.584124E-02 -.248138E-04 -.175231E-06

.593069E-02 -.358498E-04 -.298696E-06

602070E-02 -.357327E-04 -.413637E-06

617230E-02 -.486654E-04 -.597005E-06

631392E-02 -.477209E-04 -.760025E-06

652168E-02 -.611696E-04 -.997261E-06

670997E-02 -.596799E-04 -.120258E-05

696753E-02 -.727976E-04 -.148395E-05

719903E-02 -.706604E-04 -.172464E-05

750296E-02 -.825884E-04 -.204073E-05

777719E-02 -.797326E-04 -.231121E-05

.812735E-02 -.898725E-04 -.265473E-05

.844679E-02 -.865855E-04 -.295223E-05

.884606E-02 -.946827E-04 -.331940E-05

.921598E-02 -.914467E-04 -.364512E-05

.966994E-02 -.975128E-04 -.403683E-05

100980E-01 -.947210E-04 -.439681E-05

106146E-01 -.320804 -,672383E-03

115725E-01 -.145658 -.908540E-03

lll105E-O1 -.108364 -.743926E-03

106750E-01 -.931990E-01 -.602291E-03

104534E-01 -.798007E-01 -.500528E-03

Screen47.

NOTE: The pressure and heating OUll)U) for this file is for Surface #1, assuming

the following:

* i = 1 for ',he slagnation line
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* i = iaq at tile a ftmosl point of tile body

, j = jaq is the leeshle symmetry plane

• k = 1 is the body surface

If these assumptions are true, then the output contains leeside values at the stagna-

tion and body-end locations. This outpul can be altered in a LOCAL version of file

swp'cask, F ( screen 4S).

1 26 .187973E+01 12.540 .685238

1 27 .141504E+01 13.020 .712985

1 28 .182014E+01 13.490 .741987

1 29 .142090E+01 13.970 .779123

1 30 .168131E+01 14.460 .812621

1 31 .135707E+01 i4.930 .855967

I 32 .144442E+01 15.410 .892370

1 33 .120762E+01 15.890 .936180

1 34 .116881E+01 16.360 .971330

1 35 .102043E+01 16.840 1.00944

1 36 .912701E+00 17.310 1.03906

1 37 .845157E+00 17.780 1.06690

1 38 .707287E+00 18.260 1.08814

1 39 .706961E+00 18.730 1.10360

1 40 .558819E+00 19.210 1.11545

1 41 .264632E+01 19.840 1.11871

1 42 .138680E+01 20.310 .990941

1 43 .I08160E+01 20.790 .975642

1 44 .759772E+00 21.260 .995075

1 45 .675046E+00 21.730 1,01105

1 46 .521515E+00 22.200 1.02706

I 47 .534753E+00 22.680 1.03041

1 48 .405861E+00 23.150 1.03411

I 49 .458732E+00 23.620 1.02696

1 50 .338284E+00 24.100 1.02335

1 51 .422194E+00 24.570 1.01128

1 52 .307171E+00 25.050 1.00451

1 53 .414815E+00 25.520 .991727

1 54 .301292E+00 25.990 .984499

1 55 .424912E+00 26.440 .973628

1 56 ,310424E+00 26,910 .967772

1 57 .444238E+00 27.380 .960182

1 58 .328462E+00 27.850 .956560

1 59 .468710E+00 28.310 .952188

1 60 .351790E+00 28.780 .950565

104241E-01 -.742116E-01 -.448847E-03

105541E-01 -.691393E-01 -.411082E-03

107443E-01 -.661469E-01 -.391369E-03

111720E-01 -

115689E-01 -

122886E-01 -

128973E-01 -

138827E-01 -

146829E-01 -

158844E-01 -

168356E-01 -

181956E-01 -

192521E-01 -

207174E-01 -

218388E-01 -

233640E-01 -

227179E-01 -

.234899E-01 -

.244906E-01 -

.261073E-01 -

.273711E-01 -

.290843E-01 -

.303302E-01

.319379E-01

.330659E-01

.344691E-01

.354251E-01

646882E-01 -.390305E-03

629977E-01 -.387193E-03

630703E-01 -.411887E-03

620696E-01 -,420021E-03

624471E-01 -.463032E-03

617338E-01 -.479173E-03

617355E-01 -.534729E-03

610563E-01 -.556667E-03

603972E-01 -.620733E-03

596093E-01 -.647104E-03

582580E-01 -.717083E-03

572949E-01 -.747088E-03

149085 -.180440E-02

877278E-01 -.121301E-02

705461E-01 -.II0537E-02

628068E-01 -.I05261E-02

582437E-01 -.113698E-02

557855E-01 -.116241E-02

525408E-01 -.128204E-02

- 507998E-01 -.132489E-02

-.477138E-01 -.144554E-02

-.461257E-01 -.149167E-02

-.432762E-01 -.160161E-02

-.418525E-01 -.164569E-02

.365875E-01 -.394433E-01 -.174167E-02

.373586E-01 -.382823E-01 -.178186E-02

.382930E-01 -.363805E-01 -.186485E-02

,388980E-01 -,354510E-01 -,190109E-02

.396481E-01 -.340157E-01 -.197423E-02

.401247E-01 -.332922E-01 -.200740E-02

,407444E-01 -.322725E-01 -,207419E-02

.411335E-01 -.317431E-01 -.210541E-02

Screen 4S.

NOTE: The evaluation of surface-prol)erty convergence histories at key stations

provides the user a measl_re of overall solution quality.
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1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 76

1 77

1 78

1 79

1 80

1 81

1 82

1 83

1 84

1 85

1 86

1 87

1 88

1 89

1 90

1 91

1 92

1 93

1 94

1 95

1 96

1 97

1 98

1 99

1 100

61 .850596E+00

62 .547339E+00

63 .634605E+00

64 .467012E+00

65 .602136E+00

66 .459770E+00

67 .602692E+00

68 .467766E+00

69 .613552E+00

70 .481572E+00

71 .628930E+00

72 .497649E+00

73 .645697E+00

74 .513746E+00

75 .661562E+00

.528288E+00

.674542E+00

.539965E+00

.683141E+00

547736E+00

947471E+00

626324E+00

713803E+00

554506E+00

671584E+00

532733E+00

.644253E+00

.514715E+00

.618159E+00

.495591E+00

.591651E+00

.475097E+00

.564757E+00

.453562E+00

.537530E+00

.431251E+00

.510013E+00

.408316E+00

.482306E+00

.384926E+00

29.410

29.880

30.360

30.840

31.300

31.770

32.250

32.730

33.200

33.690

34.160

34.640

35.110

35.580

36.050

36.530

37.000

37.470

37.950

38.420

39.050

39.520

39.990

40.470

40.940

41.420

41.890

42.370

42.840

43.320

43.800

44.270

44.750

45.240

45.720

46.190

46.660

47.170

47.640

48.120

.948460

.948563

.948449

.949105

.948940

.949398

.948551

.948434

.946742

.945992

.943582

.942315

.939434

.937832

.934748

.933003

.929956

.928232

.925408

.923830

.921340

920000

918149

917174

915432

914459

912434

911200

909047

.907726

.906105

.905235

.904807

.904838

.905790

.906793

.908774

.910439

.912810

.914660

.416678E-01

.417388E-01

.410546E-01

.409112E-01

.413617E-01

.418904E-01

.425978E-01

.431159E-01

.436512E-01

.439743E-01

.442799E-01

.444268E-01

.445511E-01

.445759E-01

.445759E-01

.445233E-01

.444426E-01

.443426E-01

.442109E-01

.440827E-01

.439193E-01

.438014E-01

.436628E-01

.435304E-01

.433683E-01

.432243E-01

.430440E-01

.428909E-01

.426969E-01

.425373E-01

.423334E-01

.421696E-01

.419585E-01

.417919E-01

.415754E-01

.414069E-01

.411863E-01

.410167E-01

.407933E-01

.406232E-01

-.286832E-01 -.344605E-02

-.284228E-01 -.339051E-02

-.280350E-01 -.303522E-02

-.278070E-01 -.287296E-02

-.274168E-01 -.281162E-02

-.271860E-01 -.277444E-02

-.267535E-01 -.280622E-02

-.265035E-01 -.281138E-02

-.260277E-01 -.285886E-02

-.257603E-01 -.287497E-02

-.252590E-01 -.291761E-02

-.249838E-01 -.293502E-02

-.244791E-01 -.296840E-02

-.242066E-01 -.298386E-02

-.237177E-01 -.300797E-02

-.234567E-01 -.302049E-02

-.229982E-01 -.303656E-02

-.227547E-01 -.304610E-02

-.223357E-01 -.305567E-02

-.221133E-01 -.306261E-02

-.196904E-01 -.288311E-02

-.195132E-01 -.289676E-02

-.192458E-01 -.290991E-02

-.190964E-01 -.291886E-02

-.188434E-01 -.292608E-02

-.187013E-01 -.293225E-02

-.184372E-01

-.182908E-01

-.180330E-01

-.178930E-01

-.176850E-01

-.175700E-01

-.174521E-01

-.173834E-01

-.173611E-01

-.173407E-01

-.293489E-02

-.293897E-02

-.293804E-02

-.294051E-02

-.293673E-02

-.293793E-02

-.293179E-02

-.293193E-02

-.292377E-02

-.292300E-02

-.173840E-01 -.291307E-02

-.173953E-01 -.291151E-02

-.174585E-01 -.290007E-02

-.174777E-01 -.289783E-02

Screen 48. Concluded.
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10.4. File grid. out

The file grid.out contains information about grid resolution al each surface detined by the

user. This file is overwritten at the conclusion of each laura run. The output for the initial run

of the sample case is displayed and discussed here.

Each surface of each computational block has its own section, which is annotated with the

number of cells normal to the body through the message "Block _, Surface _ (__ cells normal to

body)." A header identifies the quantities contained in the following output (screen ,19):

i,j
dh _w

Kecell_w

max stretch

y+_W

station index

height (dimension in k-direction) of cell adjacent

lo wall

value of cell Reynolds number (r_cell) at the

wall for this station

maxitnum value of grid stretching factor used in

the stretching region (k-index of location in

parent heses)

value of normal coordinate 1)arameter (,q+) at

lhe wall for this station ( nturb # 0 only)

_0



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

30

Block I, Surface I

(16 cells normal to body)

dh_w Recell_w max. stretch

.321195E-05

.328374E-05

.338243E-05

.348394E-05

.359983E-05

.374088E-05

.389317E-05

.407609E-05

.429236E-05

.457386E-05

.497868E-05

.551343E-05

.610366E-05

.665580E-05

.737871E-05

.818040E-05

.903207E-05

.987771E-05

.I11265E-04

.125892E-04

.144564E-04

.166364E-04

.191056E-04

.221322E-04

.258567E-04

.302151E-04

.352713E-04

.418457E-04

.498752E-04

.587542E-04

6.958525

7.247622

7.303569

7.302690

7.295987

7.284156

7.222345

7.150728

7.064906

6.984239

6.957453

6.928688

6.945080

6.854008

6.824148

6 740974

6 585194

6 303515

6 146283

5 961880

5 827547

5 676118

5.484815

5.323339

5.191367

5.039758

5.O29430

4.834682

4.627432

4.395599

4.49 (6)

4.50 (6)

4.51 (6)

4.50 (6)

4.49 (6)

4.48 (6)

4.46 (6)

4.43 (6)

4.39 (6)

4.36 (6)

4.31 (6)

4.26 (6)

4.21 (6)

4.17 (6)

4.12 (6)

4.07 (6)

4.02 (6)

3.97 (6)

3.93 (6)

3.87 (6)

3.82 (6)

3.76 (6)

3.71 (6)

3.65 (6)

3.60 (6)

3.55 (6)

3.49 (6)

3.44 (6)

3.38 (6)

3.33 (6)

Screen 49.
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10.5. Post-Processing Files

Six files that allow graphical presentation of results are created at the conclusion of every

LAURA rum These files are in PLOT3D format, but they can be easily converted to Tecplot TM

f()rmat (ref. 27). Tile files flowl.g and surfl.g contain the volume grid and surface grid,

resl)ectively, written in a multiblock format (even when only one block is l)resent).

The file flow1, q contains lhe nondimensional values of density, u-, v-. and u,-comt)onenls of

velocities (in tile x-, y-, and z-directions, respectively), and pressure.

NOTE: Although coinputations are performed at cell centers by laura, the values

in the file flow1 .q have t)een intert)olated/extra])olated to cell corners for the entire

volume grid.

NOTE: If the file RESTART. in is produced by PRELUDE, the initial values of these

flow field variables are written to files flow0.g and flow0.q. This is also the case if

INITIALIZE is used to initialize an externally generated grid.

The file flow2, q contains the translational and vibrational temperatures [K]. the nondimensional

iota/enthalpy, the Math nunlber, and the ratio of fl'ozen specific heats interpolate(I/extral)olated

to ('ell corners for tile entire volume grid. Any other computed quantity can be subslituted in

routine plotprep. F.

The first two entries of file surfl.q are p and q, the surface pressure [lt)f/fl 2] and heating

rate [Blu/ft2-s], respectively. For viscous (igove.rn _ 0), radiative equilibrium wall teml)era_ure

(lrmp&. = 2) fows, the la.sl three entries are the:

• surface temperature, K

• radiative equilibrium wall teml)erature, hased on tile local heating rate and all assumed

emissivity of 0.9

• relative difference hetween tile actual wall temperature and the radiative equilil)rium wall

temperature

Otherwise (for inviscid and/or fixed wall temperature flows), the last three entries are P/Pm_,x,

q/qmax, and P/P,x.. The first three entries of file surf2.q are the x-, y-, and z-components of

the shear stress on the hody surface. The fourth entry, is tile total shear stress, and the fifth is

the coefficient of skin friction.

To convert these files to Tecplot TM format, use the command

replot i1_le -plot3d -f -m -3dw)

along with the desired -ip, -jp, or -kp instructions (ref. 27), where

flowl

infil_= flow2
surfl

surf2

NOTE: The commaud preplot is a preprocessor thal is part of the Tecplot TM

package.
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Chapter 11

Advanced Applications

11.1. Grid Orientation

Although not a re(tuirement, in hypersonic I)lunl-body applications, the origin of the coordi-

nat(, sysl(,m generally sits at or near the stagnation t)oinl on tile body. with the z-axis pointing

oul front the t)ody toward the oncoming tlow, as shown in tigure 2.1. The g = 0 plane deiines

lhe symmetry plane. Lifting-body applications retain this orienlation, with the origin of the

coordinate svslem at or near the vehicle stagnation point, the z-axis pointing ont from the nose.

agains! the ttow, and the negative z-axis typically running through the interior of lhe vehMe.

(lomputational coordinates (_. 7l, _') run in the direction of increasing i-, j-, an<t ],'-indices,

resl)ectively, as shown in tigure 2.2. The vehicle surface grid is usually ([etined 1)v Ill(, /,' = 1 plane

because the shock alignment and cell-doubling features of LAUR:\ require thai the k-coordinale

be in the t)o(tv-normal direction.

Axisymme!ric and two-dinwnsional flows are COml)u!ed with three-dinmnsional grids, which

contain a single j-plane of ('ell centers and two j-planes of cell walls. A rel)resentative axisym-

metri<' surface grid (k = l)is presented in figure ll.l. The pie-shaped cut is bounded t)y the

j = 1 plane (negative y-coordinate) and the j = 2 plane (positive y-coordinate). The i index

equals I at the axis ([x,y] = [0,0])and increases from there toward the end of the body. The

j-planes are rotaled -t-2.5 deg around the z-axis relative to the y = 0 plane for a total included

angle of 5 deg. In the case of a two-dimensional configuration, tim j-planes are offset front lhe

y = 0 plane by ±l unit. The volume grid is constructed by defining rays normal _o the body

in the y = 0 plane and rotating -1-2.5 deg for axisymmetric geometries or offsetting ±l unit for

two-dimensional geometries. This orientation is the ()lily one permitted for axisymmelric and

two-dintensional flows.

A representative three-dimensional surface grid (k = l) is presented in figure 11.2. The j = l

plane defines the upper (leeside) plane of symmetry. The j = jblk,,bl h. plane (]efines the lower

(windside) plane of symmetry. The i = 1 index defines the axis and increases fi'om there toward

lhe oulflow t)oundary at i = iblk_bt_..

The _w<) examl)les presented above contain an axis singularity (cell wall with zero area).

Grids can I)e create(l which remove tile singularity at the nose at the expense of creating skewe(I

cells on the oulflow boundary. A representative, singularity free surface grid for a bhmted

geometry is t)resented in figures l l.3 to 11.5. In this example, the j = l plane defines the plane

of symmetry. The j = jblk,_bl _. plane defines tim outflow t)oundary from al)proximalely :15 deg to

135 (leg arolln(] Ihe center <)f lhe base (fig. 11.4). Tile i = 1 i)lane detines lhe outflow boundary

fronl tit(' symmelry l)lane (0 (leg) to the t)eginning of the j = .jblk.blX. i)lane. The i = iblk.blx.

plane defines lh(, outflow boundary from the end of the j = .jblk,_l, lt. plane to tile s.wnnmtry t)lane
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i = ibl_ .......

Figure 11.1. Surface grid on 70-deg spherically capped cone with rounded shoulder.

i=1

J=l

i = iblk1

j= jblk_

Figure 11.2. Surface grid on nose of Space Shuttle.
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Figure 11.3. Projeclion of singularity free surface grid over blunt I)odv on xy-plane.
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Figure 11.J. Projection of singularity fl'ee surface grid over blunt body on :rz-plane.

IS0 (leg around tile base. Tile surface grid ceils on the outflow boundary at the 45-deg and

135-deg lo¢'alions al)pear triangular. (See the inset of fig. 11.4.) In fact, one face is composed of
lwo families of coordinate lines.

11.1.1. Boundary-Layer and Shock Grid Adaption

llesolution of the captured 1)ow shock is required to eva luale the influence of therniochem-

ical n<)nequilibrium on radiative lmating. Bow-shock resolution is potentially as iml)ortant to
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Figure 11.5. Singularity free surface grid ow, r blunt body.

accurate radiative heating predictions as boundary-layer resolution is t.o convective heating pre-

dictions. (:onsequently, a simple algebraic grid adaption routine is used to distribute computa-

tional cells across the shock layer according to four quanlit.ies ( r(cell,,,, f_tT', <pO, and fsh) which
are discussed below.

First, the cell size a.t the body is set to yield a specified cell Reynolds number (Tvctll,_,) where

rccH1 - paA.s
/i

and/ks is the cell height. Second, the fraction of cells available for boundary-layer resohltioll f.+t,'

is specified. Third, the concentration of cells at the shock from is controlled with the paranleler

cpO. Fourth, the outer boundary is adjusted to force the location of the captured shock in

physical space to lie at. a constant fraction f._h of the length of the (-coordinate line extending

from the I>ody, across the boundary layer and shock, and to the free-st.ream inflow boundary.

The shock location is defined by the first, point with a local property that exceeds its free-stream

value by a specified amount.
_[1] .Let. i,j(k) denote the present (superscript [1]) arc lenglh from the body surface to the kth

cell center along a q'-coordinate line defined by K cells, where k _< K. For simplicity, we drop

the i,j subscripts in subsequent notation, but keep in mind thai this procedure is followed for

each £-coordina.te line. Let.

.d2l( k )
.qk)- At](I()

denote the nondimensional length of the adapted grid (superscript [2]) along the (,'-coordinate
line. and let

/k;(k) = ._(/,.+)- _(/_._)

where
1 1

k+ = k+- and k_ = k--
2 2

The fractional values (k 4- 1) refer to cell edges.

86



First. a transibrnlation to resolve lhe boundary layer is defined. Define the nondimensional

height of the first cell by

r¢ct ll,,p( l )

A.,_( 1 ) = P( 1 )a( 1 )s[J](It') ( 1 I. 1 )

The heigh! of Ill(, next k._lr cells (k,_lr = f_lr h') is defined by

_X.a(k) = rain

1 -/, (k_)

(11.2)

where

1

(,= [ :+' ]
L_J - J (J 1.:})

This hln('tion provides a cell gr()w|h factor of l at ],: = [ and /_" = ]_:._lr and a maxilnlilll growth

factor equal to 1 + (' at k = k._lr/2. It, also precludes lhe nondimensional arc lenp41h .a(h'+)

from exceeding 1 by limiting the continued application of (:ell growlh factors, if necessary. The

remaining cells extending past k= k._h' are equally spaced, thus

A;,(k) = .:X._(k- 1)

h)r k > kstr. "File distribulion in ._ is obtained by summation,

k

._(/_.+) = _ _x._(/) (] 1.4)
1=1

The slretchillg fUllCl, ioll defined al)ove is designed to yield a va,lne of ;(/_'+) = O(l) with (;Oil-

tinuous first derivatives of lhe cell growth factor, An a ddil.io]lal renormalization,

; (k+)
.a( _:+)

;(K+)

forces the distril)utiol| Io span 0 a,n([ ] even wllell the ,_([_'+) < I.

NOTE: This renormalization will increase the effective cell Reynolds number, pos-

sibly t)evond tile range where I>oundary-layer resolution is adequate for heal transfer

predictions. A warning message is written to standard output when tile criteria for

r(('{ll,, is not satisfied. (;ell Reynolds number information along the body is located

in output file grid,out, wifich is created by wrapup.F. Values of recoil a.cross the

entire shock layer also can be viewed in the column labeled "Re_cell" of the OUil>ut

generated by outputa.F. This routine is not generally called, but can be engaged t)y

removing the commenl froni the (:all statement in wrapup.F.

NOTE: Users should rely on grid refinement studies as the primary tool for evalu-

ating resolution (luality.

A second transformation to ._(1,:+)is designed to pull points toward the ._ = Ji_h location 1o

resolve the shock front

._(L.+) = [1 - (p (_,+ )] ._(k+) + :,h, p (L.+) (11.5)
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where

q,(k+ ) = .J (k+)[1 - ._(],.+)] (p0 (11._)

The weighting here is designed to give very little change ill the near-wall grid distribution and

preserve tile domain 0 _< ._ _< 1. Because _2 << :_ when _ is dose to 0 (near the wall), the

value of _p is also very small, and the grid in the near wall region is hardly disturbed by this

new real)ping. In a similar manner, grid points near the inflow boundary (where _;_is close to

1) are also protected from large movements by keeping the value of ep small with the factor

[1 - ._ (k+)]. The magnitude of epO is limited to keep the grid fi'om folding back over itself in

the vicinity of f,_h as mesh points are mapped into this region.

Tire third and final transformation returns dimensionality 1o lhe distribution. A scale factor

is applied which adjusts the out:er boundary such that the captured shock lies a constant fraction

f._h of the distance ._ (/(+)between the body and the outer boundary. Thus,

,_[q(,)._(fi)
•s[2](k) - (11.7)

f._h

where ._[1]( ,)is the location on the original grid where the captured shock is first sensed according

to criteria discussed earlier.

NOTE: In some cases, it is advantageous to adjust the outer I)oundary to force a.

specified distance between it and the captured shock. A simple redefinition ot'f_h for

each coordinate line can accomplish this goal.

h, terpolation and extrapolation are used to map the values of .T_f.,0!(k+)} to Y£._{21 (k+)}
l " t,.1 l _ 'J "

where :ir is the vector of the (:artesian coordinates.

The shock location keys on the first, point in from the free-stream inflow boundary, which

satisfies the criterion

fetrjmp × proprty_, - proprty < -1 x 10 -_;

whel'e

{ p (jumpflag= 1)
proprty = p (jumpflag = 2)

T (jumpflag = 3)

NOTE: Specifying jumpflag = 0 fixes tile outer" boundary at its current position.

With both the body surface and the outer grid boundaries fixed, algnshk. F simply

adjusts the cell distribution between them.

By default, LAURA uses pressure (p) to determine the shock l)osition. However, limited

tests discussed in reference 17 indicate that pressure is not always the best choice, and other

options are provided for the user's convenience through the parameter jumpflag.

Another option for controlling mesh spacing across the shock layer will be employed when

the parameter be tagrd is set greater than 1. In this case, equations 11.1 to 11.4 are replaced by

a simpler stretching function defined by

._"(k+) = 1 - betagrd [b_-7--_]bz- 1

w h e r e
K+ --k+

bz = \_--(b(tagrd+ 11) K+-,
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lqgure 11.6. l)etail of a¢lapled grid and density contours 11_synlmelry plane thal shows enhaiiced

resolution of lhe caplured bow shock.

Table 11.1. Block Indices

The parameters for controlling grid distribution across the shock layer are defined in

algnshk_vars.sl:rt, l)efaull values for I,,\URA are as follows:

r¢c_ll,,, = 1.0

jump.fla_j = 1

felT:imp = 1.5

/..h : 0.s

f._n, = 0.5

bt'lwrd = 0.0

cpO = 0.0

These values can be changed in a, LOCAL copy of algnshk_vars, strt, which can be crealed using

lhe LOCALIZE command (appendix K).

NOTE: Since t pO = 0, the defaull gridding yields no clustering art the shock.

In calculations discussed in reference 17, the best resolution of the shock front was obtained bv

keying on the first point in from the free stream where local density exceeded 1.5p,x, (j_,_zp.ltag =

2 and /ctljmp = 1.5) to sense shock location, in conjunction with setting rrc_ll w = 1.0 and

t pO = 25/4 (which clusters {'ells a boul the shock). The values used for that case were fstr= 0.5

and f._h = 0.S. A representative grid that employs these mappings is shown in ti,<ure 11.6.

11.2. Multiple Computational Blocks

A co)))l)utatiot)a} block is a rectangularly ordered art'ay of cells defining all or par) of the

solution domain. Six COml)u(alional blocks are t)ermil, led in LAURA. Their designations are A,
13. C. D, E, and G. As shown i, table 11.1, these blocks have nblk values of 1, 2. 3, 4. 5, and 6.

respectively.
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NOTE: Tile natural designation of F for the sixth block is already occupied for

ot her purposes.

Block-to-block connections assmne simt)le extensions o[' tile running index. For examl)le, tile

i = ibla',,_,la, plane of Block X (X = A. B. C, D, E, G) can be coincident with the i = 1 plane of any

bh)ck. Further. the i= 1 plane of BlockY (g = A,B. C,D, E, G; X 7_ Y) can be coincident with

lhe i = iblk,o,l_, plane of any block. More complex connections are not. provided in lhis release.

For example, tim i = I plane ca,mot be coincidenl wilh lhe j- or k-plane of any other ])lock nor

can it coincide with lhe i = 1 [)lane of any other I)lock. Also. any pair of bh)cks can share, al

mosl, one boundary. Similar restrictions apply to j- and /,'-plane connections.

Multiple computational blocks can be used to define tile flow tield over complex configu-

rations. In many instances the solution can be generated on a. block-by-block basis: the nose

region is solved [irsl. and the windside and leeside blocks are solved subsequently. This approach

reduces COml)utational time and memory requirements by a factor of 10 or more. The solution

state at the last, outflow plane of one block can be injected imo the next dowt,stream block for

initialization. Further details on this approach are found in referen('e 28 and in al)l)endix (1.

The grid alignment capability in LAURA also can be used in the multi-block nmrchin_

mode. A single block solution over the nose region can t)e grid aligned in the standard way.

(;rid alignment can be used in subsequent win(Isi(le blocks under the special ('ondilions lhat

follow:

1. Block h is a si_tgl(' plane of cells (iblkl = 1) taken fl'om the converged upstream block al

or near its outflow boundary.

2. Block B defines the windside region to be soh'ed and tile inflow plane of Block B coincides

with lhe outtlow l)lane of Block h.

3. Only one active task, which is assigned to Block B exists.

Boundary conditions fox' Block B are as follows:

1. Shared boundary a! i = 1 with Block h

2. Outflow boundary at i = ibl_:2

3. Outflow (sideflow) boundary at j = 1

,1. Plane of symmetry (no yaw) al j = .jblk.2

5. Wall at /," = 1

6. Free stream at /,' = kblk2

LAURA will assume this ('onfiguration if nblocks = 2 (in parameter, str'c) and move.grd > 0 (in

data).

(;rid alignment can be used in subsequent leeside blocks under the following special

condilions:

1. Block h is a single plane of (:ells (iblt:l = 1) taken fl'on) the converged upstream block al

or near its outflow 1)oundary.

2. Block B is a single plane of cells (.jbll_"2 = 1) taken from the converged windside bh)ck

bounding the leeside block.
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3. Block Cdefinesthe lees!deregionto besolved,andthe inflowplaneof Block C coincides

with the outflow plane of Block A and the sidetlow plane of Block B.

,1. Only one active task, which is assigned to Block C, exists.

Boundary conditions for Block C are as follows:

1. Shared boundary at i = 1 with Block A

2. ()ulltow boundary at i = iblZ'_

3. Plane of symmetry (no yaw) a! j = 1

.I. Shared sideftow boundary wilh Block B al j = .jbll_!_

5. Wall al /,'= 1

6. Free stream at /,: = lcbll_':_

LAURA will assume this contiguration if t_bloct:s = 3 (in parameter.strt) and movtgrd > 0 (in
data).

NOTE: Users are cautione(I that the very simplified, one-(linlensional at)preach used

for grill nlovetneltt ('all introduce unacceptable grid skewness over complex configu-

rations. Experienced users may find that it is possil)h, to modify code ill algnshk. F

anti/or algnshk_vars.strt to tailor alignment st)eciti('ations and/or block orienta-

tions to suil. their own al)plications.

11.3. Sweeping Options

The relaxation algorithm in LAURA updates the solution ill a coml)utational plane using lhe

latest available data at neighboring planes and boundaries. For any cell within the co|nputational

plane, tile relaxation process is a Jacob!an function with respect to other ceils in the l)lane and

a Gauss-Seidel function with respect t.o cells in neighboring planes and houndaries. The glol)al

solution is obtained by sweeping across the domain, forward and backward, one plane at a time
until the solution is converged.

In viscous hyl)ersoni(- flow problems, the boundary layer is usually the slowest to converge,

and sweeping strategies that pass across the boundary layer (using oi)timal viscous relaxation

factors) provide the best convergence speeds in LAURA (ref. lg). A discussion of the viscous

relaxation factor (rf_,is) is presented a.t the end of section 9.1.3.2. As noted ill section 1 1.1, the

body surface is usually defined by the k = 1 plane so that tile default sweep direction involves the

sequential solution of/,'-planes. All the FORTRAN parameter definitions made with the execution

of PRELUDE assume that only k-directional sweeps are required.

NOTE: In certain advanced applications other sweep directions can be preferred

(i.e.. body surfaces defined on i- and/or j-planes). This can be most easily accom-

plished through file assign_tasks (section 9.1.2). In such cases, lhe value of i,@_ in

a LOCAL version of file parameter, strt also can require modification.

The variable is.is (assigne(l in parameter.strt) must be greater than or equal to the maxi-

mum of the products

[Ll x (L2+ 1)] and [(L1 + 1) × L2]
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whereL1 and L2 are the number of cells ill tile two directions perpendicular to tile sweep

direction. LAURA compares these values with isjs for each block. If the maximum requirement

for all blocks is less than i._js, a warning message is issued stating that i._js can be reduce(I to

save lnelnory. If any block requires more memory than i._js provides, an error message is issued

and the job is terminated. In response to this situation, the user can increase tile value of i,+js,

recompile with make. and repeal the LAURA execution. Sweeps in the i- and j-directions can be

activated by overwriting the default k-directional sweep in the fih' assign_tasks, as describe<l

in the section 11.5.2.

NOTE: If an axis,vmmetric solution is being calculated, specification of a circum-

ferenlial sweeping directi(m yields a t)ure-.lacobian relaxation.

11.4. Solid-State-Device (SSD) Memory

The point-implicit relaxation strategy used in LAURA requires calculation of a .lacobian

matrix al every conlt)utational cell. Because of the computational expense of evaluating and

triangularizing this malrix every sweep, tile Ll;-triangularization re(luired tot subse<tuen! Gauss

elimination is ('alculate(l once and stored (frozen) for ,Ocot,i.,_ sweeps before being updated. The

memory overhead (in words) for this storage is large

. blocks

,,eq 2 × _ ( iblk, jbl&, 1,'blk,, )
n= I

and can require lhe job 1o be run in a large memory queue with relatively poor turnaround time.

CRAY computer systems are often equipped wilh fast, solid-state-device (SSD) memory that

can be used to reduce the in-core memory requirements for the job. The process is equivalent

to reading or writing the triangularized 3acobian Io a fast disk driw, once per solution sweep.

The SSD can be activated by setting i_'sd = 1 {default: i._sd = O) in a LOCAL copy of tile

issd_assn.strt (which can be found in tile STRTfiles subdirectory after running PRELUDE).

The executable will need to be recompiled by running make.

At this point, the triangularized 3acobian wouhl be written to the disk on the executable

directory. The working files now need to be assigned to the SSD. On some systems, sl)ace will

need to be reserve(t in the SSD directory. One may calculate (in words) the required reservation,

memSSD, using the formula

.blocks

memSSD= (i.@_neq 2 + 512) × _ I, MAX,, (11.8)

where LMAX,_ is the numl)er of cells in the swee 1) direction for Block X (X = A, B, C. D, E,

or G). The values of the other varial)les can be found in the file parameter.strt.

NOTE: This reservation includes buffers needed tbr well-formed I/O and simplifi-

cations associated with multi-block FORTRAN parameter definition.

11.4.1. Interactive Jobs

The reservation for SSI) menlory in an interactive session is made on the Numerical Aero-

dynamic Siinulalion (NAS) facility CRAY (I-90 wilh the command

srfs -r MEGssDMw $FASTDIR)
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where

:IIE(;ssD = ±nt 10'; I ÷ 1

NOTE: Typically, $FASTDIR is used in conjunction with issd = 1. while $BTGDIR is

speci(ied for issd = O.

The working files are lhen assigned Io [he SS1) with the ('onm/a, nd

(assign -a $FASTDIR/scr80 -S U fort.80]

where suffix S0 corresponds t,o Block A. If additic>nal blocks are active, they woul<] need to be

assigned similarly, with sufIixes Sl through S5 corresponding to Blocks B lhrough G (excluding

F, recall), respectively. The interactive session can now proceed as usual. When <'omplete<l, the
files on $FASTDIR should be removed, and the reservation conclucle<t with the command

srfs -rO SFASTDIR)

11.4.2. Queued Jobs

The reservation for SSI) memory in a queued job is nla(le on the NAS ('I{AY (!-90 with the
COtlllllatl(]

(# QSUB -ir '$FASTDIR,M/?C_sDMw')

placed at or near the t)eginning of the submit file. The variable M/'](;SSD was defined in lhe

previous subsection. The assignments are made via the following command lines:

/bin/rm -f .asgnf

setenv FILENV .asgnf

assign -a SFASTDIR/scr80 -s u fort.80

which are placect t)efore the coulnlal|d

(laura < data)

Again, a.d<lilional a.ssignment statements are required when additional blocks are active, as

discussed in the previous sul)section.

NOTE: LAURA canno! accommoclate different sweep directions in the same com-

pulational block when SSI) memory is engaged.

11.5. Multitasking

Multitasking in a numerical algorithm refers to the capability of simultaneous (parallel)

execution of different, pieces of code on multiple central processing units ((IPU's) for the purpose

of decreasing elal)se<l wall clock time. The (-!RAY comt)uters offer two oplions for multitasking.

The first option most oft, on exploited by users is labeled microtasking. In FORTRAN codes,

microtasking works on the "do-loop" level, thus spreading the work within a loop among several

(:PU's. The microtasking, in its sim l)lest form (autotasking), can be implmnented al compile
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timewith nochangesrequiredill thesourcecode.Microtaskingworkswellon tile sameloopsthal
vectorizewell, and in somesituations(i.e. nesteddo-loops),<'ompilerdirectivescanbeplaced
within the sourcecodeto further enhanceparallelizationand vectorization.((_RAYmanuals
shouldbeconsultedfor moreinformationon parallelizationau<tw,ctorization.) LAURA makes
extensiveuseof do-loopslhal canbevectorizedandmicrotaskedby the (IRAY compilerin this
way,althoughnospecialcompilerdirectivesareaddedto enhancemicrotaskiiig.

NOTE: Userswho wish to invokeautotaskingill LAURA on a (_RAYCOml>uter
shouldadd the flag "-Zp'" to the list of optionstbr "FFLAGS" in the file Makefile,

after running PRELUDE and before coml)iling with make.

The second option for multitasking is labeled macrotasking. Macrotasks can include large

sections of code that are executed in parallel on Inultiple CPU's. Macrotasking requires the

insertion of CRAY specific code to start tasks, synchronize tasks, and stop tasks as required in

the a lgorithnl. LAURA utilizes macrotasking by assigning pieces of the computational domain

to individual tasks. Each task gathers and scatters data to a master copy of the solution which is

saved in a shared memory, global common }>lock. Subroutines are called bv each task in parallel;

consequently, task-specific data to be shared among subroulines are stored in "task common"

blocks. The point-implicit relaxation used in LAURA makes it unnecessary to synchronize

tasks after they are created so lhat very high levels of unillterrupted, parallel processillg can be

achieved. Sacrificing synchronization of tasks also means that the l)ath to a converged solution

is nondeterministic. Further <liscussion of asynchronous convergence is found in reference 1_.

NOTE: Users are cautiolled against invoking both microtasking and macrotasking

il, the same job because more tasks can be created than the number of('PU's that

are available, thus creating counterproductive contention among tasks for CPU's.

Macrotasking generally achieves higher levels of average concurrent CPU use than micro-

tasking. However, there is a memory overhead per additional task (in words) approximately

equal to

: + 6,,,u+ i#., /Jl.9)

where ,_eq is the number of governing equatiol> being solve<l. This overhead (in words) is larger

when the full Navier-Stokes equations are to be solved ( i9over_l = 2):

/'Ill?It, task---- (52]£+ 98n,_+ 6't,q+ 2,,_q 2) × i.sjs (11.10)

11.5.1. Terminology

Some definitions are required before describing how macrotasking can be implemented in

LAURA. Recall that a. conlputational block is a rectangularly ordered array of cells defining

all or part of tile solution domain. A partition truncates a block in tile computalional sweep

direction. For example, tile recommended sweep direction starts at. the body surface and moves

across the boundary layer. In the default mode, this extends t'rom k = 1 to/v = 1,'bll_'.where kblk

is the total number of cells in the/,:-direction of the active I>lock (chapter 7). Ill this scenario, a.

k-partition is defined by specifying limits on the starting and stopping location of the sweep in

the/,'-direction. An/-partition and a j-partition are defined similarly, by specifying limits on the

starting and stopping location of the sweep in the i- and j-directions, respectively. Partitions

can overlap in any computational block. Transverse sweep directions also can be accommodated.

NOTE: A maximum of 100 partitions are allowed in LAURA.

94



Oneor morel)arlitions areassignedto a task. It is convenient to think of a task as being

assi_ne<l to a parlicular ('PU. In practice, tasks get rolled in and out of execulion ill a multiuser

environnmnt, and there is no guarantee that ,he same (,PIT vdll always process the same lask.

NOTE: A maximum of 16 tasks can be accomnmdate<lin LAUI{A: however, it is

counterl>roduclive to assign more tasks lhan availal>le ('PU's on lhe coml>uter.

11.5.2. Implementation

AI present, macrotasking options exisl only for the ('RAY computers, and they can I>e im-

plemented in lwo ways. In the default mode, the code assigns one h-parlition per conll)ulational

block, at!t[ each partition is assigned to its own task. As a result, a single l>lock job will not

macrot, ask in the defaull mo<le.

The user can overwrite the defaults by crealing a file called assign_tasks in lhe execulal>le

direclorv. Each line of file assign_tasks defines a partition lhrough the following five flags:

I_bk

mbt:

lstrt

I.+top

mapcpu

defines the computalional block containing lhe

partition ( 1 = Block A. 2 = B, 3 = C.

4 = D,.5 =E. an<16= (I)

defines the sweep dire<'lion and partition type

(1 = i-, 2 = j-, and 3 = /,:-sweep)

<lefines the starting in<lex of the sweep

(l < Istrt < Istop)

defines the stopping index of the sweep

( Islrl <_ Islop <_ LMAX)

defines the processor (by number) to which the

partition is assigned

(1 _< mapcpu <_ ma,cpu)

11.5.3. Load Balancing

The user can assign partition sizes and tasks in such a way as to concentrate (q_l" cycles in

regions that are slow to converge. An option for dynamic load balancing exists for the case of a

single block divided into k-partitions, will! each partition assigned lo its own task. The option

can be switche<t on by setting mtaska = 1 (<lefault: mtaska = 0) in the file mtaska_assn.._trt

after running PRELUDE. The executable will need to be recompiled by running make. The algo-

rithm will dynamically change partition boundaries by comparing the error norms of adja<'enl

t>a.rlitions, decreasing the size of partitions wilh large error norms, and increasing the size of

partitions with small error norms. While some very, encouraging results have been obtained in

test cases (ref. IS), this option is consMered to be experimental and is only recommended for

use by researchers interested in this specific topic.

Experience in a multiuser environment has shown lhat multil>le tasks do no! necessarily get

e<lual access I.o (!P[7 time. Typically, tasks one through four of an eight-CPU machine gel nearly

equal access, while subsequent tasks aplmar to be penalized, especially during peak load periods.

II is believed this discrepancy derives from the inanner in which the system is tuned Io promo!e

fair share access to all users. When this unequal access occurs, load balancing is disruple<l, and

CPU cycles can be wasle(l. (!onse<tuenlly, re<luests for more than four tasks are nol recommended

for small jobs run <luring peak activity periods. However, special multitasking queues can be

created for very large jobs that run at off-peak times in a nearly <ledicated, high-priority mode.
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NOTE: The usershouldconsultthesystemadministrator fi)r information on such

queues.

In this mode, our experience shows that all tasks gel equal access, and we routinely obtain

average concurrent (_PU use levels of greater than 7 on an S-processor CRAY YMP and have

achieved values greater than 1.4 ( 1:').3, on one occasion in a. multitasking queue run at nighl wilh

minimal contention from other users) on a. 16-processor (:RAY c-.q0.

NOTE: Mullitasking should not be run when the option for grid restructuring is

active. Grid restructuring requires synchronization of tasks, which is not provided

for in LAURA.

NOTE: Setu 1) of the executat)le using PRELUDE assumes that only k-directional

sweeps are required in setting up dimension stat.ements. I)e[ining i- and j-directional

sweeps can result in a.n error message from "laura, followed by a.n abort of the

job re(luesl, if the required array dimensioning exceeds the pres<'ribed value for isj._

(seclion 11.3).

11.6. Radiative Transport

The treatment of radiation phellomena in a high-temperature flow requires a level of effort

thal is a significant fraction of the total effort required to exl)ress and solve the fluid equations.

I1 is therefore often on|ille<l in (!FI) a.pl>lications. Under certain conditions, however, the effect

of radialive lma.ting on the flow and the heating of the vehicle surface is not negligible. The

LORAN (Langley ()ptimized Radialiw' Nonequilibrium) algorithm (ref. 29) has been <tew'lol_ed to

allow LAURA to be apl)lied to lifts class of problems. In cases in which radiative effects on the

tlow field are minor, LORAN can be used to post-process a LAURA solution. The details of this

application are given in reference 30. For cases in which radiation significantly alters the flow

field prol>erties, LORk,N may be iteratively coupled i.o the LAURA algorithnl (ref. 31 ).

NASA Langley Research Center

tlampton, VA 23681-0001

October 10, 199,5
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Appendix A

Sample Case

An examl)le case is included here to illustrate an application of the I,AURA a lgorithnl.

This simple case ix the axisymmetric flow over a sphere wilh a radius of 1 m. The thin-layer

Navier-Slokes equations are s<)lved for laminar, perfecl gas flow. The fl'ee-stream conditions

are l+'e, -- 5000 m/s, p,_ = 0.001 kg/m 3, and 7_.x = 200 K. A constant wall lemperature of

/',,. -- 500 K is specified. The grid dimensions are 30 cells in the streamwise direction and 61 in

the body-normal (lh'ection.

t:iles from the initial run for this sample case serve as examples throughout the manual. Files

from lhe second run for this sample case are contained in this a l)pendix. The results presented

for lhis examl)le can be replicated by creating a working dire<'lory and repeating the procedurt'
<tescribed t)elow.

Typing the command

(PRELUDE)

and accepting the default va.lues for each prompt will yield the inilialization of RESTART, in use(l

here, as well as the file data shown in section 9.1.3. The file INPUTS is created by PRELUDE and

ix a re('ord of tim responses to tim proml)ts of start during the most recent PRELUDE session in

lhis LOCAL directory. Its contents for this sample case are shown in section (i.3. For sul)sequenl

PRELUDE sessions, lyping the ('ommand

PRELUDE INPUTS)

yields l,i_e initializalion of RESTART. in used here, a,s well as the file data shown in seclion 9.1.3.

NOTE: Since a constant wall teml)erature (tempbc = 0) is specified, the files

TWALL.in and transition are not required. Further, the file transition is n<)l

re<luired for laminar flow.

]'he results presented herein are from a SUN Sparcstation with a single processor. No

assign_tasks file was incorporated. Since it is a simple case, no LOCAL or CUSTOM files were

required. As mentioned above, the input and output files for the initial rnn are intersperse(t

lhroughout this manual, and are nol repealed here.

For the se('ond rnu, PKELUDE does nol need 1o be repeated. The adjustmenls are accoml>lished

throngh a direcl modification to file data. The resultanl data file used for the second rull is

shown I)elow (screell ,_0)"
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2

2O

2O

0 0 1

.50000E+04

,10000E-02

.20000E+03

0

.50000E+03

0.000

1.0000

O.O00000E+O0

O.O00000E+O0

0.314159E+01

0.200000E+01

1500

200

4

1

0.300

0.010

10.00

1.60

.60

VERSION=LAURA.4.1

nord ...................... l(st-) or 2(nd-) order spatial accuracy

ntrnsprt ............ iterations between transport property updates

n]cobian ...................... iterations between jacobianupdates

{i,j,k}vis . O=off/l=on for {i,j,k} TL N-S viscous terms in block 1

vinfb ................................... freestreamvelocity [m/s]

rinfb ................................. freestreamdensity [kg/m'3]

tinf ................................... freestream temperature [K]

tempbc ....... {O=constant, 1=variable, 2=radiative equilibrium) Tw

twall .......................... if tempbc=O: wall temperature [K]

ept ..... if tempbc=2: temperature relaxation factor (0 < ept < I)

rflngth ..... conversion: grid units ==> meters (I m = 1.0000 m)

zcg ........................................ axial cg location [m ]

xcg ..................................... vertical cg location [m ]

refarea ............................. reference area of body [m "2]

reflen .............................. reference length of body [m ]

iterg ............................. maximum iterations for this run

movegrd ............................. frequency of grid adjustments

maxmoves .......... maximum number of grid adjustments (O=no limit)

iabseig .............................. {O=normal, 1=scaled} limiter

epsa ........................................... eigenvalue limiter

errd ............................. error criteria for grid doubling

hrs .................................. time limit for this run [hr]

rfinv ................... inviscid relaxation factor, (rfinv > 1.5)

rfvis ................... viscous relaxation factor, (rfvis > 0.5)

Screen 50.

A.1. Screen Output

The constituent elements of the standard output are discussed in section 10.1. That section

also contains the standard output from the initial run of this sample case. Tile standard output

for the second run (excluding the preamble) is shown on the pages which follow, beginning with

the following iteration record (screen 51):
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tsk blk ms iter L2 norm tsk norm inf norm i j k m time strt stp

CPU number O1 starting

1 1 3 20 1.737E-01 1.737E-01 4.920E-02 22 1 15 1 9.90 1 16

1 1 3 40 6.422E-02 6.422E-02 2.914E-02 30 1 15 1 19.31 1 16

1 1 3 60 1.680E-02 1.680E-02 1.626E-02 29 1 6 1 28.87 1 16

I 1 3 80 7.106E-03 7.106E-03 1.473E-02 29 1 6 1 38.24 I 16

...Grid doubled after iter = 80

1 1 3 100 3.304E-02 3.304E-02 1.841E-02 2 i 1 1 57.29 1 32

1 1 3 120 2.697E-02 2.697E-02 1.922E-02 18 1 1 1 76.15 1 32

1 1 3 140 2.167E-02 2.167E-02 2.068E-02 27 1 1 1 95.02 1 32

1 1 3 160 9.398E-03 9.398E-03 1.478E-02 28 1 1 1 113.90 1 32

...Grid doubled after iter = 160

1 1 3 180 3.031E-02 3.031E-02 1.641E-02 30 1 64 1 151.98 1 64

1 1 3 200 3.173E-02 3.173E-02 1.440E-02 5 1 1 1 189.79 1 64

...Grid adjusted after iter = 200

WARNING: Recell_w criterion not satisfied in "algnshk" for a total

of 30 stations (see files "algnshk.out" & "grid.out").

1 1 3 220 1.087E-01 1.087E-01 5.193E-02 30 1 57 1 228.12 1 64

1 1 3 240 5.979E-02 5.979E-02 4.544E-02 30 1 58 1 265.90 1 64

1 1 3 260 3.217E-02 3.217E-02 3.932E-02 30 1 59 1 303.71 1 64

1 1 3 280 1.342E-02 1.342E-02 1.963E-02 30 1 59 1 341.52 1 64

1 1 3 300 7.762E-03 7.762E-03 1.314E-02 30 1 60 1 379.33 1 64

1 1 3 320 5.779E-03 5.779E-03 9.356E-03 21 1 56 I 417.29 1 64

1 I 3 340 3.557E-03 3.557E-03 7.935E-03 27 1 59 1 455.12 1 64

1 1 3 360 1.342E-03 1.342E-03 4.642E-03 30 1 61 1 492.97 1 64

1 1 3 380 6.612E-04 6.612E-04 2.131E-03 28 1 55 1 530.79 1 64

1 1 3 400 5.078E-04 5.078E-04 2.195E-03 24 1 22 1 568.64 1 64

...Grid adjusted after iter = 400

WARNING: Recell_ criterion not satisfied in "algnshk" for a total

of 30 stations (see files "algnshk.out" & "grid.out").

Screen 51.

NOTE: The frequency of output for the iteration record is controlled by th(, t)aram-

eter ,jcobian. In other words, output is produced only for those iteralions in which

the .]acobian is updated. For the initial run, tile update occurred for each iteratioll.

For the second run, however, the solution advances 20 iterations (screen 52) t)etweell

lzp(lates (as specified in file data).
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1 1 3 420 6.391E-03 6.391E-03 1.384E-02 23 1 55 1 607.02

1 1 3 440 3.742E-03 3.742E-03 1.216E-02 25 1 55 1 644.82

1 1 3 460 2.631E-03 2.631E-03 1.041E-02 27 I 55 1 682.61

1 I 3 480 1.252E-03 1.252E-03 5.933E-03 30 I 55 1 720.36

I 1 3 500 4.885E-04 4.885E-04 2.682E-03 30 1 21 1 758.14

1 I 3 520 3.697E-04 3.697E-04 3.167E-03 25 1 56 1 795.94

1 1 3 540 3.619E-04 3.619E-04 4.036E-03 26 I 55 1 833.75

1 1 3 560 4.726E-04 4.726E-04 4.521E-03 28 1 55 1 871.52

1 I 3 580 4.010E-04 4.010E-04 4.339E-03 28 1 55 I 909.32

1 I 3 600 1.697E-04 1.697E-04 3.490E-03 30 1 55 1 947.08

1 64

1 64

1 64

1 64

1 64

1 64

1 64

1 64

1 64

1 64

.Grid adjusted after iter = 600

WARNING: RecellJ criterion not satisfied in "algnshk" for a total

of 30 stations (see files "algnshk.out" & "grid.out").

3 620 5.297E-03 5.297E-03 1.710E-02 27 1 55 1 985.40 1

3 640 2.632E-03 2.632E-03 1.246E-02 29 1 55 1 1023.18 I

3 660 9.894E-04 9.894E-04 6.683E-03 30 1 55 I 1060,89 i

3 680 4.246E-04 4.246E-04 3.904E-03 30 I 54 1 1098.69 1

3 700 2.298E-04 2.298E-04 2.218E-03 21 1 55 1 1136.46 I

3 720 1.804E-04 1.804E-04 1.619E-03 21 1 55 1 1174.19 1

3 740 1.579E-04 1.579E-04 2.185E-03 18 1 55 1 1211.99 1

3 760 1.261E-04 1.261E-04 2.283E-03 19 1 55 1 1249.73 1

3 780 1.067E-04 1.067E-04 2.039E-03 21 1 55 I 1287.47 1

3 800 1.097E-04 1.097E-04 2.090E-03 22 1 55 1 1325.25 1

.Grid adjusted after iter = 800

WARNING: Recell__ criterion not satisfied in "algnshk" for a total

of 30 stations (see files "algnshk.out" & "grid.out").

.Turning off algnshk after 4 adjustments

64

64

64

64

64

64

64

64

64

64

3 820 5.234E-03 5.234E-03 2.106E-02 24 1 55 1 1363.52 1 64

3 840 3.289E-03 3.289E-03 1.342E-02 26 1 55 1 1401.31 1 64

3 860 2.175E-03 2.175E-03 1.147E-02 28 1 55 1 1439.11 1 64

3 880 9.456E-04 9.456E-04 8.215E-03 30 1 55 1 1476.84 1 64

3 900 3.577E-04 3.577E-04 3.293E-03 30 1 55 1 1514.61 1 64

3 920 2.364E-04 2.364E-04 1.992E-03 25 1 55 1 1552.35 1 64

3 940 2.007E-04 2.007E-04 2.386E-03 27 1 55 1 1590.09 1 64

3 960 1.364E-04 1.364E-04 1.924E-03 20 1 56 1 1627.85 1 64

3 980 1.038E-04 1.038E-04 1.916E-03 18 1 55 1 1665.68 1 64

3 1000 1.142E-04 1.142E-04 2.600E-03 21 1 56 1 1703.47 1 64

Screen 52.

100



1 I 3 1020 8.953E-05

1 1 3 1040 6.536E-05

1 1 3 1060 3.570E-05

1 1 3 1080 2. 335E-05

1 I 3 II00 1.438E-05

I 1 3 1120 i. 146E-05

1 1 3 1140 7.489E-06

1 1 3 1160 4.472E-06

1 I 3 1180 2.943E-06

I 1 3 1200 2.687E-06

1 I 3 1220 2. 376E-06

1 1 3 1240 2.218E-06

1 1 3 1260 2.234E-06

1 1 3 1280 2.121E-06

1 1 3 1300 1.961E-06

1 1 3 1320 1.818E-06

1 1 3 1340 1.731E-06

1 1 3 1360 1.669E-06

1 1 3 1380 1.605E-06

1 1 3 1400 1 • 569E-06

1 1 3 1420 1.725E-06

I 1 3 1440 2,098E-06

1 1 3 1460 3.145E-06

1 1 3 1480 5.455E-06

1 1 3 1500 6.254E-06

8.953E-05

6.536E-05

3.570E-05

2.335E-05

1.438E-05

1.146E-05

7,489E-06

4.472E-06

2.943E-06

2.687E-06

2.376E-06

2.218E-06

2.234E-06

2.121E-06

l 961E-06

1 818E-06

1 731E-06

1 669E-06

I 605E-06

1 569E-06

725E-06

098E-06

145E-06

455E-06

254E-06

1.570E-03 25 1 55 1 1741.34 1 64

1.556E-03 27 1 55 1 1779.16 1 64

1.027E-03 28 1 55 1 1816.92 1 64

1.075E-03 18 I 56 1 1854.69 1 64

5.557E-04 28 1 55 1 1892.42 I 64

5.525E-04 28 I 55 1 1930.19 1 64

4.855E-04 30 1 55 1 1967.91 1 64

2.975E-04 30 1 55 1 2005.71 1 64

2.075E-04 18 1 55 1 2043.49 1 64

1.876E-04 18 1 55 i 2081.23 1 64

1.661E-04 18 1 55 1 2118.99 1 64

1.556E-04 22 1 55 1 2156.81 1 64

1.579E-04 23 I 55 I 2194.51 1 64

1.525E-04 26 1 55 1 2232.27 I 64

1.331E-04 28 1 55 1 2270.04 I 64

1.193E-04 28 I 55 1 2307.80 1 64

1.177E-04 15 1 55 1 2345.58 1 64

1.165E-04 15 1 55 1 2383.34 1 64

1.143E-04 15 1 55 1 2421.25 1 64

1.159E-04 21 1 56 1 2459.11 1 64

3.111E-04 21 1 56 1 2496.90 1 64

5.100E-04 21 1 56 1 2534.65 1 64

7.075E-04 21 1 56 4 2572.44 1 64

1.044E-03 21 1 56 4 2610.22 1 64

1.258E-03 21 1 56 4 2648.03 1 64

CPU 1 terminated at 2648.08 seconds (after 1500 iterations).

Screen 52. Concluded.

The inle_rated surface quantities for this second run are as follows (screen ,5:3):

cx = 0.99331755E-02

cy = O.O0000000E+O0

cz = 0.12230405E-01

gy = -0.50450885E-02

summdot = -0.67376419E-07

sumheat = -0.27692626E-03

Screen 53.
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A.2. File algnshk.out

The constituent elements of file algnshk.out are discussed in se<:tion 10.2. That section also

shows tile contents of this file from the initial run of this sample case. Its contents are shown

for tlle second run on the pages lhat follow (screen 54):

...Grid adjusted after iter = 200

norm. _all max. location of

i j hminl dist. stretch stretch maximum

1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1

13 1

14 1

15 1

16 1

17 1

18 1

19 1

20 1

21 1

22 1

23 1

24 1

25 1

26 1

27 1

28 1

29 1

30 1

.2290770E-05 .300507

.2246804E-05 .298642

.2228229E-05 .297847

.2231236E-05 .297976

.2254972E-05 .298990

.2317622E-05 .301634

.2418150E-05 .305778

.2550057E-05 .311046

.2711846E-05 .317265

.2894426E-05 .323996

.3057070E-05 .329760

.3195636E-05 .334511

.3383573E-05 .340744

.3653929E-05 .349320

.3977254E-05 .359043

4367052E-05 .370094

4820189E-05 .382152

5307045E-05 .394301

5822294E-05 .406384

6406782E-05 .419266

7086295E-05 .433308

7877459E-05 .448583

8809709E-05 .465340

9902239E-05 .483560

1117809E-04 .503242

1265588E-04 .524281

1440414E-04 .547192

1664086E-04 .574000

1975544E-04 .607668

2242953E-04 .633914

1.045911

1.045998

1.046035

1.046029

1.045982

1.045859

1.045668

1.045429

1.045154

1.044863

1 044619

1 044421

1 044167

1 043826

1 043451

1 043038

1 042603

1 042181

1 041776

1 041359

1.040920

1.040462

1.039978

1.039475

1.038955

1.038425

1.037874

1.037263

1.036539

1.036007

1.468397 .001765 (17)

1.469286 .001751 (17)

1.469667 .001746 (17)

1.469605 .001747 (17)

1.469120 .001754 (17)

1.467862 .001773 (17)

1.465916 .001803 (17)

1.463485 .001841 (17)

1.460674 .001886 (17)

1.457703 .001934 (17)

1.455215 .001977 (17)

1.453200 .002011 (17)

1.450607 .002057 (17)

1.447127 .002120 (17)

1.443297 .002192 (17)

1.439087 .002275 (17)

1.434654 .002365 (17)

1.430346 .002457 (17)

1.426211 .002549 (17)

1.421953 .002648 (17)

1.417481 .002756 (17)

1.412800 .002874 (17)

1.407871 .003005 (17)

1.402737 .003148 (17)

1.397434 .003304 (17)

1.392022 .003472 (17)

1.386405 .003657 (17)

1.380165 .003874 (17)

1.372785 .004151 (17)

1.367350 .004368 (17)

Screen 5-1.
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...Grid adjusted after iter = 400

norm. wall

i j tminl dist. stretch

1 1 .2416946E-05

2 1 .2408198E-05

3 1 .2430496E-05

4 1 .2472090E-05

5 1 .2509823E-05

6 i .2553366E-05

7 1 .2607570E-05

8 1 .2660392E-05

9 1 .2747521E-05

10 I .2874395E-05

11 1 .3007800E-05

12 1 .3136876E-05

13 I .3253230E-05

14 I .3417432E-05

15 1 .3615713E-05

16 1 .3819755E-05

17 1 .4083910E-05

18 1 .4412589E-05

19 1 .4749112E-05

20 I .5142228E-05

21 1 .5639128E-05

22 1 .6257911E-05

23 1 .6992771E-05

24 1 .7835977E-05

25 1 .8794738E-05

26 1 .9871012E-05

27 1 .1110448E-04

28 1 .1262878E-04

29 1 .1465093E-04

30 1 .1654355E-04

.305729

.305373

.306279

.307954

.309459

.311175

.313285

.315314

.318604

.323272

.328036

.332513

.336447

.341842

348134

354374

362135

371342

380311

390274

.402172

.416061

.431429

.447807

.465080

.483058

.502147

.523910

.550279

.572884

max.

stretch

1.045670 1.465938

1.045686 1.466105

1.045645 1.465682

1.045569 1.464905

1.045501 1.464212

1.045424 1.463425

1.045329 1.462465

1.045240 1.461549

1.045095 1.460078

1.044894 1.458019

1.044691 1.455954

1.044504 1.454043

1.044342 1.452389

1.044123 1.450156

1.043873 1.447602

1.043630 1.445121

1.043334 1.442104

1.042992 1.438620

1.042669 1.435320

1.042320 1.431757

1.041916 1.427636

1.041461 1.422998

1.040978 1.418069

1.040484 1.413033

1.039986 1.407946

1.039489 1.402875

1.038984 1.397723

1.038434 1.392115

1.037802 1.385669

1.037287 1.380418

location of

maximum

.001802 (17)

.001800 (17)

.001806 (17)

.001818 (17)

.001829 (17)

.001841 (17)

.001857 (17)

.001871 (17)

.001895 (17)

.001929 (17)

.001964 (17)

.001997 (17)

.002026 (17)

.002065 (17)

.002112 (17)

.002158 (17)

.002216 (17)

.002284 (17)

.002352 (17)

.002427 (17)

.002517 (17)

.002623 (17)

.002741 (17)

.002868 (17)

.003003 (17)

.003144 (17)

.003295 (17)

.003469 (17)

.003682 (17)

.003865 (17)
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

3O

...Grid adjusted after iter = 600

norm. eall

j hminl dist. stretch

.2371600E-05 .303874 1.045755

.2382643E-05 .304327 1.045734

2399836E-05 .305032 1.045702

_422148E-05 .305940 1.045660

2455893E-05 .307305 1.045598

2499914E-05 .309064 1.045519

2560883E-05 .311470 1.045410

2623653E-05 .313906 1.045302

2697156E-05 .316711 1.045178

2798099E-05 .320481 1.045014

2914756E-05 .324729 1.044832

3043477E-05 .329286 1.044639

3176427E-05 .333861 1.044448

3331251E-05 .339032 1.044237

3516904E-05 .345028 1.043996

3728334E-05 .351607 1.043737

3966779E-05 .358736 1.043462

4261349E-05 .367164 1.043146

4593823E-05 .376227 1.042815

4930324E-05 .384968 1.042504

5328680E-05 .394824 1.042163

.5795001E-05 .405761 1.041796

.6345261E-05 .417948 1.041401

.6983392E-05 .431239 1.040984

.7737298E-05 .445953 1.040539

.8585244E-05 .461415 1.040090

.9535036E-05 .477589 1.039638

.1070106E-04 .496063 1.039142

.1226339E-04 .518857 1.038559

.1372809E-04 .538561 1.038079

Max.

stretch

1.466806

1.466593

1.466264

1.465840

1.465206

1.464393

1.463291

1.462184

1.460922

1.459245

1.457384

1.455417

1.453474

1.451314

1.448856

1.446215

1.443416

1.440189

1.436812

1.433641

1.430164

1.426420

1.422382

1.418129

1.413593

1.409007

1.404394

1.399340

1.393393

1.388489

location of

maximum

.001789 (17)

.001792 (17)

.001797 (17)

001804 (17)

001814 (17)

O01826 (17)

001844 (17)

001861 (17)

001882 (17)

001909 (17)

001940 (17)

001973 (17)

002007 (17)

OO2O45 (17)

002089 (17)

002137 (17)

002190 (17)

002253 (17)

002321 (17)

0O2387 (17)

.002461 (17)

.002544 (17)

.002637 (17)

.002740 (17)

.002854 (17)

.002974 (17)

.0O31O1 (17)

.003247 (17)

.003429 (17)

.003587 (17)

" oScreell .54. (,ontmu d.
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

...Grid adjusted after iter = 800

norm. wall

j hminl dist. stretch

1 .2375307E-05 .304026 1.045748

I .2388167E-05 .304554 1.045724

1 .2411492E-05 .305507 1.045680

1 .2436916E-05 .306539 1.045633

1 .2470399E-05 .307886 1.045572

1 .2515616E-05 .309688 1.045490

1 .2574941E-05 .312019 1.045386

1 .2639533E-05 .314516 1.045275

1 .2708183E-05 .317128 1.045160

1 .2781182E-05 .319857 1.045041 1

1 .2871940E-05 .323184 1.044898 1

1 .3009501E-05 .328095 1.044689 1

1 .3178134E-05 .333919 1.044446 1

1 .3350795E-05 .339674 1.044210 1

1 .3535329E-05 .345611 1.043972 1

1 .3749227E-05 .352243 1.043712 1

1 .3987594E-05 .359345 1.043439 1

1 .4253068E-05 .366932 1.043155 1

1 .4578935E-05 .375830 1.042829 1

1 .4962142E-05 .385774 1.042476 1

1 .5374729E-05 .395931 1.042126 1

1 .5814821E-05 .406213 1.041782 1

1 .6326546E-05 .417545 1.041414 1

1 .6914565E-05 .429846 1.041027 1

1 .7596157E-05 .443273 1.040619 1

1 .8388739E-05 .457924 1.040190 1

1 .9304709E-05 .473769 1.039743 1

1 .1044293E-04 .492094 1.039247 1

1 .1198605E-04 .514955 1.038657 1

1 .1344289E-04 .534835 1.038168 1

max.

stretch

1.466735

1.466487

1.466042

1.465562

1.464937

1.464107

1.463040

1.461908

1.460736

.459522

.458058

.455928

.453449

.451048

.448620

.445963

.443180

.440277

.436957

.433353

.429780

.426268

422513

418568

414407

410027

405468

400408

394390

389400

location of

maximum

.001790 (17)

.001794 (17)

.001801 (17)

.001808 (17)

.001818 (17)

.001831 (17)

,001848 (17)

,001866 (17)

.001885 (17)

.001904 (17)

.001929 (17)

.001964 (17)

.002007 (17)

.002049 (17)

.002093 (17)

.002142 (17)

.002195 (17)

.002251 (17)

.002318 (17)

.002393 (17)

.002470 (17)

.002548 (17)

.002634 (17)

.002729 (17)

.002833 (17)

.002947 (17)

.003071 (17)

.003216 (17)

.003397 (17)

.003557 (17)

Screen 54. Concluded.
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A.3. File conv.out

The constituent elements of file cony.out are discussed in section 10.3. That secti(m also

shows tile contents of this file from tile initial run of this sample case. Its contents are sll()wll

for tile second run (screen 55):

body pressure body heating

tsk iter residual time (sec) (stag) (end) (stag) (end)

1 20 .173680E+00

1 40 .642220E-01

1 60 .167974E-01

1 80 .710615E-02

1 100 .330401E-01

1 120 .269717E-01

1 140 .216679E-01

1 160 .939811E-02

1 180 303121E-01

1 200 317269E-01

1 220 108663E+00

1 240 597945E-01

1 260 321750E-01

1 280 134248E-01

1 300 .776205E-02

1 320 .577924E-02

1 340 .355717E-02

1 360 .134166E-02

1 380 .661229E-03

1 400 .507751E-03

1 420 .639128E-02

1 440 .374177E-02

1 460 .263072E-02

1 480 .125234E-02

1 500 .488538E-03

1 520 .369721E-03

1 540 .361910E-03

1 560 .472611E-03

1 580 .401026E-03

1 600 .169720E-03

1 620 .529670E-02

1 640 .263227E-02

1 660 .989424E-03

1 680 .424563E-03

1 700 229767E-03

1 720 180376E-03

1 740 157903E-03

1 760 126059E-03

1 780 106714E-03

1 800 109687E-03

9.480

18.890

28.450

37.820

56.870

75.730

94.600

113.480

151.560

189.370

227.700

265.480

303.290

341.100

378.910

416.870

454.700

492.550

530.370

568.220

606.600

644.400

682.190

719.940

757.720

795.520

833.330

871.100

908.900

946.660

984.980

1022.760

1060.470

1098.270

1136.040

1173.770

1211.570

1249.310

1287.050

1324.830

1.02787

.930974

.925715

.923494

.958593

.891812

928096

923566

924323

989561

932868

900657

921168

.911631

.922587

.924712

.921260

.922012

.922229

.922666

.922256

.932637

.921975

.912888

.918442

.922170

.924905

.922862

.920210

,919402

.919623

.920270

.915966

.919373

.920236

.919915

.919846

.919509

.919529

.919393

.362811E-01 -.207159E-01

.343741E-01 -.168117E-01

.352460E-01 -.152770E-01

.342261E-01 -.146595E-01

.360259E-01 -.148522E-01

.337655E-01 -.121135E-01

.344724E-01 -.125548E-01

.375377E-01 -.122950E-01

.350256E-01 -.118011E-01

.340480E-01 -.135799E-01

.344543E-01 -.978973E-02

.353153E-01 -.985254E-02

.356246E-01 -.996108E-02

.397506E-01 -.968400E-02

.356448E-01 -.978836E-02

.359903E-01 -.970618E-02

.374134E-01 -.956439E-02

.378405E-01 -.950948E-02

.378553E-01 -.944654E-02

.377150E-01 -.939521E-02

.377506E-01 -.880919E-02

.386944E-01 -.904346E-02

.386469E-01 -.867947E-02

.380557E-01 -.857411E-02

.387008E-01 -.863178E-02

.385519E-01 -.866181E-02

.380903E-01 -.866811E-02

.380120E-01 -.859700E-02

.380712E-01 -.852818E-02

.380940E-01 -.849003E-02

.380117E-01 -.859598E-02

.382168E-01 -.856932E-02

.384135E-01 -.847342E-02

.383122E-01 -.851422E-02

.380983E-01 -.849428E-02

.383076E-01 -.846965E-02

.383422E-01 -.844631E-02

.382220E-01 -.842193E-02

.381634E-01 -.840353E-02

.383610E-01 -.838295E-02

-.181072E-02

-.148686E-02

-.127062E-02

-.101474E-02

-.902765E-03

-.697635E-03

-.627335E-03

-.649356E-03

-.546651E-03

-.501591E-03

-.453082E-03

-.466547E-03

-.477142E-03

-.554359E-03

-.455140E-03

-.472353E-03

-.499765E-03

-.503842E-03

-.500433E-03

-.495071E-03

-.508537E-03

-.523425E-03

-.513020E-03

-.495906E-03

-.512426E-03

-.499670E-03

-.488361E-03

-.485701E-03

-.485206E-03

-.484321E-03

-.534466E-03

-.537372E-03

-.538888E-03

-.533952E-03

-.528916E-03

-.534570E-03

-.534464E-03

-.531712E-03

-.531835E-03

-.537666E-03
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1 820

1 840

1 860

1 880

1 900

1 920

1 940

1 960

1 980

1 1000

1 1020

1 1040

1 1060

1 1080

1 1100

1 1120

1 1140

1 1160

1 1180

1 1200

1 1220

1 1240

1 1260

1 1280

1 1300

1 1320

1 1340

1 1360

1 1380

1 1400

1 1420

1 1440

1 1460

1 1480

1 1500

.523377E-02

.328934E-02

.217466E-02

.945589E-03

.357652E-03

236392E-03

200728E-03

136390E-03

103828E-03

114162E-03

895274E-04

.653588E-04

.357031E-04

.233482E-04

.143805E-04

.114591E-04

.748877E-05

.447210E-05

.294252E-05

.268724E-05

.237628E-05

.221764E-05

.223404E-05

212072E-05

196057E-05

181849E-05

173148E-05

166904E-05

160503E-05

156905E-05

172481E-05

.209843E-05

.314499E-05

.545472E-05

.625405E-05

1363.100

1400.890

1438.690

1476.420

1514.190

1551.930

1589.670

1627.430

1665.260

1703.050

1740.920

1778.740

1816.500

1854.270

1892.000

1929.770

1967.490

2005.290

2043.070

2080.810

2118.570

2156.390

2194.090

2231.850

2269.620

2307.380

2345.160

2382.920

2420.830

2458.690

2496.480

2534.230

2572.020

2609.800

2647.610

.919520

.923097

928951

920814

919130

919473

920706

920990

.920645

.920348

.920323

.920534

.920714

.920818

.920894

.920953

.921009

.921050

.921067

.921073

.921075

.921079

.921081

.921084

.921085

.921087

.921090

.921090

.921091

.921090

.921094

.921095

.921094

.921094

.921094

.382898E-01

.380419E-01

.380200E-01

.379861E-01

.381321E-01

.381633E-01

.381185E-01

.382616E-01

.382532E-01

.381129E-01

.380537E-01

.382821E-01

.384910E-01

.384012E-01

.382780E-01

.382768E-01

.383443E-01

.383280E-01

.382910E-01

.383039E-01

.382835E-01

.382661E-01

.382659E-01

.382639E-01

.382577E-01

.382552E-01

382553E-01

382558E-01

382564E-01

382567E-01

382570E-01

382571E-01

382566E-01

.382557E-01

.382533E-01

-.837367E-02 -.547506E-03

-.843978E-02 -.542679E-03

-.849208E-02 -.543875E-03

-.833722E-02 -.544010E-03

-.830372E-02 -.549716E-03

-.829368E-02 -.550581E-03

-.829438E-02 -.551737E-03

-.827712E-02 -.556893E-03

-.825276E-02 -.557438E-03

-.823038E-02 -.555300E-03

-.821366E-02 -.555913E-03

-.820079E-02 -.563803E-03

-.818702E-02 -.569678E-03

-.817254E-02 -.568314E-03

-.815781E-02 -.566835E-03

-.814307E-02 -.568475E-03

-.812840E-02 -.571179E-03

-.811360E-02 -.571622E-03

-.809853E-02 -.571864E-03

-.808342E-02 -.573241E-03

-.806835E-02 -.573524E-03

-.805342E-02 -.574031E-03

-.803862E-02 -.574852E-03

-.802396E-02 -.575542E-03

-.800939E-02 -.576105E-03

-.799499E-02 -.576733E-03

-.798074E-02 -.577367E-03

-.796656E-02 -.577962E-03

-.795257E-02 -.578527E-03

-.793868E-02 -.579043E-03

-.792504E-02 -.579533E-03

-.791145E-02 -.579988E-03

-.789797E-02 -.580401E-03

-.788466E-02 -.580773E-03

-.787147E-02 -.581082E-03
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A.4. File grid.out

Tile constituent elements of file grid.out are discussed ill section 10.'1. That section also

shows the contents of this file fi'onl the initial run of this sample ('as(,. Its ('onlel|lS are shown

here for the second run (screen 55):

i j
1 1

2 1

3 1

4 1

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 1

13 1

14 1

15 1

16 1

17 1

18 1

19 1

20 1

21 1

22 1

23 1

24 1

25 1

26 1

27 1

28 1

29 1

30 1

Block 1, Surface 1

(64 cells normal to body)

dh_e Recell_w

132615E-05 3.307665

134121E-05 3.311790

136424E-05 3.313079

139045E-05 3.308474

142768E-05 3.307920

146510E-05 3.282688

151384E-05 3.253656

158717E-05 3.245656

165289E-05 3.193581

172637E-05 3.135483

182799E-05 3.102324

198404E-05 3.116151

.211008E-05 3.034105

.234000E-05 3.055790

.248702E-05 2.927279

.278297E-05 2.934100

.309083E-05 2.895659

.337977E-05 2.790136

.385189E-05 2.781113

.423707E-05 2.657829

.479993E-05 2.596962

.543809E-05 2.517761

.616728E-05 2.427922

.708869E-05 2.356264

.814689E-05 2.268806

.939657E-05 2.180056

.109298E-04 2.098696

.129232E-04 2.023678

.152506E-04 1.912261

.177170E-04 1.835846

max. stretch

1.47 (18)

1.47 (18)

1.47 (18)

1.47 (18)

1.46 (18)

1.46 (18)

1.46 (18)

1.46 (18)

1.46 (18)

1.46 (18)

1.46 (17)

1.45 (18)

1.45 (18)

1.45 (18)

1.45 (18)

1.45 (17)

1.44 (18)

1.44 (17)

1.44 (18)

1.43 (18)

1.43 (18)

1.43 (18)

1.42 (18)

1.42 (18)

1.41 (18)

i.41 (18)

1.40 (18)

1.40 (18)
1.39 (18)

1.39 (18)

Screen 56.
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Appendix B

Conic Geometry

This appendix provides the defiliitioils for the celtic geolilelry hil)UlS (n(u,job = 1 ).

Nomenclature

b

tl

(

¥',2. 0

#'axi

Rx

x..q, z

(/

axial sliape paranieter

cross-se('tional shal>e paranieter; ratio of princil)al radii of curvature

axial ec('elitricity of nose

cylindrical coordinates, in units sI)ecified via iimi!

radius for a xisynune/ric conic body

I)ody nose radius, in units specified via iunit

radius of cllrvature in syninletry plane, in units specified via i'lmit

radius of curvature in side plane, in units specified via iuni#

(:artesian coordhiates, in uriits specified via hmit

body half-angh, tbr conic geometry, (leg

Subscript:

.iun,'i juncture between blunted forebody and cone afterl)ody

];'or many (:onfigurations of interest, the body shape can be defined by a conic equation.

('.onsider an axisymmetric conic body rotated about the z-axis, whose nose is al (z = 0. r= 0):

7_xi>2= 'r2 = 2R,x,z - bz "z (B.I)

The slope for this body is
dr Rm - bz

_ (t1.2)
dz, 7"

so that at the nose, the slope is infinite.

The character of the conic nose is dictated by the axial shape parameter (b) which is relaled

to its eccentricity (_). The relationship for b < 1 is

t = x/_-b or b= 1-¢2

while for b > 1 il is

_/_ 1 1= b or b - 1 - _2
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Table B. 1. ' t . "( ,(harac er of Axisvmmetric (om (;eometrv

Hyperbola

Parabola

Ellipse
Circle

These results are summarized in table B.1, which shows that b has a unique value for a parab<)la

(where b = 0) and a sphere (b = l). The value of b for a h.vperbola is related to the half-angle

(0) of its a,symt)tote by the following equation:

b=-tan 2 0 (B.3)

An ellipse can be used to define the forebody of a blunted cone. The afterbody can be

described by lhe simple equation

'r_xi = r = rj.,,.t + (z-Zju._t) tan 0 (B.4)

where rjunc, _ and Zjunct are the coordinates of the juncture between lhe ellipse and cone. The

slope of the cone is
dr

= tan 0 (B.5)
dz

At the juncture between the ellipsoidal forebody and cone afterbody, both the position and

slope of the body are continuous. The coordinates of this juncture can be deternfined l>y equaling

equations (B.2) and (B.5), substituting equation (B.I) for r, and solving for z. The resultan!

axial location of this juncture is

zj,,,,,., = -_- 1 v/b+tan 20 = _ 1- _/bcos 20+sin 20 (B.6)

The corresponding value for rj,.,,:t can be found from equation (B. 1 ):

_2
rfunc t = 2R:VZjut,ct- b_ju,,cl (B.7)

NOTE: Substituting a value of b = 1 into equalion (B.I) yiehts

_2 1.2 ~2/axi : : 2 _ ,\" 2 -- ~

which is an equation for _-tcircle. For axisymmetric flow. this gives a spherical

forebody, with the sphere-cone juncture located at

:ju,,,-t = RX [1 - sin 0] l'junct = R_, cos 0

NOTE: The above discussion can be applied to two-dimensional conics by simply

replacing the variable r with g, the sul)script axi with 2-D, and the word "cone" with

"wedge."
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_x

z

0;

Figure B.I. 1)etining paranleters for general conic ge<>melry.

The above discussion can be extended to three-dimensional geometries (fig. B.I) with 1he

following expression:

4"_-I) = _'_ = I _i (l_,.S)
Bcos'_O + sin20

where I_'.\, = R>[_= o in e(luati<)l_ (B.I), and

0 (upper symmetry plane)
O= 7r/2 (side plane)

7r (lower symmetry plane)

The cross-sectional shape parameter is defined as

Rv_

B = _ z=o

Values of B > 0 produce elliptical cross sections. The equation for an axisymmelri<" bo<ly is

recovered by setthlg I] = 1, which gives a circular cross section.

NOTE: For b = B = 1, equation (B.8) gives a sphere of radius RN.

The cylindrical coordinales (r,O) can be converted 1o Cartesian coordinales (.,y) using the

following relal ions:

x = rcosO !/= rsino
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Appendix C

Installation Procedure

This appendix covers Ill(, stru('( ure of INSTALL_LAURA .4.1 and (he struclure of raAch+prOc.

C.1. Structure of TNSTALL_LAURA.4.1

This script ins(a/Is the L3.[fI_A code on this machine using the following procedures. ('reat, e

a su bdir(,('tory for the LAUI{ A source co(te ( screen 57):

VERSION=LAURA.4.1

if [ -d $VERSION ]; then

chmod 700 SVERSION

clmod 700 $VERSION/*

ctmod 700 $VERSION/CUSTOM/*

rm -r SVERSION

fi

# (if SVERSION exists already)...

2> /dev/null

2> /dev/null

mkdir SVERSION

Screen 57.

Extrac( the source code from LAURA. 4.1. tar. Z (screen 58 ):

cd $VERSION

zcat ../LAURA.4.1.tar.Z I tar xf -

Screen 5S.

(lompile and run )he (! program mAch+pr0c (o de(ermi,le the machine architecture and number

of available processors (s('reell 59):
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cc mach+proc.c -o mach+proc

set 'mach+proc' --

# Determine architecture type

# and number of processors.

Screen 59.

(lompile tile FORTRAN executables (ArrAy, flOwlnIt, mAkEblk, sIzEIt, and start) as follows

(screen 60):

if [ "$1" = "0" ]; then

cf77 array.f -o ArrAy /dev/null

cf77 flowinit.f -o flOwlnlt /dev/null

cf77 makeblk.f -o mAkEblk /dev/null

cf77 sizeit.f -o sIzEIt /dev/null

cf77 start.f -o start /dev/null

fi

if [ "$I" =

f77

f77

f77

f77

f77

fi

if [ "$1" =

f77

f77

f77

f77

f77

fi

if [ "$I" --

fi

"1" ]; then

array.f -o ArrAy 2> /dev/null

flowinit.f -o flOwInlt 2> /dev/null

makeblk.f -o mAkEblk 2> /dev/null

sizeit.f -o sIzEIt 2> /dev/null

start.f -o start 2> /dev/null

"2" ]; then

array.f -o ArrAy 2> /dev/null

flowinit.f -o fl0wInIt 2> /dev/null

makeblk.f -o mAkEhlk 2> /dev/null

sizeit.f -o sIzEIt 2> /dev/null

start.f -o start 2> /dev/null

"3" ]; then

fc array.f -o ArrAy 2> /dev/null

fc flowinit.f -o flOwlnlt 2> /dev/null

fc makeblk.f -o mAkEblk 2> /dev/null

fc sizeit.f -o sIzEIt 2> /dev/null

fc start.f -o start 2> /dev/null

for FILE in *.F; do

NOEXT=Cbasename SFILE .F'

mv SFILE $NOEXT.FOR

done

Screen 60.

NOTE: For CONVEX a rchilectures, the suffixes o[ the subroutine files are changed

froln .F to .FOR.

Tailor DEFAULTS to lifts machine (screen 61 ):
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echo " $I

3=CONVEX" > temp

echo " $2

vailable" >> temp

cat DEFAULTS >> temp

mv temp DEFAULTS

machine ......................... O=CRAY, 1=SUN, 2=SGI,

nprocmx ......................... number of processors a

Remove write privileges for all

SHOME/LAURA.4. I (screen 62):

Screen 61.

files 1,o dist'ourage user a,lteralion of the LAUR:\ tiles ill

chmod 500 *

chmod 400 DEFAULTS TOP *.f mAch+prOc.c start* *.F* *.data *.inc

cd ,.

chmod 500 $VERSION

Screen 62.

Add aliasesfor ARCHIVE, BLOX, CUSTOMIZE, INITIALIZE, KEEPER. LOCALIZE, PRELUDE, RESTORE,

SIZEIT. and XCUSTOM Io lhe user's .cshrc file(screen 63):

if [ ! "'grep PRELUDE .cshrc I grep SVERSION .cshrc'" ]; then

echo ">> Do you wish to add aliases to .cshrc (y/n) {n}?"

read ANSWER

if [ "$ANSWER" = "y" -o "$ANSWER" = "Y" ]; then

for FILE in ARCHIVE BLOX CUSTOMIZE INITIALIZE KEEPER LOCALIZE PR

ELUDE RESTORE SIZEIT XCUSTOM; do

echo "alias SFILE _/$VERSION/$FILE" >> .cshrc

done

fi

fi

Screen 63.

NOTE: Type the command

source .cshrc]

to activa,te lhe PRELUDE alias for this shell.

115



C.2. Structure of mAch+prOc

The C program mAch+pr0c determines the architecture [ype, as well as available processors

(nprocmx), for the host machine. This program is coral)lied and executed hy INSTALL_LAURA. 4.1.

The information is used by INSTALL_LAURA.4.1 to initialize tile variables machin_ and npTvcrnx

in DEFAULTS, which is later accessed by start. The operating system is also identified so that

the various script, files can be properly tailored to the host architecture.

NOTE: On SCI systems, the existence of the RS00(I ('PU hardware is considered. If

it exists, start, f is modified so that the appropriate flags are used in the compilation
of laura via the Makefile.

The source code for mAch+prOc.c is as follows (screen 64 ):

#include <stdio.h>

#include <unistd.h>

#ifdef _CONVEX_OURCE

# include <sys/sysinfo.h>

#elif sun II sgi

# include <sys/utsname.h>

# include <string.h>

# ifdef sgi

# include <sys/sysmp.h>

# include <invent.h>

# endif

#endif

#ifdef sgi

istfp()

{
#

ARD) {

#

#

ifdef INV_IP21BOARD

inventory_ *entry;

while ((entry=getinvent())!=WJLL) {

if (entry->inv_lass==INVgROCESSOR)

if (entry->inv_ype==INV_PUBOARD)

if (entry->inv_tate_=INViP21BO

else

endif

}
return(O) ;

return(O);

endinvent();

return(l);

}
#endif

Screen 64.
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main ( )

{
int machine=O, processors=O, ostype=O, tfp=O;

if sun [J sgi

struct utsname name;

char *i;

elif _CONVEX_SOURCE

struct system_information sysinfo;

endif

ifdef CRAY

machine=0;

ifdef _C_CRAY_CPU

processors=(int)sysconf(_C_CRAY_CPU);

else

processors=l;

endif

endif

ifdef sun

machine=l;

ifdef _SC_NPROCESSORS_CONF

processors=(int)sysconf(_C_NPROCESSflRS20NF);

else

processors=l;

endif

uname(&name);

if ((i=strchr(name.release,'.'))!=NULL)

*i='\O ';

if (strcmp(name.release,"5")==O)

ostype=1;

endif

Screen 64. Continued.
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#

#

ifdef sgi

machine=2;

processors=sysmp(MPlVPROCS ;

uname(_name);

if ((i=strchr(name.release,'.'))!=NULL)

*i='\O';

if (strcmp(name.release,"6")==O)

ostype=1;

if (istfp()==l)

tfp=l;

endif

ifdef _CONVEX_SOURCE

machine=3;

getsysinfo(SYSINFD_SIZE, &sysinfo);

processors=sysinfo.cpu_oun%;

endif

printf("machine, processors, ostype, tfp);

exit(O) ;

Screen 64. (:oncluded.
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Appendix D

Structure of PRELUDE

In addition to serving as a fron! en(l [or start, the scril)t PRELUDE provides file mallage-

ment capability i. the working (LOCAL) directory. Specifically. the user is given the ol)ti<)ii to

remove or keep LOCAL versio.s of files that are created 1)v start. By <lefault, PRELUDE uses the

$HOME/LAURA.4.1 (baseline) version of start. However, if CUSTOM versions of a,v start source

files exisl, a CUSTOM version of start is used in lieu of the baseline version. Furlher, if LOCAL

versions of any start source files exist, a LDCAL version of start is use<l i_ lieu of the I)aselille or

CUSTOM version. After start is completed, PRELUDE creates subdirectorv STRTfiles and places

those il_clude files created by start there ( .strt suffixes). If STRTfiles ah'eady exisls, 1hen

the files it contains are updated based on this latest execution of start.

The fih" cony.out conlains the running residual history for _ given case. If ;_ new case is to

be run in the same directo.'y, the user ma V wish to remove the ('xisting file so thal the ill(, t)egi,s

with the Itew case (screen 65):

VERSION=LAURA.4.1

if [ -f cony.out ]; then

echo "File \_conv.out' already exists."

echo " Do you .ish to remove it (y/n) {n}?"

read ANSWER

if [ "$ANSWER" = "y" -o "$ANSWER" = "Y" ]; then

rm cony.out

echo " File \'cony.out ' removed."

else

echo " File \'cony.out' saved."

fi

fi

Screen 65.
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The useris alsogiventile option to preserveor overwrileexistingRESTART.in, TWALL.in,
anddata fileseachtimePRELUDEis run (screen66):

# if files RESTART.in TWALL.in data already exist...

for FILE in 'is RESTART.in TWALL.in data 2> /dev/null'; do

echo "File \'$FILE' already exists."

echo " Do you wish to update it \c"

echo "during this PRELUDE session (y/n) {n}?"

read ANSWER

if [ "$ANSWER" = "y" -o "$ANSWER" = "Y" ]; then

rm $FILE

echo " File \'$FILE' removed."

else

echo " File \'$FILE' saved."

fi

done

Screen 66.

Next, PRELUDE checks for the existence of LOCAL files with a .strt suffix. If any exist, the

user is given the option to save or discar<t them before start is exe<'uled (screen 67):

for FILE in 'is *.strt 2> /dev/null'; do

echo "LOCAL \cSFILE' exists."

echo " Do you wish to preserve it (y/n) {n}?"

read ANSWER

if [ "$ANSWER" = "y" -o "$ANSWER" = "Y" 3; then

echo " LOCAL \_$FILE"' saved.

else

rm $FILE

echo " LOCAL \'$FILE"' removed.

fi

done

Screen 67.
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PRELUDE expects to find the file DEFAULTS in the LOCAL dh'ectory. If it is present, but empty,

PRELUDE removes it. If it is present, but outdated, the user is given the option to updale it. The

file is removed, if all update is specified. Ariel" these possibilities are considered, a final check is

made to see if i! exists. If not, the $HOME/LAURA.4.1 version is copied to the LOCAL direclory

(screen (i_):

if [ -f DEFAULTS ]; then

if [ "'we -i DEFAULTS [ awk '{print $1}' .... it "'wc -i SHOMER/DEFAULTS [

awk '{print $i} .... ]; then

rm DEFAULTS # rm DEFAULTS if empty or incomplete

fi

fi

if [ -f DEFAULTS ]; then

if [ "'grep nprocmx DEFAULTS [ awk '{print $1} .... = "0" ]; then

rm DEFAULTS # rm DEFAULTS if corrupted

fi

fi

if [ -f DEFAULTS ]; then

if [ "'grep nprocs DEFAULTS [ awk '{print $I} .... = "0" ]; then

rm DEFAULTS # rm DEFAULTS if corrupted

fi

fi

if [ -f DEFAULTS ]; then

if [ ! "'grep $VERSION DEFAULTS _'' ]; then

echo "WARNING: File \'DEFAULTS' outdated.

read ANSWER

Update (y/n) {n}?"

if [ "$ANSWER" = "y" -o "$ANSWEW' = "Y" ]; then

rm DEFAULTS

fi

echo "WARNING: File \_INPUTS' may be outdated as well."

fi

fi

if [ ! -f DEFAULTS ]; then

cp Shome/$VERSION/DEFAULTS •

chmod 600 DEFAULTS

fi

#

# If LOCAL DEFAULTS file DNE,

# copy INSTALL'ed version.

#

Screen 6_.'_
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If any LOCAL versions of start source files exist, a LOCAL stArt executable is created and

used in lieu of tile $HOME/LAURA. 4.1 version. This compilation requires tile creation of symbolic

links to any start source files (in either $HOME/LAURA. 4.1 or" $HOME/LAURA. 4.1/CUSTOM) which

are not LOCAL. If a LOCAL executable ah'eady exists, PRELUDE checks to see if it needs to be

recompiled (screen 69):

if [ "'ls -t st*rt* [ awk '{print $1}' [ head -1'" = "stArt" ]; then

echo " < LOCAL \'stArt' executable is up to date >"

else

if [ -f start ]; then

echo " < Updating LOCAL \_stArt' executable >"

else

echo " < Creating LOCAL \'stArt _ executable >"

fi

if [ -d $HOMER/CUSTOM ]; then

for FILE in 'cd $HOMER/CUSTOM; Is -t start* 2> /dev/null'; do

if [ ! -f $FILE ]; then

in -s SHOMER/CUSTOM/$FILE .

fi

done

fi

for FILE in _cd SHOMER; is -t start*'; do

if [ ! -f SFILE ]; then

in -s $HOMER/$FILE .

fi

done

$(compile) start.f -o start

for FILE in 'ls -t start*'; do

if [ "'ls -lt $FILE I grep LAURA'" ]; then

rm $FILE

fi

done

fi

Screen 69.

where

; CF (CRAY a,rchitectures)
(:olzllJile

FC (all others)

If LOCAL start source files are not present, the possibility of CUSTOM files is considered. If

they exist and the stArt executable is not up to date, it is recompiled. First, however, symbolic

links are created to any start source files (in $HOME/LAURA.4.1), which are not in CUSTOM

(screen 70):

122



( cd SHOMER/CUSTDM;

if [ "'ls -t st*rt* ] awk '{print $1}' Ihead -1'"= "stArt ]; then

echo " < CUSTOM \'stArt' executable is up>_ date

else

if [ -f start ]; then

echo " < Updating CUSTOM \'stArt' executable >";

else

echo " < Creating CUSTOM \'stArt' executable >";

fi

chmod 700 SHOMER;

chmod 700 $HOMER/CUSTDM;

for FILE in 'cd SHOMER; is -t start*'

if [ ! -f $FILE ]; then

in -s $HOMER/$FILE .;

fi

done;

; do

$(compilc) start.f -o start;

for FILE in 'is -t start*'; do

if [ "'is -it $FILE ] grep LAURA'" ]; then

rm SFILE;

fi

done

chmod 500 SHOMER;

chmod 500 $HOMER/CUSTOM;

fi )

in -s $HOMER/CUSTOM/stArt . # link to CUSTOM start

Screen 70.

lfno LOCAL or" CUSTOM versions of start source files exist, create a syml)olic link to tlle

$HOME/LAURA.4.1 start executable and use the following:

I • ...use DEFAULT start.

in SHOMER/stArt #
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NowstArt is executed, and it reads its required inputs either fl'om the screen oi" from file

INPUTS (screen 7l):

if [ "81" ]; then # Run start...

start < $I # ...reading from INPUTS.

else #

start # ...reading from screen.

fi #

if [ "'is -it start i grep LAURA'" ]; then

rm start

fi

# Remove start if it's

# just a sym-link

# to default start.

if [ -f variabletw ]; then

if [ "'wc -i variabletw I awk 'print $I'' ..... 0" ]; then

rm variabletw # rm variabletw if it is empty

fi

fi

Screen 71.

After start is executed, several subdirectories are created (if they do nol ah'eady exist). Next,

the old CHILDREN file is removed, and a new symbolic link is established (screen 72):

mkdir OBJfiles OBJfiles/LOCAL OBJfiles/CUSTOM STRTfiles 2> /dev/null

rm -f OBJfiles/CHILDREN CHILDREN

touch OBJfiles/CHILDREN

In -s OBJfiles/CHILDKEN CHILDREN

# remove old CHILDREN file & sym-link

# create empty DBJfiles/CHILDREN file

# create new CHILDREN sym-link

Screen 72.
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:\ re[erence col) )" of Makefile is created, and the INPUTS and DEFAULTS files are ul)dated

(screen 73):

i_ [ ! -f .Makefile ]; then

cp Makefile .Makefile

fi

# make a reference copy of Makefile

mv INPUTS.active INPUTS # update INPUTS file for start

# update DEFAULTS file (including VERSION number) for start

echo " VERSION=$VERSION" > TeMP

tail +2 DEFAULTS.active >> TeMP

mv TeMP DEFAULTS

rm DEFAULTS.active

Screen 7:3.

Based on user specifications, up to three LAURA inpul files are created by start: data,

RESTART.in, and TWALL.in. In actuality, these are initially written to lemporary files (with

.TeMP suffixes). Before start was executed I)y PRELUDE, the user was given lhe opportutfily to

save dal;a. RESTART. in, and TWALL. in, if they were ah'eady in existence. If a file was saved then,

i[s new version is renloved now. If it was not saved, the new file takes its 1)lace (screen 7-1):

if [ -f data ]; then

rm data.TeMP

else

my data. TeMP data

fi

for FILE in 'is TWALL.TeMP RESTART.TeMP 2> /dev/null'; do

INPUT='echo $FILE i awk -F. '{print $1}".in

if [ -f $INPUT ]; then

rm $FILE

else

fi

if [ "'ls -lt $FILE ] grep ' 0 .... ]; then

rm $FILE

fi

my SFILE $INPUT

done

# remove

# existing file

# (if empty).

Screen 7,1.
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Next, tile files created by start (.TeMP suffixes)are moved to STRTfiles (with a .strt

suffix). However, if the file ah'eady resides ill STRTfiles, and il is identical to the LOCAL file.

the LOCAL file is simply removed (screen 75):

for FILE in *.TeNP; do

done

STRTffi'echo SFILE I awk -F.

if [ ! -f STRTfiles/$STRT ]; then

my SFILE STRTfiles/$STRT

chmod 400 STRTfiles/$STRT

else

fi

# for *.strt just created...

'{print $1}".strt

# if file DNE in STRTfiles,

# move it there,

# and make it read only

#

diff SFILE STRTfiles/$STRT > /dev/null 2>&I

if [ $7 -he 0 ]; then # if files differ...

echo " Updated file \'$STRT'"

mv -f SFILE STRTfiles/$STRT # move to STRTfiles

chmod 400 STRTfiles/$STRT # make it read only

else #

echo " No change in file \_$STRT'"

rm $FILE # else...

fi # remove LOCAL file

#

Screen 75.

Any LOCAL files with a . str'c suffix are compared with their new counterparts (now in SYRTfiles ).

If they are identical, the LOCAL version is removed (screen 76):
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if [ "'is *.strt 2> /dev/null'" ]; then

for FILE in *.strt; do

diff $FILE STRTfiles > /dev/null 2>&l

if [ $? -ne 0 ]; then # if new & old files are identical...

rm -f SFILE

echo "LOCAL \'$FILE' identical to STRTfiles version"

echo " Therefore, LOCAL \_$FILE' removed."

fi

done

fi

Screen 76.

An estimate for the memory require<l, based on values fronl start, is calculated through

execution of,he LAUI_A utility STZETT(appendix M). If an external grid (_,tu,job = 0) was

specifie<l in s'cArt, lhe user is given the option to initialize this grid now. This initialization

re(luires tha! the user int>ul the name of !he file that contains the grid (in PLOT3D formal). The

LAURA utility INITIALIZE (apl)en(lix I) is then executed for this file (screen 77):

$HOME/$VERSION/SIZEIT

if [ "'grep newjob DEFAULTS I awk '{print $i} ..... "0" ]; then

if [ ! -f RESTART.in ]; then # if RESTART.in DNE...

echo "Do you wish to initialize grid file now (y/n) {n}?"

read ANSWER

if [ "$ANSWER" = "y" -o "$ANSWER" = "Y" ]; then

echo "Enter name of grid file: "

read GRIDIN

SHOME/$VERSION/INITIALIZE SGRIDIN

fi

fi

fi

Screen 77.
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Appendix E

Makefile and Its Supporting Files

When PRELUDE is run. start creates a sophisticated Makefile for !,AURA based on lhe

user inputs and Ill(, machine architecture. When tile resultan! Makefile is activated, il ill turn

executes a nlllnl)er o[" scripl files. The structure of Ill(, Makefile and its SUl)l)orting casl are

discusse(l in tile subsections of this apl)endix.

E.1. Structure of Makefile

The Makefile contains a l)reamble that is common 1o all cases and archi|ec! ures (screen ",S)._•

PROG= laura

SHELL= /bin/sh

SOURCE= $(HOME)/LAURA.4.1

OBJDIR= OBJfiles

STRTDR= STRTfiles

DBGDIR= BUGOUT

FORDIR= FORTRAN

Screen 78.

The source files are supplied through the SRCS list. The contents of this list, are case dependent

as shown ])elow (screen 79):
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SRCS=

OBJS=

aaa. F abseig. F abseigl.F algnshk. F asave. F atime.F \

blkout.F bmat. F bndr. F bndrfmn. F bndrmn. F bound. F \

blturb. F csturb. F parab. F prabola. F stretch. F \ (turbulence)

boundf.F boundr. F boundu. F boundv. F consrv. F defbod. F \

defmom. F dirswp. F double. F dropone. F drv.F efg. F \

etherm. F prand. F tannehill.F vinokur. F vintabl.F visc,F \ (equilibrium)

gatdf1.F gatdf2.F gatdf3.F gatgeof.F nsbnd. F \ (full Navier-Stokes)

gatface. F gatfgmn. F gatfmn. F gatgeo. F gatgeoa. F gatgmn. F \

gatmn. F gatscat.F gatscta. F gauss.F invflx. F limiter. F \

inv2d. F \ (ndim # 3)

kinetic.F source. Fair. F \ (nonequilibrium)

metric. F minmod. F moment. F outputa. F plotprep. F prpavg. F \

prpaxj.F q4iuniv. F relead. F rmat. F saveblk. F \

sample_handler. F \

setup. P swptask. F taskit.F therme. F trnsprt.F viscflx. F \

sthrlnd.F \

wrapup. F

(SUN)

{perfect gas)

$(SRCS:.F=.o)

Screen 79.

NOTE: The LAURA algorithm uses conltfile directives to activate and deactivate

coding based on user specitications for a given application. These directives are

used by the host machine's preprocessor. On most architectures, the preprocessor

is applied automatically to any file with a . F suffix during its FORTRAN coml)ilation.

For CONVEX architectures, however, the preprocessor is applied autolnatically to

any file with a .FOR suffix. This anomaly is handled during the installation process

(chapter 5) and by start. However, notice the . FOR suffixes if" the Makefile is edited

on CONVEX architectures.

The compilation flags (which are architecture dependent) are supplied next. For CRAY

machines, they are as follows (screen 80):

NPRO0= nprocs

#PROFLIB-Iprof

#FFLAGS=-Wf"-a stack -ez"

#FFLAGS=-Wf"-a stack -ez" -F

FFLAGS= -Wf"-a stack -o aggress"

DFLAGS= -Wf"-a stack -g"

# Profile library

# profile

# flowtrace

# optimize

# debug

Screen _0.

For SUN machines, the flags are as follows (screen Sl ):
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#FFLAGS=-C -p

FFLAGS= -03

DFLAGS= -C -g

# check bounds & profile

# optimize

# check bounds & debug

Screen _41.

l,br S(,I ma<'hines, 'they are as follows (screen _2):

#FFLAGS=-check_ounds -p

FFLAGS= -02

DFLAGS= -check_ounds -g

# check bounds & profile

# optimize

# check bounds & debug

Screen 82.

For ('ONI:I_;X machines, they are as follows (screen S3):

#FFLAGS=-cs -p

FFLAGS= -03

DFLAGS= -cs -g

# check bounds & profile

# optimize

# check bounds & debug

The epilogue to the Makefile is

Screen s3.

I include CHILDREN I

which l>rovides the Makefile with a list of included files (.inc and .strt suffixes) that each

source file (.F..FOP,, or .f suffix) is dependent upon. This allows make to recognize whether a

file (or any include file it depends upon) has been modified since the last make. If not, the file

is no! recompiled, thus saving compilation time and costs.

E.I.1. Command: make

The command

execules lhe following "default" procedure (screen 84):
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default:

@echo .... ; \

@echo "<Estimating memory requirements for executable

@echo ""; \

@$(SOURCE)/SIZEIT

Y" ; \

@echo ""; \

@echo "<Building symbolic links in $(OBJDIR) >"; \

@echo ....; \

@$(SOURCE)/SYMLINKS $(SOURCE) $(OBJDIR) $(STRTDR) $(PROG) $(DBGDIR)

@if [ "$(FORTDR) ..... $(FORDIR)" ]; then \

echo .... ; \

echo "< Preprocessing .F files

echo ""; \

( cd $(FORDIR); \

for FILE in $(SRCS); do \

>" ; \

Screen _4.

The structure of the script SIZEIT is given in appendix M. The structure of the script SYMLINKS

is given ill appendix E. section E.2. The preprocessing sequence is machine dependent. For

CRAY and SGI machines, it. is as follows:

$ (compile) -P ../$ (OB JDIR)/$$FILE ; \

my 'basename $$FILE .F'.i 'basename $$FILE .F'.f; \

where

f CF ((',RAY architectures)
compil¢ I FC (all others)

For SUN machines, it is as follows:

I $(FC) -F ../$(OBJDIR)/$$FILE; \ ]

l'br CONVEX machines, it is as follows:

NOEXT=tbasename ../$(OBJDIR)/$$FILE .FOR'; \

cpp ../$(OBJDIR)/$$FILE > $$NOEXT.f; \

The remainder of the default procedure is shown below (screen _5):
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else \

fi

done ); \

$(SOURCE)/CHECKERS $(OBJDIR) $(DBGDIR); \

echo ""; \

echo "< Building object files and executable

echo ""; \

( cd $(OBJDIR); \

make FFLAGS='$(FFLAGS)' $(PROG) ); \

>" ; \

@if [ ! "$(OBJDIR)" = "$(DBGDIR)" ]; then \

echo .... ; \

echo "< Removing symbolic links in $(OBJDIR) >"; \

echo ""; \

( ad $(OBJDIR); \

rm -f Make* start* *.F* *.f *.inc *.strt *.trace; \

exit 0 ); \

fi

$(PROG):$(OBJS)

$(compilc) $(FFLAGS) -o $@ $(OBJS)

Screen g5.

WhOFO

*,_(l_'( = _ pmake - Jnproca, (S(;| archilectures)

[ make, ( all others)

The structure of the script CHECKERS is given ill appendix E. section E.3. The following sequence

is required for SGI archile('tures only:

L$(OBJS):$(Q:.o=.F)

$(FC) $(FFLAfiS) -c $(@:.o=.F)

Tile following sequence is required for CONVEX architectures only:

$(OBJS):$(@:.o=,FOR)

$(FC) -pp=cpp $(FFLAGS) -c $(@:.o=.FOR)

133



E.1.2. Command: makedebug

The (:ommand
(make debug)

executes the following procedure (which, in turn, executes the default make procedure, (screen 86)):

debug:

@if [ ! -d $(DBGDIR) ]; then \

echo ....; \

echo "< Creating $(DBGDIR) to hold required files >"; \

echo ""; \

mkdir $(DBGDIR) $(DBGDIR)/CUSTOM $(DBGDIR)/LOCAL; \

for FILE in data RESTART.in transition TWALL.in variabletw; do \

if [ -f $$FILE ]; then \

in -s ../$$FILE $(DBGDIR)/$$FILE; \

done \

fi

@make FFLAGS='$(DFLAGS)' OBJDIR=$(DBGDIR)

Screen _6.

E.1.3. Command: make fortran

The command

(make fortran)

executes tile following procedure (which, in turn, executes the default make procedure (screen ST}):

fortran:

@if [ ! -d $(FflRDIR) ]; then \

echo ""; \

echo "< Creating $(FORDIR) to hold preprocessed files

echo ""; \

mkdir $(FORDIR) ; \

fi

@make FORTDR=$(FORDIR)

>" ; \

Screen sT.
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E.1.4. Command: make clean

The command

(make clean)

removes all existing objecl flies (.o suffix) fl'om the 0BJfiles subdirectory. The procedure is as

follows (screen _:_):

clean:

@if [ "'cd $(0BJDIR); ls *.o 2> /dev/null'" ]; then \

echo ""; \

echo "< Removing object files from $(OB3DIR)

echo .... ; \

rm $(0BJDIR)/*.o; \

else \

fi

echo .... ; \

echo "< ERROR:

echo .... ; \

No object files exist in $(OBJDIR)

>" ; \

>"; \

Screen b{S.
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E.2. Structure of SYMLINKS

The script SYMLINKS is executed by the Makefile during its compilation of the LAUI(A

co<le. This scril)! establishes syml)olic links to the source files necessary for this compilatiotl.

As a result, the Makefile knows when to use a LOCAL or CUSTOM version of a file in lieu of the

installed ($HOME/LAURA. 4.1) version. The first ste l) ill this liuking process is to remove any links

tha! might remaiH from a previously aborted compilatioll (screen sg):

VERSION=LAURA.4.1

SOURCE=S1

OBJECT=S2

START=S3

PROS=S4

DEBUG=S5

cd $OBJECT

rm -f Make* *.data *.F* *.f *.inc *.strt 2> /dev/null

Screen _.().

Next, the default links are reestablished (screen 90):

in -s ../$START/*

In -s ../Makefile

• 2> /dev/null

. 2> /dev/null

in -s $SOURCE/Makedep*

in -s $SOURCE/*.F*

In -s $SOURCE/*.inc

In -s $SOURCE/*.data

. 2> /dev/null

• 2> /dev/null

• 2> /dev/null

• 2> /dev/null

if [ "$OBJECT" !- "$DEBUG" ]; then

rm -f ../$PROG 2> /dev/null

in -s $OBJECT/$PROG ../$PROG

fi

rm -f start* CUSTOM/*.rm LOCAL/*.rm 2> /dev/null

Screen 90.
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If'anyCUSTOMfilesexist,theyareusedinsteadof tile $HOME/LAURA.4.1 versions. To a c<'om-

p/ish this, the $HOME/LAURA.4.1 symbolic link is replaced with a link to the CUSTOM file. The

possibility that CUSTOM files from the last compilation will no longer exist is also considered.

First. the status of' CUSTOM subroutine files ( .F, .FOR, and ,f suffixes) is checked (screen 91):

rm CUSTOM/*.rm 2> /dev/null

for FILE in 'cd CUSTOM; is *.F* *.f 2> /dev/null_; do

echo "CUSTOM \_$FILE' used in last compilation..."

NOEXT='echo SFILE ] awk -F. '{print $I} _'

if [ ! -f $SOURCE/CUSTOM/$FILE ]; then

echo "but CUSTOM \'$FILE' does not exist."

if [ -f SNOEXT.o ]; then

rm SNOEXT.o

rm CUSTOM/$FILE

fi

else

ompilation."

fi

done

echo " CUSTOM \'$FILE' still exists, and will be used in this c

if [ ! "'step $VERSION $SOURCE/CUSTOM/$FILE'" ]; then

echo " WARNING: VERSION mismatch. Still use (y/n) {n}

else

fi

read ANSWER

if [ "$ANSWER" = "y" -o "$ANSWER" = "Y" ]; then

rm SNOEXT.F*

in -s $SOURCE/CUSTOM/$FILE .

else

rm $NOEXT.o 2> /dev/null

touch CUSTOM/$FILE.rm

fi

rm SNOEXT.F*

in -s $SOUKCE/CUSTOM/$FILE .

Screen 91.
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Next, the status of CUSTOM include files (. inc suffixes) is reviewed (screen 92):

for INC in 'cd CUSTOM; Is *.inc 2> /dev/null _

_; do

else

mpilat ion."

; do

echo "CUSTOM \'$INC' used in last compilation..."

if [ ! -f $SOURCE/CUSTOM/SINC ]; then

echo "but CUSTOM \'$INC' does not exist."

rm CUSTOM/$INC

for DIR in $SOURCE $SOURCE/CUSTOM ..; do

for FILE in 'cd SDIR; grep -i $INC *.F* *.f 2> /dev/null

done

NOEXT='echo SFILE [ awk -F. '{print $1}"

if [ -f SNOEXT.o ]; then

rm $NOEXT.o

fi

done

echo " CUSTOM \'$INC' still exists, and will be used in this co

if [ ! "'grep $VERSION $SOURCE/CUSTOM/$1NC'" ]; then

echo "WARNING: VERSIDN mismatch. Still use (y/n) {n}?"

read ANSWER

if [ "$ANSWER" = "y" -o "$ANSWER" = "Y" ]; then

rm $INC

in -s $SOURCE/CUSTOM/$INC .

*.f 2> /dev/null'; do

int $1}''

else

else

fi

fi

done

touch CUSTOM/$1NC.rm

for DIR in $SOURCE $SOURCE/CUSTOM ..; do

for FILE in 'cd SDIR; grep -i $INC *.F*

NOEXT='echo $FILE [ awk -F. '{pr

fi

done

done

if [ -f SNOEXT.o 3; then

rm SNOEXT.o

fi

rm $INC

in -s $SOURCE/CUSTOM/SINC .

Screen 92.
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New CUSTOM files may have I)eelt created sh_ce the last COml)ila!iotl. Therefore, the nex! .step

is io loca_¢, a_>" CUSTOM files t ba_ were Iioi used in lhe previolls compilation and replace t.he

$HOME/LAURA.4.1 liHk wilh a link io the CUSTOM file (screeH 93):

for FILE in 'cd $SDURCE/CUSTOM; Is *.F* *.f 2> /dev/null 1 grep -v start'; do

if [ "'cd CUSTOM; is $FILE 2> /dev/null'" ]; then

if [ "_cd CUSTOM; is $FILE.rm 2> /dev/null'" ]; then

rm CUSTOM/$FILE*

fi

else

echo "CUSTOM \'$FILE' exists, and will he used in this compilati

on. lJ

y/n) {n}?"

fi

done

if [ ! "'cd LOCAL; is $FILE 2> /dev/null'" ]; then

NOEXT='echo SFILE J awk -F. '{print $I}"

if [ ! "'grep SVERSION $SOURCE/CUSTOM/$FILE'" ]; then

echo " WARNING: VERSION mismatch. Still use (

read ANSWER

if [ "$ANSWER" = "y" -o "$ANSWER" = "Y" ]; the

else

fi

fi

rm $NOEXT.* CUSTOM/$NOEXT.* 2> /dev/null

in -s $SOURCE/CUSTOM/$FILE .

touch CUSTOM/$FILE

rm SNOEXT.* CUSTOM/$NOEXT.* 2> /dev/null

in -s $SOURCE/CUSTOM/$FILE .

touch CUSTOM/$FILE

Screen 93.
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for INCin _cd$SOURCE/CUSTOM;Is *.inc 2> /dev/null [ grep -v startS; do

if [ "'cd CUSTOM; ls $INC 2> /dev/null'" ]; then

if [ "_cd CUSTOM; is $INC.rm 2> /dev/null _'' ]; then

rm CUSTOM/$INC*

fi

n. tt

else

y/n) {n}?"

echo "CUSTOM \_$INC' exists, and will be used in this compilatio

if [ ! "'cd LOCAL; is $INC 2> /dev/null ''' ]; then

if [ ! "_grep $VERSION $SOURCE/CUSTOM/$INC'" ]; then

echo " WARNING: VERSION mismatch. Still use (

NC *.F* *.f 2> /dev/null'; do

-F. '{print $1}"

else

fi

done

fi

fi

read ANSWER

if [ "$ANSWER" = "y" -o "$ANSWER" = "Y" ]; the

else

rm $INC

in -s $SOURCE/CUSTOM/$INC •

touch CUSTOM/$INC

for DIR in $SOURCE $SOURCE/CUSTOM ..; do

for FILE in 'cd $DIR; grep -1 $I

NOEXT='echo $FILE [ a_k

fi

done

done

if [ -f $NOEXT.o ]; then

rm SNOEXT.o

fi

rm $INC

in -s $SOURCE/CUSTOM/$INC .

touch CUSTOM/$INC

Screen 93. Concluded.

140



An analogousprocedureis employedfor LOCALfiles. If a LOCALfileexisls,it is usedin place

of lhe $HOME/LAURA.4.1 or CUSTOMversions through lhe creation of a link 1o the LOCAL tile. The

status of LOCAL subroutine files (.F, .FOR, and .f suffixes) is checked (scree_l .%1):

rm LOCAL/*.rm 2> /dev/null

for FILE in 'cd LOCAL; is *.F* *.f 2> /dev/null'; do

echo "LOCAL \'$FILE' used in last compilation..."

NOEXT='echo $FILE I awk -F. '{print $11"

if [ ! -f ../$FILE ]; then

echo " but LOCAL \tSFILE' does not exist."

if [ -f $NOEXT.o ]; then

if [ -f $SOURCE/CUSTOM/$FILE ]; then

touch CUSTOM/$FILE

fi

rm SNOEXT.o

rm LOCAL/$FILE

fi

else

mpilation."

y/n) {n}?"

fi

done

echo " LOCAL \'$FILE' still exists, and will be used in this co

if [ ! "'grep $VERSION ../$FILE'" ]; then

echo " WARNING: VERSION mismatch. Still use (

else

fi

read ANSWER

if [ "$ANSWER" = "y"

else

fi

-o "$ANSWER" = "Y" ]; then

rm $NOEXT.F* CUSTOM/$NOEXT.* 2> /dev/null

in -s ../$FILE .

if [ -f $SOURCE/CUSTOM/$FILE ]; then

touch CUSTOM/$FILE

fi

rm SNOEXT.o 2> /dev/null

touch LOCAL/$FILE.rm

rm SNOEXT.F* CUSTOM/$NOEXT.* 2> /dev/null

in -s ../$FILE .

Screen 9,1.

Next, the slalus of LOCAL include files (.inc and .strt suffixes) is reviewed (screen 95):
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for INC in 'cd LOCAL; ls *.inc *.strt 2> /dev/null'; do

echo "LOCAL \_$INC' used in last compilation..."

if [ ! -f ../SINg ]; then

echo "but LOCAL \_$INC' does not exist."

if [ -f $SOURCE/CUSTOM/$INC ]; then

touch CUSTOM/SINC

fi

rm LOCAL/SINC

for DIR in $SOURCE $SOURCE/CUSTOM ..; do

if [ -d $DIR ]; then

for FILE in 'cd $DIR; grep -1 $INC *.F* *.f 2> /

dev/null'; do

else

pilation."

fi

done

NOEXT='echo SFILE I awk -F. '{print $I}'

if [ -f $NOEXT.o ]; then

rm SNOEXT.o

fi

done

echo " LOCAL \'$INC' still exists, and will be used in this gem

if [ ! "'grep $VERSION ../$INC'" ]; then

echo "WARNING: VERSION mismatch. Still use (y/n) {n}?"

read ANSWER

if [ "$ANSWER" = "y" -o "$ANSWER" = "Y" ]; then

rm $INC CUSTOM/SINC 2> /dev/null

in -s ../$INC .

else

NC *.F* *.f 2> /dev/null_; do

-F. '{print $I} '_

fi

done

if [ -f $SOURCE/CUSTON/$FILE ]; then

touch CUSTOM/$FILE

fi

touch LOCAL/SINC.rm

for DIR in $SOURCE $SOURCE/CUSTOM ..; do

if [ -d SDIR ]; then

for FILE in 'cd $DIR; grep -I $I

NOEXT='echo $FILE { awk

if [ -f $NOEXT.o ]; then

rm $NOEXT.o

fi

else

fi

fi

done

fi

done

rm $1NC CUSTOM/$INC 2> /dev/null

In -s ../$1NC .

Screen 95.
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Finally.anyLOCALfilesthat were not used in 1he previous compilation are located, and 1he

existing li.k is replaced with a link 1o the LOCAL file (screen 96):

for FILE in 'cd ..; is *,F* *.f 2> /dev/null [ grep -v start'; do

if [ "_cd LOCAL; is SFILE 2> /dev/null _'' ]; then

if [ "_cd LOCAL; is $FILE.rm 2> /dev/null'" ]; then

rm LOCAL/$FILE*

fi

else

echo "LOCAL \_$FILE' exists, and will be used in this compilatio

n."

done

NOEXT='echo $FILE J awk -F. '{print $i}''

if [ ! "'grep SVERSION ../$FILE'" ]; then

echo "WARNING: VERSION mismatch. Still use (y/n) {n)?"

read ANSWER

if [ "$ANSWER" = "y" -o "$ANSWER" = "Y" ]; then

rm SNOEXT.* CUSTOM/$NOEXT.* 2> /dev/null

in -s ../$FILE ,

touch LOCAL/$FILE

else

else

fi

fi

if [ -f $SOURCE/CUSTOM/SFILE ]; then

touch CUSTOM/$FILE

fi

rm SNOEXT.* CUSTOM/$NOEXT.* 2> /dev/null

in -s ../$FILE .

touch LOCAL/$FILE

fi

Screen 96.
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for INC in 'cd ..; is *.inc *strt 2> /dev/null ] grep -v start'; do

if [ "'cd LOCAL; ls $INC 2> /dev/null'" ]; then

if [ "'cd LOCAL; ls $INC.rm 2> /dev/null'" ]; then

rm LOCAL/$INC*

fi

else

echo "LOCAL \'$INC' exists, and will be used in this compilation

.TI

NOEXT='echo $INC I awk -F. '{print $1}"

if [ ! "'grep $VERSION ../$INC'" ]; then

echo "WARNING: VERSION mismatch. Still use (y/n) {n}?"

read ANSWER

if [ "$ANSWER" = "y" -o "$ANSWER" = "Y" ]; then

rm $INC CUSTOM/$INC 2> /dev/null

In -s ../$INC .

touch LOCAL/$1NC

for DIR in $SOURCE $SOURCE/CUSTOM ..; do

if [ -d $DIR ]; then

for FILE in _cd $DIR; grep -I $I

NC *.F* *.f 2> /dev/null'; do

-F. '{print $1}"

else

*.f 2> /dev/null'; do

int $1}"

else

fi

fi

done

NOEXT='echo $FILE I awk

done

fi

done

if [ -f $NOEXT.o ]; then

rm $NOEXT.o

fi

fi

if [ -f $SOURCE/CUSTOM/SINC ]; then

touch CUSTOM/$INC

fi

rm $INC CUSTOM/$INC 2> /dev/null

in -s ../$INC .

touch LOCAL/$INC

for DIR in $SOURCE $SOURCE/CUSTOM ..; do

if [ -d SDIR ]; then

for FILE in 'cd SDIR; grep -I $1NC *.F*

NOEXT='echo SFILE J awk -F. '{pr

if [ -f SNOEXT.o ]; then

rm $NOEXT.o

fi

done

fi

done

Screen 96. (:oncluded.
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Thefinal taskperformedby SYMLINKSisto createthefileECHOSTRT.Tills file is a.concalena-

l.ion of those include files (with a . strt suffix) which contain FORTRAN parameter statements.

:ks discussed in section 9.2, these files provide user control of I,AITI{A durin_ ¢'omI)ilalion. At

laura run-time, this file is printed to standard output.

NOTE: The file ECHOSTRT should not be mistakenly edited in an attemi)t to effecl

changes to the laura execulable. Modifications should be made via PRELUDE, or

through a LOCAL version of the appropriate source files, {bllowed by a recompilation

of laura (screen 97):

rm -f ECHOSTRT 2> /dev/null

cat SHOME/$VERSION/TOP > ECHOSTRT

echo " File \'ECHOSTRT' was created by \'make' on _date'." >> ECHOSTRT

for FILE in HEADER.strt algnshk_vars.strt gas_model_vars.strt \

issd_assn.strt iupwind_ssn.strt mtaska_ssn.strt \

nordbc_ssn.strt parameter.strt source_vars.strt \

sthrlnd_vars.strt; do

if [-f

else

li

$FILE ]; then

echo "Contents of LOCAL file \'$FILE':" >> ECHOSTRT

LINES=_wc -i $FILE I awk '{print $i}"

LINES='expr SLINES - 8'

tail +6 SFILE I head -$LINES >> ECHOSTRT

if [ "'cd $START; wc -1 SFILE I awk '{print $1}''" = "8" ]; then

echo "File \'$FILE' is not active." >> ECHOSTRT

else

li

echo "Contents of file \'$FILE':" >> ECHOSTRT

LINES='wc -1 $START/$FILE l awk '{print $i}''

LINES='expr $LINES - 8 _

tail +6 $START/$FILE [ head -$LINES >> ECHOSTRT

done

Screen 97.

NOTE: As mentioned in section 10.1, tile contents of file data (as well a.s files

assign_tasks, transition, and variabletw, if they exist, at run-time), are also

echoe<t to standard output. However, since these files provide user control during

execution rather than compilation, their contents are not. included in file ECHOSTRT.

Rather, a.s their contents are read in by LAURA, they are also echoe<t to tile screen

so that the values that are actually used in the current run are reflected.

The logic here checks for the presence of LOCAL versions of these files. If any are presenl, they

are concatenaled in lieu of the originals produced t)3' start (which are located in STRTfiles,

a, subdireclory of the LOCAL directory). A complete lisl of LOCAL and CUSTOM files used in this
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compilation ls also included in ECHOSTRT. Thus, ECHOSTRT is a record of the user-defined ta]lorh,_

thal was used ill tile most recent compilation of I, AUI{A (screen 9_):

if [ -d $0BJECT/LOCAL ]; then

if [ "'is -t $0BJECT/LOCAL'" ]; then # if dir is not empty...

echo "The following LOCAL files were used in the last \'make':"

>> ECHOSTRT

fi

fi

for FILE in 'cd $OBJECT/LOCAL; is * 2> /dev/null'; do

echo " SFILE" >> ECHOSTRT

done

#

fi

fi

if [ -d $0BJECT/CUSTOM ]; then

if [ "'ls -t $OBJECT/CUSTOM'" ]; then # if dir is not empty...

echo "The following CUSTOM files were used in the last \'make':"

>> ECHOSTRT

for FILE in 'cd $OBJECT/CUSTOM; is * 2> /dev/null'; do

if [ ! -f $OBJECT/LOCAL/$FILE ]; then

echo " #FILE" >> ECHOSTRT

fi

done

#

clmod 400 ECHOSTRT

Screen 9_.
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E.3. Structure of CHECKERS

CHECKERS executes Makedep to determine whh'h included files each source file del,ezLds Ul><m.

The structure of the script Makedep is given in appendix E, section E.4. CHECKERS also compares

the Makefile being exe<'uled wi_h a reference copy (file .Makefile). If the compilalion [tags

have been <'harlged since the last make, the ol)ject files are removed. File . Make:file is initially

crealed by PRELUDE. It is updated each time this check is posilive (screen <}<)):

OBJECT=S1

DEBUG=S2

echo "< Building dependency list >"

( cd $OBJECT; Makedep > CHILDREN )

REMDVER=O

if [ "$OBJECT"= "$DEBUG" ]; then

if [ -f SDEBUG/.Makefile ]; then

if [ "'diff Makefile SDEBUG/.Makefile ] grep DFLAGS='" ]; then

REMOVER=I

if [ "'dill Makefile SDEBUG/.Makefile [ grep LFLAGS='" ]; then

REMOVER=I

else

else

fi

fi

cp Makefile $DEBUG/.Makefile

if [ "'diff Makefile .Makefile I grep FFLAGS='" ]; then

REMOVER=I

fi

if [ "'dill Makefile .Makefile I grep LFLAGS='" ]; then

REMOVER=I

fi

Screen 99.
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if [ "$REMOVER" = "l" ]; then

if [ "'cd $OBJECT; ls *.o 2> /dev/null'" ]; then

echo " <

echo " <

echo " <

Flags in \'Makefile' have changed

since last compilation, therefore

removing object files from $OBJECT.

rm $OBJECT/*.o

if [ "$OBJECT" = "$DEBUG" ]; then

cp Makefile $DEBUG/.Makefile

else

cp Makefile .Makefile

fi

fi

fi

>"

>tl

Screen 99. (loncluded.

E,4, Structure of Makedep

This script determines the include dependencies of each LAURA source file. Makedep is

the front end for lhe "awk" (a UNIX utility) file Rakedep.awk (screen 1{)0):

for file in *.f *.F *.FOR; do

awk -f Makedep.awk $file 2> /dev/null

done

Screen 100.

Makedep.a_k eslablishes the file interdependencies by locating all include statements in

each of the subroutine files ( .f, .F, and .FOR suffixes). (See screen 101.)
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BEGI_ {
n=O;

}

# With BEGIN finished, read the file.

/ include/ {

m=split($O,nf,"\"")

if (m==l) m=split($O,nf,' .... );

if (m>l)

{
fc=substr(nf[1],l,1);

if (fc=="#" II fc==" ")
{
n++;

fn[n]=nf[2]

}
}

# This is the pattern to match.

# Try to split the line using the "

# separator. If line was not split

# into m > 1 parts, then try to split

# using the ' separator. If either

# split works, then check whether the

# character in coltnan 1 is a # or space.

# If either is true, then the 2nd

# field on the line is the file name

# to include.

Screen 101.

Although ol_l.x....prel)rocessor" include s|.aleltlelll.s are used ill l, Alitlh. this search also cilecks

for FORTRAN include sla.temenl.s thal mighl })e h_lrodnced in tailored files.
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These dependencies are OUtl>Ul ill a formal tha! is usabh, in the Makefile (screen 102).

END {
split(FILENAME,inp,".");

line=inp[l] ".o: \t";

if (n==0)

{
print line;

exit ;

}
j=1;

while (j<=n)

{
i=l;

while (i<=3)

{
line=line fn[j] .... ;

j++;

if (j-1==n) break;

if (i==3) lineffiline "\\";

i++;

}
print line;

line="\t \t";

}

# Extract the input filename.

# Add .o extension and tab to name.

# If no includes were found in

# this file, then just print

# the filename and exit.

# Loop though each included filename.

# 0nly put 3 filenames on one line.

# Concatenate the names.

# Determine if

# continuation

# characters

# are required.

# Output the line.

Screen 102.

Makedep is executed each time the Makefile is executed, and its output is directed to the

file CHILDREN. The file CHILDREN is accessed by the Makefile to determine which include files

(.inc and .strt suffixes) each source file (.F, .FOR. or .f suffix)is dependent upon. If any of

these files have beet, moditied more recently than the object file (.o suffix) was created, lhen

tit(, object file is recomi)iled. In other words, with cacti execution o1" make, oi113' those oh jet! files

tlla! are outdated are rocompiled.
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Appendix F

Structure of ARCHIVE

The scripl ARCHIVE provides the user with all archival Cal)abilily for lhe given working

directory. In other words, a user can use this ('omnlan<l)o save key files for fulure use. These

files <'all t)o restored a( some future <ta.(e using the RESTORE conlmand (al)pendix I,). Afler (he

resloration process. Ill<, solution can be l>icke<l up where i( left off.

The command ARCHIVE is execu(ed front the presen( working (LOCAL) dive('to)'y. The proce-

dure is as follows. Firs(, a. temporary sul>directovy named ARCHIVE is created:

HOHER=$HOME/$VERSION

mkdir ARCHIVE 2> /dev/null

Within this <lireclory, several sub<lirectories are created to hold various classes of tiles. First,

lhe DEFAULTS and INPUTS files are saved in case the user would like to repeat PRELUDE in lhe

fuluro (screen 103):

if [ "'is DEFAULTS INPUTS 2> /dev/null'" ]; then

mkdir ARCHIVE/IN 2> /dev/null

for FILE in DEFAULTS INPUTS; do

if [ -f SFILE ]; then

cp $FILE ARCHIVE/IN

fi

done

fi

Screen 103.
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Next. the input tiles for laura (RESTART. in, assign_tasks, transition. TWALL. in, and variabletw)

are saved to provide a smool|, restarl capabilily (screen 104):

mkdir ARCHIVE/CONTROL 2> /dev/null

for FILE in RESTART.in assign_asks data transition TWALL.in variabletw; do

if [ -f $FILE ]; then

cp SFILE ARCHIVE/CONTROL

fi

done

if [ ! "'Is -t ARCHIVE/CONTROL _'']; then

rmdir ARCHIVE/CONTROL

fi

Screen 104.

If the masler input files (RESTART.MASTER and TWALL.MASTER) exisl, lhey are also saved, along

with the file conv. out. which contains t he convergence history [br the run (screen 105):

if [ "'Is RESTART.MASTER TWALL.MASTER 2> /dev/null'" ]; then

mkdir ARCHIVE/MASTER 2> /dev/null

for FILE in RESTART.MASTER TWALL.MASTER; do

if [ -f $FILE ]; then

cp SFILE ARCHIVE/MASTER
fi

done

fi

if [ -f cony.out ]; then

mkdir ARCHIVE/CONV 2> /dev/null

cp cony.out ARCHIVE/CONV

fi

Screen 105.
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(!opies of any CUSTOM tiles tha! might exist are save<l a,s follows (screen 106):

if [ "_is OBJfiles/CUSTOM'" ]; then

mkdir ARCHIVE/CUSTOM 2> /dev/null

for FILE in _is OBJfiles/CUSTOM 2> /dev/null'; do

cp $HOMER/CUSTOM/$FILE ARCHIVE/CUSTOM

done

fi

Screen 106.

Any LOCAL files are also save<] (screen 107):

if [ "'Is OBJfiles/LOCAL _'' ]; then

mkdir ARCHIVE/LOCAL 2> /dev/null

for FILE in 'ls OBJfiles/LOCAL 2> /dev/null_; do

cp $FILE ARCHIVE/LOCAL

done

fi

Screen 107.
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Nowthecontentsof the subdirectoryARCHIVE are read}' to be packaged ill a tarfile. First,

the user is prompted for the desired name for this file. Next the tarfile is created. As a final

step, the subdirectory ARCHIVE and its contents are removed (screen 10S):

echo " Enter name for ARCHIVE file:

read TARFILE

if [ -f $TARFILE ]; then

echo " File \'$TARFILE' already exists. Overwrite it (y/n) {n}?

read ANSWER

i_ [ "$ANSWER"= "y" -o "$ANSWER" = "Y" ]; then

rm -f STARFILE

else

echo " ARCHIVE procedure aborted"

exit 0

fi

fi

cd ARCHIVE

tar cf ../$TARFILE *

chmod 400 ../$TARFILE

cd ..

rm -r ARCHIVE

Screen 10_.
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Appendix G

Structure of BLOX

The script BLOX allows a user to assembh, several compulalio,la] blocks into a single-block,

master col) 5' of the solution. This utility a/so allows the user to l)artition a master copy of the

solution into several blocks to reduce memory overhead associaled with mullilasking. Smaller

working blocks can also t)e ('realed from the ma.ster io con('enlrate relaxation cycles in crilical

regions or to imi)lenwnl a bh)('k marching strategy (from nose to tail and/or from windside to

leesi(le) over vehicles. As solutions in the smaller working blo('ks are converged, lhey can t)e

resaved in the master COl)y using the BL0X utility.

BLOX operates on the working Col)y restart file, RESTART. in, and, if ne('essary, on the a.sso-

elated wall lemperature file. TWALL. in. The respective master files are called RESTART.MASTER

and TWALL.MASTER. To use this utiliD', the user types

which serves as a front-en(l to the mAkEblk FORTRAN executable. The user is prol|l[)te(I J'or

information through a series of questions. When this interactive mhkEblk session is completed,

the BLOK utilily automatically compiles file exchange, f to create ExchAngE, wMch is the FORTRAN

executable t.ha1 implements the specified exchange from either the working file Io 'the ma.sler tile
or vice versa.

The ut.ilily then a.tteml)ts to execute ExchAngE. If the restart flies are very large, local system

defaults may not i)ermit interactive execution of ExchAngE. In these cases, the user will need to

submit ExchAngE in the working directory as a batch job according to local system proto('ol. A

sample script file is shown in screen 109.

# QSUB -IT I00

# QSUB -IM 20mw

cd work_dir

ExchAngE

Screen 109.
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Ilere, it is specifiedthat thesizeof the executableis lessthan 2(Imegawordsand requiresless
than 100secondsof'(_PUtime (screen110).

qNOTE: Tile utility BLOX has no effect on the executal)le laura. (hang_ s in bound-

a.rx' conditions or working [)lock dimensions associated with tel>locking, if necessary,

are implemented with the utility PRELUDE.

VERSION=LAURA.4.1

HONEB=$HOME/$VEBSION

rm mAkEblk exchange.f 2> /dev/null

in -s SHOMER/mAkEblk .

mAkEblk

rm mAkEblk

if [ ! -f exchange.inc ]; then

my exchange.tmpexchange.inc

In -s SHOMER/exchange.f .

f77 exchange.f -o ExchAngE

rm exchange.f

else

fi

diff exchange.tmp exchange.inc > /dev/null 2>&l

if [ $? -ne 0 ]; then # if files differ...

mv exchange.imp exchange.inc

In -s $HOMER/exchange.f .

f77 exchange.f -o ExchAngE

rm exchange.f

else

rm exchange.tmp

fi

Screen 110.
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if ["_

chine. "

else

grep machine $HOMER/DEFAULTS [ awk '{print $I} '_'' = "0" ]; then

ExchAngE > errout 2>_I

if [ "_wc -i errout I awk '{print $I} .... = "I" ]; then

echo " ABORT: Job is too large to run interactively on this ma

echo " \_ExchAngE' must be submitted as a batch job."

else

cat echout

echo "

fi

rm echout 2> /dev/null

...Completed \tExchAngE' procedure"

ExchAngE

echo " ...Completed \_ExchAngE' procedure"

fi

for FILE in TWALL.in TWALL.MASTER; do

if [ "'wc -c $FILE [ awk '{print $I}''" = "0" ]; then

rm SFILE

fi

done

Screen 110. Concluded.
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Appendix H

Structure of CUSTOMIZE

:ks discussed in chapter S. the philosophy behin(l lhe file directory slruct,re of LAURA is

that the bulk of the I=AUtiA algorithm can t>e packaged such l hat the ('ollslilllell! files do ,lot

change from one apl)lication to the t_ext. These files reside in the user's "$HOME/LAURA.4.1""

<tirectory. l:or a<lvance<l a ppli<'ations. LOCAL copies of these liles can t>e created (appendix K)

a tl<l mo<lilie<l. Subseq.e.t compila!iotls of LAI.+RA will .se these local files rather than the

$HOME/LAURA. 4.1 versions.

A LOCAL version of file ifn will only be used in the <'urren! working directory. There may be

occasions when the user wo.l<l like 1o use this tailored file in directories other than the c.rrent

one. The obvious a ppr<)ach is to <'opy !he LOCAL file to the other directory. Rather than copyit,g+;

a LOCAL file front <lire<'lory to dive<'lory, however, the commatl<l

(CUSTOMIZE ifn)

can be used !o place !},isLOCAL filein the $HOME/LAURA.4.1/CUSTOM direclory. Any f,!ure

co.lpilalions of LAURA (from any working <tirectory on this machine) will use this

$HOME/LAURA .4.1/CUSTOM file in lie. of the SHOME/LAURA .4.1 version.

Several slops must I)e performed by this COUlmand to create a CUSTOM file. First. the write-

protection for "'$HOME/LAURA.4.1'" must be removed, and the s,b<tirectory CUSTOM created as

follows (scceet, 111 ):

VERSION=LAURA.4.1

FILE=S1

chmod 700 $HOME/$VERSION # make CUSTOM read/write/execute

if [ ! -d $HOME/$VERSION/CUSTOM ]; then # if subdirectory CUSTOM DNE...

mkdir SHOME/$VERSION/CUSTOM; # ...create it

fi #

chmod 700 $HOME/$VERSION/CUSTOM # make CUSTOM read/write/execute

Screen 111.

Nexl, the LOCAL file is moved to CUSTOM. However, if a CUSTOM version of" lfn already exists,
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and the two files are identical, the LOCAL file is simply removed. ()n the other hand, if a CUSTOM

version of lfn already exists, and tile two tiles differ, lhe user is given the option 1<)update the
CUSTOM file (screen 112):

# if file DNE in CUSTOM...

if [ ! -f $HOME/$VERSION/CUSTOM/$FILE ]; then

mv $FILE SHOME/$VERSION/CUSTOM # move it there, &

chmod 400 SHOME/$VERSION/CUSTOM/$FILE # make it read only

echo "File \'$FILE' added to \$HOME/$VERSION/CUSTOM."

echo "Future compilations will use this file in lieu"

echo "of the \$HOME/SVERSION version of \_$FILE'."

else

diff $FILE $HOME/$VERSION/CUSTOM/$FILE > /dev/null 2>&l

if [ $? -ne 0 ]; then # if files differ...

echo "File \'$FILE' already exists"

echo "in \$HOME/$VERSION/CUSTOM. Update (y/n)?"

read ANSWER

if [ "$ANSWER" = "y" -o "$ANSWER" = "Y" ]; then

mv -f SFILE SHOME/$VERSION/CUSTOM # move to CUSTOM

cl%mod 400 SHOME/$VERSION/CUSTOM/$FILE # make read only

echo "File \'$FILE' updated in \$HOME/$VERSION/CUSTOM."

echo "Future compilations will use this in lieu "

echo "of the \$HOME/$VERSION version of \'$FILE'."

fi #

else # else...

rm -f $FILE # ...remove it

echo " No change in $FILE in \$HOME/$VE_ION/CUSTOM"

fi #

fi #

Screen 112.

The final step is to reestablish write protection for the "$HOME/LAURA.4.1" files as follows:

chmod 500 SHOME/$VERSION/CUSTOM

chmod 500 SHOME/$VERSION

# make read/execute

# make read/execute

16O



Appendix I

Structure of INITIALIZE

As discussed in secl ion 9. I. 1. the LAURA restart tile (RESTART. in) consists of th>w tield t>rop-

eriies (velo<'it ies, temperatures, and densities) for each cell, along wilh the grid. The INITIALIZE

s<'riI>[ a/h)ws (lie ,set (o use a,n externally generale<l grid with I,AURA. This ulility creates a

RESTART.in [ile from a grid tile in PLOT3D format. The conmlai)<l

INITIALIZE ifn)

takes a grid file lfn, initializes its flow field (o free-stream values, and outputs the file RESTART. in.

NOTE: INITIALIZE gleans intbrmation from several files that are created by start.

Therefore, PRELUDE runs! be execute<l before an exiernally generated grid can ])e

inilialized.

In laura, the grid must be oriented such that 9 = 0 is the plane of symmelry. The user can

enco, nter ex(ernally genera(ed grids with other orienta(ions. Before running INITIALIZE, i( is

reconiniende<l (hat t.he user reorient lhe grid lo conforni to the examples shown in figures 2.1

and 2.2. An all.erlialive iilvolves chaugilig tile <lefinition of iti,lf, viltf, and witlffor laura and

INITIALIZE (seclion 7.9.1).

INITIALIZE uses lhe following procedure. Firsl, ii checks to see if the ti|e RESTAWr. in exists.

If so, the user is given the op(ion 1o overwrite i( as follows (screen 113):
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VERSION=LAURA.4.1

ORIDIN=$1

if [ -f SGRIDIN ]; then

if [ -f RESTART.in ]; then

echo " File \'RESTART. in' already exists."

echo " Do you wish to remove it (y/n) In}?"

read ANSWER

if [ "$ANSWER" = "n" -o "$ANSWER" = "N" 3; then

exit 0

fi

fi

else

fi

echo "

exit 0

ERROR: File \'$GRIDIN' not found."

Screen 113.

The species indices are obtained fl'om tile species_strt (which is created by stArt). If a LOCAL

version of species_strt exists,thal fileisusod. This illformationisp]aced in fileflowinit, in,

as shown in screen 11,t:

HOMER=$HOME/$VERSION

rm flowinit.in 2> /dev/null

if [ "'is STRTliles/species.strt species.strt'" ]; then

if [ ! -f species.strt ]; then

in -s STRTfiles/species.strt .

fi

grep "=" species.strt [ awk -F= 'print $2' > flowinit.in

if [ "'Is -it species.strt I grep STRTfiles _'' 3; then

rm species.strt

fi

else

fi

echo "ERROR: File \_species.strt' not found."

Screen 114.
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The numberof speciesis obtaine<tfrom tileparameter_strt (which is createdby start). If
a LOCALversionof paraxneter_strt exists,that. file is used. This va.lueis added lo 1.1/(,file
flowinit.in (screen 1 15):

if [ "'is STRTfiles/parameter.strt parameter.strt'" ]; then

else

fi

if [ ! -f parameter.strt ]; then

in -s STRTfiles/parameter.strt .

fi

grep "ns =" SFILE I awk -F = 'print $2' >> flo.init.in

if [ "'is -It parameter.sir% [ grep STRTfiles'" ]; then

rm parameter.sift

fi

echo "ERROR: File \'parameter.strt' not found."

Screen 115.

The angle of attack, angle of yaw, free-stream temperature, and fl'ee-stream velocity are obtained

fi'om file DEFAULTS (which is update<t by start). This information is added to file flowinit, in

(screen 116):

if [ -f DEFAULTS ]; then

grep attack

grep yaw

grep tinf

grep vinfb

DEFAULTS >> flowinit.in

DEFAULTS >> flowinit.in

DEFAULTS >> flowinit.in

DEFAULTS >> flowinit.in

else

echo "ERROR: File \'DEFAULTS' not found."

fi

Screen 116.
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TheprogramArrAy reads the prescribed computational block dimensions fl'om file ifn. If a

larger dimension is required than that specified in tile $HOME/LAURA, 4.1 version of flowinit, inc,

a LOCAL version of flowinit, in¢ is created, and flowinit, f is recompiled. Next, fl0wInIt is

executed to initialize the grid based on the values in flowinit,in. The resultan! flow field is

output to create RESTART. in (screen 117):

rm grid.in 2> /dev/null

in -s SGRIDIN grid.in

$HOME/$VERSION/ArrAy # create LOCAL flowinit.inc, if necessary.

if [ "'Is flowinit.* 2> /dev/null'" ]; then

echo " < LOCAL \'flOwInIt' executable will be used

>"

if [ "'is -t fl* [ awk '{print $I}' _ head -I'" = "flOwInIt" ]; then

echo " < LOCAL \'flOwInIt' executable is up to da

te >"

null'

else

else

; do

fi

fi

echo " < Creating LOCAL \'flOwlnlt' executable

>"

if [ -d $HOMER/CUSTOM ] ; then

for FILE in 'cd $HOMER/CUSTOM; is flowinit .* 2> /dev/

if [ ! -f $FILE ]; then

in -s $HOMER/CUSTOM/$FILE .

fi

done

fi

for FILE in 'cd SHOMER; is flowinit.*'; do

if [ ! -f SFILE ]; then

In -s SHOMER/$FILE .

fi

done

FC flowinit.f -o flOwInIt

for FILE in 'Is flowinit.*'; do

if [ "'Is -it SFILE [ grep LAURA'" ]; then

rm $FILE

fi

done

rm flOwlnlt 2> /dev/null

Screen 117.
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ii be used

if [ ! -f flOwlnlt ]; then

if [-d SHOMER/CUSTOM ]; then

if [ "_cd SHOMER/CUSTOM; is flowinit.* 2> /dev/null _" ]; then

echo " < CUSTOM \'flOwlnlt' executable _i

>,,

( cd $HOMER/CUSTOM;

rm *trace 2> /dev/null;

if [ "tls -t fl* ] awk _{print $i} _ _ head -I _'' = "flDwl

nit" ]; then

echo " <

table is up to date >";

It' executable

else

fi

else

else

fi

fi

CUSTOM \'flOwInIt' execu

echo " < Creating CUSTOM \_flOwIn

>" ;

chmod 700 SHOMER;

chmod ?00 $HOMER/CUSTOM;

for FILE in 'cd $HOMER; is flowinit.*'; do

if [ ! -f SFILE ]; then

In -s SHGMEK/$FILE .;

fi

done;

FC flowinit.f -o flOwInlt;

for FILE in _is flowinit.*_; do

if [ "_is -It SFILE J grep LAURA'" ]; then

rm $FILE;

fi

done

chmod 500 $HOMER;

chmod 500 SHOMER/CUSTOM;

fi )

in -s SHOMER/CUSTOM/flOwInIt •

rm SHOMER/CUSTOM/flOwInIt 2> /dev/null

if [ ! "'is SHOMER/CUSTOM'" ]; then

cl'mod 700 SHOMER

chmod 700 SHOMER/CUSTUM

rmdir SHOMER/CUSTOM

chmod 500 SHOMER

fi

in -s SBOMER/flOwlnIt .

In -s SHOMER/flOwlnlt .

Screen 117. (',ontiuued.
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fl0wInIt

if [ "'is -it flO.InIt I grep LAURA'" ]; then

rm flOwInlt

fi

rm grid.in 2> /dev/null

exit 0

# Remove flDwInIt if

# it's just a sym-link

# to default fl0wInIt.

Screen 117. (_oncluded.
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Appendix J

Structure of KEEPER

This script allows the user to treat(, I)a(:kups of RESTART. in and TWALL.in by simply typing

I/le coninlan(I

Backut)s for rile master files (RESTART.MASTER aad TWALL.MASTER), which exist wheli multiple

computational blocks are employed in the solulion pro('edur(,, are also created. If a previous

backup file is encoun|ered, the user is given the <)])lion ot' updating it (screen 1 IS):

BACgUP='backup'

echo " Enter desired suffix for these backup files {$BACKUP}:"

read BACKUP

for FILE 'is in RESTART.in TWALL.in *.MASTER 2> /dev/null'; do

if [ -f SFILE.$BACgUP ]; then

n}?"

echo "LOCAL file \'$FILE.$BACKUP' already exists. Update (y/n) {

read ANSWER

if [ "$ANSWER" = "y" -o "$ANSWER" = "Y" ]; then

rm SFILE.$BACKUP

cp SFILE SFILE.$BACKUP

echo "File \_$FILE' copied to \'$FILE.$BACEUP'"

fi

else

fi

cp SFILE SFILE.$BAGKUP

echo "File \'$FILE' copied to \'$FILE.$BACKUP'"

fi

Screen [ 18.
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NOTE: TheseLAURA restart tiles(RESTART.in andTWALL. in) are only overwril-

ten at the conclusion of a successful run. so "backing up" lhese tiles ix not mandatory.

In some cases, llowever, doing so can provide peace of mind for the user.
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Appendix K

Structure of LOCALIZE

As discussed in chapter ,% the philosophy behind the file directory structure of LAURA is lha!

the bulk of the I.AUllA algorithnt can I)e packaged such tha! 1he constiluent files do not change

from one apl)licalion lo the next. These files reside in tire user's $HOME/LAURA.4.1 <lirectory.

For a<lvan<'e<l apl)licalions, LOCAL copies of these files can I)e created with the comnland

(LOCALIZE Ifn)

and modilied. Sut)sequent compilalions of LAURA will use these LOCAL files rather than the

SHONE/LAURA. 4.1 versions.

Fil'sl, LOCALIZE checks to see if a LOCAL ifn ah'ea<ly exists. If so. the user has the el)lion lo

abet! lhe request or continue (and overwrite the existing LOCAL file) as shown in screen 119:

VERSION=LAURA.4.1

FILE=S1

if [ -f $FILE ]; then

echo " LOCAL file \'$FILE' already exists.

read ANSWER

else

ANSWER='y'

li

Overwrite (y/n) {n}?"

Screen 119.

If the request is not a l)o|'ted. LOCALIZE checks tire following directories for the existence of
Ifn:

• $HOME/LAURA.4.1 the directory containing 1)aseline files (. F, . FOR, and . inc suilixes)

• STRTfiles --the directory containing files created by start( .strt suffixes)

• FORTRAN the directory containing pure-FORTRAN files ( .f suffixes); this directory, and the

files il contains, are created t)y the COmlnand

make forZran)

169



which is discussed in section _.3.

LOCALIZE COl)ies lhe file lfn fl'om its directory of residence and makes it user-wrilable (screen 120): J

EXIST=O

if [-f $HOME/$VERSION/$FILE ]; then

if [ -d $HOME/$VERSION/CUSTOM ]; then

if [ -f $HOME/$VERSION/CUSTOM/$FILE ]; then

echo " WARNING: CUSTOM version of file \_$FILE' exists."

fi

fi

EXIST=I

cp $HOME/$VERSION/$FILE .

chmod 600 $FILE

fi

if [ -f STRTfiles/$FILE ]; then

EXIST=I

cp STRTfiles/$FILE .

chmod 600 SFILE

fi

if [ -f FORTRAN/$FILE ]; then

EXIST=I

cp FORTRAN/$FILE .

fi

# copy installed version

# to LOCAL directory,
# and make it user-writable

# copy file from STRTfiles

# to LOCAL directory,

# and make it user-writable

# copy file from FORTRAN to LOCAL dir

Screen 120.

With any future compilations of LAURA (from this working directory), this LOCAL file will be

used in lieu of the $HOME/LAURA.4.1 or CUSTOM (appendix H) versions.
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If file lfn does not exisl in any of these direclories, tho following error mossage is sen! to the

screen, and the request is aborted (screen 121):

if [ "SEXIST" = "0" ]; then

echo " ERROR: File \'$FILE' does not exist in the "

echo " \$HOME/$VERSION, STRTfiles, or FORTRAN directories."

else

fi

echo "

echo "

echo "

LOCAL copy of the \$HOME/SVERSION version of \'$FILE' created."

Future compilations will use this LOCAL file in lieu of the"

\$HOME/$VERSION or CUSTOM versions of \'$FILE'."

S('ree,i 121.

171





Appendix L

Structure of RESTORE

The script RESTORE allows the user to reconstruct a working directory from a tile lfn crealed

wilh tile ARCHIVE conunand (appendix F). First. create a new working directory. Nexl, move

lfn (tit(, tarfile created t)5' ARCHIVE) to that directory. While in the new directory, tyi)e the
COIII II1 tt, ll(l

and the tbllowing pr<)cetlure will I)e execute<l. The tarfile is unloa<ted as shown in screen 122:

TARFILE=$1

tar xf $TARFILE

Screen 122.

The DEFAULTS and INPUTS file are retrieve<t (screen 123):

if [ -d IN ]; then

for FILE in 'Is -t IN'; do

my IN/$FILE .

done

rmdir IN

fi

Screen 123.
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Thefile cony.out is retrieved(screen124):

if [ -d CONY ]; then

mv CONY/cony.out .

rmdir CONV

fi

Screen 124.

Any input filesforlaura(RESTART, in. assign_tasks, transition, TWALL. in. and variabletw)

that were saved are retrieved (screen 125):

if [ -d CONTROL ]; then

for FILE in 'is -t CONTROL'; do

mv CONTROL/$FILE .

done

rmdir CONTROL

fi

Screen 125.

If lhe master inpul files (RESTART.MASTER and TWALL.MASTER) were saved, they are restored

(screen 126 ):

if [ -d MASTER ]; then

for FILE in 'Is -t MASTER'

my MASTER/$FILE .

done

rmdirM.ASTER

fi

; do

Screen 126.
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If any LOCAL files were saved, they are reinstated (screen 127):

il [ -d LOCAL ]; then

for FILE in 'is -t LOCAL'; do
my LOCAL/$FILE .

done

rmdir LOCAL

fi

,_creen 127.

NOTE: If any CUSTOM files were saved, lhey are saved in a CUSTOM suh(|ire('-

tory below this LOCAL dire<'tory. They are liol autolnati('allv reinstate(I ill the

SHOME/LAURA. 4. I/CUSTOM <lire('lory to avoi(1 lhe possibility of overwritingl existinp_;

CUSTOM files. To resiore theln as CUSTOM files, tile user S]lOliltl cd 1o CUSTOM and use

Ill(' CUSTOMIZE comman(] (al)l)endix I/) on the individual files.

The following stel)s are require(l to pick u I) the solulion where i! le0 off hetbre archival:

• Tyl)e the command

(PRELUDE INPUTS)

1o ('reate the re(tuired suhdirectories arid source files (.strt suffixes).

NOTE: Be stir(, to l)reserve lhe existing RESTART. in, dal:a, and cony.out files

when pronll)led.

• Type the coiiiliiali([

i o (:onipile the LAITIIA SOllr('e code an(l create the laura executable.

• Type the ('()iiilliali(l

(laura< data)

to advauce the sohition.
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Appendix M

Structure of SIZEIT

This script allows the ,ser to eslimate ,be memory retl.h'eme,ts for the (',rre,,l a t)t)lit'alitm.

by sil,ll)lV Lvt)izlg _he <'o.,mal,(l

Both PRELUDE a I,<l Makefile execule this script as part of lhei," proce(h, res.

The script SIZEIT serves as 1],(. fronl end for sIzEIt, which is the exec.table for the FORTRAN

re,title sizei'c.f. This ro.til)e solves equation (ll.S). as well as e(luatio. (11.9) or (11.10). to

determiz,e memory a l]ocatiolJs for each task defil_ed i_, tile assign_tasks. If ill(. assign_tasks

is _,<)1 fo.,,d, a si,,gle task with sweepiJ,g ill the k-direclio, is ass..,ed.

l"irsI. ,he size of the laura exec.table is (hgermitled (excludiHg the overhead associated will,

the .so of mullitaskillg al,(l/or the solid-state-device), as show,, i,, screen 12_:

if [ -f laura ]; then

if [ "'is -t STRTfiles/*.strt *.strt *.inc *.F* *.f laura 2> /dev/null I

awk '{ print $I}' I head -I'" = "laura" ]; then

size laura [ tail -11 awk '{print $4}' > sizeit.in

else

echo "0" > sizeig.in

fi

else

fi

echo "0" > sizeit.in

Screen 128.
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Next, tlle information requiredby sIzEIt is gatheredfronl tilescreatedt)y PRELUDE.Then
slzEIt is executodto (letermin(,anyadditiona]nlemoryrequirementsfor Ih(,('urr(mtjob. 'Fh(,
resultsaresavedin tile ECHOSIZE and ech<)ed to lhe screen (screen 129):

if [ "'is -t STRTfiles/parameter.strt parameter.strt 2> /dev/null'" ]; then

if [ ! -f DEFAULTS 3; then

in -s SHOME/SVERSION/DEFAULTS .

fi

if [

fi

"'Is HEADER.sift 2> /dev/null _'' ]; then

in -s STRTfiles/HEADER.strt .

if [ "'grep NAVIER HEADER.strt'" ]; then

echo "2" >> sizeit.in

else

echo "0" >> sizeit.in

fi

if [ "'is -it HEADER.sift ] grep STRTfiles'" ]; then

rm HEADER.strt

fi

if [ "'grep machine DEFAULTS I awk '{print $1} .... = "0" ]; then

in -s $HOME/$TERSION/evaI_aram.f .

for FILE in issd_assn.strt parameter.strt; do

if [ ! -f SFILE 3; then

In -s STRTfiles/$FILE .

fi

done

FC eval_param.f -o EvAI_ArAm 2> /dev/null

for FILE in issd_assn.strt parameter.strt; do

if [ "'is -It $FILE I grep STRTfiles'" ]; then

rm $FILE

fi

done

EvAl_pArAm >> sizeit.in

rm eval_param.f EvAI_pArAm

fi

Screen 129.
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else

fi

rm -f ECHOSIZE 2> /dev/null

$HOME/$VERSION/slzEIt

if [ "'wc -1 ECHOSIZE I awk '{print $1}''" = "0" ]; then

rm ECHOSIZE # rm ECHOSIZE if it is empty

else

chmod 400 ECHOSIZE

cat ECHOSIZE

fi

rm sizeit.in

if [ "'is -it DEFAULTS I grep LAURA'" ]; then

rm DEFAULTS

fi

# Remove DEFAULTS if

# it's just a sym-link

# to default DEFAULTS.

echo "ERROR: File \(parameter.strt' not found."

Screen 129. (_oncluded.
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Appendix N

Structure of XCUSTOM

The command

nullifies l he

XCUSTOM Ifn)

CUSTOMIZE ifn)

command. In olber words, il moves lhe file lfn from the CUSTOM direclory (apl)el,dix 1[) io the

LOCAL direclory. This colnma,d performs tile following lasks. First, tim wrile-proleclion for

$HOME/LAURA,4.1, the subdirectory CUSTOM, and the tilt, ifn Inll,'-;| ])c relllOVed. The[i the file

ilselfis moved Io the LOCAL directory. The finM step is to reeslablish wrile proteclion for the

SHOME/LAURA.4.1. flies (screen 130):

FILE=S1

if [ -f $HOME/$VERSION/CUSTOM/SFILE 3; then

chmod 700 SHOME/$VERSION

chmod 700 SHOME/$VERSION/CUSTOM

chmod 600 $HOME/$YERSION/CUSTOM/$FILE

# make dir read/write/execute

# make dir read/.rite/execute

# make file read/write

else

fi

my SHOME/$VERSION/CUSTOM/$FILE . # move file to LOCAL directory

echo "CUSTOM \'$FILE _ moved to LOCAL directory."

echo "Unless removed, future compilations will use this

echo "LOCAL version of \'$FILE'."

if [ ! "'Is -t $HOME/$VERSION/CUSTOM'" ]; then

rmdir SHOME/$VERSION/CUSTOM

else

chmod 500 $HOME/$VERSION/CUSTOM

fi

chmod 500 SHOME/SVERSION

# if dir is now empty...

# ...remove it

# else...

# ...make read/execute

#

# make dir read/execute

echo "File \'$FILE' does not exist in \$HOME/$VERSION/CUSTOM."

Screen 130.
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Appendix 0

LAURA Algorithm

Nomenclature

No_e that t)ohtface, lowercase symbols refer to vectors in parameler space. Boldface. up-

i)(,rcase syml)ols refer 1o matrices ill paranmter space. An arrow over a lowercase symbol refers

1o reelers in physical Sl)a<'e, with (x, y, z)-coordinales. With the excepti(m of the rea('lion ra|e

coefficients an(I leml)eralures, all variat)les are nondimensional.

0

A

B

(',,.v

('S

('S

D,

E

(S

(l'

( V,.s

g
tl

h

h

h,s

h i'.._

L:b.r

kL,.
/

I.,, l,, I:

MI.

ML,[NV

ML.WS

ML,SI_C

frozen sol[nd speed, nondimensionalized by V_,

.]acobian matrix ofg with respect to q

.lac<>bian matri× of h with respect to q

specific heat [br translational-rotational energy

s])ecilic heal for vibrational-electronic energy

mass fraclion of species ._

average molecular spee<l of molecule ._

effective difDlsion ('oefficient of species .s

total energy l)er unit mass of mixture, nondimensionalized by 12_

energy per unit mass el" species ,s

mixlure vii)rational-electronic energy per unit mass

vibrational-electronic energy per unil mass of species ._

flux vector in (!artesian space

inviscid component of flux vector relative to ceil face

totalenthalpy per unit mass of mixture

viscous componelH of flux vector relative to ceil face

eulhalpy

enlhalpy per unit mass of species ._

vibrational-electronic enthalpy per unit mass of species ,_

backward reaction rate coefficient for reaction r

forward reaction rate coefficient for reaction r

uni! vector tangent to computationa[ cell wall (/'. 15 = O)

components of Fin x-, y-, z-directions, respectively

l)oinl-implicit Jacobian of flux terms

point-iml)licit Jacobian of inviscid terms

point-implicit .lacobian of viscous terms

pohll-iml>li<'it .lacobian of source terms

molecular weig;ht of species s

unit veclor la,ngent to coml)utational ('ell wall (f. _5 = O)
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TD x, 'D_y_ D_ z

N

N_

7i

f_

njcobia,

nlrnsprl

P

Q rad

q

Rb,,.

RL,.
R

r

i"

rfi

rfv

,r

T

Tv
t

1:, V, W

tl, U, w

]2._<,

:r, if, 2

._

(t's,, r

,'J

/4s,r

.,

(, (u

A

X
A

P

P<i

(, ,I,
P

P_

COml)onents of 'if} in x-, y-, z-directions, respectively

iteration level index

number of reactions

number of species

normal distance

unit vector normal to computational cell wall (ft. f= ft. 7h = 0)

components of ff in x-, y-, z-directions, respectively

number density

numl)er of iterations between ,Jacobian updates

numt)er of iterations between transport property updates

pressure

divergence of ra.dia.tive tlux

vector of conserved variables

universal gas coustanl

backward reaction rate for reaction r

forward reaction rate for reaction r

matrix of left eigenveclors of A

right-hand-side residual vector

reaction rate

relaxation factor used with inviscid .Iacol)ia.n matrices

relaxation factor used with viscous Ja.cobian matrices

arc length

arc lengths in L, 15-, if-directions, respectively

translational-rotational temperature

vibrational-electron-electronic excitation temperature

time

velocity component in the if-, _-, and 7_-directions, respectively

velocity components in x-, Y-, z-directions, respectively

free-stream total velocity, m/s

Cartesian coordinates

mole fraction of species ,_

stoichiometric coef[icient for reactants in reaction r

In general, ;_ = Op/O(pE); for perfect, gas, this reduces to fl = 3' - 1

stoichiometric coefficient for products in reaction r

ratio of specific heats

Op/Op,.

parameters for defining minimum eigenvalue

frozen thermal conductivity for translational-rotational energy

frozen thermal conductivity for vibrational-electronic energy

0 for first-order; 1 for second-order approximation to inviscid flux

eigenvalue of A

restricted eigenvalue of A

diagonal matrix of eigenvalues of A

mixture viscosity

reduced mass of species _ and j

comi)utational coordinates

mixture density

density of species ,s
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o"

o"s

7"

< )s >

7"1/

0

\

,2

,2,_

cell face area

<'ross section of species ._ for translational-vibrational energy exchange
shear stress

vibrational relaxation time deft ned in equation (O,56)

relaxation time defined in equation (0.53)

Op/O(f. v )
<lira)my variable for 4, q- or (

vector of source lernls

mass pro<luction rate <)f spe<'ies s per unit volume

vibrational-eleclronic energy source term

cell volume

Subscripts:

(

I. .l, L

i. j. ,4.

1,

I

1"

I"

(")eC (, ro|l

indices of ('ell centers in (-, _1-, _-directions. respectively

in</ices of cell walls in _-, q-. (-directions. resl)e<'iively

dummy index for cell center

dummy ilJ<lex for cell wall

reaction r or species r

species ._

vibrational-electronic

Superscripts:

ii iteration level index

relating to lhe thin-layer approximation

The following algorithm (lescril)lion is substan(,ially the sa, me as that provide(I in reference 32.

l.!l)(lales are provided as approl>riate for I, AUIIA.

0.1. Finite-Volume Fundamentals

The integral form of tim conservation laws applied t.o a single cell in the compuiationai

domain is written

/i i 'q..+ li<.,,°=ilia,,. <o,>
[n equa(ion (0.1) the first (erm describes the time rate of change of conserved quantity q ilt

)tie control volume: the second term describes convective and dissipative flux f" through the cell

walls; and the third term accounts for sources or sinks of conserved quantities within the control

volume. The third term is i<tentically zero for perfect-gas flows, but i) is required for ttows in

cheniical or thernial none(luilil)rium.

Tlie tinite-volunle apl)roxilnatioll to e(lllatioli (0, l ) for a geilera], llllsirllCtilre(] grid is writlen

_t j+, + _ f'' _'"<"'" = [_'_b. (0.2)
#l:i
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w]lere

bq = q,_+l _ q,_ and bt = t "+l - t _

and _L is constant with respect to time. Further, Mz. is the number of faces of cell L having

volume 12. and subscript m refers to cell face m with surface area _r,,,. The quantity _7,,, is a

unit vector normal to cell face m in a direction facing away from the cell center. The dependent

variable q is defined at cell centers. The independent variables x, g, and z are defined al cell

corllers.

The tinite-volume approximation to e<luatk)n (O.1) for a rectangularly ordered, structured

grid is written

-77-j 1.aj, + [<,•<,.,+,-
+ ,,+],.,,

= [2_]:..LK

(0.3)

A shorthand notation for equation (0.3) that will be used throughout this paper follows:

77-j I= _=,..,,_.

Nole in equations {O.2) to (O.4) that the Upl>ercase integer variables I, .1, K, and L denote

computational coordinates at the cell centers, and the lowercase integer variables i, j, k,/. and m

denote the cell faces or the <:ell corners. For examl)le, cri.j.u refers t<> the <:ell wall corresponding

J K (fig. O. l ). In the shorthand notation of equation ( 0.4 ), the integer variableto indices I- _,.1,

/ is used a.s a gem_ric index for i,j, or k. This notalion is convenient because most of the

formulations for quantities ai the (_'ell faces are independent of the coordinate direction. The

geometric quantities tL or, and /i" are easily derived given the (larlesian coordinates of the cell

corners. 1)etails are found in appendix A of reference 2.

The [brmulations that follow are based on a rectangularly ordered, structured grid. A first-

order-accurate formulalion of the inviscid equations on a structured grid is identical 1o tit<, for-

mulat.ion on an unstructured grid. The nmditica.tions required lo achiew, second-order accuracy

on a.n unstructured grid are not addressed in this paper, ltowever, note that /.he formulations

for obtaining second-order accuracy only involve modifications to the right-hand-side residual

veclor. The point-implicit relaxation procedure that will be defined by the formulation of the

loft-hand-side matrix is independent of grid structure. (:onsequently, much of the development

that follows will carry over to unstructured grid formulations, as in the paper by Thareja et al.

(ref. 33).

0.2. Conservation Equations

The inviscid, viscous, and source term contributions to the complete conserva.tion laws are

considered separately for convenience. Lel

{ • if/ = gt + ht (0.5)

where gl defines the inviscid terms and hi defines the viscous terms. The finite-volume formll-

lation of the conservation laws is now expressed as

bq{_] + E [gt+'cr'+l-g:rt] + Y_ [ht+'crt+l -hlcr,] = [2'12]L (0.6)
--/7--J L ;=i,j,k ;=i,Ja
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j÷2

J+l

j+l

l

!

J-1

j-1

I-I

i-1 i

__., ..... ,,
,' j

I I+l I+2

i+l i+2 i+3

Figure 0.1. (k, ll indexing system with cell corners deiined hy lowercase letters and ('ell cenler._

defined t)y uppercase letters.

In lhe case of a reacting gas flow in which thermal nonequilibrium is modelod using a two-

temperature approximation, the vectors q, g, h, and _,' are detined a.s

q __.

iO S

pu

pv

pw

pE

_ P_v

(0.7)

g

S_ r

pU u + pn.,,

pU v + lm._

pU u, + pn:

pl; H

pl;cv

(O.s)
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Nspecies

Table O. 1.

! 2 3 4 5
}IN 1o] N2IO__INC

Species Indices

o ? S 9 10 11[
x+ 0 + N+ O+ NO + e-

h

-- tlTna. -- t_T_ 9 --

-- TI_ 2,

-- T,_u

0I' i)7v \' t 0y_

- i).% i).s_ .,= t

OTv x. i)v _

.s=1 Osn

(O.9)

_s

0

0
2, = _ (O.10)

0

(_)rad

_V

The first element of the vectors defined in equations (0.7) to (O.10) describes the species

conservation: the next three elements describe .r, y, and z momentum conservation; the fifth ele-

ment describes total energy conservation; and the sixth element describes vibralional-e|ectronic

energy conservation. The present model considers the N+ = 11 species shown ill table O.1.

(;onsequently, the vectors deIined in equations (0.7) to (O.10) are composed of a total of 16

elements, hnplMt in the use of a vibrational-electronic energy equation is the assumption that

the partition of energy in the vibrational, bound electronic, and free-eleclron modes among all

species can be described t>3, a single temperature Tv. This approximation is based on rapid equi-

libration of vibrational and electronic energy and electron translational modes (refs. 6 and 34).

The translational and rotational energy modes of heavy particles are assumed to be fillly excited

and described by lemperature T.

The thermochenfical nonequilibrium model is described in detail in reference ,1. Some specifics

on its formulation are given in a later section, but a brief overview is given below. The reactive

source terms for lhe species conservation equations are denoted by ,2,+. The radiative energy

transt>ort term Qrad can be treated as a. source term in the total energy equation. Although

its effects are not included in the baseline LAUI/A a.lgorithm, one approach for including it is

discussed in section 11.6. Finally, the vibrational-electronic energy source term _,t, accounts

['or the mechanisnls by which vibrational-electronic energy is lost or gained caused by collisions

among particles in the cell. These mechanisms include the energy exchange (relaxation) between
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vibrational and translational modes caused by collisions within the cell, tile vibrational energy

losl or gained because of molecular depletion (dissociation) or production (recombination) in the

cell, the eleclronic-translational energy exchange t>ecause of elastic collisions belween electrons

aud heavy particles, the euergy loss caused by electro_L impacl ionization, the raJe of energy

loss caused by radiation caused by electronic transitions (a subset of Q,._,¢t in the total energy

equation (section 0..5.3), and a term relate(l to the work done oil electrons I)y an electric field

induced I)y lhe electron pressure gradient minus the flow work caused 1)y electron pressure.

The electron pressure [low work is normally considere<l as part of the electronic enlhall)y in

lhe inviscid (convective) portion of the flux balance. Moving the electron pressure from lhe

convective term to the source term simplifies the expressions for eigenvalues and eigenvectors of

the .lacobian of l he inviscid flux vector.

0.3. Formulation of Inviscid Terms

The iuviscid flux vector at cell face I is defined

where

(O.11)

The first term in braces is a second-order-ac('urate base apl>roxinlation for" gl. The second

term in braces l>rovides lhe upwind-biased numerical dissil>ation. It is a firsl-order dissipation

wheu 0 = 0. It is a second-order dissipation when 0 = i. The term (\_+)t is a shorthand notation

for V\ • fit, and cart I)e thought of as the inverse of the projected distance between (!ell centers

l. and L - 1 in a direction normal 1o cell face 1. It is defined in equations (0.69) to (O.71) in

section 0.7. The varial)le X is a generic computational coordinate running in the direction of

im'reasing generic index L.

The veclor sl is defined

sl = (\n) l R_ -_ (qL -- qL-1) (O. 12)

Tire matrix R_ -j in equation (O.12) and the matrices Rt and A: in equation (O.11 ) are relale<l

to the Jacobian of the il_viscid flux vector g with respect to q in the following manner:

A - 0g _ RAR_ x (O.13)
0q

The matrix R_ is tile matrix of eigenvectors of Al, and At is a diagonal matrix conlaining lhe

eigenvalues of A_. These matrices are defined in section 0.3.1. Their elements, which are required

at a cell face, are e\,aluated a.s appropriate averages of quantities at adjacent cell centers. This

averaging proce<lure is discussed in section 0.6. The matrix JAil is a diagonal matrix containing

the a,t)sohtte values of the eigenvalues of A/with constraints on tire minimunr allowe(1 llla,gnil u(le

of a.n eigenva.lue given t>y

IAll, IA I_ (oH)L: IAzI<  +

The eigenvalue limiter (: was first used by Harten (ref. 35) to prewqlt the formation of

expansion shocks across a sonic line where one eigenvalue equals zero. Its application is critical
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in blunt bodyflowsto preventinstabilities(oftenill theformof reversedflowsat thestagnation
point); theseinstabilitiesoccurill thestagnationregionwheretheeigenvaluel"t is near zero. The

magnitude of el, which is nondimensionalized by the free-stream velocity, is problem dependenl.

Yee et al. (ref. 36) has suggested a functional dependence of (I on the local values of sound speed

and velocity. This relation has been adapted for use in the presenl work as follows:

_t = (_ (at + ]utl + I_l + IlI"_1) (o.1.5)

where {o is a user-defined constant that generally varies from 0.0l to 0.3. The larger values of

(,, are required for flows with extensive stagnation regions, as in the case of blunt-body ttows.

This limiter is called exclusively when the parameter iabseicj = O.

Ext)erience shows that calculated convective heating levels are increased in the presence of a

highly stretched grid across the boundary layer (cell growth factor greater than 1.2) and values

of _,, > 0.01. However, small values of _o (_o < 0.01) applied in all coordinate directions can

cause instal)tittles. Several approaches to redu('e lhe linfiter across tl,e t)oundary layer have

been tried and documenled in earlier versions of LAURA. The present at)preach, suggested by

NeUerfield (1)rivate communication, M. P. Netterfieid, Flui(t Gravity Engineering, Ltd.. F.K..

Janua/'y 1993), changes the limiter ibr tlw tollowing eigenva]ue l:t:

This limiler is called when the t)arameter iabsci 9 = 1 and viscous terms are active across the cell

face. Equation (O.15)is still used for the remaining eigenvalues. The l)arameter iobs_:i9 may

need to be kept equal to 0 for some problems early in the relaxation process to survive (tifiicull

transients as the solution evolves.

The antidissipative flux correction for second-order accuracy is formulated for each element

of s, in a symmetric mode (parameter iupu,ind = 0, defaull with

.,}inl = minmocl [2,,t+l , 2.s_, 2st-1 ,

and in an upwind biased mode (iupwiud = 1) with

lim
•_l = D+ minmod[Sl_l, ._/] + 1)[-minmod

where

*"t-1 + .'_t+_ )] (0.17)
2 J

[st+_ , ._l] ( O. 1s)

D + = _ 1 + and D_- = _ 1 - (O.19)

The mkrlmod function returns the argument of smallest absolute magnitude when all the argu-

ments are of the same sign, or it returns 0 if the arguments are of the opposite sign. The scheme

reduces to first-order at cell faces where there is a sign change in the argunlents of tim minmod

function. The symmetric limiter, derived by h%e (refs. 37 and 3_) does not yield a strictly up-

wind biasing on the formulation of the flux vector. It involves symmetric functions of gradients

in the neighborhood of the cell face, and algorithms based on these limiters are referred to as

symmetric total variation diminishing (STVD) schemes. The STVD schemes involve little extra

1)rogramming work over siml)le first-order algorithms because most of the quantities required

in their implementation are already available. The upwind limiter, tbllowing the form of Wang

and Richards (ref. 39), retains the proper zone of influence for the inviscid flux calculation.

Marginally better convergence rates have been observed for the upwind limiter comt)are(l with

the symmetric limiter; however, the symmetric limiter appears less diffusive in nonequilibrium

flows. LAURA defaults to the symmetric limiter.

v"
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E<lualion(O.11)canbeapproximatelylinearize<lwith respec[to bqI.in thefollowingmanner.
Define

= I,qL - qL-J -- (O,20)gl,L 2 [gL,l + gL- l.l "2 ( \ II )1

where superscril>i t+ refers to the currenl value al cell cenler L. sul}erscripl J_-I- 1 refers to lhe

new value 1o I>e coml>uled al cell cenler L, and SUl>erscripl * refers lo the lalesl available vahle

at neighbor cell L - 1. The notalion g_,L refers to the invis<'i<l flux through cell face 1 evahlaled

using the latesl available dala fPolll cell center L - 1 and the predicle<t <]ala al cell cenler L.

Elements of the ve<'lor sl im* are also COml>uted using currenl data al cell centers L and L - 1.

Sul)stilute g'* :, =L/ +AI tbq! for g)'+' in equation (0.20) to<)l)t, ain

1

\v]lel'e

IAlt = Rt lAir R_-

In a similar manner, one can show lha.l

by

1

gT+t,L = gt+, + _(AL/+, + IAI+_I)cSqL

The poini-iml)licil <lis<'retization of the invisci<l part of equation (0.6) can now be expresse<l

- -- y;
l=i,./,k l=i,,i.k

+ _ [(A/./+l +lAl+al)erl+l --(AL,I- IAli)crl]_qs_ (O.21)
l=i,j,k

An application of Stokes theorem to the summation of AL,t and AL,t+I in equation (O.21) will

show lilal

E [AL.l+lerl+l--AL/crl]bqL = E bfL.lNV'[ffl+lerl+i--/7/erT] = 0
I=i,./,k l=i,j,k

Therefore, equation (O.21) can be simplified as

where

E [gl+l,L er/+l - g_,l. cr,] = E [g/+ler/+l - gler'] + ML,INVbqL (0.22)
/=_,j,k l=i,j,k

A. i

1

ML.INV = _ E [IAl+,lo'l+_ + IAtlot] (0.23)
I=iTk

The <lelinition of A. R, R -l, and A follow. The Jacobian of g witll resI>ecl to q is

(0.24)
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The similarity transformationmatricesR and R -1 are defined as

R

{bs/' C s ( ".s
0 0

a2 2a 2 2a 2

II, "_ (111.), II -- Illl r

u/a 2 la. rnx 2a 2 2a _

"1__- (11l!/ I' -- Oily

v/a 2 I:j m_ 2a 2 20, 2

tl_ _- a'll z ell, -- (l?l=:

,u,/ a 2 l: m z 2a 2 2a 2

i:_(u 2+r 2+w 2)-§,. l" l'I' It+al' lt-al'
,,'ja_ 2a 2 2, _ ;3a _

_V (/' l

2a2 2a 2 a 2
0 0 0

0

0

0

0

(0.25)

R -1 =

The diagonal niatrix of eigenvalues of A is defined t)y

-- 0(',_

0

0

0

a 2 -- O(v

(O.26)

A

l: 0 0 0 0 0

0 [; 0 0 0 0

0 0 U 0 0 0

0 0 0 U + a 0 0

0 0 0 0 U -. 0

0 0 0 0 0 l:

(0.27)

The variable c_ is the mass fraction of species s where

P8

Cs = --
P

The variables ;3, O, and are relate(I to the partiM derivatives of 1)ressure with respect to q.

Op R _ r,,. ( o.'2_ )
i'3 = _)([F) 7)C,,tr r=l,r_, e

Op [7 p<
o - ,J (O.2.0)

O(pev) p(',,,v 3L
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_ ap _7;,

The variable a is tile frozen speed of sound.

u + ; '_ + w 2) - ,"_<_- O_u,._ (0.30)

= [u +o,,. = L'
s=l P

This definition of a 2 comes from the evah|ation of the eigenva.lues of A. The variable R ix the

universal gas constant, and M_ is the molecular weight of species ._.

The va.riat)les n_., n,;, and n: are the :r-, 9-, and z-components of a unil vector normal to a

COml>uta_ional cob face, and l: is the normal componenl of velocity through the cell face, delined

by

I; = V-fi = 'u',_.+cn_;+,,_-. (0.32)

The two unit vectors /'and _i] are defined such that if, _. and _5 are nlulua.lly (_rt.hogonal (i.e.,

Ilili = 7tillli = lillIi = 0). The wqocit.y components in the /- and _fi-directions. tangent to t.he

(;ell face, are then <lefined t>y

V = V.l'= u/_.+ vl._+u,/: (0.33)

In the matrices defined above, the first row and column correspond to the N+ species con-

tinuity equations. The subscript ._ refers to row s and species s, and the subscril)1 r refers to

cohlmn r and species r where both s and r vary froltt 1 to 11 in the present model. Note in

e<luation (0.30) thai "/;; = 7'v when ._ is all elect.ron; otherwise, :I;+= T. I+nrt.her details of the

<terivations may be fo.nd in reference 4.

0.4. Formulation of Viscous Terms

The viscous stresses on a cell face wit.h unit normal ff in the orthogonal directions if,/. and

75 are given by

OU OV 0W "] 01; ( 0.35 )

OV Ol ,_

_-,,l = .t (_+ _) (0.36)

(0. ....0u)
r ...... = _';\_ + 0.,,,,/

where l:, V. and W are velocity components, and s,, st, and s., are arc lengt, hs in the if-,/-, a,n<l

ifi-directions, respectively. The variables # and A are the viscosity coefficients. All transport

properties at cell face 1 are obtaine<t as linear averages of properties a,l adjacent cell centers.

The component of shear stress acting in the s-direction (._ being a. dummy variable for .r, y.

or z) on a cell face with unit normal 5 can be expressed

(0.3s)
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Substitutingequations(0.35) to (0.37) into equation (O.3S), collecting tern,s, and siinpli-

fying (ref. 2) yields tile following relation for shenr stress in the ._-direction:

( 0;. O; O._ 017 O_ ou Oq Ol' o('x0(,

where .4 is a dummy variable tbr u, v, or u, corresponding to ._ = :r, y. or -, and terms like _u

or OI are shorthand notations for V_-ff or VTl" h respectively. A thin-layer approximation in

the \-coordinate direclion (\ = _, I/, or 4) simplifies equation (0.39) by neglecting derivaliw, s

in the other two coordinate directions. Consequently,

÷,,._ = t*t \0\ + 7;,._-_l,_a\ / \7_ (0.40)

where u refers to the direction normal to a constant \-surface, and the prime superscript refers

to the thin-layer al)proximation. The Stokes relation, A = -_p, and geonletric identities have

also been used in lhe simplification of equation (0.39). The viscous terms on the other two

coordinate surfaces are also neglected in the thin-layer approximation because their contribution

to the overall momenlum and energy balance is small. These approximations are valid so long

as the t)oundary laver is relatively thin and the \-direction is a pl)roximately normal to the high

gradient region.

Mass diffusion and energy conduction contributions to the viscous terms are functions of

gradients normal to the cell face. For example, the gradien! of T in the normal (Tt) direction is

expressed
OT OT OT ill'

0.,,7 = _IT)._ - _,,+ _T,l,_,,+_,, Io.4J_

The thin-layer approximation to equation (O.41) is expressed

OT 07'
- -\u (O.,12)

0._,_ 0 \

Derivatives in the \-direction are evaluated to second-order accuracy in computational space

as follows:

= "_+' - ,,7_-, = ",_+ _"L -"7 , = + _,,L

O\/I+I,L ttL+ l -- till +l = ttL+ 1 -- U_ -- OU L = \i)\Jl+l

For instance, tile partial of u with respect to I/in the _-direction is evalualed as follows (assuming

a rectangular ordering of mesh points) :

IlI,J+I,K --ttl,.l-lJ£ + Ill+l,.1+l,N --°I+1 ,1-I,K

\O?]/i+l J,K 4

The derivatives in the directions along the face (i.e., those derivatives neglected in the thin-

layer al)proximation) have no functional dependence on the cell center. Therefore. the point-

implicit treatment of the full Navier-Stokes equations is identical to the thin-layer Navier-Stokes

equations.
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Now,definehl as a function of difl'ei'encesevaluatedusingcurrently availabledata. for
examph,(;_t,) h*1" and define I,L as a futJction of differences using predicied values at cell center

" Tliese definitions the linearizalioll of the viscousL, for example _ l,t/ |)erllli| |0l'lllS |o be

expressed as follows:

h_ l,t, = hi - Bt,Lbql, (().=13)

hT+l, L = h_+l + B:+l,LbqL

whel'o

Bl,l,

BI+1,1,

0hT,L 0fiT,L

OqL OqL

i)h_+l ,L 0 fi_'+ 1,L

OqL Oql,

O.,t4)

The poinl-implicii implemenlation of ibe viscous terms follows the example set in the previ-
ous section on the inviscid ternis

Z [h_+i,LcrZ+I- h_,/at] = Z [hl+icrl+' - hlcrt] + M/,.visbq/, (O.,15)
l=i,j,k l=i ),k

whei'o

ML.VlS = Z [BI+I,Lcrl+I + Bl,Lal] (0.46)
t=_,SA.

in the ca.se of the thin-layer Navier-Stokes e<lualkms, the summation would only include one of

the i-, j-. or /,:-directions. depending on the orieni.ation of ihe computational <'oordinaies with

the body.

0.5. Formulation of Source Terms

0.5.1. Species Conservation

The mass rate of production of species ._ per uni| volunie is expressed as

Nr

= o..)[Rs+ - (o.47)

where X,. is the numl>er of reactions; (_._,Tand/7_.,, are the stoichiomelric coeflicienls for reaclants

and pro([u('ts in lhe r-reaction, respectively: and Rf.: and Ra,,. are the forward and backward

reaction rates for the r-reaction, respectively. These rates are defined by

,s=l s_l

wtiere /c:.,. and /%., are tile forward and backward reaction rate coefficients, respectively, defined

in referellce .i.a.li([ N s is i.he lltllllber of cheniica] species. Five differenl chenlica] kinetic niodels

for air ciieniistry are supported within LAURA (ill flies kinetic.F and source. F) througii

the definition of lcmod_l in gas_model_vars.strt. The defaull is kmod_l = 3 in which lhe

equilibrhlni constants are taken from reference 34 and whirl| corresl)ond to a nunlber density
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of 1016 cln -3. The forward reaction rates are taken from reference 40. Numerical difficulties

associated with chemical source terms are alleviated by limiting the minimunl and maximum

values of temperature used to compute the reaction rate coefficients. The parameters In, in and

tmax are set to 1000 and 50000, respectively, in air.F, which is a block da'ca routine. As a

converged solution is approached, the lower limit can usually be further diminished; however,

experience with problems tested so far shows no significant efft, ct on aerothermal loads. The

upper limit is established to reflect the range of validity of the curve fits for thermodynamic

properties.

The reaction rate coefficients are explicit functions of T and Tv. (_onsequently, the Jacobian

of,L,._ with respect to q can be explicitly evaluated as follows:

Oq i Oq. i + i)T ITv,q Oqj -_ 07V T,q Oq.i (O..1,_)

where all derivatives with respect to qj are evaluated at q/,, (k _ j). The differenlial relations

between 'T and q and belween Tv and q can be expressed a,s

p('_,.¢,, dT

p(',,.v d7'v

u2+ t,2+ u,2 \',

= 2 dp- Z (_'_ - ev,_) dp_

-u,d(pu) - vd(pv) - wd(pw) + d(pl¢) - d(p_u) (0.49)

_- d(prv) - Z_v,._ dp._ (0.50)

0.5.2. Total Energy Conservation

The radiative energy transport term Qrad is treated in a purely explicit manner. Radiative

energy transport has been calculated using the method of Hartung (ref. 29), which is based

initially on converged, nonradiative, nonequilibrium flow field solutions. These radiative source

terms are then held constant, while the governing equations are relaxed again. In cases of

slrong radiation, this relaxatiou process may require a slower i_Jtroduction of the source through

appropriate averaging of the old and new source terms (ref. 31). There is no point-implicit

contribution fi'otn this term in the algorithm.

0.5.3. Vibrational-Electronic Energy Conservation

The vibrational-electronic energy source term _bt' can be subdivided into three functionally

distinct sets of terms.

.s 1, r =elec.imp.

+ 3p_R(T- Tv)_--_ u_
s:mol. < Ts > see '

(o.51)

The first set, the reactive source terms in the first pair of t)races of equation (0.51), is

coml)osed of terms that are proportional to either ,b_ or to ( RL,. - Rb,,.). In the first case, the

proportionality factor, /)_, rel)resents the average vibrational energy per unit mass created or
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destroyedthroughrecombinationor dissociationof mo|ecules.Ill tile simph,stapproximation,il
is sol.equallo tile average vibrational-elecl ronic energy, _v, although more ('omi)rehensive treat-

ments that model preferential dissociation of vibrationa]ly exciled molecules can be employed.

In the second case. the proper!tonality factor, 1,., represenl s the average transla! tonal energy per

mole (reel.) lost by a free electron in freeing another electron from a neutral heavv particle in

reaction 'r through the process of electron impacl (elec.imp.) ionization. I1 is approxhnaled by

the ionization energy fl'om an excited state of the targe! particle. Further details on these points

are available in references 34 and 4. The point-implicit formulation of these terms treats the

propor!ionalily factor explicitly and the reac!ion rates implicitly according Io equations (O.4S)

to (0.50).

The second set, the relaxation terms ill the second pair of braces in equation [O.51 ). mod-

els tile energy exchange between heavy part, icle translational-rotational mo<h's and vibrational-

eh,ctronic an<l electron translational modes. The first term in these bra<'es, which mo<tels the

exchange between vii>rational and heavy particle translational modes, can I)e approximated t>y

(_ V.s - _ v,s ']' - "l'v
p._ ,_ p(',,_ (0.32)

S=ln,,I. <( Ts _ 7"I"

whoFe
P_

M_ < 7-._>
1 s=mol.

-- = p., (0.53)

Tt' _ _'_1,
s=nlol. '

The apl)roxinlations in equations (0.52)to (O.53) are made lo reduce the number of thernlody-

namic and relaxation !hue variabh's 1o be carried through the <:al<'ulation. Also. (lirect evaluation

of the equilibrium value, ¢_,,._, is more cumbersome than working directly with lhe translational

teml)eralure ]'. This approximation degenerates as the <tifl'erences between T and TI' get very

larK(', bu! il is believe(t to be <:onsislent wilhin the tolal context of approxhnations made in !he

two-lemperalur(, model. The vii)rational relaxation time < r_ > is related lo a number density

weighte<l correlation <)f Millikan and While (ref. :11 )

hi exp [As,.i C F-I/3 - 0.015y._,!i t) -IS.,12]

fVs

j=l ,j :/:*

Z

and a high-teml)erature limiting correction of Park (ref. 3,1)

P , )- Ir,s = (cUtash

so t,hat

wher( _

< >= Tyw+

=

A,,s = 129 02 )

16S (NO)

and

( 0.54 )

(0.55)

(O.56)
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Thepressurep in equation (O.5.1) is in units of atn,ospheres. The two-teml)erature model shouht

also have a. corresponding tm-m relating the energy exchange of translational and electronic

energy. This transfer has not yet. been formally included in the present work; however, it should

be noted that the driving potential in the presem al)proximation is already based on both the

vibrational and electronic energies. The second term in these braces in equation (O.51) models

the direct exchange of translational energy between electrons and heavy particles. This exchange

rate is generally much slower than the previous term. Both terms in this set are now proportional

to the difference between the translational and vibrational temperatures, T- Tv. Here again,

the point-implicit formulation of these terms treats the proportionality factor explicitly an<t the

driving potential 7' - T_, implMtly according to equations (O.49) and (O.50).

The third set, the field-dependent terms in the third pair of braces of equation (O.51), is the

functions of properties at the cell cenler and at the neighboring cells. (The first, two sets are

functions only of prol>erties at the cell center.) These terms include radiative energy transl)ort,

which is work done by the electric field on electrons and electron pressure flow work, combined

in(o a single term. Ra<liative energy transport is treated explMtly, if at all, as described betbre.

The other contribution to lhe field-dependent terms is also lreated explicitly. In fact. in the cases

tesled to date (where the ma.ximunl electron number <tensilies were approximately .1 percent of

the total number density), omission of this (erm has litth, eff'e<'t on (he flow fMd.

0.5.4. Point-hnplicit Relaxation of Source Term

The source term in e(luatioll (0.6) can be approximately linearize(l in the following manner:

= w L + ML.St<,OqL (0.57)

where

i)d,,t.

ML,SR(! =

and lhe elements of ML,SH(' are calculated as described above.

(O.SS)

0.6. Averaging Procedure

The variables at cell faces are evaluated as follows:

('ldL + dl.-t
tit = (O.59)

('1 + 1

where d is a dunlnly variable x'et)resenting u., v, u,, c,, H, (u, h.+, and _-v..+. (Only the aver-

aged values of velocities and total enthalpy are required for perfect gas flows.) The weighting

parameter is detined by'
1

('1 = (P--_-I )PL7

The variables /4, O, and 7' are computed using a, pressure-weighted average as defined below

with dummy variable d.

dLdL-1 (PL + PL-1)
dt =

pLdl,-1 + pl.-ldL

The variable t.,,t re<luired in the evaluation of ")._,l is defined as

v
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All quantitiesrequiredfor the evaluation of sound speed at the ('ell wall are now available.

A lower limit on sound speed evaluated using; cell wall averages, equal to the free-stream sound

speed, has been applied to deal with difficull lra nsients across slrong shocks ill equilibrium and

nonequilibrium flows.

This simple averaging l)rocedure does not exactly satisfy Roe's properly (7 for equilibrium

and nonequilibrium flows. The pressure weighting averaging on /4 can be shown to nearly satisfy

t{oe's properly IT for strong shocks and equilibrium flow. \;inokur (ref..12), lAu and \:inokur

(i'(,t". 43), and (;rossman and ('innella (ref.-14) have proposed averaging schemes tha! enforce

[{oe's prol)erty U. These forn|ulations have no! been invesligaled here.

0.7. Geometrical Relations

The recommetlded, secon(l-order-accurale fornmlations for face-cenlered metrics, which are

required in the evaluation of !,lie viscous dissipation terms across cell faces, are presented below.

¢_, .I,l( = QI,J,K (_i-l,J,K + 5i,J,I() + QI-1 ,1,I( (_i..l,l\" + _i+l,.Ll( ) (O.[J0)

_IQI,J, KQI-1 ,J.K

_{l,.i,h- = _i.J.l, (,q,.J-l.l, + gi+l.J-I K) + Qt..*-l.*, (#i,.I.K + cT/+I..LK) (O.61

_Q.j.,. = _i..*,i, (cYi../.1,--t + 5i+1,J.I¢-1) + Qi,.J.t,--I (<_i.J,K + &+l.J.i<) (0.62

- _l..],]x-(#I-I,j,K "Jr _l-l,j+l,Jx" ) + QI-I.,].K (('_I,),K 71- _1,.)+1,1,')
Vqi..m, = (0.63

4Q I,J, K Q I- I ,.l,],

- Q 1 J 1,; ( gl,,)- 1,K + _;I,.),K ) + Q l,d- 1,K ( El .j.K + _1,.i+ 1,1,, ) ( 0.6,1
_'ql,,i,h- = ' ' 4QI,J,KQI,,I-t K

_-l]l,a. k = Ql,.l,h (_rl,.i,l£-I + _l,j+l,l,'-I ) + QI,,].I(-1 (_l,.i,K + _l,.i+l.lx) (O.(jr)

4 _ La,_,-f_ l,a.,,._ l

Cqi,J, Ix" = Q l,.].l((#l - l,.],h + _l-l,.].k+l ) -_- QI-I.J,I( (_l,d, lc 2r- _1,,].,_'+1 ) (O.()(J

4Q I,J,KQ I-I,J,K

_'_,1 it," = _I.,I,1_ (_t..1-t,_ + cY_,a-l,k+t) + QI,a-t,1_ (rYt,,t.k + cYg,j._.+l) (0.67
' aJ_QI,d.KQI,J-1 I,_

_(lM.k = QI.J,I( (_I,d,k-1 + _l,J,k) + _l,J, Ix'-m (_I,d.k + _l,J,k+l ) (().GN

4Q I,J,K_ l,a,h'- I

]lit the case of the thin-layer Navier-Stokes equations, only the vectors defined bv e(lUa-

tious (O.B0), (O.6,1), and (O Jig) are required, depending on the orientation of the coordinate

system. The do! product of these vectors with the corresponding unit normal to the cell face

(recall, \n = _\ • if) can be approximated as follows:

_I,J,K ((Ti-l.d,h" + (Yi,d, lC ) + QI-I,J,K ((Ti.d,K" + O'i+l,.Lh" )
O_ i,a,_ _ (0.69)

4QI,J, KQI-I,J,K

lltIl,j,lx" _ Q1,J.I,( (O'I,j-I,K + O'I,j,K ) + QI,d-I,K (C/fl,j,K -_- #ll,j+I.K) (0.70)

4 Q I,J,K Q t,J- t ,K

QI..LI( (°'l.d./,'-I + C*l,d,k) + QI,.I,K-1 (°'l,d,h + O'l,a,k+l )
(1_i,3,1,, ,_ (0.71)

4 Q I ,J, K Q I,J,K -1

Another useful formulation in the programming of the thin-layer Navier-Stokes equations

involves a geometric relation between the unit normal to a cell face and the gradient of the

199



computationalcoordinatethat definestile cell face

0() = (0.72)
'_ i,J,l(

o,l_ = ('m'_)_,j,1, (O.Ta)
0,_ / L2.K

i)() = (_,,llSJl,lk
(0.743

0.'_ I.d,k ' '

where ._ is a dummy variable for x. y, or z.

0.8. Relaxation Algorithm

The governing relaxation equalion is obtained by combining the results of equations (O.6),

(0.23). (O.46), and (0.58) and taking the limit as time step bl goes to illfinity. Thus,

MLbq:. = r:, (0.75)

where ML is tire point-implicit Jacobian given I)y

ML = _fiML,INV + *J,,ML,vIS - QLML.sH(: (0.76)

and r is the right-hand-side solution (residual) vector given by

rL = -- Z [(g/+l + hl+r)cr/+l - (g* + ht)crz] + _bL_L (0.77)
l=i,j.k

Relaxation factors are used to control stability and COllvergence. NuInerical tests in reference lS

indicate that underrelaxation is appropriate for the inviscid contribution to the residual, with

rf i > 1..5. Overrelaxation is at)l)ropriate for' the viscous contribution to the residual with 71f,. >

0.5 provided relaxation sweeps are across the boundary layer; otherwise, if,, >_ 1. The viscous

relaxation factor is automatically set to 1 for directions tangent to the sweep direction. The

lower limits yield the fastest convergence rates, but can lead to instabilities if the solution is far

from convergence or if the point-implicit Jacobian is "frozen." as discussed below, for too long.

It is sometimes necessary to choose *fi -> 3 and rf_, > 2 t.o get past some difficult transients in

the early stages of the relaxation process which defy linear a,_alysis. When these lransients pass,

it is then advisable to switch to the lower limits of these parameters to get the best convergence

rate. Convergence can eventually stall at some point because of limit cycles associated with

the minmod function in equation (O.17). This stalling can be alleviated by again increasing the

relaxation factors.

The solution vector rL arm the Jacobian ML are evaluated using the latest available data.

Consequently. the a.lgorithm requires only a single level of storage. One can solve for 5qL using

Gaussian elimination. Numerical experiments have shown that pivoting is not required, and so

the algorithm is easily vectorized. An LU factorization of the ,lacobian can be saved (frozen)

over large blocks of iterations ( 10 to 50, as defined by njcobian) to further reduce computalional

costs as the solution converges. The Jacobian will generally need to be updated every iteration

early in the calculation, when rapid adjustment of the solution o(:curs. There is a large (:()st

in computational memory required for the Jacobian freezing; however, the use of solid-state

memory (see section 11.4) essentially eliminates this problem on (:RAY class computers.
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Onetinal scalingcanbeappliedto/_qLbeforecomputhlg:,+tqL to dampen polentially catas-

trophic perturl)a.lions ill the evolving solution. Define t;l= l>y

[ "_+P/= ] (O.7S),,:1, = min 1, b_qLi-----_-

where ._af_ = 0.5 is presently the hard-coded value, and the standard definition of an 1,1 norm

is employed. Tile value of UL is usually e<lual to t; however, early in the relaxation process

and occasionally in regions of very severe expansions, this parameter will engage to limit the

<'ompute<l solution as follows:
q, + 1

I. = qL + _LbqL (0.7.0)

Nov," values for 7" and Tv are obtained through a Newton-l{al)hson iteration based on e<lua-

lions (0.4.9) an<l (O.50). Thernm<lynamic l>rol)erties and reaction rale coetfi<'ients are advanced

every ileration base<l on these update<l values ofT' an<l TI'. Transport properlies are updated

every ,_[r1_._],l'l iterations.

The strategy used to <trive the right-hand side of equation (O.77} to zero should take advan-

take of 1.11o host conlputer architecture and the physics of Ill(' problenl. (;enerally, the sohltion

is relaxe<l one plane at a time, and vector lengths are equal to the nlllllt)er of cells in a plane.

Numerical tests indicate that relaxation sweeps which run from a wall across the boundary layer

to the ot>posile boundary and then back again are tile nlost efficient for lhe 1)lunt-body prol)leln.

EfFects of a perturbation at a wall are fell at the opposite wall after one sweep. Etfects of a

perturbation at erie cell in a plane parallel to tile wall require :V ileralions 1o be fed I)v a cell

whose index difl'ers from the sour<'e cell by N.

The ordering of the sweeps can be used to speed convergence, but in numerical tests per-

formed 1o <late. final, converged steady-state solution is not affected. Thus. one should be a.I)le
--...=,_:

to solve a large number of cells using a. massively parallel t>rocessing COml>uter in which each cell

(or small grout> of cells) is relaxed senfi-independenlly of its neighbor ceils (('ell groups) usiug

its own processor. Tile expression "semi-independently" means that a cell (cell group) will need

up<late<l information fronl its neighbor cells (cell groups), but neither the order that it receives

this iufornlatiou nor the lag time it takes for this inibrmation to arrive is critically important.

:ks long as each processor has immediale a<:cess to some level of information from its height)ors

(which could be stored locally), the execution stream could pro<'eed uuinterrupted in a. parallel.

asynchronous mode. A crude simulation of asynchronous iteration, discussed in reference 45,

demonstrated that computational cells could be advanced in a random order withoul sacrilice

of stal>ility or <'onvergence.

Asynchronous iteration has been tested on a four-processor CRAY 2 and a.n eight-l)ro<'essor

(:I{/\Y Y-MP in reference lg. In these tests, the flow domains were subdivided into parlitious

with a single lask assigned to each partition. Partition boundaries are dynamically adjusted

t.o concentrate relaxalion sweeps in the regions that are slowest, to converge. Because no svn-

chroniza.t.ion is required, all tasks (processors} can execute throughout the comt>ut.ation without

interruption. A comparison of convergence histories for the solution of hypersonic flow in ther-

mochemical nonequilibrium over an axisymmetric body is shown for a single task and a six-task,

adaptive partition test in tigure 0.2. The symbols show the error norm for each individual task

of the six-task run. The solid line shows the total error norm for the six-task run, and the <lashed

line shows tile error nornl for the single task run. Adaptive partitioning has allowed the six-task

case to converge to a lower error norm than the single task ('as(, for the same alnount of" ('Pl t

lime. Furthermore, tile actual elapsed time for the six-task case would be a factor of 6 smaller

than for the single task case on a dedicated machine.
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Figure 0.2. Convergence histories for single-task and six-task, adaptive partitioned algorilhms

applied to problem of nonequilibrium, hypersonic flow over blunt, axisymmetric body.
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Appendix P

FORTRAN

Manual

Variables Discussed in This

The following FORTRAN variables are discussed in lhis documenl:

allack

.d'oc
b

bt tagrd

b(] ¢l .'_

f pso

(pt

fpf]

( 17"(]

fctljmp

f_lz

AI,'

iabs_ ig

i@

iaq, jaq, kaq

i,,qf, jad

iblk, jblk, kblk

it"

icharg(

#'1'1'

ifrozc 11

itlot,ertt

impl( mp

angle of a ltack. (leg

axial stretching factor for grid (kol, ic = 1)

axial shape parameter fi)r conic geometry

control parameler for grid a lign.ment

perfecl gas /;_, where :;_= "7- 1

coelficienl [br eigenvahw limiler (,%)

wall tenlpera,ture relaxation factor

control parameler for grid alignment (section l 1,l.l)

error criteria for dout)ling grid density in

1)ody-normal direction

factor for properly .jUml) that identifies shock localion

(seclion I 1.1.l)

fraction of grid within shock layer (section ll.l.1)

fraction of (:ells to t)e used in grid stretching region

(section ll.l.1)

time limit for present laura run, hr

tlag for eigenvalue linfiter scaling options

flag for aerobrake geometry options

number of cells in i-, j-, and k-directions, respectively, for

Block h

dimensions tbr cross terms of full Navier-Stokes equations;

re(luire(l for i9ovcrn = 2 only

number of cells in i-, j-, and/,:-directions, respectively, for a

given block

numt)er of ceils used in axial direction for cap of

blunte(I-cone or wedge.

toggle for electron continuity equation

flag for equilibrium air curve-ill options

toggle for chemical and therntal source term

flag for governing equation options

toggle lot teml)erature dependence o[ reaction rates
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i,_j.'¢

isrf

issd

itew

itherm

itypc

iun it

iupwind

iris, j't,is, kvi._

.i."f

jlyp(

jumpflag
kmod_ l

ko,ic

kstr

Istrt

lstop

LMAX

machi'n_

mapcpu

llla;l:lllOU_,_

mbk

movegrd

mtaska

nbk, nblk

nblocks

ndim

ndimb

ncq

n_@ob

ngas

.jcobian

nord

uordbe

llpl'Ot'llIJ:

working array size (equal to maxinlunl number of cell

walls in planes perpendicular to sweep direction)

defined as maximum of all blocks

maximum value ['or first index of ans' active wall

boundary

toggle for solid-state device (SSD) on CRAY architectures
maximum number of iterations for this run

flag for thermal state of nonequilil)rium air

boundary type of given side of given block

flag for geometry unit options

flag for total variation diminishing (TVD) limiler options

i-, j-, and k-direction toggles for thin-layer viscous terms

(0 = off, 1 = on)

maximum value tbr second index of any active wall

boundary

flag for wall catalysis options

flag fox" l)roperty used to determine shock location

flag for kinetic model options

flag for conic geometry options

number of cells to be used in grid stretching region

(section 11.1.1 )

starting index (in sweep direction) of given partition

(1 _< lstrt <_ lslop)

stopping index (in sweep direction)of givml partilion

( lstrt <_ lstop <_ LMAX)

number of cells in sweep direction for given block

flag for nlachine architecture options

task number to which partition is assigned

(1 _< mapepu <_ maxepu)

maximunl number of processors availal)le

(hard-coded to maxepu = 16 in file btask_co_u,n, inc)

maximum of ibl_;_, jblk_,, and kblk,,, respectively (n = 1. ublocks);

used only for nturb > 0

lnaximum number of grid adjustments for this run

sweep direction for given partition

number of iterations between grid adjustments

toggle for multilasking with adaptive partitioning

computational block containing given partition

number of computational blocks

flag for flow dimensionality options

flag for body dimensionality options

number of governing equations being solved

flag for initialization options

flag for gas model options

number of iterations between Jacobian updates

flag for governing equation spatial accuracy options

flag for boundary condition spatial accuracy options

number of processors available on given machine
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I I.q

I I.'_])

11,_;7'f

'11._2

_ttr_tsprt

nlurb

prrmdll

r_ ct ll

l'( f(ll'( (I

I'( fl( It

7flngth
ri

ril_fb

l'J_ 2

sir

t(mp

trmpb('

Irrupt
the

ti.f

twall

It, 'IL I1'

uinf. vin/, wi.f

vlflas, v29as

xr'ff, .qc9, :c(j

lllunl)er of processors a,vailable for this LAI,tRA run

inaxii|nlnl nutnber of reactions defined I)y any kinetic model in

LAITRA; currently, m'z = 26

total number of active species (;Y_) ( 1 _< t_._'< 11);

n._ = 1 for ,ga._ # 2

lotal lmml)er of sl)ecies groups that serve as ('ollisioll pa.rlners

in LAITRA; currently, nsp = 16

total numl)er of solid surfaces in all COml)ulational blocks

total lllllllJ)Ol' of spe('ies defined in LAURA:

currently, .,sz = II

number of iteratious between transport properly updates

flag for turbulence oplions

Pran<lll number

cell Reynohls nunll)er (seclion l l.l.l)

reference area for evaluation of a.erodynami(' coeflicients, in

units specified via iunit

reference length for ovahm.t.ion of aero(lynami(" coefficienls, in

units sl)e('ilie(l via iunit

invisci(I relaxation fa.clor (tfi)

viscous relaxation factor (7f_.)

conversion factor, from units specitied via iu,it to reelers

species densilies, nondimensionalized by p×

fi'ee-stream density, kg/m 3

l>ody nose radius of curvature (R:v), in Ullil.s specitied via iunit

I)ody nose radius of curvature in symmetry plane (R:,.:), in units

specified via iunit

surface distance from nose to onset of transition (nturb 75 0), in

units specified via iunit

translational-rotational t.emperalure. I(

flag for wall temperalure boundary condition options

vibrational-electron-electronic excitation teml)eralure, K

t)ody half angle (konic = 1 ), deg

free-stream temperature, K

wall temperature. K

velocity components in x-, y-, and z-directions, respectively.

nondimensionalized I>5, l;,_,

u-, e-, and w-components of free-stream velocity

free-stream velocity, m/s

coefficients for Sulherfand's law

molecular weight of air, kg/kwmol

:r-, y-, and z-location of reference center for aerodynamic

moments, in units specitied via iunit

yaw angle, (leg

body length (konic= 1), in units specified via. iunil
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Appendix Q

FORTRAN Flags Changed Through data

Note thai the default values are indicaled for lhose parameters that are aulomali('aily deiined

t)y LAURA as foll<>ws:

Eigenvalue limiter scaling; options:

J" 0 (normal limiter)

" = ], l (scaled Iimiter {default})

Toggh' fi)r chemical and thermal source term (ttqas = 2):

iJ'mcc_ = _" 0 (chemically and lhermally frozen flow)
( 1 (nonequilibrimn flow {d@_u/t})

Options for spatial accuracy of governing equalions:

1 (first-order accuracy)_ord = 2 (second-order accuracy)
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Appendix R

FORTRAN Flags Changed Through stArt

The following FORTRAN |lags are changed through start:

Aerobrake (nellijob = 2) geometry options:

0 (Aeroassist Flighi. Experinlenl (AFE) aerobrake (ref. 26))
iafi = l (henlisph(u'e)

2 (custoniize(I aerobrake)

Equilil)riunl air (n.q0._ = 1) curve-fit options:

1 (Vinokur in Liu and Vinokur (ref. 19))icrc= 2 (Ta.nnehill in Srinivasan el al. (ref. 20))

()plions for governing equations:

11 (Euler)
igot,e.rn = (t.hin-laver Navier-Siokes (TL N-S))

2 (full Navier-Stokes (N-S))

Theruial sial(, of nonequilit)riuni air ( nyas = 2):

itherm =

Options for geouielry units:

Oplions for wall catalysis:

0

I

2

jlyp( = :l

4

5

6

1 (theiunal e(luilibriuni (l-T))2 (therinal nonequilibriuni (2-T))

0 (meters)

1 (celitimelers)

iunit = 2 (feel)

3 (inches)

4 (other units)

non-catalytic )

"super-catalytiC' )

f

(catalytic to ions)

/

(non-cal.alyti¢ to neutra.ls)

(Stewarl. el. a.l. (ref. 21)) "l

(Zohy et al. ( ref. 22))

(Scott el al. ( ref. 23))

( recoillbilia, lioli of al,OlllS)

finite ¢alalysis
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Conic ol)tions (for axisymmetric body):

1

koldc = 2
3

,1

( hy per boloid )

(paraboloid)

(ellipsoida.lly- blunted cone )

(spherically-blunted cone)

(:onic options ( for two-dimensional t)ody):

{1konie = 2

3

(lonic options ( for th ree-dinmnsional body ):

kotfic = {

1

,idim = 2

3

Flow dimensionality options:

(hyl)erbola)

(parabola)

( blunted wedge)

1 (hyperboloid)

2 (paraboloid)

3 (t)lunte(t cone)

( axisym met ric)

(two dimensional )

(three dimensional )

Body dimensionality options:

1(
1Mimb= 2 (

3 (

axisymmetric )

two dimensional)

three dimensional)

Initialization options:

u_wjob = {

0 (externally generated RESThRT.in file)

1 (flow about conic (cone/wedge, paral)oloid))

2 (flow about generic aerobrake)

(;as model options:

0
ngas = 1

2

( perfect gas (PG))

(equilibrium air (EQ))

(chemical nonequilibriu m ( NONEq ) )

Turl)ulence options (for ngas ¢ 2):

0
nturb = 1

2

(none (laminar flow ) )

((lebeci-Smith (in ref. 24)model)

(Baldwin-Lomax (in ref. 25)model)

Options for wall temperature (T¢_,) boundary condition:

0 (constant 7'_,)
te'mpbc = 1 (specified T,,, variation)

2 (radiative equilit)rium 7;,,)
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Appendix S

FORTRAN Flags Changed Through File Edits

Nole that the file of residence for each parameler is l)rovi(led. Defaul! values are in(li<'aled

for lhom, parameters lha! are automatically defined by I:AURA as follows:

Toggle for eleclron continuity equation (nga._ = 2), located in source_vars, strt:

0 (solution of electron ('ontinuity equation)i,'harg< = 1 ( _, = _ _ { d@,ull } )
S=iOl|:';

Toggle for lem[>erature del)en<lence of reaction tales (uga._ = 2), locate<l in source_vars, strt:

imptemp = _" 0 (explicit trealment of dependence)

[ 1 (iml)lMt trealment of del)endence {&fault})

Toggle for soil(l-stale device (SSI)) on (:RAY architectures, l<)cated in issd_assn, strt:

issd= _ 0 (noSSD {&J'ault})

( 1 (SSI))

()p_ions for TVI) limiler, located in ±upwind_assn. strt:

iupwind = {

0 (svmmelric limiter (eq. (3. (c)), ref. 2) {default})

1 (upwind-biased limiter (ref. 39))

2 (symmetric limiter (eq. (3.S(b)), ref. 2))

Ol)tions fi)r l)rol)erty used to <letermine shock location in algnshk. F (seclion 11.1.1 ). located in

algnshk_vars, strt:

0 (fixed outer boundary)

1 (pressure (p) {default})
jumpflag = 2 (density (p))

3 (temperature (T))

Kinetic model options (for riga.s" = 2), l<>cated in gas_model_vars .St:t't:

! (Dunn and Kang (ref. 46) model)

2 (Park (ref. 6)model)

3 (Park (ref. 40) forward rates; A',q from reference 34 {&fault})

4 (Kang and l)unn (ref. 46) forward rates; Gupta A;q (ref. 47))

5 (Park (ref. 40) forward rates; Gupta et al. h-_q (ref.-17))
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Togglefor multitaskingwith adaptivepartitioning,locatedin mtaska_assn,strt:

mtaska = _" 0 (no adaptive partitioning {dcfoult})

L 1 (adaptive partitioning)

Oplions for" spatial accuracy of surface and outflow boundary conditions, localed in nordbc_assn, strt:

1 (tirst-order accuracy {dcfault})7_ordbc= 2 (second-order accuracy)
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