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ABSTRACT

A Higher Harmonic Optimal Controller
to

Optimise Rotorcraft Aeromechanical Behaviour

by

Jane Anne Leyland, PhD/AMES
NASA-Ames Research Centre

Moffett Field, California

Three methods to optimise rotorcraft aeromechanical behaviour for those cases where the rotorcraft
plant can be adequately represented by a linear model with a system matrix, were identified and
amplemented in a stand-atone code. For convenience, the helicopter vibration reduction problem was
selected as the subject problem for this investigation. These methods determine the optimal control
vector which minimises the vibration metric subject to constraints at discrete time points. These
methods differ from the commonly used non-optimal constraint penalty methods such as those
employed by conventional controllers (e.g., the Deterministic, Cautious, and Dual Controllers) in that
the constraints are handled as actual constraints to an optimisation problem rather than as just
additional terms in the performance index. The first method is to use a Non-linear Programming
algorithm to solve the problem directly. The second method is to solve the full set of non-linear
equations which define the necessary conditions for optimality. The third method is to solve each of
the possible reduced sets of equations defining the necessary conditions for optimality when the
constraints are pre-selected to be either active or inactive, and then to simply select the best
solution. The effects of manoeuvres and aeroelasticity on the systems matrix are modelled by using
a "proportional navigation" type pseudo-random pseudo-row-dependency scheme to define the
systems matrix.

Cases run to date indicate that the first method of solution (i.e., the direct optimisation of the control
vector subject to constraints, herein referred to as the "Optimal Controller') is reliable, robust, and,
easiest to use. The algorithm employed for direct optimisation is particularly suitable to this problem
since atthough it is designed to solve the general non-linear programming problem, it employs a
successive quadratic programming method to solve this more general problem. Since this method
initially estimates the Hessian and then updates it successively as the quadratic solutions are
updated, and since the only difference between the problem of interest and the standard Quadratic
Programming Problem is that the constraints are quadratic rather than linear, the Hessian is invariant
to the optimisation process and is analytically known. Correspondingly, modifications to this
successive quadratic programming method which will enhance its reliability, overall robustness, and
speed, appear feasible for this particular problem of interest.

The second and third methods successfully solved systems of non-linear equations which define the
necessary conditions for optimality. It doesn't appear to be practical to use these methods by
themselves however, because there exist many (perhaps infinite) solutions to these equations and
no real way to recognise the solution yielding the global minimum or to even guarantee convergence
to this solution if it were known. The second method can however, be used to verify that the
necessary conditions are satisfied when the first method is employed. The use of the second
method for verification after the first method obtains a solution was made an option in the stand-
alone code.

The Deterministic Controller was added to the stand-alone code to provide a convenient means of
comparison. Options to directly optimise the weighting coefficients of the Deterministic Controller
either in a specified ratio to one another (i.e., the "Conventional Controller" as referred to herein) or
individually (i.e., the "Optimised Conventional Controller" as referred to herein) whilst satisfying the
constraints were provided as a means to obtain a more representative and meaningful comparison
of controllers and to help access the relative merit of solving the actual optimisation problem.
Occasionally a mathematical conditioning problem occurs with the direct optimisation of the
individual weighting coefficients of the Optimised Conventional Controller which causes a numerical
overflow and subsequent error termination. This occurs when the optimisation process converges to
a "solution" which has a harmonic phase angle with an nR/2 value. In this case the value of one of
the associated harmonic coefficients approaches zero whilst the value of the associated weighting
coefficient has no finite upper bound.

Cases run to date indicate that the performance (i.e., the reduction of the vibration metric) of the
Optimal Controller was superior to that of both the Conventional and the Optimised Conventional
Controllers. In accordance with theory, the Optimal Controller yielded a zero vibration metric for
square non-singular T-Matrices (i.e., when the number of measurements equals the number of
controls with no redundancy). As expected, the Optimised Conventional Controller was superior to
the Conventional Controller in performance, but inferior to the Optimal Controller for all cases except
a few degenerate cases where the performance of the three controllers was essentially equal. The
performance gap was widest for square non-singular T-Matrices.
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Nomenclature

diagonal l.u•b• constraint limit matrix with dimension (._x_)• The

diagonal elements are the An values in Eq (13).

coefficient of the scalar quadratic term in Relationship (34).

general vector with dimension (lx]).

coefficient of the scalar quadratic term in Eq (72)•

constraint limit for the n-th harmonic constraint equivalent to (l.u.b.)_. in

Relationship (13).

equality constraint linear coefficient matrix with dimension (MxM) in
Relationship (40)•

inequality constraint linear coefficient matrix with dimension (MxM) in
Relationship (41).

diagonal constraint weighting matrix in Relationship (31) with dimension

(MxM). B is normally the identity matrix [M.

coefficient of the scalar linear term in Relationship (34)•

general matrix with dimension (r x s).

general vector with dimension (£x 1).

coefficient of the scalar linear term in Eq (72).

equality constraint value vector with dimension (Mx 1) in Relationship (40).

inequality constraint value vector with dimension (Mx]) in Relationship
(41).

proportionality constant E [0,1] for Eq (8) which defines the elements of
the "flexible" part of the T-Matrix.

constant term in Relationship (34).

matrix of dimension (MxM) equal to F + F r.

scalar constant term in Eq (72).

(i,j)_ element of C equalto fij + _i.

scalar l.u.b, in Relationship (35).

matrix of dimension (MxM) equal to TrWz T.

performance index value for the General Non-linear Programming
Problem.
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Nomenclature (Continued)

index function for the General Non-linear

(i,j)th element of F.

