NASA Reference Publication 1376 Volume II



# Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis Document

*Volume II—Geolocation, Calibration, and ERBE-Like Analyses (Subsystems 1–3)* 

**CERES** Science Team

NASA Reference Publication 1376 Volume II



# Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis Document

*Volume II—Geolocation, Calibration, and ERBE-Like Analyses (Subsystems 1–3)* 

CERES Science Team Langley Research Center • Hampton, Virginia

National Aeronautics and Space Administration Langley Research Center 

Hampton, Virginia 23681-0001

Available electronically at the following URL address: http://techreports.larc.nasa.gov/ltrs/ltrs.html

Printed copies available from the following:

NASA Center for AeroSpace Information 800 Elkridge Landing Road Linthicum Heights, MD 21090-2934 (301) 621-0390 National Technical Information Service (NTIS) 5285 Port Royal Road Springfield, VA 22161-2171 (703) 487-4650

# Contents

| Preface v                                                                   |
|-----------------------------------------------------------------------------|
| Nomenclature                                                                |
| CERES Top Level Data Flow Diagram xvii                                      |
| Instrument Geolocate and Calibrate Earth Radiances (Subsystem 1.0)1         |
| ERBE-Like Inversion to Instantaneous TOA and Surface Fluxes (Subsystem 2.0) |
| ERBE-Like Averaging to Monthly TOA (Subsystem 3.0)                          |

# Preface

The Release-1 CERES Algorithm Theoretical Basis Document (ATBD) is a compilation of the techniques and processes that constitute the prototype data analysis scheme for the Clouds and the Earth's Radiant Energy System (CERES), a key component of NASA's Mission to Planet Earth. The scientific bases for this project and the methodologies used in the data analysis system are also explained in the ATBD. The CERES ATBD comprises 11 subsystems of various sizes and complexities. The ATBD for each subsystem has been reviewed by three or four independently selected university, NASA, and NOAA scientists. In addition to the written reviews, each subsystem ATBD was reviewed during oral presentations given to a six-member scientific peer review panel at Goddard Space Flight Center during May 1994. Both sets of reviews, oral and written, determined that the CERES ATBD was sufficiently mature for use in providing archived Earth Observing System (EOS) data products. The CERES ATBD will serve as the reference for all of the initial CERES data analysis algorithms and product generation, it is published here as a NASA Reference Publication.

Due to its extreme length, this NASA Reference Publication comprises four volumes that divide the CERES ATBD at natural break points between particular subsystems. These four volumes are

I: Overviews

CERES Algorithm Overview Subsystem 0. CERES Data Processing System Objectives and Architecture

- II: Geolocation, Calibration, and ERBE-Like Analyses
  - Subsystem 1.0. Instrument Geolocate and Calibrate Earth Radiances Subsystem 2.0. ERBE-Like Inversion to Instantaneous TOA and Surface Fluxes Subsystem 3.0. ERBE-Like Averaging to Monthly TOA
- III: Cloud Analyses and Determination of Improved Top of Atmosphere Fluxes
  - Subsystem 4.0. Overview of Cloud Retrieval and Radiative Flux Inversion
  - Subsystem 4.1. Imager Clear-Sky Determination and Cloud Detection
  - Subsystem 4.2. Imager Cloud Height Determination
  - Subsystem 4.3. Cloud Optical Property Retrieval
  - Subsystem 4.4. Convolution of Imager Cloud Properties With CERES Footprint Point Spread Function
  - Subsystem 4.5. CERES Inversion to Instantaneous TOA Fluxes
  - Subsystem 4.6. Empirical Estimates of Shortwave and Longwave Surface Radiation Budget Involving CERES Measurements
- IV: Determination of Surface and Atmosphere Fluxes and Temporally and Spatially Averaged Products
  - Subsystem 5.0. Compute Surface and Atmospheric Fluxes
  - Subsystem 6.0. Grid Single Satellite Fluxes and Clouds and Compute Spatial Averages
  - Subsystem 7.0. Time Interpolation and Synoptic Flux Computation for Single and Multiple Satellites
  - Subsystem 8.0. Monthly Regional, Zonal, and Global Radiation Fluxes and Cloud Properties Subsystem 9.0. Grid TOA and Surface Fluxes for Instantaneous Surface Product
  - Subsystem 10.0. Monthly Regional TOA and Surface Radiation Budget
  - Subsystem 11.0. Update Clear Reflectance, Temperature History (CHR)

Subsystem 12.0. Regrid Humidity and Temperature Fields

The CERES Science Team serves as the editor for the entire document. A complete list of Science Team members is given below. Different groups of individuals prepared the various subsections that constitute the CERES ATBD. Thus, references to a particular subsection of the ATBD should specify

the subsection number, authors, and page numbers. Questions regarding the content of a given subsection should be directed to the appropriate first or second author. No attempt was made to make the overall document stylistically consistent.

The CERES Science Team is an international group led by 2 principal investigators and 19 coinvestigators. The team members and their institutions are listed below.

# **CERES Science Team**

Bruce A. Wielicki, Interdisciplinary Principal Investigator Bruce R. Barkstrom, Instrument Principal Investigator

> Atmospheric Sciences Division NASA Langley Research Center Hampton, Virginia 23681-0001

# Coinvestigators

Bryan A. Baum Atmospheric Sciences Division NASA Langley Research Center Hampton, Virginia 23681-0001

Maurice Blackmon Climate Research Division NOAA Research Laboratory Boulder, Colorado 80303

Robert D. Cess Institute for Terrestrial & Planetary Atmospheres Marine Sciences Research Center State University of New York Stony Brook, New York 11794-5000

> Thomas P. Charlock Atmospheric Sciences Division NASA Langley Research Division Hampton, Virginia 23681-0001

James A. Coakley Oregon State University Department of Atmospheric Sciences Corvallis, Oregon 97331-2209

Dominique A. Crommelynck Institute Royal Meteorologique B-1180 Bruxelles Belgium Richard N. Green Atmospheric Sciences Division NASA Langley Research Center Hampton, Virginia 23681-0001

Robert Kandel Laboratoire de Meteorologie Dynamique Ecole Polytechnique 91128 Palaiseau France

> Michael D. King Goddard Space Flight Center Greenbelt, Maryland 20771

Robert B. Lee III Atmospheric Sciences Division NASA Langley Research Center Hampton, Virginia 23681-0001

A. James Miller NOAA/NWS 5200 Auth Road Camp Springs, Maryland 20233

Patrick Minnis Atmospheric Sciences Division NASA Langley Research Center Hampton, Virginia 23681-0001

Veerabhadran Ramanathan Scripps Institution of Oceanography University of California-San Diego La Jolla, California 92093-0239

David R. Randall Colorado State University Department of Atmospheric Science Foothills Campus, Laporte Avenue Fort Collins, Colorado 80523

G. Louis Smith Atmospheric Sciences Division NASA Langley Research Center Hampton, Virginia 23681-0001 Larry L. Stowe NOAA/NWS 5200 Auth Road Camp Springs, Maryland 20233

Ronald M. Welch South Dakota School of Mines and Technology Institute of Atmospheric Sciences Rapid City, South Dakota 57701-3995

# Nomenclature

# Acronyms

| ADEOS | Advanced Earth Observing System                                                             |
|-------|---------------------------------------------------------------------------------------------|
| ADM   | Angular Distribution Model                                                                  |
| AIRS  | Atmospheric Infrared Sounder (EOS-AM)                                                       |
| AMSU  | Advanced Microwave Sounding Unit (EOS-PM)                                                   |
| APD   | Aerosol Profile Data                                                                        |
| APID  | Application Identifier                                                                      |
| ARESE | ARM Enhanced Shortwave Experiment                                                           |
| ARM   | Atmospheric Radiation Measurement                                                           |
| ASOS  | Automated Surface Observing Sites                                                           |
| ASTER | Advanced Spaceborne Thermal Emission and Reflection Radiometer                              |
| ASTEX | Atlantic Stratocumulus Transition Experiment                                                |
| ASTR  | Atmospheric Structures                                                                      |
| ATBD  | Algorithm Theoretical Basis Document                                                        |
| AVG   | Monthly Regional, Average Radiative Fluxes and Clouds (CERES Archival Data Product)         |
| AVHRR | Advanced Very High Resolution Radiometer                                                    |
| BDS   | Bidirectional Scan (CERES Archival Data Product)                                            |
| BRIE  | Best Regional Integral Estimate                                                             |
| BSRN  | Baseline Surface Radiation Network                                                          |
| BTD   | Brightness Temperature Difference(s)                                                        |
| CCD   | Charge Coupled Device                                                                       |
| CCSDS | Consultative Committee for Space Data Systems                                               |
| CEPEX | Central Equatorial Pacific Experiment                                                       |
| CERES | Clouds and the Earth's Radiant Energy System                                                |
| CID   | Cloud Imager Data                                                                           |
| CLAVR | Clouds from AVHRR                                                                           |
| CLS   | Constrained Least Squares                                                                   |
| COPRS | Cloud Optical Property Retrieval System                                                     |
| CPR   | Cloud Profiling Radar                                                                       |
| CRH   | Clear Reflectance, Temperature History (CERES Archival Data Product)                        |
| CRS   | Single Satellite CERES Footprint, Radiative Fluxes and Clouds (CERES Archival Data Product) |
| DAAC  | Distributed Active Archive Center                                                           |
| DAC   | Digital-Analog Converter                                                                    |
| DB    | Database                                                                                    |
| DFD   | Data Flow Diagram                                                                           |
| DLF   | Downward Longwave Flux                                                                      |

| DMSP        | Defense Meteorological Satellite Program                                        |
|-------------|---------------------------------------------------------------------------------|
| EADM        | ERBE-Like Albedo Directional Model (CERES Input Data Product)                   |
| ECA         | Earth Central Angle                                                             |
| ECLIPS      | Experimental Cloud Lidar Pilot Study                                            |
| ECMWF       | European Centre for Medium-Range Weather Forecasts                              |
| EDDB        | ERBE-Like Daily Data Base (CERES Archival Data Product)                         |
| EID9        | ERBE-Like Internal Data Product 9 (CERES Internal Data Product)                 |
| EOS         | Earth Observing System                                                          |
| EOSDIS      | Earth Observing System Data Information System                                  |
| EOS-AM      | EOS Morning Crossing Mission                                                    |
| EOS-PM      | EOS Afternoon Crossing Mission                                                  |
| ENSO        | El Niño/Southern Oscillation                                                    |
| ENVISAT     | Environmental Satellite                                                         |
| EPHANC      | Ephemeris and Ancillary (CERES Input Data Product)                              |
| ERB         | Earth Radiation Budget                                                          |
| ERBE        | Earth Radiation Budget Experiment                                               |
| ERBS        | Earth Radiation Budget Satellite                                                |
| ESA         | European Space Agency                                                           |
| ES4         | ERBE-Like S4 Data Product (CERES Archival Data Product)                         |
| ES4G        | ERBE-Like S4G Data Product (CERES Archival Data Product)                        |
| ES8         | ERBE-Like S8 Data Product (CERES Archival Data Product)                         |
| ES9         | ERBE-Like S9 Data Product (CERES Archival Data Product)                         |
| FLOP        | Floating Point Operation                                                        |
| FIRE        | First ISCCP Regional Experiment                                                 |
| FIRE II IFO | First ISCCP Regional Experiment II Intensive Field Observations                 |
| FOV         | Field of View                                                                   |
| FSW         | Hourly Gridded Single Satellite Fluxes and Clouds (CERES Archival Data Product) |
| FTM         | Functional Test Model                                                           |
| GAC         | Global Area Coverage (AVHRR data mode)                                          |
| GAP         | Gridded Atmospheric Product (CERES Input Data Product)                          |
| GCIP        | GEWEX Continental-Phase International Project                                   |
| GCM         | General Circulation Model                                                       |
| GEBA        | Global Energy Balance Archive                                                   |
| GEO         | ISSCP Radiances (CERES Input Data Product)                                      |
| GEWEX       | Global Energy and Water Cycle Experiment                                        |
| GLAS        | Geoscience Laser Altimetry System                                               |
| GMS         | Geostationary Meteorological Satellite                                          |
| GOES        | Geostationary Operational Environmental Satellite                               |
| HBTM        | Hybrid Bispectral Threshold Method                                              |
|             |                                                                                 |

| HIRS      | High-Resolution Infrared Radiation Sounder             |
|-----------|--------------------------------------------------------|
| HIS       | High-Resolution Interferometer Sounder                 |
| ICM       | Internal Calibration Module                            |
| ICRCCM    | Intercomparison of Radiation Codes in Climate Models   |
| ID        | Identification                                         |
| IEEE      | Institute of Electrical and Electronics Engineers      |
| IES       | Instrument Earth Scans (CERES Internal Data Product)   |
| IFO       | Intensive Field Observation                            |
| INSAT     | Indian Satellite                                       |
| IOP       | Intensive Observing Period                             |
| IR        | Infrared                                               |
| IRIS      | Infrared Interferometer Spectrometer                   |
| ISCCP     | International Satellite Cloud Climatology Project      |
| ISS       | Integrated Sounding System                             |
| IWP       | Ice Water Path                                         |
| LAC       | Local Area Coverage (AVHRR data mode)                  |
| LaRC      | Langley Research Center                                |
| LBC       | Laser Beam Ceilometer                                  |
| LBTM      | Layer Bispectral Threshold Method                      |
| Lidar     | Light Detection and Ranging                            |
| LITE      | Lidar In-Space Technology Experiment                   |
| Lowtran 7 | Low-Resolution Transmittance (Radiative Transfer Code) |
| LW        | Longwave                                               |
| LWP       | Liquid Water Path                                      |
| LWRE      | Longwave Radiant Excitance                             |
| MAM       | Mirror Attenuator Mosaic                               |
| MC        | Mostly Cloudy                                          |
| MCR       | Microwave Cloud Radiometer                             |
| METEOSAT  | Meteorological Operational Satellite (European)        |
| METSAT    | Meteorological Satellite                               |
| MFLOP     | Million FLOP                                           |
| MIMR      | Multifrequency Imaging Microwave Radiometer            |
| MISR      | Multiangle Imaging Spectroradiometer                   |
| MLE       | Maximum Likelihood Estimate                            |
| MOA       | Meteorology Ozone and Aerosol                          |
| MODIS     | Moderate-Resolution Imaging Spectroradiometer          |
| MSMR      | Multispectral, multiresolution                         |
| MTSA      | Monthly Time and Space Averaging                       |
| MWH       | Microwave Humidity                                     |

| MWP     | Microwave Water Path                                                                 |
|---------|--------------------------------------------------------------------------------------|
| NASA    | National Aeronautics and Space Administration                                        |
| NCAR    | National Center for Atmospheric Research                                             |
| NESDIS  | National Environmental Satellite, Data, and Information Service                      |
| NIR     | Near Infrared                                                                        |
| NMC     | National Meteorological Center                                                       |
| NOAA    | National Oceanic and Atmospheric Administration                                      |
| NWP     | Numerical Weather Prediction                                                         |
| OLR     | Outgoing Longwave Radiation                                                          |
| OPD     | Ozone Profile Data (CERES Input Data Product)                                        |
| OV      | Overcast                                                                             |
| PC      | Partly Cloudy                                                                        |
| POLDER  | Polarization of Directionality of Earth's Reflectances                               |
| PRT     | Platinum Resistance Thermometer                                                      |
| PSF     | Point Spread Function                                                                |
| PW      | Precipitable Water                                                                   |
| RAPS    | Rotating Azimuth Plane Scan                                                          |
| RPM     | Radiance Pairs Method                                                                |
| RTM     | Radiometer Test Model                                                                |
| SAB     | Sorting by Angular Bins                                                              |
| SAGE    | Stratospheric Aerosol and Gas Experiment                                             |
| SARB    | Surface and Atmospheric Radiation Budget Working Group                               |
| SDCD    | Solar Distance Correction and Declination                                            |
| SFC     | Hourly Gridded Single Satellite TOA and Surface Fluxes (CERES Archival Data Product) |
| SHEBA   | Surface Heat Budget in the Arctic                                                    |
| SPECTRE | Spectral Radiance Experiment                                                         |
| SRB     | Surface Radiation Budget                                                             |
| SRBAVG  | Surface Radiation Budget Average (CERES Archival Data Product)                       |
| SSF     | Single Satellite CERES Footprint TOA and Surface Fluxes, Clouds                      |
| SSMI    | Special Sensor Microwave Imager                                                      |
| SST     | Sea Surface Temperature                                                              |
| SURFMAP | Surface Properties and Maps (CERES Input Product)                                    |
| SW      | Shortwave                                                                            |
| SWICS   | Shortwave Internal Calibration Source                                                |
| SWRE    | Shortwave Radiant Excitance                                                          |
| SYN     | Synoptic Radiative Fluxes and Clouds (CERES Archival Data Product)                   |
| SZA     | Solar Zenith Angle                                                                   |
| THIR    | Temperature/Humidity Infrared Radiometer (Nimbus)                                    |
|         |                                                                                      |

| TIROS | Television Infrared Observation Satellite                                                  |
|-------|--------------------------------------------------------------------------------------------|
| TISA  | Time Interpolation and Spatial Averaging Working Group                                     |
| TMI   | TRMM Microwave Imager                                                                      |
| TOA   | Top of the Atmosphere                                                                      |
| TOGA  | Tropical Ocean Global Atmosphere                                                           |
| TOMS  | Total Ozone Mapping Spectrometer                                                           |
| TOVS  | TIROS Operational Vertical Sounder                                                         |
| TRMM  | Tropical Rainfall Measuring Mission                                                        |
| TSA   | Time-Space Averaging                                                                       |
| UAV   | Unmanned Aerospace Vehicle                                                                 |
| UT    | Universal Time                                                                             |
| UTC   | Universal Time Code                                                                        |
| VAS   | VISSR Atmospheric Sounder (GOES)                                                           |
| VIRS  | Visible Infrared Scanner                                                                   |
| VISSR | Visible and Infrared Spin Scan Radiometer                                                  |
| WCRP  | World Climate Research Program                                                             |
| WG    | Working Group                                                                              |
| Win   | Window                                                                                     |
| WN    | Window                                                                                     |
| WMO   | World Meteorological Organization                                                          |
| ZAVG  | Monthly Zonal and Global Average Radiative Fluxes and Clouds (CERES Archival Data Product) |

# Symbols

| Α                 | atmospheric absorptance                             |
|-------------------|-----------------------------------------------------|
| $B_{\lambda}(T)$  | Planck function                                     |
| С                 | cloud fractional area coverage                      |
| $CF_2Cl_2$        | dichlorofluorocarbon                                |
| CFCl <sub>3</sub> | trichlorofluorocarbon                               |
| CH <sub>4</sub>   | methane                                             |
| CO <sub>2</sub>   | carbon dioxide                                      |
| D                 | total number of days in the month                   |
| D <sub>e</sub>    | cloud particle equivalent diameter (for ice clouds) |
| $E_o$             | solar constant or solar irradiance                  |
| F                 | flux                                                |
| f                 | fraction                                            |
| G <sub>a</sub>    | atmospheric greenhouse effect                       |
| g                 | cloud asymmetry parameter                           |
| H <sub>2</sub> O  | water vapor                                         |
|                   |                                                     |

| Ι                              | radiance                                          |
|--------------------------------|---------------------------------------------------|
| i                              | scene type                                        |
| m <sub>i</sub>                 | imaginary refractive index                        |
| Ñ                              | angular momentum vector                           |
| N <sub>2</sub> O               | nitrous oxide                                     |
| O <sub>3</sub>                 | ozone                                             |
| Р                              | point spread function                             |
| p                              | pressure                                          |
| $Q_a$                          | absorption efficiency                             |
| $Q_e$                          | extinction efficiency                             |
| $Q_s$                          | scattering efficiency                             |
| R                              | anisotropic reflectance factor                    |
| r <sub>E</sub>                 | radius of the Earth                               |
| r <sub>e</sub>                 | effective cloud droplet radius (for water clouds) |
| r <sub>h</sub>                 | column-averaged relative humidity                 |
| S <sub>o</sub>                 | summed solar incident SW flux                     |
| S'o                            | integrated solar incident SW flux                 |
| Т                              | temperature                                       |
| $T_B$                          | blackbody temperature                             |
| t                              | time or transmittance                             |
| W <sub>liq</sub>               | liquid water path                                 |
| w                              | precipitable water                                |
| x <sub>o</sub>                 | satellite position at $t_o$                       |
| <i>x</i> , <i>y</i> , <i>z</i> | satellite position vector components              |
| <i>x</i> , <i>y</i> , <i>z</i> | satellite velocity vector components              |
| z                              | altitude                                          |
| z <sub>top</sub>               | altitude at top of atmosphere                     |
| α                              | albedo or cone angle                              |
| β                              | cross-scan angle                                  |
| γ                              | Earth central angle                               |
| Yat                            | along-track angle                                 |
| $\gamma_{ct}$                  | cross-track angle                                 |
| δ                              | along-scan angle                                  |
| ε                              | emittance                                         |
| Θ                              | colatitude of satellite                           |
| θ                              | viewing zenith angle                              |
| $\theta_o$                     | solar zenith angle                                |
| λ                              | wavelength                                        |
| μ                              | viewing zenith angle cosine                       |

| $\mu_o$                 | solar zenith angle cosine                      |
|-------------------------|------------------------------------------------|
| ν                       | wave number                                    |
| ρ                       | bidirectional reflectance                      |
| τ                       | optical depth                                  |
| $\tau_{aer}(p)$         | spectral optical depth profiles of aerosols    |
| $\tau_{H_2O\lambda}(p)$ | spectral optical depth profiles of water vapor |
| $\tau_{O_3}(p)$         | spectral optical depth profiles of ozone       |
| Φ                       | longitude of satellite                         |
| φ                       | azimuth angle                                  |
| ω <sub>o</sub>          | single-scattering albedo                       |

Subscripts:

| С   | cloud               |
|-----|---------------------|
| cb  | cloud base          |
| ce  | cloud effective     |
| cld | cloud               |
| cs  | clear sky           |
| ct  | cloud top           |
| ice | ice water           |
| lc  | lower cloud         |
| liq | liquid water        |
| S   | surface             |
| ис  | upper cloud         |
| λ   | spectral wavelength |

# Units

| AU                    | astronomical unit          |
|-----------------------|----------------------------|
| cm                    | centimeter                 |
| cm-sec <sup>-1</sup>  | centimeter per second      |
| count                 | count                      |
| day                   | day, Julian date           |
| deg                   | degree                     |
| deg-sec <sup>-1</sup> | degree per second          |
| DU                    | Dobson unit                |
| erg-sec <sup>-1</sup> | erg per second             |
| fraction              | fraction (range of 0-1)    |
| g                     | gram                       |
| g-cm <sup>-2</sup>    | gram per square centimeter |
| $g - g^{-1}$          | gram per gram              |
| g-m <sup>-2</sup>     | gram per square meter      |

| h                           | hour                                               |
|-----------------------------|----------------------------------------------------|
| hPa                         | hectopascal                                        |
| К                           | Kelvin                                             |
| kg                          | kilogram                                           |
| kg-m <sup>-2</sup>          | kilogram per square meter                          |
| km                          | kilometer                                          |
| km-sec <sup>-1</sup>        | kilometer per second                               |
| m                           | meter                                              |
| mm                          | millimeter                                         |
| μm                          | micrometer, micron                                 |
| N/A                         | not applicable, none, unitless, dimensionless      |
| ohm-cm <sup>-1</sup>        | ohm per centimeter                                 |
| percent                     | percent (range of 0-100)                           |
| rad                         | radian                                             |
| rad-sec <sup>-1</sup>       | radian per second                                  |
| sec                         | second                                             |
| sr <sup>-1</sup>            | per steradian                                      |
| W                           | watt                                               |
| $W-m^{-2}$                  | watt per square meter                              |
| $W-m^{-2}sr^{-1}$           | watt per square meter per steradian                |
| $W-m^{-2}sr^{-1}\mu m^{-1}$ | watt per square meter per steradian per micrometer |

# **CERES Top Level Data Flow Diagram**



# Clouds and the Earth's Radiant Energy System (CERES)

**Algorithm Theoretical Basis Document** 

Instrument Geolocate and Calibrate Earth Radiances

(Subsystem 1.0)

# **CERES Science Team Cloud Retrieval Working Group**

Robert B. Lee III/Group Leader<sup>1</sup> Brooks A. Childers<sup>1</sup> Bruce R. Barkstrom/P.I.<sup>1</sup> G. Louis Smith<sup>1</sup> Dominique A. Crommelynck<sup>2</sup>

# **Count Conversion**

William C. Bolden<sup>3</sup> Jack Paden<sup>3</sup> Dhirendra K. Pandey<sup>3</sup> Susan Thomas<sup>3</sup> Robert S. Wilson<sup>3</sup>

# **Telemetry and Geolocation**

Kathy A. Bush<sup>3</sup> Phillip C. Hess<sup>3</sup> William L. Weaver<sup>3</sup>

<sup>1</sup>NASA Langley Research Center, Hampton, Virginia 23681-0001

<sup>2</sup>Belgium Royal Meteorological Institute, Avenue Circulaire 3, B-1180 Brussels, Belgium <sup>3</sup>Science Applications International Corporation (SAIC), Hampton, Virginia 23666



# **CERES Top Level Data Flow Diagram**



# Subsystem 1.0 Top Level Data Flow Diagram

# Abstract

The instrument geolocate and calibrate Earth radiance subsystem is the front end of the Clouds and the Earth's Radiant Energy System (CERES) data management system. The spacecraft ephemeris and sensor telemetry are inputs to this subsystem which uses instrument calibration coefficients to convert the spacecraft telemetry inputs into geolocated filtered radiances and housekeeping data into engineering units. These level-1b, chronologically organized standard data products are called the bidirectional scan (BDS) radiances. The BDS product package contains the full set of raw telemetry data along with the converted engineering values. The BDS filtered radiances are converted by the Earth Radiation Budget Experiment (ERBE)-like inversion subsystem into the standard product of unfiltered fluxes at the top of the atmosphere. The instrument subsystem produces nonstandard/ internal radiance products, identified as instrument Earth scan (IES). The IES spatially organized products are inputs to the cloud processing subsystem.

# **1.0. Instrument Geolocate and Calibrate Earth Radiances**

### Acronyms

| ACA   | Azimuth Control Assembly                                       |
|-------|----------------------------------------------------------------|
| ADC   | Analog-to-Digital Conversion                                   |
| ADM   | Angular Distribution Model                                     |
| APID  | Application Process Identifier                                 |
| BB    | Blackbody                                                      |
| BDS   | Bidirectional Scan                                             |
| CCSDS | Consultative Committee for Space Data Systems, based on octets |
| CERES | Clouds and Earth's Radiant Energy System                       |
| CPU   | Central Processing Unit                                        |
| CRR   | Constant Radiance Reference                                    |
| CSR   | Cold Space Reference                                           |
| DAA   | Data Acquisition Assembly                                      |
| DAC   | Digital-to-Analog Converter                                    |
| DAP   | Data Acquisition Processor                                     |
| ECA   | Elevation Control Assembly                                     |
| EOS   | Earth Observing System                                         |
| ERBE  | Earth Radiation Budget Experiment                              |
| FOV   | Field of View                                                  |
| FTM   | Functional Test Model                                          |
| FTS   | Fourier Transform Spectrometer                                 |
| ICA   | Instrument Control Assembly                                    |
|       |                                                                |

| ICM     | Internal Calibration Module                                         |
|---------|---------------------------------------------------------------------|
| ICP     | Instrument Control Processor                                        |
| ICS     | Instrument Coordinate System                                        |
| ICSBB   | Internal Calibration Source Blackbody                               |
| IES     | Instrument Earth Scan                                               |
| IPTS-68 | International Practical Temperature Scale of 1968                   |
| ITS-90  | International Temperature Scale of 1990                             |
| LW      | Longwave                                                            |
| MAM     | Mirror Attenuator Mosaic                                            |
| MEA     | Main Electronics Assembly                                           |
| MODIS   | Moderate-Resolution Imaging Spectrometer                            |
| NFBB    | Narrow Field-of-View Blackbody                                      |
| PCA     | Power Converter Assembly                                            |
| PFM     | Protoflight Model                                                   |
| PRFS    | Point Response Function Source                                      |
| PROM    | Programmable Read Only Memory                                       |
| PRT     | Platinum Resistance Thermometer                                     |
| RAM     | Random Access Memory                                                |
| RAPS    | Rotating Azimuth Plane Scan                                         |
| RCF     | Radiometric Calibration Facility                                    |
| RTM     | Radiometric Test Module                                             |
| S/C     | Spacecraft                                                          |
| SEA     | Sensor Electronics Assembly                                         |
| SPS     | Solar Presence Sensor                                               |
| SSA     | Sensor Scan Assembly                                                |
| SW      | Shortwave                                                           |
| SWICS   | Shortwave Internal Calibration Source                               |
| SWRS    | Shortwave Reference Source                                          |
| TACR    | Transfer Active Cavity Radiometer                                   |
| TBD     | To Be Defined                                                       |
| TC      | Total Channel                                                       |
| TOA     | Top of the atmosphere, defined 30 km above the surface of the Earth |
| TRMM    | Tropical Rainfall Measuring Mission                                 |
| WFBB    | Wide Field-of-View Blackbody                                        |
| Symbols |                                                                     |
| ~       |                                                                     |

| A <sub>B</sub> | Detector bias voltage constant defined by equation (1-21) |
|----------------|-----------------------------------------------------------|
| A <sub>D</sub> | Detector DAC constant defined by equation (1-20)          |
| A <sub>H</sub> | Detector heat-sink constant defined by equation (1-19)    |

| A <sub>S</sub>           | Space observation constant defined by equation (1-18)                       |
|--------------------------|-----------------------------------------------------------------------------|
| $A_V$                    | Detector gain expression, defined by equation (1-17)                        |
| AB                       | Detector bias voltage calibration constant                                  |
| AD                       | Detector DAC voltage calibration constant                                   |
| AHA                      | Detector heat-sink calibration constant                                     |
| AV                       | Detector calibration gain                                                   |
| AVA                      | Detector space observation calibration constant                             |
| В                        | Temperature coefficient of bolometer material, 3400 K                       |
| С                        | Digital-to-analog conversion factor of 409.5 counts per volt                |
| $C_1$                    | $1.1909 \times 10^{-16} \mathrm{W} \cdot \mathrm{m}^2$                      |
| <i>C</i> <sub>2</sub>    | $1.4387 \times 10^{-2} \text{ m-K}$                                         |
| h                        | Height of spacecraft above the surface of the Earth                         |
| K <sub>fo</sub>          | Post amplification gain                                                     |
| K <sub>T</sub>           | Housekeeping temperature thermistor coefficient, defined by equation (1-25) |
| $K_1, K_2, K_f, K_{on},$ | Housekeeping temperature coefficients defined in table 1-2                  |
| $K_{p1}, K_{p2}, K$      |                                                                             |
| L                        | Filtered radiance                                                           |
| $L(\lambda)$             | Unfiltered spectral radiance                                                |
| m                        | Detector output signal at time t                                            |
| m <sub>s</sub>           | Detector output signal, observing cold space                                |
| <i>o</i> ( <i>t</i> )    | Detector offset dependent upon scan geometry (elevation angle)              |
| Р                        | Point spread function                                                       |
| p                        | Roll angle around the spacecraft X-axis                                     |
| Q                        | Heat transfer                                                               |
| q                        | Pitch angle about spacecraft Y-axis                                         |
| R                        | Bolometer resistivity at temperature T                                      |
| R <sub>e</sub>           | Earth radius at the equator                                                 |
| $R_0$                    | Bolometer resistivity at reference temperature $T_0$ , 250 ohm-cm           |
| $R_p$                    | Earth radius at either pole                                                 |
| r                        | Yaw angle about spacecraft Z-axis                                           |
| S                        | Detector response                                                           |
| $S(\lambda)$             | Spectral response                                                           |
| $S(\theta,\phi,x,y)$     | Detector angular and spatial response                                       |
| Т                        | Temperature                                                                 |
| $T_H$                    | Detector heat-sink temperature                                              |
| T <sub>m</sub>           | Thermistor temperature                                                      |
| T <sub>0</sub>           | Reference temperature                                                       |
| T <sub>PRT</sub>         | Detector temperature                                                        |
| T <sub>s</sub>           | Sensor heater control temperature, defined by equation (1-23)               |

| t                     | Time                                                                                                                |
|-----------------------|---------------------------------------------------------------------------------------------------------------------|
| t <sub>k</sub>        | Time of the reference space observations                                                                            |
| t <sub>ki</sub>       | $t_k + i (10 \text{ msec})$                                                                                         |
| <i>t</i> <sub>0</sub> | Time of space observation                                                                                           |
| V <sub>bias</sub>     | Bolometer bias and bridge voltage                                                                                   |
| V <sub>D</sub>        | Detector DAC drift voltage                                                                                          |
| V(t)                  | Detector output signal voltage at time t                                                                            |
| $V(t_k)$              | Detector output signal voltage at time $t_k$ space observation                                                      |
| X <sub>I</sub>        | Instrument fixed X-axis, figure 1-22                                                                                |
| X <sub>S</sub>        | Spacecraft fixed X-axis, figure 1-22                                                                                |
| X <sub>β</sub>        | Detector X-axis, perpendicular to elevation plane                                                                   |
| Y <sub>I</sub>        | Instrument fixed Y-axis, figure 1-22                                                                                |
| Y <sub>S</sub>        | Spacecraft fixed Y-axis, figure 1-22                                                                                |
| Y <sub>β</sub>        | Detector Y-axis, in elevation plane and perpendicular to detector optical axis                                      |
| $Z_I$                 | Instrument fixed Z-axis, figure 1-22                                                                                |
| $Z_S$                 | Spacecraft fixed Z-axis, figure 1-22                                                                                |
| $Z_{\beta}$           | Detector Z-axis, aligned with the detector optical axis                                                             |
| α                     | Azimuthal angle of rotation, between $Y_{\beta}$ and $Y_{\alpha}$ axes                                              |
| $\alpha_b$            | Absorptance of bolometer black paint layer                                                                          |
| β                     | Elevation angle of rotation                                                                                         |
| γ                     | Average time lag between the instantaneous detector optical field of view and point spread function centroid        |
| $\Delta_t$            | 6.6-sec total scan period                                                                                           |
| δ <sub>k</sub>        | Estimate of unaccounted detector drift during the kth scan period                                                   |
| ε                     | Emittance                                                                                                           |
| η                     | Heading angle defined between north and the projection of the spacecraft velocity vector in the local horizon plane |
| θ                     | Polar angle aligned with optical axis of telescope                                                                  |
| Λ                     | Geodetic longitude of detector measurement                                                                          |
| λ                     | Wavelength, µm                                                                                                      |
| ρ <sub>m</sub>        | Reflectance of telescope silvered mirrors                                                                           |
| $\sigma_k$            | Noise variance estimate during space measurements                                                                   |
| τ                     | Filter transmission                                                                                                 |
| $\Phi_G$              | Geodetic latitude of the detector measurement                                                                       |
| φ                     | Azimuthal angle aligned with the scan direction                                                                     |
| Ω                     | FOV solid angle                                                                                                     |
|                       |                                                                                                                     |

#### 1.1. Introduction

# 1.1.1. Algorithm Purpose

The geolocate algorithms are required to identify the geographic scenes emitting the measured filtered radiances and to define the solar and observational geometries of the radiances. The identification of the geographical scenes allows the radiances to be correlated with the cloud coverage of the scene. Scene cloud coverage and solar/observational geometries are vital in the inversion processes in which the filtered radiances are converted into unfiltered fluxes.

In order to determine accurately the scene radiances, the radiometric count conversion algorithms must be adjusted for changes in specific detector housekeeping temperatures and voltages. These specific housekeeping parameters are used as inputs into the radiometric algorithms and calibration processes.

The detectors output signals are fed into the telemetry stream as digital counts, which are converted into voltages. The radiometric count conversion algorithms convert the detector voltages into the level-1 product of radiances, using calibration (count conversion) coefficients which are derived in ground laboratory measurements. The detector radiance conversion algorithms are represented by equations (1-15) through (1-21), while the detector housekeeping algorithms are outlined by equations (1-22) through (1-25). The geolocate algorithms are summarized by equations (1-26) through (1-34).

The "Geolocate and Calibrate Earth Radiances" processing bubble on the Clouds and the Earth's Radiant Energy System (CERES) Top Level Data Flow Diagram, found on page 2, is outlined on page 3. As illustrated in the Geolocate and Calibrate Earth Radiances processing level flow diagram, this instrument subsystem (1) converts the raw housekeeping telemetry into engineering units (temperatures, voltages, etc.), (2) calculates the geographical location of the CERES footprints, (3) merges the raw spacecraft ephemeris and detector point knowledge telemetry, converted housekeeping data, and raw radiometric detector telemetry, (4) revises the radiometric detector count conversion coefficients when required, (5) converts the detector radiometric signals into filtered radiances, and (6) archives the BDS standard products and generates the nonstandard/internal IES products. The CERES instrument pointing knowledge requirement for the geolocated measurements is  $\pm 0.1$  angular degree per 10 msec, at the spacecraft.

## 1.1.2. Historical Perspective

The basic geolocate and calibrate algorithms were developed in the Earth Radiation Budget Experiment (Barkstrom et al. 1990) and the Nimbus-7 (Kyle et al. 1993) spacecraft missions. The specific algorithms for the Earth Radiation Budget Experiment (ERBE) thermistor bolometers are outlined by Halyo et al. (1987) and Lee et al. (1989), while geolocate algorithms are summarized by Hoffmann et al. (1987). The geolocate, housekeeping, and radiometric count conversion algorithms are discussed briefly in the sections to follow.

To provide a better understanding of the physical and operational processes vital to these algorithms, the CERES detector characteristics and measurement operational modes are discussed before the algorithms are presented. The input and output products of the instrument subsystem are listed in Appendixes A and B, respectively.

## **1.2. Instrument Description**

#### 1.2.1. General Description

The CERES experiment concepts are built upon the successful legacy of the Earth Radiation Budget Experiment (ERBE) spacecraft mission (Barkstrom et al. 1990). The CERES experiment has challenging goals of defining the Earth-emitted longwave and Earth-reflected solar radiances, with

| Detector                 | Short                                                | twave                                   | To                                                   | Window                                  |                                       |
|--------------------------|------------------------------------------------------|-----------------------------------------|------------------------------------------------------|-----------------------------------------|---------------------------------------|
| Spectral Region          | $0.3 \rightarrow < 5.0 \ \mu m$                      |                                         | 0.3 → <                                              | $8 \rightarrow < 12 \ \mu m$            |                                       |
| Scene Levels             | $< 100 \text{ W} \cdot \text{m}^{-2} \text{sr}^{-1}$ | $> 100 \text{ W-m}^{-2} \text{sr}^{-1}$ | $< 100 \text{ W} \cdot \text{m}^{-2} \text{sr}^{-1}$ | $> 100 \text{ W-m}^{-2} \text{sr}^{-1}$ | All levels                            |
| Accuracy<br>Requirements | $0.8 \text{ W-m}^{-2} \text{sr}^{-1}$                | 1.0%                                    | $0.6 \text{ W-m}^{-2} \text{sr}^{-1}$                | 0.5%                                    | $0.3 \text{ W-m}^{-2} \text{sr}^{-1}$ |

Table 1-1. Accuracy Requirements  $(1 \sigma)$ 

precisions  $(1\sigma)$  approaching 0.5 percent and 1.0 percent, respectively, at the instrument level, and measuring narrowband longwave (8-µm to 12-µm) radiances. In table 1-1, the CERES instrument accuracy requirements are listed. The ground calibrations of the CERES sensors are described by Lee et al. (1996).

In addition, the CERES spacecraft investigation is designed to define the physical properties of clouds, define the surface radiation budget, and determine the divergence of energy throughout the atmosphere (Barkstrom 1990, Wielicki and Barkstrom 1991). The CERES instrument packages are scheduled for launch on the NASA Tropical Rainfall Measuring Mission (TRMM) spacecraft as early as 1997 and on the Earth Observing System (EOS) spacecraft platforms starting in 1998. The TRMM spacecraft will be launched into a low-inclination 35°, 350-km altitude orbit by a National Space Development Agency (Japan) launch vehicle. The EOS spacecraft platforms will be launched into a Sunsynchronous polar, 705-km orbit using NASA Atlas IIC launch vehicles.

CERES will focus upon cloud studies and initiate new studies on the surface radiation budget. The work of Ramanathan et al. (1989), based on ERBE detector measurements, has demonstrated that clouds serve to cool the Earth's climate. The higher spatial and spectral resolution cloud pixel measurements from instruments such as the Moderate-Resolution Imaging Spectrometer (MODIS) will be merged with the CERES footprint radiance measurements to provide the best identification of the cloud properties. Along with the continuation of the ERBE-like measurements of reflected solar fluxes and emitted terrestrial fluxes, the CERES instruments will provide angular radiance measurements that will be used to build better Angular Distribution Models (ADM).

The CERES instrument package, as shown in figure 1-1, contains three scanning thermistor bolometer detector units (Lee et al. 1993a) indicated in the figure as total, window, and shortwave detectors. The detectors measure the radiation in the near-visible through far-infrared spectral region. The main electronics assembly (MEA) access connector is shown in the upper portion of the figure, while the mirror attenuator mosaic (MAM) baffles are shown to the right. The CERES detectors are being designed, manufactured, and tested by TRW's Space and Electronics Group, Spacecraft and Technology Division (Redondo Beach, CA) under NASA contract number NAS1-19039. The shortwave detector measures Earth-reflected solar radiation in the wavelength region of 0.3  $\mu$ m to 5.0  $\mu$ m; the window detector measures Earth-emitted longwave radiation in the water vapor window wavelength region of 8  $\mu$ m to 12  $\mu$ m; and the total detector measures radiation in the range of 0.2  $\mu$ m to 200  $\mu$ m. In figure 1-2, the spectral responses of the detectors are shown. The responses represent the spectral throughput of the individual detector optical elements, illustrated in figure 1-3. The detectors are coaligned and mounted on a spindle that rotates about the elevation axis. The detectors fields of view overlap about 98 percent.

### 1.2.2. Detector Element

Each CERES detector unit consists of telescope baffle, telescope, and thermistor bolometer detector modules as shown in figure 1-3. The detector module consists of an active and a reference thermistor bolometer flake with time constants less than 9 and 12 milliseconds, respectively. The telescope baffle prevents radiation from striking the active bolometer flake at angles greater than 16° off the telescope optical axis. The f/1.8 Cassegrainian telescope module has an 18-mm diameter silvered primary mirror



Figure 1-1. CERES instrument.



Figure 1-2. Spectral responsivity of CERES detectors.

and a silvered secondary mirror. In the shortwave and window detectors, the filters are located before the secondary mirror spider and in front of the active bolometer flake. The shortwave detector has a filter made of Dynasil, fused, waterless quartz. The 8  $\mu$ m-12  $\mu$ m window detector has 1-mm-thick zinc sulfide and 0.5-mm-thick cadmium telluride filter elements. The total detector does not have an optical filter. The active and the reference flakes are arranged on a heat sink, which is maintained at a constant temperature of 38°C using 1.9-watt electrical heaters. The surfaces of both the active flake and the reference bolometers are covered with an 11- $\mu$ m-thick absorptive black paint layer of Aeroglaze Z-306 that is doped with 10-percent carbon black. The absorptance of the paint layer is greater than 85 percent out to 100  $\mu$ m (Jarecke et al. 1991). The cross-sectional view of a bolometer detector element assembly is given in figure 1-4.



Figure 1-3. CERES baffle, telescope, and detection modules.



Figure 1-4. Detector element assembly cross-section.

The black paint layer on the active flake absorbs and converts the target scene energy into heat, which causes a measurable change in the bolometer electrical resistance. The bolometer consists of a sintered semiconductor material with a high negative coefficient of resistance. The bolometer electrical resistivity, R, can be represented as a function of the temperature, T, by the following equation (Astheimer 1983)

$$R = R_0 \exp\left[B\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$$
(1-1)

where  $R_o$  is the resistance at the reference temperature  $T_0$  (293 K), and B (3400 K) is the temperature coefficient of the bolometer material. The sintered semiconductor bolometer material is a mixture of

Volume II



Figure 1-5. Illustration of point spread function.

manganese, nickel, and cobalt oxides having a resistivity,  $R_0$ , of approximately 250 ohm-cm at 25°C. Note that Astheimer's Equation and equation (1-1) are equivalent except for a geometric constant factor associated with the thermistor that relates resistivity and resistance. Because the temperature of the bolometer responses to both incoming radiation and heat conducted from the heat sink, we used a compensator bolometer flake to follow thermal changes in the heat sink. The active and compensator bolometer flakes are elements of a Wheatstone bridge. Thus, the bridge output is determined by the scene dependent energy that is absorbed and sensed by the active flake.

The radiometric measurements are sampled from the detectors every 10 milliseconds. The radiation being sampled enters the telescope and strikes the 0.75-mm by 1.50-mm hexagonal precision field stop. The field stop aperture restricts the detector field of view to  $1.3^{\circ}$  by  $2.6^{\circ}$ ; the small angular dimension is in the elevation plane and the larger dimension is perpendicular to the elevation plane. The bolometer signal is then passed through a noise filter and a 4-pole Bessel filter. The filter further delays and smooths the analog signal before the electronics sample it. The field of view footprints of the CERES detectors are approximately 10- and 20-km squares at nadir for the instruments on the TRMM and EOS spacecraft, respectively. Portions of the Earth near the center of the optical axis will contribute more strongly to the measurements than those off center. Quantitatively, each part of the field of view contributes according to the point spread function (P) as shown in figure 1-5 (Smith 1994); the normalized detector response is plotted as functions of along-scan and cross-scan angles, which are found perpendicular to and in the elevation plane, respectively. If the half power point is considered to be the footprint, the CERES footprint measured in Earth central angle is about 4 degrees along track and 2.6 degrees cross track. The point spread function is used in the data reduction algorithms, as described later in sections 1.3.2, Algorithms/Theoretical Basis and 1.3.3, Flight Algorithms/Practical Basis. The TRMM and EOS detector pointing requirements are presented in tables 1-2 and 1-3.

### 1.2.3. Instrument Operations

1.2.3.1. General. The CERES instrument has an operational cycle of 6.6 seconds and several different operational modes, shown in table 1-4. The outputs of the detectors are sampled every 10 milliseconds in all operational modes. While the detectors rotate in the vertical (elevation scan) and horizontal

| Science Mission<br>requirement requirement  |                  | Boresight CERES instrument requirement capability |                               | TRMM<br>capability  | CERES/TRMM<br>capability |
|---------------------------------------------|------------------|---------------------------------------------------|-------------------------------|---------------------|--------------------------|
| Sensor 98 percent common<br>coalignment FOV |                  | 98 percent common<br>FOV                          | >98 percent common N/A<br>FOV |                     | N/A                      |
| Pointing10 percentknowledgeeffective FOV    |                  | 9.8 arc-min 3 arc-min (0.05°)                     |                               | 12 arc-min          | 12.4 arc-min             |
| Pointing Earth/Sun <3<br>accuracy knowledge |                  | <30 arc-min                                       | 3 arc-min (0.05°)             | 24 arc-min          | 24.2 arc-min             |
| Coregistration 0.75 km                      |                  | 7.4 arc-min                                       | 3 arc-min (0.05°)             | 6 arc-min           | 6.7 arc-min              |
| Jitter                                      | 2 percent of FOV | 2.0 arc-min/Earth<br>Scan                         | 0.6 arc-min (0.01°)           | 6 arc-min/<br>1 sec | 6 arc-min/<br>1 sec      |

Table 1-2. TRMM Pointing Requirements

Table 1-3. EOS-AM Pointing Requirements

| Science Mission<br>requirement requirement  |  | Boresight requirement           | CERES instrument capability | EOS-AM<br>capability   | CERES/EOS-AM<br>capability |
|---------------------------------------------|--|---------------------------------|-----------------------------|------------------------|----------------------------|
| Sensor 98 percent common<br>coalignment FOV |  | 98 percent common<br>FOV        | >98 percent common<br>FOV   | N/A                    | N/A                        |
| Pointing 10 percent effe<br>knowledge FOV   |  | 588 arc-sec 180 arc-sec (0.05°) |                             | 114 arc-sec            | 215 arc-sec                |
| PointingEarth/Sunaccuracyknowledge          |  | <1800 arc-sec                   | 180 arc-sec (0.05°)         | 312 arc-sec            | 360 arc-sec                |
| Coregistration 0.75 km                      |  | 215 arc-sec                     | 180 arc-sec (0.05°)         | 215 arc-sec            | 215 arc-sec                |
| Jitter 2 percent of FOV                     |  | 120 arc-sec/Earth<br>Scan       | 36 arc-sec (0.01°)          | 36 arc-sec/<br>6.6 sec | 79 arc-sec/<br>6.6 sec     |

Table 1-4. Operational Modes and Configurations of CERES Instrument

|                                    | Fixed azimuth scan mode                              | Rotating azimuth plane scan mode                     | Solar calibration mode    | Standby mode                 | Diagnostic mode     | Safe mode                 |
|------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------|------------------------------|---------------------|---------------------------|
| Nominal<br>profile                 | Normal Earth<br>scan                                 | Normal Earth<br>scan                                 | MAM scan                  | Scan head<br>stowed          | Scan head<br>stowed | Scan head<br>stowed       |
| Secondary<br>profile               | N/A                                                  | Short scan                                           | N/A                       | N/A                          | N/A                 | N/A                       |
| Azimuth<br>angle                   | Crosstrack (180°)                                    | Uprange-<br>downrange<br>(90°–270°)                  | At predicted Sun<br>angle | Braked at<br>arbitrary angle | TBD                 | Braked at arbitrary angle |
| Inflight<br>calibration<br>sources | OFF or alternate:<br>ON and OFF for<br>internal vals | OFF or alternate:<br>ON and OFF for<br>internal cals | OFF                       | OFF                          | OFF                 | OFF                       |
| Data type                          | Science                                              | Science                                              | Calibration               | Diagnostic                   | Diagnostic          | Diagnostic                |
| Data output<br>format              | Science                                              | Science                                              | Science                   | Science                      | Diagnostic          | Science or diagnostic     |

(azimuth rotation) planes, the instrument makes Earth science measurements. The scanning geometry for the CERES detectors is illustrated in figure 1-6. The instrument has built-in calibration sources, for performing flight calibrations, and can be calibrated by measuring solar radiances reflected by a solar diffuser plate into the instrument field of view.

There are two basic elevation scan profiles associated with the fixed-azimuth and rotating-azimuth plane scan (RAPS) modes: the normal Earth scan and the short Earth scan profile. Figure 1-6 identifies



Figure 1-6. Elevation scan positions for instrument on TRMM platform.



Figure 1-7. Normal and short Earth scan profiles for instrument on TRMM platform.

scenes observed at some specific elevation angles, and figure 1-7 shows the elevation angle with time during a 6.6 second scan period for the normal and short scan profiles of the instrument on the TRMM spacecraft. Figure 1-7 illustrates the uniform motion of the detectors across the Earth and the time spent at several of the fixed scan positions illustrated in figure 1-6. The internal calibration sources are not active (turned on) during normal science operations. The short scan profile restricts the detectors to elevation angles below the Earth limb and is used primarily during rotating azimuth plane scan operation to prevent the detectors from scanning the Sun.

1.2.3.2. Science operations. The most important science operational configuration is crosstrack, fixed-azimuth scan mode and the normal Earth scan profile. In this configuration, the detectors scan perpendicular to the spacecraft orbit plane in a whiskbroom fashion. Data collected and archived chronologically are referred to as bidirectional scan (BDS) measurements. Data internally stored spatially is referred to as instrument Earth scan (IES) measurements. The crosstrack, fixed-azimuth measurements will be the primary data used by the CERES science team for performing Earth radiation budget studies.

As with fixed-azimuth, cross track operation, the primary rotating azimuth plane scan operation also includes the normal Earth scan profile. In this configuration, the detector elevation scan plane normally oscillates through an azimuth angle of  $180^{\circ}$  with the end points being uprange and downrange. At the nominal azimuthal rotation rate of  $6^{\circ}$  per second, a complete azimuth scan cycle is completed in 1 minute. During rotating azimuth operations, the detectors measure radiances from all geographical scenes with varying incident solar radiation and observing geometry. The resulting angular radiance measurements will be used to compute new angular distribution models for use in converting radiances to radiant fluxes.

The alternate configuration during rotating azimuth plane scan includes the short Earth scan profile, which is used to prevent the detectors from scanning the Sun during sunrise and sunset. The scan operation is changed to the short scan profile at the beginning of sunrise and sunset events, and is changed back to the normal scan profile at the end of these events. Changes between scan profiles will be made via stored commands whose times of execution are based on ephemeris predictions. The instrument will perform normal and short scan profiles about 75 and 25 percent of the time, respectively, during RAPS operation.

1.2.3.3. Calibrations. The instrument can perform flight calibrations while operating in the fixedazimuth, crosstrack or rotating azimuth plane scan mode. During flight calibrations, the internal calibration sources are cycled on and off via a programmed sequence of commands while the instrument continues to perform a normal Earth scan profile. Earth measurement data taken during internal calibrations are also included in the archival science data.

The solar calibration mode incorporates a special scan profile in which solar radiances, reflected by the mirror attenuator mosaic (MAM), are measured by the detectors. In this profile, the detectors alternate between making measurements at space (169°), the internal calibration sources, and the MAM. The solar calibration procedure requires that the instrument be rotated to the predicted azimuth angle at which the Sun drifts through the MAM field of view.

**1.2.3.4.** Other operational modes. The diagnostic mode will be used primarily for handling microprocessor memory loads. The safe mode is incorporated to protect the instrument during emergencies or high-risk situations. The safe mode can be entered at any time from any operational mode via a command from either the instrument or the spacecraft. It can be exited only by a real-time ground command. The standby mode is essentially the same as the safe mode, except that it can be entered only via a few operational commands, but the instrument will respond to most operational commands during the standby mode. Diagnostic instrument parameters are listed in table A-4.

1.2.3.5. Operational plans. There will be two CERES instruments aboard the EOS-AM (morning) spacecraft. The current plan is to operate one instrument in the crosstrack/normal Earth scan configuration and the other in the rotating azimuth plane mode with the instrument switching between the normal and short scan profiles as described above. The EOS-PM (afternoon) and TRMM spacecraft will each have a single CERES instrument. The current plan is to operate the instrument in the crosstrack/normal Earth scan configuration for 2 days and in the rotating azimuth plane mode for 1 day out of every 3 days. The internal flight and solar calibrations are performed on each instrument during the same orbit about every 2 weeks.

# **1.3. Earth Radiance Count Conversion Algorithms**

#### 1.3.1. Math Model

In figure 1-3, the silvered primary and secondary telescope mirrors, the filters, and the black paint layer on the active bolometer flake represent the sensor optical elements that reflect, absorb, or transmit scene energy. The spectral response or sensitivity, *S*, of these sensor elements can be represented as

$$S(\lambda) = \tau_f(\lambda)\rho_m^2(\lambda)\alpha_b(\lambda)$$
(1-2)

where  $\tau_f$  represents the combined transmittance of the filters,  $\rho_m$  represents the reflectance of the telescope secondary or primary mirrors, and  $\alpha_b$  is the effective absorptance of the black paint layer on the bolometer. A Fourier transform spectrometer (FTS) and a pyroelectric reference detector (Frink et al. 1993) are used primarily to spectrally characterize the optical elements of each detector, using witness samples. Using equation (1-2) and the spectral characterizations of the optical component elements, the spectral responses were derived for the shortwave, total, and 8- $\mu$ m to 12- $\mu$ m window detector units. The resulting responses are presented in figure 1-2. For the flight detectors, end-to-end spectral characterizations (Jarecke et al. 1994) of each detector will be conducted using the Fourier spectrometer and the reference detector. The filtered radiance sensed at the bolometer surface can be represented as

$$\tilde{L} = \int_{0}^{\infty} L(\lambda)S(\lambda)d\lambda$$
(1-3)

where  $L(\lambda)$  is the unfiltered radiance from a target scene before the radiance enters the telescope. During ground or flight calibrations, the unfiltered spectral radiance  $L(\lambda)$  from a blackbody target (Sparrow and Cess 1978) is calculated as a function of the temperature T and is expressed as

$$L(\lambda) = \frac{C_1}{\lambda^5 (e^{C_2/\lambda T} - 1)}$$
(1-4)

where  $C_1$  (1.1909 × 10<sup>-16</sup> W-m<sup>2</sup>) and  $C_2$  (1.4387 × 10<sup>-2</sup> m-K) are the constants. The filtered radiance  $\tilde{L}$  can be described as the average filtered radiance over the point spread function (P). Thus,  $\tilde{L}$  is expressed as

$$\tilde{L} = \int d\Omega P(\Omega) \int_{0}^{\infty} d\lambda S(\lambda) L(\lambda \Omega)$$
(1-5)

where  $d\Omega$  is the increment of solid angle and is given as

$$d\Omega = d\phi d\theta \sin(\theta) \tag{1-6}$$

where  $\theta$  is the polar angle aligned with the optical axis and  $\phi$  is the azimuthal angle aligned with the scan direction. The symbols  $\theta$  and  $\phi$  define the right-handed, spherical polar coordinate system.

A simplified version of the basic sensor data reduction equation for filtered radiance is

$$\tilde{L} = \frac{AV[m(t) - m_s(t_0)]}{CV_{\text{bias}}}$$
(1-7)

where AV is the detector gain,  $V_{\text{bias}}$  represents the bias voltage in counts applied to the bolometers at time t, m(t) is the detector output voltage signal, in counts, at time t,  $m_s(t_0)$  is the detector output voltage


Figure 1-8. Scanner electronics block diagram.

signal, in counts, when exposed to cold space (3 K radiance source) at time  $t_0$ , and C is the digital-toanalog conversion factor of 409.5 counts/volt. Thus, the gain can be expressed as

$$AV = \frac{CV_{\text{bias}}(\tilde{L} - \tilde{L}_{\text{cold dark source}})}{m - m_{\text{cold dark source}}}$$
(1-8)

where gain is a function of the bias voltage. For the ERBE thermistor bolometer detectors, equations (1-7) and (1-8) are described by Halyo et al. (1987, 1989). The CERES sensor gains are derived from observations of the standard radiometric sources described in section 1.4.

#### 1.3.2. Algorithms/Theoretical Basis

As shown in figure 1-3, the radiation from the target scenes passes through the filters (except for the total channel) and falls on the 18-mm diameter primary telescope mirror and is then reflected to the secondary mirror, which reflects the radiation through the primary insert, the precision field stop (aperture), and through the corresponding filters. Finally, the radiation is absorbed by the active flake paint layer. The absorbed target radiation causes a change in temperature between active and reference flakes that is detected by a balanced bridge. Figure 1-8 shows the block diagram for the detector electronics. The difference in active and reference flake resistances produces a signal that is amplified in the preamp and processed through a low pass filter. The filtered output is sampled, digitized into counts, and telemetered to Earth as the radiometric output of the detector.

The detector output, illustrated in figure 1-9 and resulting from the combined interaction of the incoming radiation, conduction, and electrical modes of heat transfer, Q, can be written under steady state conditions as

$$Q_{\text{conduction}} + Q_{\text{radiation}} + Q_{\text{electrical}} = 0 \tag{1-9}$$



Figure 1-9. Detector output.

The CERES estimation equation for filtered radiance is of the same form as that for the ERBE thermistor bolometers, described by Halyo et al. (1987, 1989). The radiance estimation equation for the CERES sensors can be expressed as

$$\tilde{L}(t-\gamma) = A_{V}[m(t) - m(t_{k})] + A_{H}[T_{H}(t) - T_{H}(t_{k})] + A_{\delta}\delta_{k}\frac{t-t_{k}}{\Delta t}$$
(1-10)

for

 $t_{k-1} \le t \le t_k$ 

The coefficient gain terms  $A_V$  and  $A_H$  are determined using the detector voltage and heatsink temperature measurements, respectively. The coefficient  $A_V$  is the gain expression. The term  $A_{\delta}$  can be given as

$$A_{\delta} = CK_{f_o}A_V \tag{1-11}$$

The time  $t_k$  is given as

$$t_k = t_{k-1} + \Delta t \tag{1-12}$$

The average of the scan points during space clamp is given as

$$\overline{m}(t_k) = \frac{1}{n} \sum_{i=1}^{n} m(t_{ki})$$
 where  $n = 12$  (1-13)

The mean variance of the counts compared with the space clamp during a scan cycle is obtained by the equation

$$\sigma_k^2 = \frac{1}{n} \sum_{i=1}^n \left[ m(t_k) - \overline{m}(t_k) \right]^2$$
(1-14)

The constants in the above equations are defined as

 $\overline{m}(t_k)$  = detector signal, in digital counts, corresponding to space measurement at time  $t_k$ 

 $m(t_{ki})$  = detector signal, in digital counts, when viewing space at  $t_{ki} = t_k + i (10 \text{ ms})$ 

 $\sigma_k^2$  = noise variance estimate during space look

m(t) = detector output signal, in counts, at time t

 $T_{H}(t)$  = heat sink temperature measurement at t or most recent value (K)

 $\Delta t$  = total scan period (6.6 sec)

- $t_k$  = time of space measurement (sec)
- *t* = time of detector measurement (sec)

 $V_{\text{bias}}(t)$  = detector bridge bias voltage, in digital counts, measurement at time t

 $V_D(t_k)$  = drift balance digital to analog conversion (DAC) voltage, in counts, measurement at time  $t_k$ 

- $\delta_k$  = estimate of unaccounted drift during  $t_k$ th scan period (v)
- $\gamma$  = average time lag between the instantaneous detector optical field of view and point spread function centroid (sec)

 $K_{f_o}$  = post amplification gain

C = digital to analog conversion factor, 409.5 digital counts/volt

#### 1.3.3. Flight Algorithms/Practical Basis

From the standpoint of computational time, it is desirable to have as simple an algorithm as possible. Based on equation (1-10), the following algorithm (Lee et al. 1989) has been selected to interpret the CERES detector's radiometric output voltage in digital counts at time t, m(t):

$$\tilde{L}(t-\gamma) = A_{V}[m(t) - \bar{m}(t_{k}) - o(t)] + \frac{t-t_{k}}{\Delta t} [A_{S}(\bar{m}(t_{k+1}) - m(t_{k})) + A_{H}(T_{H}(t_{k+1}) - T_{H}(t_{k})) + A_{D}(V_{D}(t_{k+1}) - V_{D}(t_{k})) + A_{B}(V_{\text{bias}}(t_{k+1}) - V_{\text{bias}}(t_{k}))]$$
(1-15)

where

$$t_k = t_{k+1} + \Delta t \tag{1-16}$$

and  $\overline{m}(t_k)$  is the average detector output signal during the reference space measurements at the beginning of the scan and at time  $t_k$ ,  $\Delta t$  is the scan duration of 6.6 sec, o(t) is an offset dependent on the scan geometry during the scan. The housekeeping data  $T_H(t_k)$  and  $V_D(t_k)$  are transmitted to Earth once every scan and are not available during the scan. The symbol  $T_H(t)$  is the heatsink temperature used to drive the heatsink controller, and  $V_D(t)$  is the digital to analog conversion drift voltage. The symbol  $V_{\text{bias}}(t)$  is the detector bridge bias voltage.

The coefficients  $A_V, A_S, A_H, A_D$ , and  $A_B$  are defined as

$$A_V = \frac{AV}{CV_{\text{bias}}(t)} \tag{1-17}$$

$$A_{S} = \frac{AVA}{CV_{\text{bias}}(t)} \tag{1-18}$$

$$A_{H} = \frac{AHA}{CV_{\text{bias}}(t)}$$
(1-19)

$$A_D = \frac{AD}{CV_{\text{bias}}(t)} \tag{1-20}$$

$$A_B = \frac{AB}{CV_{\text{bias}}(t)} \tag{1-21}$$

where AV, AVA, AHA, AD, and AB are constants determined using the ground calibration data (Lee et al. 1989, Halyo et al. 1989, and Jarecke et al. 1993), and C is the digital-to-analog conversion factor and is equal to 409.5 digital counts/volt.

The first term,  $A_V$ , in equation (1-15) is the most important term, while the remaining terms are relatively small. It is important to point out that the  $A_B$  term in ERBE ground calibration data analysis was



Figure 1-10. Radiometric calibration facility (RCF).

found to be negligible. The ground calibrations of the detectors are outlined in the following section, along with descriptions of the in-flight calibrations.

#### 1.4. Ground and Flight Calibrations

The CERES radiometric test model (RTM) and functional test model (FTM) detectors were calibrated in the TRW radiometric calibration facility (RCF), which is illustrated in figure 1-10. The radiometric calibration facility is 2.44 meters in diameter and 3.66 meters in length. In the early 1980's, the facility was used to calibrate the Earth Radiation Budget Experiment (ERBE) scanning thermistor bolometer detectors (Lee et al. 1989). During the ERBE detector calibrations, the wide field of view blackbody (WFBB) was the primary calibration standard for the TRW facility. The blackbody was formerly called the master reference blackbody (Carman 1983). The blackbody consists of a 12.7-cmdiameter, concentric-groove, anodized black aluminum blackbody. Presently, its emitted radiances are based upon the international temperature scale of 1990 (ITS-90) using six platinum resistance thermometers (PRT), and it is operated over the 200 K and 370 K temperature range. One of its six thermometers is used for temperature control, while the remaining five PRT's are used for temperature knowledge with measurement precisions of the order of  $\pm 0.1$  K. During the ERBE calibrations, the TRW radiometric calibration facility employed the cold space reference (CSR) blackbodies, a solar simulator, a 50.8-cm-diameter integrating sphere with associated optics (Hesser and Carman 1983), liquid nitrogen cooled shroud walls, and Earth visible and infrared albedo radiation simulators.

Since the 1980's, TRW has expanded the facility to include a very accurate reference narrow field of view blackbody (NFBB), an accurate shortwave reference source (SWRS) with minimum longwave variations and better spectral characterizations, a point response function source (PRFS), a blackbody mask for the narrow field of view blackbody that is used as an out of field response mechanism, a constant radiance reference (CRR), curved strip blackbody that is an offset variation measuring instrument, an improved solar simulator, and a cryogenically cooled transfer active cavity radiometer (TACR). The TACR is identical to the reference active-cavity radiometer used by the National Institute of Standards



Figure 1-11. Schematic of narrow field of view blackbody (NFBB).

and Technology (NIST). Detailed descriptions of the radiometric calibration facility are given by Folkman et al. (1991), Jarecke et al. (1991), and Lee et al. (1993a). The May 1992 longwave calibration results and equations for the CERES radiometric test model total detectors are presented by Jarecke et al. (1993). The CERES functional test model shortwave, window, and total detectors were calibrated during December 1993. The functional test model calibration analyses will be released by September 1994. The TRMM protoflight model (PFM) detectors are scheduled to be calibrated before August 1995.

### 1.4.1. Longwave Calibrations

The narrow field of view blackbody is the reference source for the CERES longwave and shortwave calibrations (detector gain and offset determinations). The narrow field of view blackbody was selected as the CERES reference standard because it has more accurate spectral characterizations and a higher emittance than the wide field of view blackbody. The NFBB has an aperture opening that is 3.8 cm by 4.7 cm. The aperture is shown in the front view of figure 1-11. The narrow field of view blackbody has copper walls that are coated with an Aeroglaze Z-302 specular black paint. The blackbody is approximately 21.45 cm deep with an estimated emittance of 0.999952 (Jarecke et al. 1993). It has seven platinum resistance thermometers that are used for temperature knowledge, and it has one thermometer that is used for temperature control. The PRT's exhibit less than  $\pm 0.033$  K uncertainty in temperature knowledge. The aperture of the blackbody is covered by a thermally controlled, diffused black mask. The mask permits the CERES detector out of field response to be determined and the longwave out of field radiances to be known and held constant during longwave calibrations. The mask covers the detector out of field of view between the telescope module field of view and the location of the telescope detector

baffle, 16° off the detector optical axis. The blackbody temperature is varied at different levels between 200 K and 320 K, while the blackbody aperture mask temperature is typically maintained at 170 K. The mask temperature is set at 170 K, 200 K, 250 K, 300 K, 350 K, and 380 K during out of field response tests.

The longwave gain determination of CERES detectors consists of alternating staring observations at the narrow field of view blackbody and staring observations at the cold space reference blackbody identified in figure 1-10. The cold space reference blackbody is a 12.7-cm-diameter, concentric groove, anodized black aluminum emitting surface. It has two platinum resistance thermometers, which can be used for either temperature control or knowledge. It is cooled by liquid nitrogen to a constant temperature near 85 K. The narrow field of view blackbody radiances are calculated using a temperature-based model. The model is tied to the international temperature scale of 1990 using platinum resistance thermometers. The blackbody radiances are measured by CERES detectors when the NFBB is operated at 11 different temperature levels in the 200 K to 320 K range. Using a form of equation (1-8), the detector gains are determined from regression analyses of the differences in the filtered radiances from the NFBB and the CSR, and of the differences in the detectors output signals corresponding to measurements of the NFBB and CSR. Since the detectors are sensitive to the out of field radiances as well as in field radiances, the detector out of field response has to be considered in the gain determinations. The out of field response is determined from measurements of the narrow field of view blackbody with its temperature held constant near 200 K, while the NFBB aperture mask temperature is varied between 170 K and 380 K at the difference levels listed previously. Regression analyses of the mask data indicate an out of view response as much as 1 percent of the in field response.

To determine the variation of the detector zero-radiance offset signal, the detector output signal is sampled as a function of scan position with low emittance caps on the telescope module in place of the telescope baffles. The observed systematic offset variations are used to adjust the near zero-radiance measurement of the cold space reference source as a function of scan position. The detectors are sensitive to gravity forces during the offset determination processes. The low-emittance telescope caps allow the offsets to be determined in the same gravitational environment as the detector gains. In its present gravitational orientation, the constant radiance reference (CRR) generated offsets are affected by gravity in an unpredictable manner. Therefore, the CRR is not as reliable as the low-emittance telescope caps in determining the offsets.

In figure 1-12, the uncertainty allocations in percent for the NFBB radiances are presented (Jarecke et al. 1993). The blackbody irradiances are scheduled for cross-comparisons with the cryogenically cooled transfer active cavity radiometer (TACR), shown in figure 1-10. The cross-comparisons will define the linearity of the NFBB.

The wide field of view blackbody is observed in the staring and operational scanning cycle modes to define calibration differences that may be caused by observational geometry and scan rate.

In figure 1-13, the longwave uncertainty allocations in percent are presented for the total detector ground and flight calibrations (Jarecke et al. 1993). In the upper panel of figure 1-13, the ground longwave percent uncertainty allocations are presented for the total detector. The delta from ground block represents the uncertainty error due to differences in the radiant and thermal environments between the ground calibration in the radiometric calibration facility and flight in space, which result in an offset error in the internal calibration source blackbodies (ICSBB). A 0.3-percent ICSBB drift value was observed during the 5-year ERBE bolometer flight calibration time series (Lee et al. 1990, 1993b). The symbol  $\Delta S(\lambda)$  represents the longwave percent uncertainty in characterizing the spectral throughput of each detector. The symbol  $S(\theta, \phi, x, y)$  represents the angular and spatial detector response. The point response function source (PRFS) device is used to define the spatial response function S(x,y) and the point spread function. The internal calibration source blackbody uncertainty is represented by the transfer uncertainty block, and RANCOM is the random error. In the lower panel, the flight longwave percent uncertainty requirements are presented for the total detector.



Figure 1-12. Narrow field of view blackbody (NFBB) percent uncertainty allocations.



Figure 1-13. Longwave (LW) ground and flight calibration percent uncertainty allocations.



Figure 1-14. Transfer active cavity radiometer (TACR).

### 1.4.2. Shortwave Calibrations

For the ERBE calibrations, the total and longwave bolometer detectors were used to transfer the wide field of view blackbody temperature-based radiometric scale to the radiometric calibration facility integrating sphere. The total detector was used to measure the longwave and shortwave radiances from the integrating sphere. The longwave detector was used to measure longwave radiances from the integrating sphere. The properly corrected differences between the total and longwave detector measurements were used to characterize the shortwave radiances from the integrating sphere. For the CERES calibrations, a new shortwave system was developed that minimizes the heating of the integrating sphere and uses a radiometer to transfer the NFBB temperature-based radiometric scale to the new shortwave reference source. The absolute radiometer is called the transfer active cavity radiometer, identified in figure 1-10. The TACR (Foukal et al. 1990) operates near 5 K. In figure 1-14, a schematic of the TACR is presented. The radiometer is equipped with the same telescope and field stop aperture design geometries as the CERES detectors, to duplicate the CERES detector field of view and aperture area. The radiometer makes power measurements with uncertainties approaching 0.2 nW. The product of the radiometer aperture area and field of view was calculated from the TACR power measurements of the NFBB divided by the modeled NFBB target radiances. Folkman et al. (1994) describe the calibration of the SWRS using the TACR. The uncertainty allocations in percents for the radiometer are presented in figure 1-15.

The shortwave reference source is used to determine the shortwave detector and shortwave portion of the total detector gains and offsets. The SWRS consists of a 250 Watt quartz tungsten halogen source lamp, 17 narrow band optical filters, relay reflective optics, an 11-cm diameter Spectralon integrating sphere, and associated optics. The SWRS lamp output is maintained at the 0.1-percent stability level over several hours. The radiant exitance from the sphere has been measured at the 0.5-percent uniformity level over the exit port, which subtends approximately 6 angular degrees at the CERES detectors observational positions.

In the upper portion of figure 1-16, the shortwave calibration percent uncertainty allocations are presented. The uncertainty in the shortwave internal calibration source (SWICS) is considered in the error budget.



Figure 1-15. Transfer active cavity radiometer (TACR) percent uncertainty allocations.



Figure 1-16. Shortwave ground and flight percent uncertainty allocations.

### Volume II



Figure 1-17. Total detector ground and flight percent uncertainty allocations.

In figure 1-17, the uncertainty allocations for the total detector are presented. The numbers in italics represent the predicted performance levels.

### 1.4.3. In-Flight Calibrations

In-flight calibration systems are built into the CERES instrument. The three detectors are calibrated using the internal calibration module (ICM), shown in figure 1-18. The module consists of concentric grooved blackbody sources for the total and longwave detectors and an evaluated tungsten lamp source system, known as the shortwave internal calibration source (SWICS), for the shortwave detector. The basic SWICS design is described by Lee et al. (1993b). The ICM was used to calibrate thermistor bolometers and active-cavity radiometers aboard the Earth Radiation Budget Satellite (ERBS), NOAA-9, and NOAA-10 spacecraft platforms. In figure 1-19, ERBS flight calibration measurements demonstrate the maturity of the CERES ICM design. The measurements represent raw output signals from the shortwave, longwave, and total thermistor bolometers. The dropouts in the measurements were caused by misalignments between the bolometers and the calibration sources. The misalignments occurred when the sensor scanning mechanism became sluggish (Kopia and Lee 1992). The measurements show that the bolometers and flight calibration sources (evacuate tungsten lamp and blackbodies) were stable to approximately 0.3 percent (Lee and Barkstrom 1991, Lee et al. 1993b). The shortwave and total channels are calibrated using the solar radiances reflected from a solar diffuser plate, referred to as the mirror attenuator mosaic (MAM). The locations of the MAM baffle and reflecting surface are identified in figure 1-6. The MAM solar radiance reflecting surface consists of an array of spherical aluminum mirror segments that are separated by a black paint reflecting surface. The CERES MAM design should yield calibration precisions approaching 1 percent for the total and shortwave detectors (Folkman et al. 1993). The CERES basic solar calibration approach and flight data reduction algorithms are similar to those for ERBE, described by Lee et al. (1992). The ERBE MAM calibration approach, flight data reduction algorithms, and in-flight performances have yielded measurement precisions at the 3-percent level (Lee et al. 1992) as shown in figure 1-20. Using the ICM, the CERES total, window, and shortwave detectors will be calibrated to define revisions in the count conversion coefficients, used in equations 1-17 to 1-21, and to monitor the gain stability of these detectors (Lee et al. 1990, Gibson et al.



Figure 1-18. Internal calibration module (ICM).



Figure 1-19. ERBS scanner calibration.



Figure 1-20. NOAA-9 thermistor bolometer solar calibrations.

1992). The nighttime radiance time series for each shortwave detector will be produced on a daily basis to modify the detector offset. By definition, the nighttime shortwave radiance should be zero.

The uncertainty requirements for the flight calibrations are presented in the lower portions of figures 1-13 and 1-16.

#### 1.5. Input Data

The primary data stream is a 24-hour data file or set of archival science data packets containing CERES instrument science measurements and associated engineering data. The contents of these packets are listed in appendix A, table A-2. Each packet consists of instrument data acquired during a 6.6-sec scan period when the instrument is operating in one of the primary science modes. The packet headers contain a time stamp and an application process identifier (APID) that identifies the data as archival science data from a specific CERES instrument.

The archival science data packets from the instruments aboard the EOS platforms also contain orbit ephemeris and spacecraft attitude data for computing the geolocations of the science measurements. The corresponding ancillary data are contained in separate data sets from the TRMM spacecraft. These data are listed in appendix A, table A-4, and section 1.7 describes how these data are used to calculate the Earth locations of the CERES instrument measurements.

The Instrument Subsystem is also capable of dealing with production calibration and diagnostic data sets that consist of data packets when the instrument is acquiring solar calibration data and generating diagnostic data, respectively. The structure of these packets is nearly identical to that of the archival data packets, but the data content is different, and they are identified with the CERES calibration and diagnostic application identifiers, respectively. These data sets consist of all packets generated with the calibration and diagnostic application identifiers during a 24-hour period, but the actual data periods are normally only a fractional part of a day.

# 1.6. Housekeeping Data Conversions to Engineering Units

The basic engineering data provided by the CERES instrument package are elevation and azimuth positions, voltage and temperature measurements, and instrument status information. The temperature and voltage measurements and the status data are essential in monitoring the health and safety of the instruments and in studying the instrument condition during emergencies.

The elevation and azimuth positions, along with the ephemeris and attitude data, determine the location of instrument measurements at the top of the atmosphere. The bias voltage, digital to analog (DAC) drift voltage, and heat-sink temperature are used in the calculation of filtered radiances. The blackbody temperatures and shortwave internal calibration source output voltage are needed in analyzing the calibration data. The instrument status words identify the instrument's operational state.

The data conversion equations for transforming temperature measurements in counts to degrees Celsius are outlined by the CERES Science Team and by TRW. The following relationships are used to calculate the CERES radiometric test model instrument, sensor heater control, and thermistor temperatures.

Detector Temperature:

$$T_{PRT} = 32 + \frac{(K_T - 572.53)}{1.895}$$
(1-22)

Sensor Heater Control Temperature:

$$T_s = 32 + \frac{(K_T - 1012.62)}{4.51333} \tag{1-23}$$

Thermistor Temperature:

$$T_m = [9.354 \times 10^{-4} + 2.211 \times 10^{-4} \ln(K_T) + 1.275 \times 10^{-7} (\ln(K_T))^3]^{-1} - 273.15$$
(1-24)

where  $K_T$  is given as

$$K_{T} = \frac{K_{1}}{1 + \frac{K_{f}}{K_{p}} + \frac{K_{f}}{K_{2}}} \left( \frac{\left(16 \times \frac{\text{Counts}}{4095} - 8\right)}{V_{\text{ref}} + \frac{K_{f}}{K_{p}}} - 1 \right) - K_{on}$$
(1-25)

The numerical constant values required in the above equations for the CERES radiometric test model (RTM) are given in table 1-5. The corresponding constant values for the functional test model, proto-flight model, and the flight model instruments will be defined at a later date.

| Constants             | Detector  | Control Sensor        | Thermistor |  |
|-----------------------|-----------|-----------------------|------------|--|
| <i>K</i> <sub>1</sub> | 2538.7    | 4995.8                | 30 900     |  |
| <i>K</i> <sub>2</sub> | 2635.7    | 2613.8                | 91 434     |  |
| K <sub>f</sub>        | 39 1 1 96 | 348 292               | 20 000     |  |
| K <sub>on</sub>       | 0         | 0                     | 180        |  |
| K <sub>p1</sub>       | 4872      | 76865                 | N/A        |  |
| K <sub>p2</sub>       | 1484      | 14 850                | N/A        |  |
| K <sub>p</sub>        | 1/(1/ Kp  | $1/(1/Kp_1 + 1/Kp_2)$ |            |  |
| V <sub>ref</sub>      | 10        | 10                    | 10         |  |

Table 1-5. Temperature Coefficients for CERES RTM Instrument



Figure 1-21. Geometry of the detector field of view and Earth ellipsoid intersection.

#### 1.7. Field-of-View Location

It is essential in interpreting the CERES radiance measurements that the geographic location falling within the detector field of view be accurately determined for each measurement (Hoffman et al. 1987). The input data required to perform the geolocation procedure include the spacecraft ephemeris and attitude, the detector pointing knowledge, an ellipsoid model of the Earth, and the time. First, the spacecraft position vector and the detector pointing vector are transformed into an Earth fixed coordinate system. The equation of the line passing through the spacecraft position and parallel to the detector pointing vector is then determined and combined with the Earth ellipsoid equation to form a system of equations. Finally, the solution of the system determines the points of intersection between the line and the ellipsoid. The geometry of the procedure is illustrated in figure 1-21. The geographic location observed in the detector field of view is the intersection point closest to the spacecraft. The alternate intersection solution on the far side of the Earth is also shown.

The orientation of the Earth's equatorial plane with respect to the plane of its orbit about the Sun is illustrated in figure 1-22. The axes of the geocentric-equatorial coordinate system (designated by  $X_I$ ,  $Y_I$ , and  $Z_I$ ) are defined with respect to these planes. The  $X_{\Gamma}$ -axis is the intersection of the planes, and the  $Z_{\Gamma}$ -axis is normal to the equatorial plane. The positive direction of the  $X_{\Gamma}$ -axis is from the Sun to the Earth during the autumnal equinox, as illustrated in figure 1-22. The positive direction of the  $Z_{\Gamma}$ -axis is from the Earth's center to the north pole. The positive  $Y_{\Gamma}$ -axis completes a right handed coordinate system. This coordinate system does not rotate with the Earth and makes up the inertial frame that is used to report the spacecraft ephemeris. The position vector for the spacecraft reported in the ephemeris data is designated by  $X_I$ ,  $Y_I$ , and  $Z_I$ .

The Earth's rotation causes the Earth fixed coordinate system (designated by  $X_F$ ,  $Y_F$ , and  $Z_F$ ) to rotate with respect to the inertial system as a function of time. The rotation of the Earth fixed frame is illustrated in figure 1-22. The spacecraft position vector is transformed into Earth fixed coordinates by



Figure 1-22. Orientation of the inertial and Earth fixed coordinate systems with respect to the equatorial and orbital planes.

$$\begin{bmatrix} X_F \\ Y_F \\ Z_F \end{bmatrix} = \begin{bmatrix} \cos v(t) & \sin v(t) & 0 \\ -\sin v(t) & \cos v(t) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_I \\ Y_I \\ Z_I \end{bmatrix}$$
(1-26)

which is a rotation about the  $Z_{\Gamma}$  axis, where v(t) is the time dependent rotation angle of the Earth fixed frame with respect to the inertial frame and is given by

$$v = 99.6909833^{\circ} + 36000.7689^{\circ}t + 0.00038708^{\circ}t^{2} + 360.9856463^{\circ}\Delta d$$
(1-27)

where t is in Julian centuries since 1900 and  $\Delta d$  is fractional days between the measurement time and midnight universal time.

The orientation of the instrument in the spacecraft coordinate system (designated by  $X_S$ ,  $Y_S$ , and  $Z_S$ ) is illustrated in figure 1-23, for the cross-track mode, at the instant of nadir viewing. During nominal operations, the spacecraft coordinate system is aligned with the local horizon coordinate system (designated by  $X_H$ ,  $Y_H$ , and  $Z_H$ ). Therefore,  $X_S$  and  $X_H$  point along the projection of the spacecraft velocity vector in the local horizon plane,  $Z_S$  and  $Z_H$  point to the geodetic nadir, and  $Y_S$  and  $Y_H$  complete the right handed coordinate systems, pointing along the negative orbit momentum vector. The detector has two degrees of freedom relative to the instrument. The instrument is aligned during integration with the spacecraft so that values of zero for the azimuth and elevation angles will point the detector along the orbit momentum vector of the spacecraft. If the alignment is done perfectly, the detector pointing vector in spacecraft coordinates is given by

$$\begin{bmatrix} X_{S} \\ Y_{S} \\ Z_{S} \end{bmatrix} = \begin{bmatrix} \cos\alpha & -\sin\alpha\cos\beta & -\sin\alpha\sin\beta \\ \sin\alpha & \cos\beta\cos\alpha & \sin\alpha\cos\alpha \\ 0 & -\sin\beta & \cos\beta \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$$
(1-28)

...



Figure 1-23. Orientation of the detector field of view with respect to the spacecraft and local horizon coordinate systems.

where  $\alpha$  is the azimuth angle and  $\beta$  is the elevation angle. The orientation of the detector as shown in figure 1-23 is for  $\alpha = 180^{\circ}$  and  $\beta = 90^{\circ}$ .

The roll, pitch, and yaw angles of the spacecraft in orbit will not generally be zero, so the spacecraft will be rotated with respect to the local horizon. The equation that transforms the detector pointing vector from the spacecraft coordinate system to the local horizon coordinate system is

$$\begin{bmatrix} X_H \\ Y_H \\ Z_H \end{bmatrix} = \begin{bmatrix} \cos q \cos r - \sin p \sin q \sin r & -\sin r \cos p & \sin p \sin r \cos q \\ \sin r \cos q + \sin p \sin q \cos r & \cos p \cos r & \sin q \sin r - \sin p \cos q \cos r \\ -\sin q \cos p & \sin p & \cos p \cos q \end{bmatrix} \begin{bmatrix} X_S \\ Y_S \\ Z_S \end{bmatrix}$$
(1-29)

where p, q, and r represent roll, pitch, and yaw angles of the spacecraft about the  $X_H$ ,  $Y_H$ , and  $Z_H$  axes, respectively.

The local horizon coordinate system is rotated about nadir with respect to the local geodetic coordinate system as a result of the inclination of the orbit, as shown in figure 1-24. The rotation angle  $\eta$ , called the heading angle, is the angle between geodetic north and the projection of the spacecraft velocity vector onto the local horizon coordinate system. The detector pointing vector is both rotated by the heading angle and transformed to the Earth fixed geocentric-equatorial coordinate system by

$$\begin{bmatrix} X_F \\ Y_F \\ Z_F \end{bmatrix} = \begin{bmatrix} -\cos\eta\cos\Lambda\sin\Phi_G + \sin\eta\sin\Lambda & -\sin\eta\cos\Lambda\sin\Phi_G - \cos\eta\sin\Lambda & -\cos\Lambda\cos\Phi_G \\ -\cos\eta\sin\Lambda\sin\Phi_G - \sin\eta\cos\Lambda & -\sin\eta\sin\Lambda\sin\Phi_G + \cos\eta\cos\Lambda & -\sin\Lambda\cos\Phi_G \\ \cos\eta\cos\Phi_G & \sin\eta\cos\Phi_G & -\sin\Phi_G \end{bmatrix} \begin{bmatrix} X_H \\ Y_H \\ Z_H \end{bmatrix}$$
(1-30)

where  $\Lambda$  and  $\Phi_G$  are the Earth fixed longitude and geodetic latitude of the spacecraft. The Earth fixed longitude and geocentric latitude are derived from equation 1-26. The geodetic latitude is determined from the geocentric latitude  $\Phi_C$  by

$$\Phi_G = \tan^{-1}(\tan\Phi_C R_e^2/R_p^2)$$
(1-31)

where  $R_e$  and  $R_p$  are the equatorial and polar radii, respectively.



Figure 1-24. Rotation of the local horizon coordinate system with respect to local geodetic north by the spacecraft heading angle  $\eta$ .

The Earth ellipsoid model is given by

$$\frac{X^2}{(R_e+h)^2} + \frac{Y^2}{(R_e+h)^2} + \frac{Z^2}{(R_p+h)^2} = 1$$
(1-32)

where h is a top of atmosphere reference height above the Earth of 30 kilometers. The equation for the line passing through the spacecraft position and parallel to the detector pointing vector is

$$\frac{X - X_0}{a} = \frac{Y - Y_0}{b} = \frac{Z - Z_0}{c}$$
(1-33)

where a, b, and c are the components of the detector pointing vector from equation (1-29), and  $X_0$ ,  $Y_0$ , and  $Z_0$  are the Earth fixed coordinates of the spacecraft from equation (1-26). The solutions of system of equations 1-32 and 1-33 are the Earth fixed coordinates of the detector field-of-view intersection point (designated as  $X_F$ ,  $Y_F$ , and  $Z_F$ ) and an alternate intersection point on the far side of the Earth ellipsoid from the spacecraft.

Finally, the latitude and longitude of the Earth located measurement in Earth fixed geocentric coordinates are:

$$\Phi_{C} = \sin^{-1} \left( \frac{Z_{F}}{\left| \vec{R}_{F} \right|} \right)$$

$$\Lambda_{C} = \tan^{-1} \left( \frac{Y_{F}}{X_{F}} \right)$$
(1-34)

### **1.8. Quality Control Schemes**

1. Monitoring the behavior of housekeeping measurements, such as temperatures and voltages, is very essential. Time histories of all flight housekeeping measurements in terms of minimum, mean, and maximum values will be graphically displayed daily.

2. Limit tests: flight edit routines will be used to justify/verify the set of converted data (detector housekeeping, attitude, spacecraft housekeeping, and radiometric). The tables for limits can be prepared accordingly.

3. Special flight algorithms will be used to detect possible abnormal space zero-radiance measurements.

4. Revision of count conversion coefficients.

During the first 30 days in orbit, the sensor contamination doors will be closed. During this period, the sensors will be calibrated using the internal calibration module at least weekly. After the doors are opened, the ICM and MAM in-flight calibrations will be performed daily during the first week of Earth radiance measurements, every other day during the second week, once a week for the third and fourth weeks, and thereafter every 14 days.

For CERES total-wave, window, and shortwave sensors, the resulting time series plots will be analyzed to monitor the gain stability of these sensors (Lee et al. 1993b). In addition, the difference between the total-wave and longwave sensor nighttime radiance will be monitored on a daily basis to determine any drifts in the sensor coefficients.

The sensors' flight gains and offsets will be evaluated using in-flight calibrations and validation studies. The preflight sensor gains and offsets will be used to initially convert the CERES sensor output signals into radiances. The in-flight calibrations will be used to detect drifts or abrupt shifts in the sensors' responses. Validation measurements of the Earth radiances will be used to verify sensor response changes, indicated by in-flight calibrations. The CERES science team will conduct detailed analyses of the first 6 months of in-flight calibrations and of the validations before the sensor gains or offsets are revised. Thereafter, the gains or offsets will be revised only if the sensors' responses degrade by more than 0.5 percent in the longwave region or 1 percent in the shortwave region.

5. Special flight algorithms and approaches will be used to determine the scanner offsets as derivatives of scanning geometry.

Basically, the sensors' measurements of cold space will be used to define the sensor flight zeroradiance offset. The nighttime Earth shortwave radiance is zero by definition. During each orbit, the nighttime Earth radiances for each shortwave sensor will be used to define the sensor zero-radiance offsets as a function of elevation angle. During the next series of day side measurements, these offset determinations will be used to adjust the cold space determined offsets as a function of elevation angle. In the case of the total-wave and window sensors, the variations of the offsets will be derived from measurements of space during the 180° deep space spacecraft pitch maneuver. The sensor offsets can also be determined from comparisons with different spacecraft calibrated/validation radiance measurements of the same geographical scenes using the techniques of Avis et al. (1994).

6. ERBE developed validation techniques will be used to verify the geolocation accuracies.

The TRMM and EOS sensor pointing requirements are presented in tables 1-2 and 1-3. Coregistration refers to pointing knowledge between the CERES sensor optical axis and the axes of visible and infrared imaging sensors such as the TRMM visible imaging radiometer sounder (VIRS) and EOS AM platform MODIS. The pointing knowledge for the CERES footprints will be checked using coastline crossings (Hoffmann et al. 1987). The crossings were used to verify the ERBE pointing knowledge with average geographical local errors less than 6.1 km from the Earth Radiation Budget Satellite orbital altitude of 610 km.

#### 1.9. Output Data

There are two output data products, the bidirectional scans (BDS) and the instrument Earth scan (IES). Appendix B lists these output products. Each BDS product is a time-ordered 24-hour bidirectional scan data product that is used in the production of the ERBE like products. The BDS product contains both the raw and converted values of radiometric, engineering, digital status, and location data. The IES product consists of 1-hour data of spatially organized footprints that are sent to the cloud subsystem. The IES products contain only the converted filtered radiance for the three channels with each footprint location data, along with associated viewing geometries and quality flags.

#### 1.10. References

- Astheimer, R. W. 1983: Thermistor Infrared Detectors. Infrared Detectors: Proceedings of SPIE, William L. Wolfe, ed., vol. 443, SPIE, pp. 95-109.
- Avis, L. M.; Paden, J.; Lee, R. B. III; Pandey, D. K.; Stassi, J. C.; Wilson, R. S.; Tolson, C. J.; and Bolden, W. C. 1994: NOAA-9 Earth Radiation Budget Experiment (ERBE) Scanner Offsets Determination. NASA TM 109086.
- Barkstrom, Bruce R. 1990: Earth Radiation Budget Measurements-Pre-ERBE, ERBE, and CERES. SPIE, pp. 52-60.
- Barkstrom, Bruce R.; Harrison, Edwin F.; and Lee, Robert, B., III 1990: Earth Radiation Budget Experiment—Preliminary Seasonal Results. EOS, vol. 71, p. 297 and 304.
- Carman, Stephen L. 1983: Deep Concentric Grooves Enhance Blackbody Spectral and Spatial Uniformity. Applications of Optical Metrology: Techniques and Measurements II-Proceedings of SPIE, John J. Lee, Jr., ed., vol. 416, pp. 178-186.
- Folkman, Mark A.; Jarecke, Peter J.; and Darnton, Lane A. 1991: Enhancements to the Radiometric Calibration Facility for the Clouds and the Earth's Radiant Energy System (CERES) Instruments. *Calibration of Passive Remote Observing Optical and Microwave Instrumentation—Proceedings of SPIE*, Bruce W. Guenther, ed., SPIE, vol. 1493, pp. 255–266.
- Folkman, Mark A.; Jarecke, Peter J.; Hedman, Ted R.; Yun, John S.; and Lee, Robert B., III 1993: Design of a Solar Diffuser for On-Orbit Calibration of the Clouds and the Earth's Radiant Energy System (CERES) Instruments. Sensor Systems for the Early Earth Observing System Platforms—Proceedings of SPIE, William E. Barnes, ed., SPIE, vol. 1939, pp. 72–81.
- Folkman, Mark; Jarecke, Peter; Hedman, Ted; Carman, Steve; Avis, Lee; Barkstrom, Bruce; Cooper, Jack; Kopia Leonard; Lawrence, Wes; Lee, Robert; and Smith, Lou 1994: Calibration of a Shortwave Reference Standard by Transfer From a Blackbody Standard Using a Cryogenic Active Cavity Radiometer. *IGRASS '94—Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation*, Volume IV, IEEE, pp. 2298–2300.
- Foukal, Peter V.; Hoyt, C.; Kochling, H.; and Miller, P. 1990: Cryogenic Absolute Radiometers as Laboratory Irradiance Standards. Remote Sens. Detect., & Pyroheliometers. Appl. Opt., vol. 29, pp. 988–993.
- Frink, M. E.; Jarecke, P. J.; Folkman, M. A.; and Wright, R. E. 1993: Far-IR Spectral Measurements of the Clouds and the Earth's Radiant Energy System (CERES) Sensors Using a Fourier Transform Spectrometer and Pyro-Electric Reference Detector. Sensor Systems for the Early Earth Observing System Platforms—Proceedings of SPIE, William E. Barnes, ed., SPIE, vol. 1939, pp. 82–91.
- Gibson, Michael A.; Lee, Robert B., III; and Thomas, Susan 1992: Evaluation of the Earth Radiation Budget Experiment Shortwave Channel's Stability Using In-Flight Calibration Sources. *Instrumentation for Planetary and Terrestrial Atmo*spheric Remote, SPIE, pp. 108-216.
- Halyo, Nesim; Choi, Dan A., Jr.; and Samms, Richard W. 1987: Development of Response Models for the Earth Radiation Budget Experiment (ERBE) Sensors. I—Dynamic Models and Computer Simulations for the ERBE Nonscanner, Scanner and Solar Monitor Sensors. NASA CR-178292.
- Halyo, Nesim; Pandey, Dhirendra K.; and Taylor, Deborah B. 1989: Modeling and Characterization of the Earth Radiation Budget Experiment (ERBE) Nonscanner and Scanner Sensors. NASA CR-181818.
- Hesser, R. J.; and Carman, S. L. 1983: Integrating Sphere as a Precision Radiometer Calibration Source. *Proceedings of SPIE*, vol. 416, pp. 111–118.

- Hoffman, Lawrence H.; Weaver, William L.; and Kibler, James F. 1987: Calculation and Accuracy of ERBE Scanner Measurement Locations. NASA TP-2670.
- Jarecke, P. J.; Folkman, M. A.; and Darnton, L. A. 1991: Radiometric Calibration Plan for the Clouds and the Earth's Radiant Energy System (CERES) Scanning Instruments. *Calibration of Passive Remote Observing Optical and Microwave Instru*mentation—Proceedings of SPIE, Bruce W. Guenther, ed., vol. 1493, pp. 244–254.
- Jarecke, P. J.; Folkman, M. A.; and Hedman, T. R. 1993: Clouds and the Earth's Radiant Energy System (CERES): Long-Wave Calibration Plan and Radiometric Test Model (RTM) Calibration Results. *Metrologia.*, vol. 30, no. 4, p. 223.
- Jarecke, Peter; Frink, Mark; Folkman, Mark; Carman, Steve; Baliga, Shankar; Doctor, Alan; Avis, Lee; Bardstrom, Bruce; Cooper, Jack; Kopia, Leonard; Lawrence, Wes; Lee, Robert; and Smith, Lou: End-to-End Spectral Response Characterization of the Clouds and the Earth's Radiant Energy System Sensors From 0.3 to 200 Microns. IGRASS '94-Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, Volume IV, IEEE, pp. 2007-2009.
- Kopia, Leonard P.; and Lee, Robert B., III 1992: Thermistor Bolometer Scanning Radiometer—Applications and Flight Experience. Opt. Eng., vol. 31, pp. 156–165.
- Kyle, H. L. 1993: The Nimbus Earth Radiation Budget (ERB) Experiment—1975 to 1992. Bull. Am. Meteorol. Soc., vol. 74, no. 5, p. 815.
- Kyle, H. L.; Hickey, J. R.; Ardanuy, P. E.; Jacobowitz, H.; Arking, A.; Cambell, G. G.; House, F. B.; Maschhoff, R.; Smith, G. L.; Stowe, L. L.; and Vonder Haar, T. 1933: The Nimbus Earth Radiation Budget (ERB) Experiment: 1975 to 1992. Bull. American Meteorol. Soc., vol. 74, pp. 815–830/
- Lee, Robert B., III; Barkstrom, Bruce R.; Avis, Lee M.; Halyo, Nesim; and Gibson, Michael A. 1989: Characterization of the Earth Radiation Budget Experiment (ERBE) Scanning Radiometers. *SPIE*, pp. 186–194.
- Lee, Robert B., III; Gibson, M. A.; Thomas, Susan; Meekins, Jeffrey L.; and Mahan, J. R. 1990: Earth Radiation Budget Experiment Scanner Radiometric Calibration Results. Society of Photo-Optical Instrumentation Engineers, pp. 80–91.
- Lee, R. B., III; and Barkstrom, B. R. 1991: Characterization of the Earth Radiation Budget Experiment Radiometers. *Metrologia*, vol. 28, p. 183–187.
- Lee, Robert B.; Avis, Lee M.; Gibson, M. Alan; and Kopia, Leonard P. 1992: Characterization of the Mirror Attenuator Mosaic: Solar Diffuser Plate. Appl. Opt., vol. 31, no. 31, pp. 6643-6652.
- Lee, Robert B., III; Barkstrom, Bruce R.; Carman, Steve L.; Cooper, John E.; Folkman, Mark A.; Jarecke, Peter J.; Kopia, Leonard P.; and Wielicki, Bruce A. 1993a: Sensor Systems for the Early Earth Observing System Platforms—Proceedings of SPIE, William E. Barnes, ed., SPIE, vol. 1939, pp. 61-71.
- Lee, R. B., III; Avis, L. M.; and Gibson, M. A. 1993b: In-Flight Evaluations of Tungsten Calibration Lamps Using Shortwave Thermisotr Bolometers and Active-Cavity. *Metrologia.*, vol. 30, no. 4, p. 389.
- Lee, R. B., III; Barkstrom, B. R.; Smith, G. L.; Cooper, J. E.; Kopia, L. P.; Lawrence, R. W.; Folkman, M. A.; Jarecke, P. J.; Thomas, S.; Pandey, D. K.; Gibson, M. A.; Degnan, K. T.; Weaver, W. L.; and Crommelynck, D. A. H. 1996: The Clouds and the Earth's Radiant Energy System (CERES) Sensors and Preflight Calibration Plans, J. Atmos. & Ocean. Technol., (submitted).
- Ramanathan, V.; Barkstrom, Bruce R.; and Harrison, Edwin F. 1989: Climate and the Earth's Radiation Budget. *Phys. Today*, vol. 42, pp. 22-32.
- Smith, G. Louis 1994: Effects of Time Response on the Point Spread Function of a Scanning Radiometer. Appl. Opt., vol. 33, no. 30, p. 7031.
- Sparrow, E. M.; and Cess, R. D. 1978: Radiation Heat Transfer. Hemisphere Publ., Corp.
- Wielicki, Bruce A.; and Barkstrom, Bruce R. 1991: Clouds and the Earth's Radiant Energy System (CERES)—An Earth Observing System Experiment. Second Symposium on Global Change Studies —Preprints Am. Meteorol. Soc., pp. 11-16.

# Appendix A

## **Input Data Products**

### Geolocate and Calibrate Earth Radiances (Subsystem 1.0)

This appendix describes the data products which are used by the algorithms in this subsystem. Table A-1 below summarizes these products, listing the CERES and EOSDIS product codes or abbreviations, a short product name, the product type, the production frequency, and volume estimates for each individual product as well as a complete data month of production. The product types are defined as follows:

| Archival products:  | Assumed to be permanently stored by EOSDIS      |
|---------------------|-------------------------------------------------|
| Internal products:  | Temporary storage by EOSDIS (days to years)     |
| Ancillary products: | Non-CERES data needed to interpret measurements |

The following pages describe each product. An introductory page provides an overall description of the product and specifies the temporal and spatial coverage. The table which follows the introductory page briefly describes every parameter which is contained in the product. Each product may be thought of as metadata followed by data records. The metadata (or header data) is not well-defined yet and is included mainly as a placeholder. The description of parameters which are present in each data record includes parameter number (a unique number for each distinct parameter), units, dynamic range, the number of elements per record, an estimate of the number of bits required to represent each parameter, and an element number (a unique number for each instance of every parameter). A summary at the bottom of each table shows the current estimated sizes of metadata, each data record, and the total data product. A more detailed description of each data product will be contained in a user's guide to be published before the first CERES launch.

| Produ      | ct code |                                    |          |           |          | Monthly  |
|------------|---------|------------------------------------|----------|-----------|----------|----------|
| CERES      | EOSDIS  | Name                               | Category | Frequency | Size, MB | size, MB |
| INSTR_PDS  | none    | Instrument production data set     | archival | 1/day     | 87.0     | 2697     |
| INSTR_QLKD | none    | Instrument quicklook data set      | archival | 1/day     | 3.3      | 102      |
| EPH_ANC    | none    | Satellite ephemeris/ancillary data | archival | 1/day     | 0.1      | 3        |

Table A-1. Input Products Summary

### Instrument Production Data Set (INSTR\_PDS)

The instrument production data set (INSTR\_PDS) is the level 0 raw data from the CERES instrument as structured by the instrument itself, and is programmed by the instrument developer, TRW, Inc. All CERES instrument output is formatted according to the CCSDS packet concept, and all CERES instrument packets contain the same data output formatting options, although some instrument data packets contain data unique to a particular spacecraft. The seven basic pieces of information contained in a normal CERES data packet (i.e., science output format) are

- 1. Packet header
- 2. Time (in secondary header)
- 3. Radiometric detector outputs
- 4. Instrument gimbal pointing knowledge
- 5. Instrument engineering data (temperatures and voltages)
- 6. Instrument digital status

### Volume II

There are several packet content variations possible for the CERES instruments; some of these variations are due to spacecraft differences and some are due to instrument output differences. These differences are noted in the following table as selections. The data structure labelled EOS\_Quicklook\_Statword represents an 8-bit piece of the secondary header on the EOS platform that will contain a one bit quicklook flag, and seven bits of user-definable flags. Data packets from the TRMM spacecraft do not contain these extra 8 bits in the secondary header, so the EOS\_Quicklook\_Statword structure is not valid for TRMM packets.

Another selection shown in the following table is the INSTR\_Digital\_Status\_Block. One and only one of the two selection possibilities can be present in any given CERES data packet; either the actual instrument digital status information is present, or a "fixed pattern" of bits is present. This fixed pattern will be present when the instrument is outputting data in the fixed pattern data format.

The INSTR\_Science\_Data data structure is another selection where one and only one of the selection possibilities can be present in any given CERES data packet. The selection options here are based on the different data output formats of the instrument: science, memory dump, gimbal operation, processor operation, and fixed pattern.

Finally, the INSTR-EOS\_Ancillary\_Data structure shown in the following table is a spacecraftdependent structure. The spacecraft ancillary data is only appended to data packets output by a CERES instrument on an EOS spacecraft; the data packets output by a CERES instrument on a TRMM spacecraft will not have this information.

Level: 0 Type: Archival Frequency: 1/day

Time Interval Covered File: 1 day Record: Single 6.6-sec scans Portion of Globe Covered File: Satellite swath Record: N/A

**Portion of Atmosphere Covered File:** N/A

# Table A-2. Instrument Production Data Set (INSTR\_PDS)

| Description                                                      | Parameter<br>Number | Units  | Range        | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|------------------------------------------------------------------|---------------------|--------|--------------|---------------------|---------------|-------------|
| INSTR_PDS<br>INSTR_PDS File Header                               |                     | N/A    |              | 1                   | 256           | , tuin      |
| INSTR_PDS_Data_Packets is Array[13091] of:                       |                     |        |              |                     |               |             |
| INSTR_PDS_Data_Packet                                            |                     |        |              |                     |               |             |
| INSTR_Data_Packet                                                |                     |        |              |                     |               |             |
| INSTR_Packet_Hdr                                                 |                     |        |              |                     |               |             |
| INSTR_Packet_Header_Data                                         |                     |        |              |                     |               |             |
| Version Number                                                   | 1                   | N/A    | 07           | 1                   | 3             | 1           |
| Packet Type                                                      | 2                   | N/A    | 01           | 1                   | 1             | 2           |
| Secondary Header Flag                                            | 3                   | N/A    | 01           | 1                   | 1             | 3           |
| Application Identifier                                           | 4                   | N/A    | 02047        | 1                   | 11            | 4           |
| Segment Flags                                                    | 5                   | N/A    | 03           | 1                   | 2             | 5           |
| Source Sequence Count                                            | 6                   | N/A    | 016383       | 1                   | 14            | 6           |
| Packet Length                                                    | 7                   | N/A    | 065535       | 1                   | 16            | 7           |
| Packet Time Code                                                 | 8                   | dav    | Mission Life | • 1                 | 64            | . 8         |
| EOS Supplem Secondary Hdr is selection of                        | -                   | ,      |              |                     |               | -           |
| EOS Supplem Flags                                                |                     |        |              |                     |               |             |
| EOS Quicklook Flag                                               | 9                   | N/A    | 0.1          | 1                   | 1             | 9           |
|                                                                  | 10                  | NI/A   | 0.127        | 1                   | 7             | 10          |
| INSTR Data                                                       | 10                  |        | 0127         | •                   | ,             | 10          |
| INSTR Digital Status Block is selection of                       |                     |        |              |                     |               |             |
| Instrument Digital Status - see DBI 64, Bey B. (TBW) for details | 11                  | _      | _            | 1                   | 2288          | 11          |
| Instrument Digital Status Fixed Pattern                          | 12                  | count  | N/A          | 1                   | 2288          | 12          |
| INSTR Messurement Data is selection of                           | 12                  | count  | 11/0         | ,                   | 2200          | 12          |
| INSTR Science Date is Array(660) of                              |                     |        |              |                     |               |             |
| INSTR Science Becord                                             |                     |        |              |                     |               |             |
| Elevation Position Count                                         | 13                  | count  | 0 65535      | 660                 | 16            | 12          |
| Azimuth Position Count                                           | 14                  | count  | 005555       | 660                 | 10            | 670         |
| Total Detector Output                                            | 14                  | count  | 0055555      | 660                 | 10            | 1000        |
| SW Detector Output                                               | 15                  | count  | 04095        | 660                 | 12            | 1000        |
| Sw Detector Output                                               | 10                  | count  | 04095        | 660                 | 12            | 1993        |
| Instrument Apples Date and DRI 64, Date R (TRIAI) for details    | 17                  | count  | 04095        | 660                 | 12            | 2000        |
| INSTRUMENT Analog Data - see DHL64, Hev. B (THW) for details     | 18                  | -      | -            | 660                 | 12            | 3313        |
| INSTR Memory Pasard                                              |                     |        |              |                     |               |             |
|                                                                  | 10                  | count  | 0 65525      | 660                 | 16            | 2072        |
| Azimuth Resition Count                                           | 19                  | count  | 0.65535      | 660                 | 10            | 4622        |
| DAR Mamory Dump Data                                             | 20                  | EUUIII | 0.655333     | 660                 | 10            | 4000        |
| ICR Memory Dump Data                                             | 21                  | N/A    | 0.65535      | 660                 | 10            | 5052        |
|                                                                  | 22                  | N/A    | 0655555      | 660                 | 10            | 5955        |
| Fill Data                                                        | 23                  | N/A    | 015          | 660                 | 4             | 7070        |
| Instrument Analog Data - see DRL64, Rev. B (TRW) for details     | 24                  | -      | -            | 660                 | 12            | 1213        |
| INSTR. Gimbal Decad                                              |                     |        |              |                     |               |             |
|                                                                  | 05                  |        | 0.05505      | 000                 | 10            | 7000        |
| Elevation Position Count                                         | 25                  | count  | 065535       | 000                 | 10            | 7933        |
|                                                                  | 20                  | count  | 065535       | 000                 | 10            | 0050        |
|                                                                  | 27                  | count  | 055535       | 000                 | 16            | 9253        |
|                                                                  | 28                  | COUNT  | 065535       | 000                 | 16            | 9913        |
| Fill Data                                                        | 29                  | N/A    | 015          | 660                 | 4             | 10573       |
| Instrument Analog Data - see DRL64, Rev. B (1HW) for details     | 30                  | •      | -            | 660                 | 12            | 11233       |
| INSTH_Processor_Operation_Data is Array[660] of:                 |                     |        |              |                     |               |             |
| INSTR_Processor_Op_Record                                        | <b>.</b> .          |        |              |                     |               |             |
| Elevation Position Count                                         | 31                  | count  | U65535       | 660                 | 16            | 11893       |
| Azimuth Position Count                                           | 32                  | count  | 065535       | 660                 | 16            | 12553       |
| DAP Timing                                                       | 33                  | N/A    | 065535       | 660                 | 16            | 13213       |
| ICP Timing                                                       | 34                  | N/A    | 065535       | 660                 | 16            | 13873       |

## Volume II

## Table A-2. Concluded

| Description                                                  | Parameter<br>Number | Units | Range                  | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num    |
|--------------------------------------------------------------|---------------------|-------|------------------------|---------------------|---------------|----------------|
| Fill Data                                                    | 35                  | N/A   | 015                    | 660                 | 4             | 14533          |
| Instrument Analog Data - see DRL64, Rev. B (TRW) for details | 36                  | -     | -                      | 660                 | 12            | 15193          |
| INSTR_Diagnostic_Pattern_Data is Array[660] of:              |                     |       |                        |                     |               |                |
| INSTR_Fixed_Record                                           |                     |       |                        |                     |               |                |
| Fixed Pattern in Elevation Field                             | 37                  | N/A   | 065535                 | 660                 | 16            | 15853          |
| Fixed Pattern for Azimuth Field                              | 38                  | N/A   | 065535                 | 660                 | 16            | 16513          |
| Fixed Pattern for Total Channel Field                        | 39                  | N/A   | 04095                  | 660                 | 12            | 17173          |
| Fixed Pattern for Window Channel Field                       | 40                  | N/A   | 04095                  | 660                 | 12            | 17833          |
| Fixed Pattern for Shortwave Channel Field                    | 41                  | N/A   | 04095                  | 660                 | 12            | 18493          |
| Fixed Pattern for Analog Field                               | 42                  | N/A   | 04095                  | 660                 | 12            | 19153          |
| INSTR-EOS_Ancillary_Data is selection of                     |                     |       |                        |                     |               |                |
| INSTR_Ancillary_Data                                         |                     |       |                        |                     |               |                |
| Ancillary Time Stamp                                         | 43                  | count | 01.84x10 <sup>19</sup> | <sup>9</sup> 1      | 64            | 19813          |
| GPS/UTC Time Conversion                                      | 44                  | count | 04.29x10 <sup>9</sup>  | 1                   | 32            | 19814          |
| Solar Array Current                                          | 45                  | count | 0255                   | 1                   | 8             | 19815          |
| Mag Coil Current X                                           | 46                  | count | 0255                   | 1                   | 8             | 19816          |
| Mag Coil Current Y                                           | 47                  | count | 0255                   | 1                   | 8             | 19817          |
| Mag Coil Current Z                                           | 48                  | count | 0255                   | 1                   | 8             | 19818          |
| Satellite Position (X) Count                                 | 49                  | count | 04.29x10 <sup>9</sup>  | 1                   | 32            | 19819          |
| Satellite Position (Y) Count                                 | 50                  | count | 04.29x10 <sup>9</sup>  | 1                   | 32            | 19820          |
| Satellite Position (Z) Count                                 | 51                  | count | 04.29x10 <sup>9</sup>  | 1                   | 32            | 1 <b>982</b> 1 |
| Satellite Velocity (X) Count                                 | 52                  | count | 04.29x10 <sup>9</sup>  | 1                   | 32            | 19822          |
| Satellite Velocity (Y) Count                                 | 53                  | count | 04.29x10 <sup>9</sup>  | 1                   | 32            | 19823          |
| Satellite Velocity (Z) Count                                 | 54                  | count | 04.29x10 <sup>9</sup>  | 1                   | 32            | 19824          |
| Satellite Attitude (Roll) Count                              | 55                  | count | 065535                 | 1                   | 16            | 19825          |
| Satellite Attitude (Pitch) Count                             | 56                  | count | 065535                 | 1                   | 16            | 19826          |
| Satellite Attitude (Yaw) Count                               | 57                  | count | 065535                 | 1                   | 16            | 19827          |
| Satellite Attitude Rate (Roll) Count                         | 58                  | count | 065535                 | 1                   | 16            | 19828          |
| Satellite Attitude Rate (Pitch) Count                        | 59                  | count | 065535                 | 1                   | 16            | 19829          |
| Satellite Attitude Rate (Yaw) Count                          | 60                  | count | 065535                 | 1                   | 16            | 19830          |
| Solar X Position                                             | 61                  | count | 0255                   | 1                   | 8             | 19831          |
| Solar Y Position                                             | 62                  | count | 0255                   | 1                   | 8             | 19832          |
| Solar Z Position                                             | 63                  | count | 0255                   | 1                   | 8             | 19833          |
| Lunar X Position                                             | 64                  | count | 0255                   | 1                   | 8             | 19834          |
| Lunar Y Position                                             | 65                  | count | 0255                   | 1                   | 8             | 19835          |
| Lunar Z Position                                             | 66                  | count | 0255                   | 1                   | 8             | 19836          |
| Total Meta Bits/File:                                        | 256                 |       |                        |                     |               |                |
| Total Data Bits/Record:                                      | 55720               |       |                        |                     |               |                |
| Total Records/File:                                          | 13091               |       |                        |                     |               |                |
| Total Data Bits/File:                                        | 729430520           |       |                        |                     |               |                |
| Total Bits/File:                                             | 729430776           |       |                        |                     |               |                |

## Instrument Quicklook Data Set (INSTR\_QLKD)

The instrument quicklook data (INSTR\_QLKD) consists of level 0 data downlinked by a spacecraft from a CERES instrument during one TDRSS contact. The data packets are formatted like any other CERES data packet (see INSTR\_PDS discussion for the format of a CERES data packet), but the packets are contained in a single file that holds up to three groups of time-ordered packets, where each group has a separate APID. This data structure principally contains solar and deep-space calibration data and instrument diagnostic data. During normal operations, it is expected that three quicklook data files will be needed for each instrument every two weeks to support calibration activities. For monthly storage sizing purposes, however, a estimate of one quicklook data file per instrument per day was used. This larger estimate is used to factor in instrument anomalies or instrument diagnostic modes that do not occur during normal operations.

Level: 0 Type: Archival Frequency: 1/day

Time Interval Covered File: Variable Record: Single 6.6-sec scans **Portion of Globe Covered File:** Satellite swath **Record:** N/A

**Portion of Atmosphere Covered File:** N/A

# Table A-3. Instrument Quicklook Data Set (INSTR\_QLKD)

| Description                                                     | Parameter<br>Number | Units  | Range      | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|-----------------------------------------------------------------|---------------------|--------|------------|---------------------|---------------|-------------|
| INSTR_QLKD                                                      |                     | N/A    |            | 1                   | 256           |             |
| INSTR OI KD Date Packate is Array[500] of:                      |                     | 1071   |            | •                   | 200           |             |
| INSTR OI KD Data Packet                                         |                     |        |            |                     |               |             |
|                                                                 |                     |        |            |                     |               |             |
| INSTR_Dasket Udr                                                |                     |        |            |                     |               |             |
| INSTR_Packet Header Deta                                        |                     |        |            |                     |               |             |
|                                                                 | 1                   | NI/A   | 0.7        | 1                   | 2             |             |
| Version Number                                                  | 1                   | IN/A   | 07         | 1                   | 3             | 1           |
| Packet lype                                                     | 2                   | N/A    | 01         | 1                   |               | 2           |
| Secondary Header Flag                                           | 3                   | N/A    | 01         | 4                   | 1             | 3           |
| Application Identifier                                          | 4                   |        | 02047      | 1                   |               | 4           |
| Segment Hags                                                    | 5                   | N/A    | 03         | 1                   | 2             | 5           |
| Source Sequence Count                                           | 6                   | N/A    | 016383     | 1                   | 14            | ю<br>       |
| Packet Length                                                   | 7                   | N/A    | 065535     | 1                   | 16            | /           |
| Packet Time Code                                                | 8                   | day    | Mission Li | ie 1                | 64            | 8           |
| EOS_Supplem_Secondary_Hdr is selection of                       |                     |        |            |                     |               |             |
| EOS_Supplem_Flags                                               |                     |        |            |                     |               |             |
| EOS Quicklook Flag                                              | 9                   | N/A    | 01         | 1                   | 1             | 9           |
| EOS User Flag                                                   | 10                  | N/A    | 0127       | 1                   | 7             | 10          |
| INSTR_Data                                                      |                     |        |            |                     |               |             |
| INSTR_Digital_Status_Block is selection of                      |                     |        |            |                     |               |             |
| Instrument Digital Status - see DRL64, Rev B. (TRW) for details | 11                  | -      | -          | 1                   | 2288          | 11          |
| Instrument Digital Status Fixed Pattern                         | 12                  | count  | N/A        | 1                   | 2288          | 12          |
| INSTR_Measurement_Data is selection of                          |                     |        |            |                     |               |             |
| INSTR_Science_Data is Array[660] of:                            |                     |        |            |                     |               |             |
| INSTR_Science_Record                                            |                     |        |            |                     |               |             |
| Elevation Position Count                                        | 13                  | count  | 065535     | 660                 | 16            | 13          |
| Azimuth Position Count                                          | 14                  | count  | 065535     | 660                 | 16            | 673         |
| Total Detector Output                                           | 15                  | count  | 04095      | 660                 | 12            | 1333        |
| SW Detector Output                                              | 16                  | count  | 04095      | 660                 | 12            | 1993        |
| Window Detector Output                                          | 17                  | count  | 04095      | 660                 | 12            | 2653        |
| Instrument Analog Data - see DRL64, Rev. B (TRW) for details    | 18                  | -      | -          | 660                 | 12            | 3313        |
| INSTR_Memory_Data is Array[660] of:                             |                     |        |            |                     |               |             |
| INSTR_Memory_Record                                             |                     |        |            |                     |               |             |
| Elevation Position Count                                        | 19                  | count  | 065535     | 660                 | 16            | 3973        |
| Azimuth Position Count                                          | 20                  | count  | 065535     | 660                 | 16            | 4633        |
| DAP Memory Dump Data                                            | 21                  | N/A    | 065535     | 660                 | 16            | 5293        |
| ICP Memory Dump Data                                            | 22                  | N/A    | 065535     | 660                 | 16            | 5953        |
| Fill Data                                                       | 23                  | N/A    | 015        | 660                 | 4             | 6613        |
| Instrument Analog Data - see DRL64, Rev. B (TRW) for details    | 24                  | -      | -          | 660                 | 12            | 7273        |
| INSTR_Gimbal_Operation_Data is Array[660] of:                   |                     |        |            |                     |               |             |
| INSTR Gimbal Record                                             |                     |        |            |                     |               |             |
| Elevation Position Count                                        | 25                  | count  | 065535     | 660                 | 16            | 7933        |
| Azimuth Position Count                                          | 26                  | count  | 065535     | 660                 | 16            | 8593        |
|                                                                 | 27                  | count  | 0.55535    | 660                 | 16            | 9253        |
| Azimuth Error                                                   | 28                  | count  | 0 65535    | 660                 | 16            | 9913        |
| Fill Data                                                       | 29                  | N/A    | 0.15       | 660                 | 4             | 10573       |
| Instrument Analog Data - see DBI 64, Bey, B (TBW) for details   | 30                  | -      | 010        | 660                 | 12            | 11233       |
| INSTR Processor Operation Date is Array(660) of                 | 50                  |        |            |                     | 12            | 200         |
| INSTR Processor On Record                                       |                     |        |            |                     |               |             |
| Histin_rideesel_op_needid                                       | 31                  | 001101 | 0 65505    | 660                 | 16            | 11000       |
| Azimuth Decition Count                                          | 31                  | count  | 0.000000   | 000                 | 10            | 10550       |
|                                                                 | 32                  | count  | 0.00000    | 000                 | 10            | 12053       |
| DAY LIMING                                                      | 33                  | N/A    | 065535     | 660                 | 16            | 13213       |
| ICP TIMING                                                      | 34                  | N/A    | 065535     | 660                 | 16            | 13873       |

### Table A-3. Concluded

| Description                                                  | Parameter<br>Number | Units | Range                 | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|--------------------------------------------------------------|---------------------|-------|-----------------------|---------------------|---------------|-------------|
| Fill Data                                                    | 35                  | N/A   | 015                   | 660                 | 4             | 14533       |
| Instrument Analog Data - see DRL64, Rev. B (TRW) for details | 36                  | -     | -                     | 660                 | 12            | 15193       |
| INSTR_Diagnostic_Pattern_Data is Array[660] of:              |                     |       |                       |                     |               |             |
| INSTR_Fixed_Record                                           |                     |       |                       |                     |               |             |
| Fixed Pattern in Elevation Field                             | 37                  | N/A   | 065535                | 660                 | 16            | 15853       |
| Fixed Pattern for Azimuth Field                              | 38                  | N/A   | 065535                | 660                 | 16            | 16513       |
| Fixed Pattern for Total Channel Field                        | 39                  | N/A   | 04095                 | 660                 | 12            | 17173       |
| Fixed Pattern for Window Channel Field                       | 40                  | N/A   | 04095                 | 660                 | 12            | 17833       |
| Fixed Pattern for Shortwave Channel Field                    | 41                  | N/A   | 04095                 | 660                 | 12            | 18493       |
| Fixed Pattern for Analog Field                               | 42                  | N/A   | 04095                 | 660                 | 12            | 19153       |
| INSTR-EOS_Ancillary_Data is selection of                     |                     |       |                       |                     |               |             |
| INSTR_Ancillary_Data                                         |                     |       |                       |                     |               |             |
| Ancillary Time Stamp                                         | 43                  | count | 01.84x10              | <sup>19</sup> 1     | 64            | 19813       |
| GPS/UTC Time Conversion                                      | 44                  | count | 04.29x10              | <del>)</del> 1      | 32            | 19814       |
| Solar Array Current                                          | 45                  | count | 0255                  | 1                   | 8             | 19815       |
| Mag Coil Current X                                           | 46                  | count | 0255                  | 1                   | 8             | 19816       |
| Mag Coil Current Y                                           | 47                  | count | 0255                  | 1                   | 8             | 19817       |
| Mag Coil Current Z                                           | 48                  | count | 0255                  | 1                   | 8             | 19818       |
| Satellite Position (X) Count                                 | 49                  | count | 04.29x10              | 9 1                 | 32            | 19819       |
| Satellite Position (Y) Count                                 | 50                  | count | 04.29x10 <sup>9</sup> | 9 1                 | 32            | 19820       |
| Satellite Position (Z) Count                                 | 51                  | count | 04.29x10 <sup>9</sup> | 9 1                 | 32            | 19821       |
| Satellite Velocity (X) Count                                 | 52                  | count | 04.29x10 <sup>6</sup> | <b>1</b>            | 32            | 19822       |
| Satellite Velocity (Y) Count                                 | 53                  | count | 04.29x10              | <b>'</b> 1          | 32            | 19823       |
| Satellite Velocity (Z) Count                                 | 54                  | count | 04.29x10 <sup>9</sup> | 9 1                 | 32            | 19824       |
| Satellite Attitude (Roll) Count                              | 55                  | count | 065535                | 1                   | 16            | 19825       |
| Satellite Attitude (Pitch) Count                             | 56                  | count | 065535                | 1                   | 16            | 19826       |
| Satellite Attitude (Yaw) Count                               | 57                  | count | 065535                | 1                   | 16            | 19827       |
| Satellite Attitude Rate (Roll) Count                         | 58                  | count | 065535                | 1                   | 16            | 19828       |
| Satellite Attitude Rate (Pitch) Count                        | 59                  | count | 065535                | 1                   | 16            | 19829       |
| Satellite Attitude Rate (Yaw) Count                          | 60                  | count | 065535                | 1                   | 16            | 19830       |
| Solar X Position                                             | 61                  | count | 0255                  | 1                   | 8             | 19831       |
| Solar Y Position                                             | 62                  | count | 0255                  | 1                   | 8             | 19832       |
| Solar Z Position                                             | 63                  | count | 0255                  | 1                   | 8             | 19833       |
| Lunar X Position                                             | 64                  | count | 0255                  | 1                   | 8             | 19834       |
| Lunar Y Position                                             | 65                  | count | 0255                  | 1                   | 8             | 19835       |
| Lunar Z Position                                             | 66                  | count | 0255                  | 1                   | 8             | 19836       |
| Total Meta Bits/File:                                        | 256                 |       |                       |                     |               |             |
| Total Data Bita/Record:                                      | 55720               |       |                       |                     |               |             |
| Total Records/File:                                          | 500                 |       |                       |                     |               |             |
| Total Data Bits/File:                                        | 27860000            |       |                       |                     |               |             |
| Total Bits/File:                                             | 27860256            |       |                       |                     |               |             |

### Satellite Ephemeris/Ancillary Data (EPH\_ANC)

The EPH\_ANC (satellite ephemeris and ancillary) data stream contains information about spacecraft position and velocity, spacecraft attitude errors and attitude error rates, sun and moon positions, and additional spacecraft information needed to process CERES instrument data, such as spacecraft direction or spacecraft mode. This additional spacecraft data is mission-dependent.

The position and attitude data are used to Earth-locate each CERES footprint and calculate viewing geometry. The sun position data are important to identify the proper angular distribution model based on the geometry of the CERES footprint relative to the sun.

| Level: 0              | <b>Portion of Globe Covered</b> |
|-----------------------|---------------------------------|
| Type: Archival        | File: N/A                       |
| Frequency: 1/day      | Record: N/A                     |
| Time Interval Covered | Portion of Atmosphere Covered   |
| File: 1 day           | File: N/A                       |
| Record: 1 minute      |                                 |

Table A-4. Satellite Ephemeris/Ancillary Data (EPH\_ANC)

| Description                      | Parameter<br>Number | Units        | Range           | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|----------------------------------|---------------------|--------------|-----------------|---------------------|---------------|-------------|
| EPH_ANC                          |                     |              |                 |                     |               |             |
|                                  |                     | N/A          |                 | 1                   | 2048          |             |
| EPH_ANC_Record IS Afray[1440] OF |                     |              |                 |                     |               |             |
| EPH_ANC_Data                     |                     |              |                 |                     |               |             |
| Cronal_Ephemens                  |                     | TRO          | TRO             |                     |               |             |
| Ephemens Record Time             | 1                   | IBD          | 180             | 1                   | 32            | -           |
| Salemie Annude                   | 2                   | 8(1)<br>81.1 | 01200           | 1                   | 10            | 2           |
| Earth-Sun distance               | 3                   | AU           | 0.961.02<br>TBD |                     | 10            | 3           |
| Number of orbits                 | 4                   | N/A          | TBD             |                     | 10            | 4           |
| Satellite X Position             | 5                   | km           | TBD             |                     | 32            | 5           |
| Satellite 7 Position             | 0                   | Km           | TBD             | 1                   | 32            | -           |
| Satellite Z Position             | 7                   | кт<br>(1     | TBD             | 1                   | 32            | /           |
| Satellite X Velocity             | 8                   | Km sec       | TBD             | 1                   | 32            | 8           |
|                                  | 9                   | KM Sec       | TBD             | 1                   | 32            | 9           |
|                                  | 10                  | KM SEC       | TBD             | 1                   | 32            | 10          |
| Satellite Holl Attitude          | 11                  | deg          | TBD             | 1                   | 16            | 11          |
| Satellite Mich Attitude          | 12                  | deg          | IBD             | 1                   | 16            | 12          |
| Satellite Yaw Attitude           | 13                  | deg          | IBD             | 1                   | 16            | 13          |
| Satellite Holi Attitude Hate     | 14                  | deg sec      | TBD             | 1                   | 16            | 14          |
| Satellite Pitch Attitude Rate    | 15                  | deg sec      | TBD             | 1                   | 16            | 15          |
| Satellite Yaw Attitude Hate      | 16                  | deg sec      | TBD             | 1                   | 16            | 16          |
| Solar X Position                 | 17                  | count        | 0255            | 1                   | 8             | 17          |
| Solar Y Position                 | 18                  | count        | 0255            | 1                   | 8             | 18          |
| Solar Z Position                 | 19                  | count        | 0255            | 1                   | 8             | 19          |
| Lunar X Position                 | 20                  | count        | 0255            | 1                   | 8             | 20          |
| Lunar Y Position                 | 21                  | count        | 0255            | 1                   | 8             | 21          |
| Lunar Z Position                 | 22                  | count        | 0255            | 1                   | 8             | 22          |
| SC_ANCILLARY                     |                     |              |                 |                     |               |             |
| Satellite Direction              | 23                  | N/A          | TBD             | 1                   | 16            | 23          |
| Satellite Mode                   | 24                  | N/A          | TBD             | 1                   | 16            | 24          |
| Satellite Command                | 25                  | N/A          | TBD             | 1                   | 16            | 25          |
| Solar Array Current              | 26                  | count        | 0255            | 1                   | 8             | 26          |
| Total Meta Bits/File:            | 2048                |              |                 |                     |               |             |
| Total Data Bits/Record:          | 472                 |              |                 |                     |               |             |
| Total Records/File:              | 1440                |              |                 |                     |               |             |
| Total Data Bits/File:            | 679680              |              |                 |                     |               |             |
| Total Bits/File:                 | 681728              |              |                 |                     |               |             |

# **Appendix B**

# **Output Data Products**

## Geolocate and Calibrate Earth Radiances (Subsystem 1.0)

This appendix describes the data products which are produced by the algorithms in this subsystem. Table B-1 below summarizes these products, listing the CERES and EOSDIS product codes or abbreviations, a short product name, the product type, the production frequency, and volume estimates for each individual product as well as a complete data month of production. The product types are defined as follows:

| Archival products: | Assumed to be permanently stored by EOSDIS  |
|--------------------|---------------------------------------------|
| Internal products: | Temporary storage by EOSDIS (days to years) |

The following pages describe each product. An introductory page provides an overall description of the product and specifies the temporal and spatial coverage. The table which follows the introductory page briefly describes every parameter which is contained in the product. Each product may be thought of as metadata followed by data records. The metadata (or header data) is not well-defined yet and is included mainly as a placeholder. The description of parameters which are present in each data record includes parameter number (a unique number for each distinct parameter), units, dynamic range, the number of elements per record, an estimate of the number of bits required to represent each parameter, and an element number (a unique number for each instance of every parameter). A summary at the bottom of each table shows the current estimated sizes of metadata, each data record, and the total data product. A more detailed description of each data product will be contained in a user's guide to be published before the first CERES launch.

| Proc  | luct code |                        |          |           |          | Monthly  |
|-------|-----------|------------------------|----------|-----------|----------|----------|
| CERES | EOSDIS    | Name                   | Category | Frequency | Size, MB | size, MB |
| BDS   | CER01     | Bidirectional scan     | archival | 1/day     | 313.6    | 9722     |
| IES   | CER09     | Instrument earth scans | internal | 1/hour    | 14.5     | 10788    |

Table B-1. Output Products Summary

### **Bidirectional Scan (BDS)**

The BDS data product is an archival product containing level 1B CERES scanner data obtained for a 24-hour period. All science scan modes are included in the BDS, including the fixed and rotating azimuth scan modes that perform normal earth, internal calibration, and short scan elevation profiles. The BDS product includes samples taken at all scan elevation positions (including space looks and internal calibration views).

The BDS includes the raw count data stream and the converted engineering representative data. These data are divided into the following seven groups that are carried forward from the level-0 product:

- 1. Time
- 2. Instrument status
- 3. Radiometric channel counts
- 4. Instrument telescope pointing (elevation and azimuth)
- 5. Temperatures
- 6. Voltages and currents
- 7. Satellite ephemeris and ancillary data

In addition, we add the following filtered radiance data from the three radiometric channels and their associated field of view location geometry:

- 8. Filtered radiances, including quality flags
- 9. Earth location geometry, including quality flags

In the BDS data product, the filtered radiances and the Earth location geometry are considered a multiband, single data element footprint. Quality flags are used to indicate the reliability of the radiance and Earth location measurements. This product is also used to diagnose instrument performance conditions.

Level: 1B Type: archival Frequency: 1/day Portion of Globe Covered File: Satellite swath Record: N/A

**Time Interval Covered File:** 24 hours **Record:** Single 6.6-sec scans Portion of Atmosphere Covered File: Satellite altitude

# Table B-2. Bidirectional Scan (BDS)

| Description                                | Parameter<br>Number | Units                              | Range    | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|--------------------------------------------|---------------------|------------------------------------|----------|---------------------|---------------|-------------|
| BDS                                        |                     |                                    |          |                     |               |             |
| BDS File Header                            |                     | N/A                                |          | 1                   | 256           |             |
| BDS_Data is Array[13091] of:               |                     |                                    |          |                     |               |             |
| BDS_Record                                 |                     |                                    |          |                     |               |             |
| Julian Day at Scan Start                   | 1                   | day                                | 24493532 | 2458500 1           | 32            | 1           |
| Julian Time at Scan Start                  | 2                   | day                                | 01       | 1                   | 32            | 2           |
| BDS Instrument Status                      | 3                   | N/A                                | 065535   | 1                   | 16            | з           |
| BDS_Scan_Information                       |                     |                                    |          |                     |               |             |
| BDS_Radiometric_Data is Array[660] of:     |                     |                                    |          |                     |               |             |
| BDS_Pixel_Radiometric                      |                     |                                    |          |                     |               |             |
| BDS_Filtered_Radiances                     |                     |                                    |          |                     |               |             |
| CERES total filtered radiance, upwards     | 4                   | W-m <sup>-2</sup> sr <sup>-1</sup> | 0700     | 660                 | 16            | 4           |
| CERES shortwave filtered radiance, upwards | 5                   | W-m <sup>-2</sup> sr <sup>-1</sup> | -10510   | 660                 | 16            | 664         |
| CERES window filtered radiance, upwards    | 6                   | W-m <sup>-2</sup> sr <sup>-1</sup> | 050      | 660                 | 16            | 1324        |
| BDS Quality Flags                          | 7                   | N/A                                | 065535   | 660                 | 16            | 1984        |
| BDS_Detector_Output_(Raw)                  |                     |                                    |          |                     |               |             |
| Total Detector Output                      | 8                   | count                              | 04095    | 660                 | 12            | 2644        |
| SW Detector Output                         | 9                   | count                              | 04095    | 660                 | 12            | 3304        |
| Window Detector Output                     | 10                  | count                              | 04095    | 660                 | 12            | 3964        |
| BDS_Location_Data is Array[660] of:        |                     |                                    |          |                     |               |             |
| BDS_Pixel_Location                         |                     |                                    |          |                     |               |             |
| BDS_Raw_Location                           |                     |                                    |          |                     |               |             |
| Azimuth Position Count                     | 11                  | count                              | 065535   | 660                 | 16            | 4624        |
| Elevation Position Count                   | 12                  | count                              | 065535   | 660                 | 16            | 5284        |
| BDS TOA Location                           |                     |                                    |          |                     |               |             |
| Colatitude of CERES FOV at TOA             | 13                  | deg                                | 0180     | 660                 | 16            | 5944        |
| Longitude of CERES FOV at TOA              | 14                  | deg                                | 0360     | 660                 | 16            | 6604        |
| CERES viewing zenith at TOA                | 15                  | deg                                | 090      | 660                 | 16            | 7264        |
| CERES solar zenith at TOA                  | 16                  | deq                                | 0180     | 660                 | 16            | 7924        |
| CERES relative azimuth at TOA              | 17                  | dea                                | 0360     | 660                 | 16            | 8584        |
| BDS Housekeeping Data                      |                     | 5                                  |          |                     |               |             |
| BDS Temperature Measurements               |                     |                                    |          |                     |               |             |
| BDS Raw Temperature Count                  |                     |                                    |          |                     |               |             |
| 12 Raw Temp Samples is Array[12] of:       |                     |                                    |          |                     |               |             |
| 12_Raw_Temp_Samples_per_Scan               |                     |                                    |          |                     |               |             |
| Total Heater DAC Value                     | 18                  | N/A                                | 04095    | 12                  | 12            | 9244        |
| SW Heater DAC Value                        | 19                  | N/A                                | 04095    | 12                  | 12            | 9256        |
| Window Heater DAC Value                    | 20                  | N/A                                | 04095    | 12                  | 12            | 9268        |
| BB Heater DAC Value                        | 21                  | N/A                                | 04095    | 12                  | 12            | 9280        |
| Total Control Temp Count                   | 22                  | count                              | 04095    | 12                  | 12            | 9292        |
| Total Measured Temp Count                  | 23                  | count                              | 04095    | 12                  | 12            | 9304        |
| SW Control Temp Count                      | 24                  | count                              | 04095    | 12                  | 12            | 9316        |
| SW Measured Temp Count                     | 25                  | count                              | 04095    | 12                  | 12            | 9328        |
| Window Control Temp Count                  | 26                  | count                              | 04095    | 12                  | 12            | 9340        |
| Window Measured Temp Count                 | 27                  | count                              | 04095    | 12                  | 12            | 9352        |
| Total Blackbody Temp Count                 | 28                  | count                              | 04095    | 12                  | 12            | 9364        |
| LW Blackbody Temp Count                    | 29                  | count                              | 04095    | 12                  | 12            | 9376        |
| 3_Raw_Temp_Samples is Array[3] of:         |                     |                                    |          |                     |               |             |
| 3 Raw Temp Samples_per_Scan                |                     |                                    |          |                     |               |             |
| Elevation Spindle Temp (Motor) Count       | 30                  | count                              | 04095    | 3                   | 12            | 9388        |
| Elevation Spindle Temp (Cable Wrap) Count  | 31                  | count                              | 04095    | 3                   | 12            | 9391        |
| Elevation Bearing Temp (Motor) Count       | 32                  | count                              | 04095    | - 3                 | 12            | 9394        |
| Elevation Bearing Temp (Cable Wrap) Count  | 33                  | count                              | 04095    | 3                   | 12            | 9397        |
| SWICS Photodiode Temp Count                | 34                  | count                              | 04095    | 3                   | 12            | 9400        |

## Volume II

| ription                             | Parameter | Units    | Range         | Elements/ | Bits/ | Elem |
|-------------------------------------|-----------|----------|---------------|-----------|-------|------|
|                                     | Number    |          |               | Record    | Elem  | Num  |
| Sensor Module Temp Count            | 35        | count    | 04095         | 3         | 12    | 9403 |
| Sensor Electronics Temp Count       | 36        | count    | 04095         | 3         | 12    | 9406 |
| Main Cover Motor Temp Count         | 37        | count    | 0.4095        | 3         | 12    | 9409 |
| MAM Total Baffie Temp #1 Count      | 38        | count    | 0 4095        | 3         | 12    | 0412 |
| MAM Total Baffle Temp #2 Count      | 39        | count    | 0 4095        | 3         | 12    | 0415 |
| MAM SW Assembly Temp Count          | 40        | count    | 0 4095        | 3         | 12    | 0/19 |
| MAM Total Assembly Temp Count       | 41        | count    | 0 4095        | 3         | 16    | 9421 |
| DAA Badiator Temp Count             | 42        | count    | 0 4095        | 3         | 12    | 9424 |
| DAA CPU Elect Temp Count            | 42        | count    | 0.4095        | 3         | 12    | 0427 |
| DAA Prom Elect Temp Count           | 40        | count    | 0.4095        | 3         | 12    | 0420 |
| DAA BAM Elect Temp Count            | 45        | count    | 0.4005        | 3         | 12    | 0422 |
| DAA ADC Elect Temp Count            | 45        | count    | 0.4095        | 3         | 12    | 9433 |
| ECA Rediator Temp Count             | 48        | count    | 04095         | 3         | 12    | 9430 |
| ECA Floot Tomo Count                | 47        | coum     | 04095         | 3         | 12    | 9439 |
| ACA Elect Temp Count                | 48        | count    | 04095         | 3         | 12    | 9442 |
| ACA Elect Temp Count                | 49        | count    | 04095         | 3         | 12    | 9445 |
| Azimuth Link Design Temp Count      | 50        | count    | 04095         | 3         | 12    | 9448 |
|                                     | 51        | count    | 04095         | 3         | 12    | 9451 |
| ICA Radiator Temp Count             | 52        | count    | 04095         | 3         | 12    | 9454 |
| ICA CPU Elect Temp Count            | 53        | count    | 04095         | 3         | 12    | 9457 |
| ICA Prom Elect Temp Count           | 54        | count    | 04095         | 3         | 12    | 9460 |
| ICA HAM Elect Temp Count            | 55        | count    | 04095         | 3         | 12    | 9463 |
| ICA ADC Elect Temp Cnt              | 56        | count    | 04095         | 3         | 12    | 9466 |
| PCA Radiator Temp Count             | 57        | count    | 04095         | 3         | 12    | 9469 |
| PCA Electronics Temp Count          | 58        | count    | 04095         | 3         | 12    | 9472 |
| PCA Q1 Transistor Case Temp Count   | 59        | count    | 04095         | 3         | 12    | 9475 |
| Pedestal Temp #1 (Brake Hsg) Count  | 60        | count    | 04095         | 3         | 12    | 9478 |
| Pedestal Temp #2 (@ Isolator) Count | 61        | count    | 04095         | 3         | 12    | 9481 |
| BDS_Converted_Temperature           |           |          |               |           |       |      |
| 12_Temp_Samples is Array[12] of:    |           |          |               |           |       |      |
| 12_Temp_Samples_per_Scan            |           |          |               |           |       |      |
| Total Control Temp                  | 62        | °C       | 3640          | 12        | 16    | 9484 |
| Total Measured Temp                 | 63        | °C       | 3640          | 12        | 16    | 9496 |
| SW Control Temp                     | 64        | °C       | 3640          | 12        | 16    | 9508 |
| SW Measured Temp                    | 65        | °C       | 3640          | 12        | 16    | 9520 |
| Window Control Temp                 | 66        | °C       | 3640          | 12        | 16    | 9532 |
| Window Measured Temp                | 67        | °C       | 3640          | 12        | 16    | 9544 |
| Total Blackbody Temp                | 68        | °C       | -1560         | 12        | 16    | 9556 |
| LW Blackbody Temp                   | 69        | °C       | -15 <b>60</b> | 12        | 16    | 9568 |
| 3_Temp_Samples is Array[3] of:      |           |          |               |           |       |      |
| 3_Temp_Samples_per_Scan             |           |          |               |           |       |      |
| Elevation Spindle Temp (Motor)      | 70        | °C       | -3070         | 3         | 16    | 9580 |
| Elevation Spindle Temp (Cable Wrap) | 71        | °C       | -3070         | 3         | 16    | 9583 |
| