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Abstract

Laminate and structural mechanics for the analysis of laminated composite plate structures with

piezoelectric actuators and sensors are presented. The theories implement layerwise representations

of displacements and electric potential, and can model both the global and local electromechanical

response of smart composite laminates. F'mite-element formulations are developed for the quasi-static

and dynamic analysis of smart composite structures containing piezoelectric layers. Comparisons with

an exact solution illustrate the accuracy, robustness and capability of the developed mechanics to

capture the global and local response of thin and/or thick laminated piezoelectric plates. Additional

correlations and numerical applications demonstrate the unique capabilities of the mechanics in

analyzing the static and free-vibration response of composite plates with distributed piezoelectric

actuators and sensors.
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1. Introduction

The development of a new class of "smart" composite materials and adaptive structures with

sensory/active capabilities may further improve the performance and reliability of aeronautical

structural systems. Such materials will combine the superior mechanical properties of composite

materials, as wel as, incorporate the additional inherent capability to sense and adapt their static and

dynamic response (adaptive structures), or continuously monitor the type, location, and extent of

eminent damage (health monitoring). However, this effort requires the development of admissible

mechanics entailing capabilities to model the unified electromechanical response of sensory/active

structures including the coupling between sensors and actuators. Additionaly, the mechanics should

address local through-the-thickness effects, such as the evolution of complicated stress-strain fields

in smart composites and interracial phenomena between the embedded micro-devices and passive

composite plies in a smart laminate. The present paper presents the development of layerwise

mechanics for the dynamic analysis of smart composite plate structures with embedded piezoelectric

sensors and actuators.

There have been many theories and models proposed for the analysis of laminated composite plates

containing active and passive piezoelectric layers (see e.g. Lee and Moon (1989), Lee (1990), Lee

and Moon (1990), Wang and Rogers (1991), Crawley and Lazarus (1989), Tzou and Tseng (1990),

Lammering (1991)). Most of these theories use simplif)dng approximations attempting to replicate

the induced strain or electric fields generated by a piezoelectric layer under an external electric field

or applied load. An exact solution by Heyliger and Saravanos (1995) for piezoelectric laminated

plates has shown that the electric and elastic field distributions are often poorly modeled using

simplified theories. Variational methods and finite element models for piezoelectric solids have also

been reported by Allik and Hughes (1970), Naillon et al. (1983) and Ha et al. (1992). Related work

has been reported for infinite piezoelectric laminates by Pauley (1974), and for finite elastic laminated

beams and plates with induced strain actuation by Robbins and Reddy (1991, 1993). The work in this

paper butds on previous layerwise laminate theories (geddy (1987), Robbins and Reddy (1991),

Robbins and Reddy (1993)), as well as, on that of the authors (Saravanos (1993), Saravanos (1994),



Heyliger et al. (1994), Saravanos and Heyliger (1995)) to consider the complete dynamic electr-

omechanical response of smart piezoelectric plate structures under external mechanical or electrical

loading.

The paper describes layerwise laminate theories for composite structures containing embedded

piezoelectric layers as sensors or actuators. According to these laminate theories, which will be called

interchangeably in the remaining paper as layerwise or discrete-layer theories, each layer is modeled

using independent approximations for the in-plane displacement components and the electrostatic

potential in a unified representation, as mandated by the linear theory of piezoelectricity. The laminate

theories assume either constant or variable transverse displacements through the laminate thickness.

Finite element solutions for the dynamic response of smart structures are further developed.

Application studies verify the accuracy and demonstrate the advantages and versatility of the

mechanics in analyzing the dynamic response of composite plates with sensory and active

piezoelectric elements.

2. Piezoelectric Laminates

This section descn_oes the developed mechanics for composite laminates with embedded piezoelectric

sensors and actuators. The coupled material equations for each ply are first presented in a unified way

which may representeither piezoelectric or passive composite layers. Discrete-layer approximations

are subsequently defined and the resultant piezoelectric laminate theories are presented. A standard

laminate coordinate system is assumed, such that, x and y are the in-plane axes and the z-direction

coincides with the thickness dimension of the laminate. The general problem considered in this paper

is to determine the dynamic behavior of the elastic and electric field components throughout the

laminate under an appfied mechanical or electrical loading. Each ply of the laminate can be composed

of a purely elastic, piezoelectric, or conducting material. The forcing function may be a combination

of applied tractions, electric potential, surface displacements, or charge.
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Material Representation

The constitutive equations of a piezoelectric material are given by Tiersten (1969),

D l . d¢oj. e_F_
(1)

or equivalently,

o,. C Sj- ,ag, (2)

where: ij = 1,...,6 and k,l= 1,...,3; o i and Si are the mechanical stresses and engineering strains in

vectorial notation; Ek is the electric field vector; D_ is the electric displacement vector; s_ and C_ are

the elastic compliance and stiffness tensors; do and eUare different forms of the piezoelectric tensor;

and _ is the electric permittivity tensor of the material. Superscripts E, o, and S indicate constant

electric field, stress and strain conditions, respectively. The electric field vector E k is the gradient of

the electric potential dp

E,. -a4,1a,,j (3)

The materials are assumed to be monoclinic class 2 crystals with a diad axis parallel to the z axis. The

poling direction of the material is assumed coincident with the z axis. The assumed material class is

general enough, such that eqs. (1) or (2) may encompass the behavior of off-axis homogenized

fibrous piezoelectric plies, as well as, passive composite plies [e]=0.

The energy stored (electric enthalpy) in the piezoelectric layer includes the components of elastic

strain energy, piezoelectric energy and electric energy (Tiersten (1969)),

.,- - 2.@'&- .,pp,) (4)



Discrete-Layer Laminate Theory

Two newlayerwiselaminatetheories(alsocalled discrete-layer theories) are proposed in this paper

using piecewise continuous approximations along the z-axis for both displacement and electric

potential fidds. Previous work has demonstrated the advantages of layerwise approaches in capturing

local intralaminar and interlaminar effects in elastic (Reddy (1987)) and elastodynamic problems

(Saravanos (1993), Saravanos (1994)) of composite plates. Consequently, the suitability of discrete-

layer theories to represent the additional heterogeneity induced by the presence of embedded

piezoelectric sensors/actuators in composite laminates can not be understated.

In the present approach, the electric potential is included in the state variables. The laminate is

subdivided in N-1 sublaminates (or discrete layers), and continuous fields are assumed in each

sublaminate, such that, piecewise continuous representations result through the thickness of the

laminate (see Fig. 1) of the following form:

br

j-t
br

v¢,,.v._,O-_ _(_,.t)seJ(.)

N

.pl
br

4,(_,._.t)- 3_ 4/(_,r,t)s'eC:)
).!

(s)

where u, v, w are the displacements along the x, y and z axes; superscript j indicates the points _ at

the beginning and end of each discrete layer;, uj, _, _, _ are the respective displacements and electric

potential at each point _ (see Fig. 1); TJ(z) are interpolation functions. Two unique advantages of

the method are obvious: (1) the complete electromechanical state of the smart laminate is represented;

and (2) the formulation entails the inherent option to select the detail of approximation in both electric

and displacement fields. At the lower limit of one discrete-layer (N=2) the method reduces to "single-

layer" type of laminate theories, and for linear T(z) it reduces to the first-order shear theory.

Moreover, the through the thickness displacement can be assumed constant (TW(z)=l) or variable,
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whichestablishes the difference between the two laminate theories. The first, which will be identified

as the w-constant theory, results by assuming _FW(z)=l in eqs. (5) and is effectively a plate laminate

theory. The second, which is identified as the w-variable theory, is a three=dimensional laminate

theory. In the present paper only linear interpolation fi_nctions _F(z) were considered.

In the context of eqs. (5), the engineering strain and electric field components become,

N

i-I
N

i-1,2,6

.w

j-i
14

z/x_,0- _ z/O,_,ovJ(:) i-1_
Jq
17

E,(x_,,,,). 2EEJ(_)V_ ")
Jq

i-4,5 (6)

where the {Sj} and {E j} are respectively the generalized strain and electric field vectors defined as

follows:

S:.U j S2.[,, ;jj °6"t't$ *l'ejrrjt_'j,,_sJwJ sJvJ sJou j

E2.- 0 _,

The electric enthalpy of the laminate is by definition,

H,- f_ nz • (8)

where h is the laminate thickness. By combining eqs. (4,6,8) and integrating through-the-thickness,

the energy stored in a piezoelectric laminate is obtained as a quadratic expression of the generalized

strain/electric field and the generalized laminate stiffness, piezoelectric and dielectric permittivity

matrices,
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N N

m-! n..! (9)

In the above equation, A", B TM, and D_ are the generalized laminate stiffness matrices,

L

L

£

Ar. 
L

L

.f_c,tv =(:)v'(:_

ij-1,2,6

iol,2,6, .]-3

i,/-4,5

iJ.4,5

ij.4,J

(I0)

E m are the piezoelectric laminate matrices,

L

£

E_".E f,,%,'_'(*)'_*)_,.,_j.4.s/,-1
L

£

(11)

and GTM are the laminate matrices of electric permittivity,

G_ 'l- _ f_tWT'(,)¥"(:)d: ,-j.1).
/., (12)

where L is the number of plies in the laminate.



3. Piezoelectric Structures

The starting point for the equations of motion of a composite structure with embedded active/sensory

piezoelectric layers in a variational form, is the Hamilton's principle for a piezoelectric medium

(Tiersten (1969))

Here t is time, V and S are the volume and surface occupied by and bounding the solid, overbar o

and overbar q are the surface tractions and surface charge, respectively, 6 is the variational operator,

the overdot represents differentiation with respect to time, and Hi represents the local electric

enthalpy.

Integration through-the-thickness yields the Hamilton's principle (equations of motion) in terms of

the generalized laminate quantities defined in the previous section

Jr, aA 2 l.l j-!

(14)

where, A is the mid-plane area occupied by the plate, H L is the electric enthalpy of the laminate given

by eq. (9), and 1_j are the generalized densities (per unit area) of the laminate given by

L

,,,,_._ f,_p?r'(z),r.lO,_ (15)

To develop structural solutions, local in-plane approximations of the generalized electromechanical

state (displacements and electric potential) in eq. (5) are proposed of the following type.
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M

M

I,-I

J-I
M

_(xu.O- _ _(Oet*(xo,)
t-I

(16)

where U j is the value of the generalized displacement component U j corresponding to the i-th in-plane

interpolation function _(x,y), and so forth. This formulation forms the basis of the finite element

technique, which is subsequently described.

Finite Element Formulation

For structural problems with general boundary, geometry and material configurations, the local in-

plane approximations in eq. (16) are used to develop finite dement based solutions. Substituting these

approximations into the equation of motion (14) and collecting the coefficients, allows the governing

dynamic equations of the structure to be expressed in a discrete matrix form as,

P._'**] [Ol [o]

o] [M:_ [0]

[0] [0] p_]
[01 [0] [01

[0]" {0}

[01 {_

[0] {#}

[0] {6}

[x_l] [rxd

[_21] IX,,]
4'

[_31] [_32]

[X,.l [X_l

[rld [xiJ"

[xo] [r,,]

{w}

_}

[F_(0} ]

Iv,c,)}/
{Q(t)}J

(17)

The elements of these matrices are calculated from the generalized laminate matrices defined in eqs.

(10-12) as determined by the variational statement. The nature of the submatrices depends also on

the approximation used for w(z). For variable w, the structure of [Kp] is similar to those of the other

matrices. For constant w, the submatrices within [Kn], [g_], and [K 4s] are column vectors and those

in [K 33]become scalars. In general, the subrna_ces within each [Ke] are each of order Off), while the

matrices [K ij] depend on the order of the in-plane approximation (M).
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Basedon the above formulation, a 4-node finite element was developed with linear in-plane shape

functions. Reduced integration (single point Gauss quadrature) was implemented in the calculation

of the shear stiffness terms to eliminate overstiffening at low thickness. The final representation of

the coupled dynamic system can be expressed in fairly compact form:

Assuming that both sensory and active piezoelectric layers are embedded into the structure, the

electric potential vector is subdivided in a l_ee or sensory component 4>F representing the voltage

output at the sensors, and a forced or active component _^ representing the voltage imposed on the

active piezoelectric layers, such that (4>} = ( _>r ; 4>^ }. Separating the active and sensory potential

components in eq. (18), the equations take the following form

where superscripts F and A indicate the partitioned subma_ces in accordance with the selected

sensory and active configuration, respectively. The lei_-hand side includes the unknown

electromechanical response of the structure {u, oF}, that is, the resultant displacements and voltage

at the sensors. The right-hand includes the excitation of the structure in terms of mechanical loads

and applied voltages on the actuators. The electric charge at the sensors QF(t) remains constant with

time (practically open-circuit conditions) and is assumed equal to zero.

Among the obvious advantages is the capability of the mechanics to model the response of the

piezoelectric structure either: in "active" mode, that is, with specified voltages A _^ applied across

the piezoelectric layers to induce a desirable deflection/strain state; or in "sensory" mode where

displacements or mechanical loads are applied to the structure and the resultant voltage or charge is

monitored; or in combined "active/sensory" mode.

Additional manipulation of eqs. (19) results in the following uncoupled dynamic equations for the
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structural displacements and sensory voltages respectively

(20)

Further inspection ofeq. (20) reveals that the "induced-strain" approaches, in the presence of sensors,

neglect the coupling effects on both the stiffness and the induced piezoelectric force. The above

dynamic system may be solved to obtain, either the modal characteristics (free-vibration), or the

forced frequency response or the transient response of the piezoelectric plate.

4. Evaluations and Discussion

Application cases on laminated composite plates with active and sensory piezoceramic layers are

presented in this section. The free-vibration response of a simply supported cross-ply plate with

surface bonded continuous piezocerandc layers is analyzed first. Additional evaluations are presented

on the active quasi-static response and free-vibration response of laminated cantilever plates with

distributed discrete piezoelectric patches. When applicable, correlations with published data are

presented. In all cases, the standard laminate notation is augmented to indicate the lamination and the

location of the piezoelectric material through the thickness, with the letter p indicating the

piezoelectric layer.

Hybrid Simply-Supported Plates.

The free-w_bration response of a 5-ply [p/0/90/0/p] laminated simply-supported square plate

incorporating piezoelectric layers and composite plies was analyzed. Two thickness aspect ratios are

considered corresponding to a thin square plate (o/h= 50) and a thick plate (o,/h=4), where ¢z is the

free span and h is the plate thickness, to illustrate the range of application of the mechanics. Results

obtained with the firfite-element models are compared with an exact piezoelasticity solution reported
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by Heyliger and Saravanos (1995). The laminate configuration consists of a [0/90/0] Gr/Epoxy

cross-ply sublaminate with composite plies each 0.26711 thick, where h is the plate thickness. Two

continuous PZT-4 layers of thickness 0.1h each are also bonded to the upper and lower surfaces of

the laminate. The elastic, piezoelectric and dielectric properties of the laminate materials are shown

in Table 1. To comply with the reported results of the exact solution, all layers were assumed to have

equal density (p=l kg/m3). The imposed simple support conditions were: wi(x=0, y)= wJ(_-(x,

y)_--wi(x, y=O)--wi(x, _-<x)=O, vi(x=O, y)= vi(_--o_, y)=O, ui(x, y--O)=t_(x, _-o0=0. In addition, the

outer surfaces of the piezoelectric layers were forced to remain always grounded. Based on this, two

sets of electric boundary conditions were considered for the inner surfaces of the piez.oceramic layers:

a closed-circuit condition termed with ((2), with the potential forced to remain zero (grounded); and

an open-circuit condition termed with (O), where the electric potential remains free (zero electric

displacements).

Fundamental Natural Frequency. The predicted fundamental frequency fl of the plate with various

uniform mesh densities and various numbers of discrete layers through the thickness of the laminate

is shown in Table 2. In the case of three discrete-layers (N=4), one discrete layer was used for each

piezoelectric.ply and one for the whole composite sublaminate; in the case of 7 discrete layers (N=8),

2 discrete layers were used for each piezoelectric ply and 1 for each composite ply; and in the case

of 20 discrete layers (N=21), 4 layers were used for each piezoelectric and composite ply. For both

thickness ratios, the predicted natural frequencies consistently converge above and below the values

of the exact solution depending on the type of electric boundary conditions, which shows that the

element can model thick piezoelectric composite structures, while it does not lock at low thicknesses.

Although the agreement is very good, the predicted range of the piezoelectric effect on the

fundamental frequency (the difference between (O) and (C) conditions) is much higher in the FE

results than in the exact solution, and the reason for this difference remains a subject of investigation.

The consideration of minimal discrete-layers through the thickness seems to provide reasonable

accuracy in the calculation of frequencies for both thickness ratios. Yet, higher number of discrete-

layers may be required in thick laminates to capture the local laminate response, as shown in

subsequent examples.
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Eleet_meehanicaiState. Thethrough-the-thickness distributions of the modal displacements and

the normalized electric potential of the fundamental mode of the plate at open-circuit conditions (O)

are shown in Figs. 2-3 for a thin and thick plate, respectively. The transverse displacement w and

electric potential correspond to the center of the plate (_-oY2, y= _2), while the in-plane

displacements u and v are at the midspan of the edges, e. g. (_-cc, y---o./2) and (_-cc/2, y= co),

respectively. An 8 by 8 uniform mesh and 7 discrete layers through the thickness were used. In the

case of the thin plate (_./h= 50, Fig. 2) both w-constant and w-variable laminate theories and

corresponding finite elements (FE) yielded identical results with the exact solution. In the case of

the thick plate (_rn= 4, Fig. 3), both laminate theories (w-constant and w-variable) and corresponding

finite elements yielded excellent agreement with the exact solution. The w-constant theory slightly

underpredicted the in-plane displacements, and did not capture the slight variation in w (mostly due

to the d33piezoelectric coefficient) in the piezoelectric layers. The variation of the electric potential

in the composite plies was caused by the in-plane electric permittivity en and _ of the composite

plies. Clearly, the assumptions of simplified theories (simplified linear displacement and electric fields,

single layer assumptions) are only valid for low thicknesses (Fig. 2), while significant deviations and

errors may be observed in thick plates (Fig. 3).

Modal Stresses. The predicted modal stresses through the thickness of the laminate are shown in

Figs 4-5, for the thin and thick plate, respectively. The stresses were calculated at the points of

respective maximum values, that is, at the center (_, _y), the comer (_y), and the mid-edges of the

plate (_ cy_). An 8x8 uniform finite element mesh was used with 20 discrete layers through the

thickness. Calculated stresses with the w-constant finite element model are shown in Figs. 4-5,

corresponding to the integration points and elements closer to the respective stress location. Again

for both thickness ratios, the agreement of the finite element predictions to the exact solution is

excellent. Fig. 5 shows clearly that in thick laminates, the stresses exhibit substantial nonlinearity and

slope discontinuities between each ply, which can not be captured by simplified kinematic

assumptions. The previous results and comparisons have demonstrated the excellent accuracy and

robustness of the mechanics and the finite elements, and their capability to capture both the global
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andlocal through-the-thickness response of thick and thin piezoelectric plates.

Effect of Electric Conditions. Figs. 6a-d illustrate the effect in the modal in-plane displacements,

dectric potential, and stresses of the thick plate, when different conditions are imposed on the electric

potential at the inner surfaces of the piezoelectric layers. Specifically, the cases of forced (equal to

zero) and flee electric potential are shown in Fig. 6, identified as closed-circuit (C) and open-circuit

(O) conditions respectively. As seen in Fig. 6a the voltage conditions have a definite effect on the

modal in-plane displacements, as a result of the different electric fields in the piezoelectric layers (see

Fig. 6b). It is interesting to note that electric fields exist in the piezoelectric layers even with the

closed-circuit conditions. The effects of electric conditions are more profound in the in-plane stress

o x (Fig. 6c) and the interlaminar shear stresses (Fig. 6d), and are attributed primarily to the

differences in the piezoelectric stress component (see eq. (2)).

Composite Plates with Discrete Piezoelectric Patches

The present applications illustrate the natural capability of the finite element to model more realistic

configurations of smart structures, that is: (a) discrete piezoelectric actuators/sensors, and Co)

continuous electrodes on the f_ee surfaces which force the sensory electric potential to remain

uniform. The plates considered in this example and the corresponding meshes are shown in Fig. 7.

The first is a [0/±45], Gr/Epoxy cantilever plate with 15 piezoceramic patches at each side built and

tested by Crawley and Lazarus (1989), the second is a candidate [p2/0/90/45/-45], T300/934

G-r/Epoxy cantilever plate with 8 square PZT-4 patches at each side with properties shown in Table

1. Both plates were modeled using the w-constant theory with 3 discrete layers.

[0/±45], Cantilever Plate. Fig. 8 shows the predicted transverse deflection ofthe 0.83 mm thick

[0/+45], Gr/Epoxy (AS4/3501) plate shown in Fig. 7a with 15 piezoceramic patches bonded on each

side, each 0.25 mm thick. The deflections are induced by an applied uniform electric field of 394

V/mm, of opposite polarity at the upper and lower piezoelectric patches. Measured data were

reported by Crawley and Lazarus (1989), together with some material properties (additional material
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propertieswerebackcaloAatedasrequiredfrom relateddatain thesamepublication).Thefollowing

normalizedformwasusedfor the deflections consistent with the way the experimental results were

published,

rj. _,_. r 2 - O,2-(_,_.w3)/2y_. r 3 - (,_-_,_Y_

where, w_ w_, w3 are the transverse displacement along the midline and the two edges respectively,

and c is the width of the plate. The three normalized displacements respectively represent or

approximate the axial bending deflection, the transverse bending curvature, and the twisting angle due

to bending-twisting coupling. There is very good agreement between predicted and measured

transverse deflection TI. The agreement between predicted and measured transverse curvature T2

and twisting angle T3 is fair to good. The present predictions and correlation trends agree remarkably

well with similar results reported by Ha et al. (1992), hence, the differences were attributed to

uncertainties in the material properties and possible specimen imperfections.

[1_0/901451-45], Cantilever Plate. Figs. 9-10 show the predicted first two electromechanical modes

of this plate (Fig. To). All piezoceramic layers were configured to act as sensors, with continuous

electrodes on each surface, which were represented with equality constraints imposed on the

respective electric potential. There is a characteristic modal voltage distribution corresponding to the

characteristic distortion of each mode. The first mode (Fig. 9) is almost a pure first bending mode in

the axial direction. The second mode (Fig. I0) is the first torsional mode in the axial direction. Both

figures indicate the non-apparent relationship between deflected shape and the corresponding sensory

voltage pattern. The slight asymmetries in the sensory voltage patterns are caused by the flexure-

twisting coupling of the laminate. Figs. 9-10 clearly illustrate the various static and/or dynamic

deformations which may be actively induced, for example bending or twisting, by applying the proper

pattern of voltage on the piezoelectric elements. Note also that undesirable deformations, caused

by laminate coupling, may be annihilated in this manner. The natural calculation of the characteristic

voltage dism'butions is an obvious advantage of the method, because it provides the voltage patterns

required to induce the corresponding deflection, or to construct the modal filter which can be used

to isolate, sense and ultimately control the respective mode.
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Overall,allprevious application cases have demonstrated the accuracy, quality and versatility of the

developed laminate theory and corresponding finite elements, and their capability to model a broad

array of global and local responses in most practical configurations of active/sensory piezoelectric

composite plates.

5. Summary

Laminate and structural mechanics and the corresponding coupled electromechanical models for the

dynamic analysis of smart composite plate structures with embedded piezoelectric actuators and

sensors were developed and descr?oed. The descried laminate theories entail mixed displacement and

electric field formulations and implement layerwise representations of the displacements and electric

potential. A robust linear plate finite element, in terms of thickness, was also formulated. The

mechanics have capabilities to simulate both sensory and active dynamic response of smart composite

structures either at the global structural or the local laminate level.

Correlations of predicted results with exact solutions of simply-supported piezoelectric composite

plates have demonstrated the accuracy, robustness and versatility of the developed mechanics. The

comparisons verified the capability of the present mechanics to model the free-vibration of thick

and/or thin piezoelectric composite plates. Additional application studies have demonstrated the

capability of the mechanics to model the active and sensory, static and dynamic response of smart

composite plates with continuous or discrete piezoceramic devices. Finally, the applications have

demonstrated the possibilities for dynamic displacement management provided by smart piezoelectric

composite structures.
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Table 1 Mechanical Properties

(eo=8.85 10"_2farad/m, electric permittivity of air)

Property Gr/Epoxy PZT-4

Elastic Properties:

E. (GPa) 132.38 81.3

F_.= (GPa) 10.76 81.3

E33 (GPa) 10.76 64.5

G_ (GPa) 3.61 25.6

Gt3 (GPa) 5.65 25.6

(312 (GPa) 5.65 30.6

v12 0.24 0.33

v_3 0.24 0.43

v23 0.49 0.43

Piezoelectric coefficients (10 "_ m/V):

d3t 0 -122

d32 0 -122.

d33 0 285.

d_ o o.

Electric Permittivity:

3.5 1475.e:n/eo

_a'_ 3.0

_Jeo 3.0

Mass Density p(kg/m9 1578.

1475.

1300.

7600.
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Table 2. Predicted Natural Frequencies of[p/0/90/0/p] square simply supported Plate.

(C)- closed circuit; (O)- open circuit

Mesh Density

w-constant:

4x4

8x8

12x12

Discrete Layers

 /h=4 (C)

3 148.154

3 145.323

3 144.768

8x8 7 142.469

8x8 20 142.221

w-variable:

4x4

8x8

12x12

8x8

8x8

Exact:

Fundamental Frequency, f i aZ/h P_

103 Hz (kg/m) ia

149.310

146.269

145.675

tx/h=4 (0) _/h=50 (C) t_/h=50 (0)

153.720 249.860 272.860

151.222 236.833 259.173

150.727 234.533 256.765

148.351 236.785 259.103

148.177 236.784 259.102

154.591

151.964

151.531

253.670

239.628

237.158

276.185

261.703

259.655

7 142.942 148.692 237.383 259.630

20 142.630 148.586 237.109 259.895

145.339 145.377 245.941 245.942
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Piezoelectric

Layers

LAMINATE

Electric potential Displacements

(_N u N

1 J _)N-1 uJ

j-1 zJ..._...

,_I i ......................

,2 _ U1

_)1

(a) Smart Laminate (b) Discrete-layer laminate theory assumptions

Figure 1.-- Typical piezoelectric laminate configuration. (a) Concept ; Co) Assumed through-the-
thickness displacement and electric potential fields.
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Figure 7.-- Schematic configuration of cantilever plate beams with distributed piezoelectric patches.
(a) [0/±45]. plate with 15 piezoelectric actuators/side; (b) [0/90/±45]. candidate plate with

8 piezoelectric actuators/side. Dimen_or_ inmm.
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