Programming

quadratic coefficient matrix of dimension (MxM) in the performance index
of the general QPP (Relationship (39)).

vector of dimension (Mx 1) equal to [ Z_ Wz T IT.

linear coefficient row vector of dimension (lxM) in the performance index
of the general QPP (Relationship (39)).

greatest lower bound.

scalar equal to Z_Wz To.

scalar in the performance index of the general QPP (Relationship (39)).

higher harmonic control.

helicopter vibration reduction problem.

duty cycle number.

index for the elements of the 0-Vector.

identity matrix of dimension (MxM).

pseudo-identity tensor of rank three and dimension (MxM x_).

performance index value.

performance index function.

augmented performance index for the Conventional Controller problem.

performance index for the general QPP.

performance index for the scalar non-linear programming problem.

performance index for the scalar Conventional Controller problem.

augmented performance index value for the Min/Max calculus problem.

augmented performance index function for the Min/Max calculus problem.

duty cycle number.

dimension of the "reference base set of sensors", the "base measurement
dimension", the number of rows in the "core matrix".
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Nomenclature (Continued)

general dimension used for vectors and matrices.

left hand side.

least upper bound.

number of control variables to be optimised, dimension of the O-Vector
(the control vector), number of columns in the T-Matrix.

total number of sensors, dimension of the Z-Vector (the measurement

vector), number of rows in the T-Matrix.

harmonic number.

number of equality constraints for the general non-linear programming
problem.

general symmetric matrix of dimension (r _,r) or (I x l).

number of inequality constraints for the general non-linear programming
problem.

upper left sub-matrix of the partitioned Jacobian with dimension (-_ x M).

quadratic programming problem.

upper right sub-matrix of the partitioned Jacobian with dimension (_E x M).

common value of harmonic magnitude constraint limits equal to (l.u.b.)vi

for i = (n-1),n, (n+l).

(i,j)th uniformly distributed pseudo-random number used to generate a
T-Matrix.

right-sub-matrix of the partitioned Jacobian for the k-th reduced set of

equations with dimension (9 x3).

general dimension used for vectors and matrices.

Euclidean M-Space.

Euclidean _-_-Space.

right hand side.

general dimension used for vectors and matrices.

lower left sub-matrix of the partitioned Jacobian with dimension ('_ x M).

tX



T

T

T

%

t

VCS

We

W,

VCi

Wao.

we

we

we,.

Yn

y,

Z

Z(-)

Nomenclature (Continued)

quasi-static transfer matrix (the T-Matrix) as identified for the current duty
cycle which is common to both Local and Global models, and which relates

the Z-Vector to the 8-Vector with dimension (NxM).

general matrix with dimension (N×M).

lower right sub-matrix of the partitioned Jacobian with dimension (-_ x M).

quasi-static transfer matrix as identified for the current duty cycle for the
Global model which relates the Z-Vector to the P-Vector with dimension

(NxM).

quasi-static transfer matrix as identified for the current duty cycle for the
Local model which relates the Z-Vector to the P-Vector with dimension

(NxM).

(i,j)th element of the T-Matrix.

time.

vibration control system.

diagonal weighting coefficient matrix of the quadratic term in Z of

dimension (NxN).

general diagonal matrix of dimension (NxN) whose diagonal elements are
all greater than zero.

i-th diagonal element of Wz.

diagonal weighting coefficient matrix of the quadratic term in AO of

dimension (MxM).

diagonal weighting coefficient matrix of the quadratic term in e of

dimension (MxM).

scalar weighting coefficient of the quadratic term in e in Relationship (36)
for the scalar Conventional Controller problem.

i-th diagonal element of We.

amplitude of the n-th harmonic sinusoid.

value at time t of the n-th harmonic sinusoid.

measurement vector (the Z-Vector) with dimension (Nxl).

measurement vector function with dimension (N× 1).
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Nomenclature (Continued)

actual measurement vector during the current duty cycle for the condition

where no control is applied with dimension (Nx 1).

i-th element of 7--0.

i-th element of Z.

estimated measurement vector for the current duty cycle with dimension

(Nxl).

actual measurement vector for'the previous duty cycle with dimension

(Nxl).

slack variable vector with dimension (_ x 1).

k-th element of a.

diagonal slack variable matrix with dimension (_x_).

vector comprised of the (x and Z vectors with dimension (Mx 1) and equal

to T.

vector with dimension (3x l) comprised of the k-th possible combination of

elements from the a and _ vectors as specified by Relationship (123).

0 if i_jKroneckerDelta = l if i=j"

change in the value of /9 from that of the previous duty cycle with

dimension (Mxl) and equal to /gk - /9H for the k-th current duty cycle.

increment in the k-th element of /9.

general vector of dimension (Mx 1).

general vector of dimension (Nx 1).

general vector of dimension (Nxl).

control vector (the /9-Vector) with dimension (Mxl).

scalar control variable for the scalar non-linear programming and scalar
Conventional Controller problems.

solution value of /9.
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Nomenclature (Continued)

coefficient of the n-th harmonic Cosine term.

i-th element of O.

control vector (the O-Vector) defined for the current or i-th duty cycle with

dimension (Mx]).

control vector (the O-Vector) defined for the previous or (i - 1) _ duty cycle

with dimension (Mxl).

l.u,b, constraint limit for 0 in the scalar non-linear programming problem.

coefficient of the n-th harmonic Sine term.

constraint matrix form of 0 with dimension (M x _).

vector comprised of the 0 and c_ vectors with dimension (-_ x 1) and

equal to [8! o_]r.

adjoint vector comprised of _ Lagrangian multipliers with dimension

(_xl).

k-th element of Z.

general vector of dimension (Mx]).

(Mx]) dimensional control vector counterpart of the e-Vector for the
quadratic programming sub-problem of the successive quadratic
programming method used to solve the general non-linear programming
problem.

vector comprised of Equations (103) and (100) with dimension (-_,_-x 1) and
-r

equal to [Equation(103) i Equation(lO0)] T which equals _,[doj_[d'_]T:::_c(0) }'"

equality constraint vector function with dimension (P x 1).

equality constraint matrix function with dimension (_*_).

equality constraint vector function with dimension (_x]) formed by

compression of the corresponding equality constraint matrix function
_(o) into a column vector by the process described in Section 2.4.1.

k-th element of _c(°).
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equality constraint vector function with dimension (M×I) for a QPP.

vector comprised of the e and Z vectors with dimension (2Mxl) and

equal to [E)!g]T = [O!_Zi_]T = [Oil"] T.

vector comprised of the 0 and Fk vectors with dimension (9xl) and equal

to[o!r=]T.

inequality constraint vector function with dimension (Qx 1).

inequality constraint matrix function with dimension (_x _).

inequality constraint vector function with dimension (_x 1) formed by

compression of the corresponding inequality constraint matrix function
_(=) into a column vector by the process described in Section 2.4.1.

(i,j)r.h element of IF(.).

inequality constraint vector function with dimension (M× 1) for a QPP.

vector comprised of Equations (103), (100), and (104) with dimension

(2Mxl) andequalto [.--, i Equation(lO4)]r which equals {.=.. ['_'_]T} T.

zero vector of dimension (Mx 1).

zero matrix of dimension (2_).

zero vector of dimension (Nxl).
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SuDerscriDts

matrix transposition

solution or unique solution to a problem.

Subscri_ts

denotes a column matrix (vector) formed from a diagonal matrix by shifting
the diagonal elements to a single column.

global model.

duty cycle or element position number.

element position number.

duty cycle or element position number.

local model.

dimension of the "reference base set of sensors", the "base measurement
dimension", the number of rows in the 'core matrix".

dimension of the control vector (the O-Vector).

harmonic number.

dimension of the measurement vector (the Z-Vector).

quadratic programming problem.

value when no control is applied.

one-sided finite difference method.

two-sided finite difference method.



1.0 INTRODUCTION

Given the predicted growth in air transportation, the potential exists for significant market
niches for rotary wing subsonic vehicles. Technological advances which optimise rotorcraft
aeromechanical behaviour can contribute significantly to their commercial development,
acceptance, and sales. An example of the optimisation of rotorcraft aeromechanical
behaviour which is of interest is the Helicopter Vibration Reduction Problem (HVRP).
Although the HVRP was selected as the subject problem for this investigation, it is
emphasised that the analysis described herein is applicable to all those rotorcraft
aeromechanical behaviour optimisation problems for which the relationship between the
harmonic control vector and the measurement vector can be adequately described by a linear
model.

The reduction of rotorcraft vibration and loads is an important means to extend the useful life
of the vehicle and to improve its ride quality. Although vibration reduction can be
accomplished by using passive dampers and/or tuned masses, active control has the
potential to reduce vibration throughout a wider flight regime whilst requiring less additional
weight to the aircraft than passive methods.

Active control is achieved using a closed-loop "feedback" controller (Figures 1 and 2 and
Reference 1). Typically, the measurement vector is defined from the measurements obtained
with vibration sensors (e.g., accelerometers), the relationship between the measurement
vector and the control vector (i.e., the helicopter plant matrix) is determined (i.e., plant matrix
identification), and then a new control vector which will hopefully reduce the vibration metric is
defined and used to control the system (e.g., rotor blade pitch). It is this last mentioned
function, that is the selection of the new control vector, that is the subject of this research.
Commonly used conventional classical controller schemes (e.g., the Deterministic, Cautious,
and Dual Controllers described in References 1 and 2 ) employ a non-optimal constraint
penalty method to define the new control vector, whilst the Optimal Controller which is the
primary subject of this document employs a non-linear programming optimisation technique
that accounts for the constraints in accordance with optimisation theory.



2.0 TECHNICAL

The systems models used by the controllers described herein and their mathematical
equivalency are presented first. Next, a heuristic "seat-of-the-pants" proportional navigation
type technique used during controller performance verification to model aeroelastic effects for
the Helicopter Vibration Reduction Problem (HVRP) is described. The equations used by
both the conventional (Deterministic) and Optimal Controllers presented in Reference 1 are in
general matrix/vector form. One of the purposes of this documentation is to present these
equations in their expanded form which is amenable to computer coding. These equations
together with their associated equations defining the necessary conditions for optimality and
the required equations to solve the non-linear programming problem (i.e., the analytic
gradient, the Hessian, and the Jacobian) are then presented. The pseudo-random pseudo-
row-dependency scheme used to generate the systems matrix (i.e., plant matrix) and the
initial measurement vector to heuristically model the aeroelastic effects is described next.
Then the Stand-Alone Optimal Controller System is described, and finally the results of a
numerical study comparing the Optimal Controller with optimised conventional controllers for
various "proportions" of aeroelasticity is presented.

£



2.1 General Controller Definition

The general controller scheme (Figures 1 and 2) uses the measured state (i.e., the
measurement vector) to define a new control vector which will hopefully reduce the vibration
metric during the next duty cycle. To accomplish this, it is necessary to have first assumed a
plant model (i.e., a mathematical model relating the estimated measurement vector to the
control vector). A linear model with a Systems Matrix (also commonly referred to as the Plant
Matrix or the T-Matrix) that estimates the measurement vector is assumed for all the
controllers mentioned herein. It is necessary to identify or define this systems matrix (T-
Matrix identification) before the new control vector can be determined because the new
control vector is, in general, dependent on this matrix. This identification of the systems
matrix is, in general, dependent on the actual measurement vector which defines the plant
state of interest (i.e., not the estimated measurement vector defined by the assumed
mathematical model) and is not a subject of this research.

3



2.1.1 Systems Models of Controlled Vibration Response

The mathematical model (i.e., the plant model) relating the estimated measurement vector to
the control vector is assumed to be linear for all the controllers mentioned herein. The Local
and Global model and their mathematical equivalence are presented first, then the sensitivity
of the plant matrix elements for higher harmonic Fourier models and their representation by
uniformly pseudo-random numbers are discussed, and lastly the modelling of aeroelastic
effects by means of a Proportional Navigation type scheme to introduce some degree of
linear dependency to the rows of a non-square matrix is described.
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2.1.1.4 Sensitivity 04 the T-Matrix Elements and Its Modelling Using Random Methods

The _er applic,_io_ of interest _ require the definition of the harmonic content
of the responses 04 interest to the harmonics 04 a specif'md control. The responses are
measured by various sensors (e.g., accetemm_ers) mounted on the helicopter and its rotor
system. A Fast Fourier Transform (FFT) is then pedormed on this response data to define
the coefficients 04 the associated Fourier Series which descrioe these responses 04 interest.
The measurement (response) vector is typically comprised of the coeff'cients of selected
higher harmonic sinusoid_ terms 04 these Fourier Series. The specUkRI control vector is
typically comprised 04 _ mono-frequency SiRe/Cosine coefficient tuples, or
equ_va_quymono-frequenoyanwau_x, ase ar_e tupaes,fromthosewh_ descnZ)ethe
higher harmonic sinusoidai excitation 04 blade pitch. Once the measurement vecto¢ for the
current duty cycle is de_qed, _ T-Matr_ can be _ by various methods (Refererce
3). The elements 04 the T-Matrix can, however, appear to have random values when

withone ano_r for a particulardutycyc_ and to appearto varys_rak_mt_
between duty cycles because 04 the _ 04 the components 04 the measurement vector
(i.e., the selected higher harmonic coefficients of the Fourier Series which describe the
responses 04 interest) to minor variations in the wave-form of the sensor measurements
which inckJde the effects 04 process and measurement noise. This apparent randomness
appears to have unifocrndisUix,'tion rather than a dist_ with oluster po_s or modes.

This apparent randomness can be exploited to greatly _ the T-Matrix definition process
for controger feasibility and desirabiity analyses. The elements of the T-Matrix can be
generated simply by using a uniform random distribution generator with a range of values
appropriate for the problem rather than using a detailed rotor simulation for the purposes of
the study reported herein. In general, the largest square sub-matrix of the T-Matrix wig be
non-singular (i.e., its rows and columns will be linearly independent) if its elements are
generated in this manner. This fact provides a simple means to verify that the optimisation
algorithm is working properly for a square T-Matrix when the constraints are not active. In
this case, the minimised pedonTmrce index should be identically equal to zero (see Section
2.3.2).

9



2.1.1.5 Modelling Aeroelastic Effects by Means of a "Proportional Navigation" Type Scheme
to Introduce Some Degree of Linear Dependency to the Rows of a Non-Square T-
Mat_

In general, the elements of the control vector should be at least partially independent of one
another. Fortunately tlts requirement is rela_vely easy to salis_y by the appropriate selection
of the control vadai0_s to be optlntsed (e.g., rnono-frequency Sine/Coslne coefficient tuples
oramp4 uo p  meang fromtheexpmssiondea= n theconvoy.

It is also desirable that the elements of the measurement vector be at least partially
independent of one another to eliminate redundancy in the performance index and to reduce
the computational burden resulting from a larger number of rows in the T-Matrix. For the
HVRP, the independence of the elements of measurement vector depends to some extent on
the elasticity of the aircraft. For example, if a hekx_pter had purely transC_onai motion and if
two sets of three orthogenal accelerometers were firmly fixed in different locations in its
fuselage, one would expect that the acceleration vector determined from each set of
acoelerometers would be the same if the airframe was perfectly ridged and there were no
measurement errors. On the other band if the airframe was not perfectly ridged (e.g., elastic),
one would expect that the acceleration vector determined from each set of accelerometers
would differ somewhat. In the first case, the two sets of accelerometers would be fully
dependent while in the second case the two sets of accelerometers would exhibit some
degree of independence from each other.

The least number of possible independent measurements (i.e., the minimum number of
measurement degrees-of-independence) occurs for an ideally perfect rigid aircraft whose
motion is purely translationeJ. For convenience, this least number of possilNe independent
measurements for this "ideal aircraft" is referred to as the "base measurement dimension',
and any reference set of sensors of "base measurement dimension" which spans the
measurement degrees-of-independence space for this "=deal aircraft" is referred to as a
"reference base set of sensors'. Add_nel sensors mounted on this "ideal aircraft" will not
provide any information in addition to that obtained from the "reference base set of sensors'.
Indeed, if any additional sensor is identically equivalent to, and has identically the same
orientation as one of the reference base set sensors, the corresponding row of the T-Matrix
for this redundant sensor would be identical to that correspondng to its associated reference
base set sensor even though the two sensors might be mounted at different locations on this
"ideal aircraft'.

ff the aircraft is flexible and "bends" under loads, sensors in addition to the "reference base
set of sensors" will provide additional information, and the dimension of the measurement
degrees-of-independence space will be greater than the "base measurement dimension'. In
general, the greater the flexibility of the aircratt, the greater the degree of independence
adc_ional measurements will have. This fact, together with the recognition that a pedectly
rigid aircraft with pure transla_nal motion (e.g., translational vibration) is the limiting case
having the minimum number of independent measurements, suggests a simple means by
which elastic and non-_nal effects can be added to the simple random model defined
in the previous section (i.e., Section 2.1.1.4). The degree of independence of the elastic and
non-translational effects as measured by sensors in addition to the "reference base set of
sensors" can be simulated by a "proporUonal navigation" type scheme in which the required
additional rows of the T-Matrix are defined as a linear combination of the row corresponding
to one of the "reference base set sensors" and a new randomly generated row.

The ideally perfect dgkl aircraft whose motion is purely translational would be most efficiently
modelled with a minimum size (LxM) T-Matrix where M is the minimum number of
independent controls which comprise the Theta-Vector (i.e., the control vector) and L is the
"base measurement dimension" (i.e., the least number of possible independent
measurements for this "ideal aircraft'). For convenience this ideal minimum size T-Matrix is
referred to as the "core matrix'. Each row of this (LxM) "core matrix" corresponds to a
specific sensor in the "reference base set of sensors'. Each sensor in the "reference base set

10



of sensors" has a corresponding row of this "core matrix', consequently this mapping is "one-
to-one onto'. Although it is usually the case that L is greater than or equal to M, it should be
noted that the controller optimisation algorithm should be sufficiently robust to provide a
usable non-catastrophic control update if sensors fail and L becomes less than M. An
algorithm was devised to generate a synthetic T-Matrix which would simulate a flexible
aircraft. This algorithm uses pseudo-random "uniformly distnbuted" numbers to define the
rows of the more general (NxM) T-Matrix system according to:

eov.,-_po,,_r,fto_ _,,s,,.-l,,._/O,,oS_,,_ (o//,, %h,-_,,_ /_¢

L

H

oI ce 4
II

°I ,_ ,_ ÷/_"

__ b,.,-oI _ l_ l v-_c,'_ l,_ -to /o_ ,,p_,.,,__v_d,

a,m_.,_,.o.,oI _z, _-Wc_o,..(c.l,..o/VJo,-),

it



t.

IZ



2.1.2 General CorWoller

The Vibration Control System (VCS) described herein consists of a closed-k)op controiler
(see Figures 1 and 2) which computes a new Higher Harmonic Control (HHC) vector to be
used during the next duty cycle. This computat_n is designed to reduce vibration and is
based on the latest measured state vector and the latest identified T-Matrix. The re_tionship
between the mea.mJred state vecto_ (i.e., the Z-Vector) and the control vector (Le., the 8-
Vector is redferredto as the "helicopter plant function" and can be highly non-linear. The
"heticolXer plant function" is that part of the actual helicopter itself which relates the measured
state vector to the control vector. It is assumed that the "helicopter plant function" for the
controllers described herein can be approximated with sufficient accuracy between
successive duty cycles by a linear relationship such as those descri3ed in Sections 2.1.1.1
and 2.1.1.2. It is e_ that these linear approximations define an "estJm_ed" stale
vector based on a computed control vector rather than an actual measured state vector, and
that in general the two slate vectors will notbe equivalent. The computation of a new control
vecio¢ is, in general, dependent on the T-Matrix part of this linear relationsh_ and
consequently the T-Matrix must be known before this computation can be accomp_slled. A
T-Matrix identification process such as one of those described in Reference 3 is usually
employed to define the T-Matrix. It is assumed that the T-Matrix is identifiable and is
consequently known for the subject research described herein. Identif'catJon processes
themselves are not the subject of this research. The emphasis of this research is the
computation of the new control vector for the next duty cycle given the T-Matrix.



2.2 _ MMinlisa_n" Via the Conventional Controller

The _ Com'oller is simply a special case of _ General ConUoUer (see Section
2.1.2 and Figure 2) in which a specific computational procedure is assumed for the
det_ of the control vector to be used during the next duty cycle. The assumed
computallo_ scheme is similar to thal of the Determirdst¢ ControBer which is de_ in
References 1 and 2. The def'mition and disposal of constraints, the definition of the
performance index and its now-optimal augmentation with constraints, the definition of the

to be solved and its necessary conditions for optimality, and the specific
¢onlputalic_l procedure used to deten'nine the new control vector are presented in Sections
2.2.1 arid 2.2.2.



2.2.1 ConventionalControllerProblem

TheConvemio_ConUoller is the "classic" controller which has been in use for many years.
sub-optmal, this controUer has wod_ well in many applications, partk:ulady for

steady state operating systems whose control approaches a steady state value as the
desired operating condCJonsare achieved. Instead of solving the "real" problem which seeks
to minlnise the "real" performance index subject to "real" constraints imposed on the system
and the control vector, the ConvenSonal Controller solves a simpler problem which does not
impose any "rear" constraints during minimisation. This is accomplished by acrloini_ a
specific form of the constraints with weighting coeff_ents to the "real" performance index to
form an augmented performance index, and then by directly minimising this augmented
performance index. This constraint form is designed to be positive for all conditions and to
appeoach zero from this positive "side" as the system ai:c_aches its desired steady state
value. This technique of adjoining constraints to the performance index is referred to as
"Internal Umiting" (References 1 and 2). The idea is that by minimising this augmented
pedormmme index the constraint functions will be mirdmised simultaneously with the "real"
performance index. The motivation behind this approach is simply that a known analytic

exists to this problem, while solution of the real problem has historically been much
more diff'¢ult. The Conventional Controllers described in References 1 and 2 also employ
what is referred to as "External Limiting" which is an after-the-fact imposition of constrak_
with corresponding adjustment of the control after the minimisation of the augmented
performance index has been accomplished. The Conventional Controller used during this
research and described herein does not employ this External Limiting.

A convenient and simple form for the "real" part of the performance index which can provide
an excellent measure of the helicopter vibration is a simple quadratic metric of the irct,'idlual
vibration measurements; specifically:

I

where:

j -fl;,,%./" r,.,Ax

It is emphasised that this choice of a pedormance index is but one of many possibilities. This
performance index is relatively simple, representative of the control objective, and amenable
to the pertinent mathematical derivations.

[5



The control vector lot the helicopter aprgications of interest is typically comprised of selected
Sine/Cosine coefficient tuples from the sinusoidal terms which clescoZ_ the

higt_r _ sinusok_ exciZationof blade pitch. The actual hardware _ rect.dm
oonslraints Imving tt_ form of a least upper bound (l.u.b.) imposed on the _ o# ea_
04 the _ harmonic frequency sinusoids of interest (i.e., the mono-kequency Sine/Cosine
coefficient tuples which form the control vector). For each frequency of interest, the
correspor_ing sinusoid has the form:

where

Z
Z

The amplitude of the sinusoid Yn is then expressed (see Reference 4):

from which the "mar' (or "actual') l.u.b, constraint can be written:

where



For convenience, this constraint is expressed in the form

where

Instead of attempting to solve the optimisation problem with the constraints expressed by
relationship (13) treated as actual constraints to the problem, the Conventional Controller
seeks to drive the harmonic coeff'mients in the control vector to zero by adding a weighted
summation of their squares to the "real" performance index defined by equation (9) to form
the augmented perfomlance index to be mirdmised. This weighted summation is sometimes
referred to as "intemal limiting" and is expressed by

where



The augmented pe_orn_n_index _, is

I I II

O©

The Conventional Controllers descnbed in References 1 and 2 also include a A@ term of the
form

M

l:J

where

This AO term is not included in the analysis reported herein for simplicity, and because its
inclusion will not enhance the pedormance of the Conventional Controller.

L

OeN"

The Conventional Controller problem in its simple form is
I I I I ill

I _ I I II II III
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2.3 Vi0ration Minimisation as a Non-Linear Programming Problem

The OptioBI Comroler is simply a special case of the General Controller (see Section 2.1.2
and Fzgure 2) in which a specific computational procedure is assumed for the determination
of the control vector to be used during the next duty cycle. The Helicopter Vitxation
Reduction Problem (HVRP) was posed as a non-linear programming problem and a
successive quadratic prog_ method deveioped by Schittkowski, Stoer, and Gill et all
(References 7 and 9 through 15) was employed to solve it. The definition of constraints,
pmfom_nce index, the protein to be solved, and the specif'=:cornpotmbnal procedure used
to ¢k_errnine the new control vector are presented in Sections 2.3.1 and 2.3.2.



2.3.1 GeneralNon-LinearProg_ Problem

Thegeneralrmrvlinearprogrammingproblemcanbeexpressedintheform

MjnJ,n se J - {[zce)l

The helicopter vibration reduction problem was described somewhat in the text prior to the
definition the Conventional Controller Problem in Section 2.2.1. The performance index is
that defined by Equation (9) and the control vector (i.e., the Theta-Vector) is comprised of
rnono-frequency Sine/Cosine coefficient tuples which typically describe the blade pitch
sinusoids as per Equation (10). Since the control vector is comprised of tuples, its dimension
is always even. It is assumed that there is an amplitude constraint of the form defined by
Equation (13) for each mono-frequency tuple in the control vector, consequently the number
of constraints is identically halt the dimension of the control vector. The helicopter vibration
reduction problem can be expressed as a non-linear programming problem in the form
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2.4 V'CorationMinimisation as a Constrained Calculus Min/Max Problem

Variations of the Op(imal Controller which determine the control vector that satisf_s the
necessary conditions for optimallly for the HVRP defined by Relationships (37) and (38) are
conceptually possible. It is emphasised however, that satisfaction of necessary conditions for
optimality does not guarantee identification of the global solution. Optimal Controllers 04this
type (i.e., controgers which attempt to solve the HVRP by determining a control vector which
satisfies the necessary conditions for optimality) are simply special cases of the General
Controller (see Section 2.1.2 and Figure 2) in which a specific computational procedure is
assumed for the determination of the control vector to be used during the next duty cycle.
The coco4 vector solution to the non-linear equations which define the necessary conditions
for optimality is determined using the Levenburg-Marquardt algorithm (References 6, 16, 17,
18). The definition of calculus Min/Max HVRP problem and the necessary conditions tor
optimality are presented in Sections 2.4.1 and 2.4.2, the method of solution of the full set of
non-linear equations which clef'me the necessary conditions for optimality is described in
Section 2.4.3., and the method of solution by selecting the best of solutions of each of the
possa131ereduced sets o4 equations which define the necessary conditions for optimality when
the constraints are presetected to be either active or inactive is described in Section 2.4.4.
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2.4.3 Solutionof the Full Set of Equations Which Define the Necessary Conditions for
opt aay

Investigation of various methods to solve the non-linear simultaneous system of algebraic
equations (i.e., Equations (50) and (51)) that define the necessary conditions for optima[_ for
O and ;L led to the selection of the IMSL system (Reference 6) of codes (i.e., the IMSL main
driver routines DNEQNF and DNEQNJ and their subroutines) which were designed to solve a
quite general non-linear simultaneous system of algebraic equations by using the Levenberg-
Marquardt version of the algorithm employed by MINPACK routines HYBRD and HYBRD1
(References 16 and 17). These MINPACK routines are modifications of M. J. D. Powelrs
Hybrid method (Reference 18) which is in itself a variation of Newton's Method.

Experience to date indicates that these routines work reasonably well for the HVRP in that
they do reliably converge to a "solution". Unfortunately, in general there exist many (perhaps
infinite) _ of O and ;L which satisfy these equations which define the necessary
conditions for optimality. Indeed, not only do solutions exist which correspond to relative
extrema not the global minimum, but solutions can also exist which do not correspond to any
extrernum at all. The solution that the algorithm converges to is quite sensitive to the initial
(starting) estimate of 0 and ;L. There doesn't appear to be any practical way to select an
initial estimate for O and ;L which will guarantee convergence to the desired global
minimum unless, of course, the solution is already known and is used as the starting
estimate. This method can, however, be used to verify that a previously dete_ solution
obtained by solving the non-linear programming problem (Section 2.3.2) is indeed a solution.
Accordingly, options were provided in the stand-alone program (i.e., options defined by IOPT
= 11, 12, 13, and 14) which provide this verification to the solution obtained by solving the
non-linear programming problem.



2.4.4 Solutionof a ReducedSetof EquationsWhichDefinetheNecessaryConditionsfor
OptimalityforEachPossibleCombination of Active/Inactive Constraints

Recognising that satisfaction of the full set equations (i.e., Equations (50) and (51)) that
def'me the necessary conditions for optimality do not necessarily yield the global minimum, a
more reliable method to obtain the global minimum was sought which was likewise based on
the satisfaction of necessary conditions. The approach which was developed selects the
"best" (i.e., that which yields the minimum) of the solutions of each possible set of reduced
equations obtained when the constraints are preselected to be either active or inactive. Pre-
selection of the activity of a constraint eliminates the corresponding switching equation (see
Section 2.4.2) from the set of equations to be solved. Since there is a switching equation for
each constraint, the number of switching equations is M/2 for the HVRP. Correspondingly, it
is possible to reduce the dimension of the system of equations defining the necessary
conditions for optimality from 2M for the full set of equations to 3M/2 for the reduced set by
pre-selection of the activity for all the constraints. Since the number of arithmetic operations
are proportional to the square of the dimension, an approximate reduction of 9/16 in
computation time for solution of a reduced set of equations from that of a full set of equations
is obtained. Unfortunately this method requires solution of several sets of equations, the
amount being dependent on the M, and generally results in a net increase in computation
time. But notwithstanding this increase in computation time, the solutions (accomplished
using the same IMSL routines specified in Section 2,4.3) of lower dimension systems are
more reliable in general.
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Experience to date indicates that, as inthe case of solution to the full set of equations, these
routines work reasonably well for the HVRP in that they do reliably converge to a "solution"
for each of the reduced sets of equations. But likewise, there also exists many (perhaps
infinite) combinations of 0 and Z which satisfy these reduced sets of equations and not all
of them correspond to any extrema. Similarly, there doesnl appear to be any practical way to
select an initial estimate for _ and _, which will guarantee convergence to the desired global
minimum. Since the computation times were greater for this technique than for solution of the
full set of equations, and since there did not appear to be any useful application of this
technique such as providing verification that the necessary conditions were satisfied, further
use of this method is not recommended.



2.5 Exparcled Equations Required for Solution of the Non-Linear Programming Pmbtmn
and the Necessary Conditions for Optimality

The equations presented in the previous sections were, for the most part, in matrix/vector
form and a bit more general than convenient for coding purposes. The corresponding
expanded and detailed forms of these equations and those equations required for the
comlxCational processes described herein are presented subsequently. Specifically, the
expanded constraint and performance index equations are presented first, followed by the
analytic gradient and Hessian, and finally the necessary conditions for optimality and the
analytic Jacobian. The proof of the interesting and usefuJ fact that the numerically derived
gradient of a quadratic function obtained by the conventional two-sided finite difference
meUxxJ is mathematically equivalent to the analytically derived gradient of the same function
is presented rightafter the analytic gradient equations.
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2.6 The T-Matrix Generation System

The stand-alone code URAND was written to define the elements of "I" and 7-o (see
Subesctior_ 2.1.1.2 and 2.1.1.3). Pseudo-random numbers were generated from a unilonn

(Reference 8) and employed in this code to define these elements in acoon:la_
with the random concepts described in Subsections 2.1.1.4 and 2.1.1.5. A listing of
delinitione of the principaJ parameters in URAND including all the input parameters and a
brief desoription of the principal routines oompdsing URAND is presented in Appendix A.
Lislings oi the VAX/VMS Command Fde used to execute URAND and the URAND FORTRAN
routines themselves are presented in Appendix B. Input to, and output from, a sample case
is presented in Appendix C.
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2.7 The Stand-Alone Optimal Controller System

The stand-alone code OPTIM was written as part of this research to provide a means to
experiment with, to compare, and to evaluate the controller schemes descri0ed herein.
Numerous controller o_bns (see _ of IOPT in Apper=_ D) were provided to speoily
the optimal co_rotlers deC=nedaccording to _ theory dascnl0ed in Sections 2.3 and 2.4 and
the p_JdO-Op_ttal controllers decreed according tothe theory described in Section 2.2 and
variations thereof. Several IMSL MATH4.1BRARY routines (see h.ppencExD and
5, 6, and 7) were employed in this code to accoml_ish the required computations and to
Wovide ver_icatbn of ana_k_ gradients and Jacoblans. A isting of definitiom of the
parameters in OPTIM including all the input pararneters and a bde( description of the principal
routines oornprisingOPTgVl b pre_mg_l in Appendix D. Listings of the VAX/VMS Command
Rie used to execute OPTIM and the OPTIM FORTRAN routines themselves are presented in
Appendix E. Input to, and output from, a sample case is presented in Appendix F.

Early on in the development of this code during the initial verilication phases bek>re the T-
Matrix Generation System was developed, T-Matrices were obtained from actual
CAMRAD/JA (Reference 19) ck>sed loop HHC simulations of the BO-105 and S-76 rotor
systems. HHC problems of various dimensions (i.e., various T-Matrix dimensions) were
examined. A typical and illustrative example of the behaviour of the Optimal Controller as
described in Section 2.3, was a 6-vector HHC a¢cdied to the four bladed S-76 rotor system
with a 6-vector measurement. The Control Vector for this case is:
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3.0 CONCLUSIONS

Three _ion methods to solve the helicopter vibration control problem were identified
a_l _ed. These methods attempt to determine the optimal control vector widch

the vixation metric subject to constraints atdiscrete time points. These metlxx_
di_er from the commonly used non-optimal constraint penalty methods such as those
employed by conventional controllers (e.g., the Deterministic, Cautious, and Dual Controllers)
in that the constraints are handled as actual constraints to an optimisation problem rather
than as just additional terms in the performance index. The first method is to use a Non-linear
Programndng algorithm to solve the problem directly. The second method is to solve the lull
set of non-linear equations .which define the necessary conditions for optimality. The third
method is to solve each of the possg:dereduced sets of equations which define the necessary
conditioos for oplimalib/when the constraints are preselected to be either active or inactive,
and then to select the best solution.

Cases nJmto date indicate that the first method of solution (i.e., the direct opt'enisaUonof the
<x:Nr_rolvector subject to constraints herein referred to as the "Optimal Controller') is reliable,
rotxust, and easiest to use. The algorithm employed for direct optimisation is particularly
suitable to this problem since although it is designed to solve the general non-linear
programming probiem, it employs a successive quadratic programming method to solve this
more general prol:dem. Since this method initially estimates the Hessian of the pe_
index and constraint functions and then updates it successively as the quadratic
programmiogsoautionsare updated, and since the ordy difference between the problem of
interest and the standard Quadratic Programming Problem is that the constraints are
quadratic ra_her than linear, the Hessian is invariant to the optimisation process and is
ana_dicany known. Corr--, modifications to this successive quadratic prog_
method which will enhance its reliability, overall robustness, and speed, appear feasible for
this particular problem of interest.

The second and third methods (i.e., solution of a furl set or solution of reduced sets of non-
linear equations which define the necessary conditions for optimality) successfully solved
systems of non-linear equations definingthe necessary conditions for optimality, it doesn't
appear to be practical to use these methods by themselves, however, because there exist
many (perhaps infinite) solutions to these equations and no real way to recognise the solut_
yieCling the g_._ minimum or to even guarantee convergence to this solution if it were
known. The second method can, however, be used to verify that the necessary conditions
are satisfied when the first method is employed. The use of the second method for
vedlication alter the t'a_t method obtains a solution was made an option in the stand-alone
program.

The conventional controller was investigated to provide a convenient means of comparison.
In addition, options to directly optimise the weighting coefficients of the conventional
controller either in a specified ratio to one another (i.e., the "Conventional Controaer" as
referred to herein) or individually (i.e., the "Optimised Conventional Controller" as referred to
here,) while satisfying the constraints was provided as a means to obtain a more
representative and meaningful comparison of controllers and to help access the relative merit
of solving the actual optimisation problem. Occasionally a mathematical conditioning problem
occurs with the direct optimisation of the individual weighting coefficients of the conventional
controller which causes a numerical overflow and subsequent error termination. This occurs
when the "solution"has "zero" harmonic components whose associated weighting coefficients
approach infinity as the optimisation process converges to the solution weighting coefficient
vector.

Cases run to date indicate that the performance (i.e.., the reduction of the vibration metric) of
the Optimal Controller was superior to that of both the Conventional and the Optimised
Conventional Controllers. In accordance with theory, the Optimal Controller yielded a zero
vibration metric when no constraints are active for square non-singular T-Matrices (i.e., when
the number of measurements equals the number of controls with no redundancy) or when the



proportionalityconstant(C in Equation(8) and inputparameterRATIOto the T-Matrix
Generat_ Sym_ is 100percent. As expected, the Optimised Conventional Conlm41erwas
superior to the Conventional Controller in performance, but inferior to the Optimal Controller
for all cases except a few degenerate cases where the performance of the three comrollers

was essentially equal. The performance gap was widest for those cases where the Optim_
Controller yielded a zero vibration metric in accordance with theory.
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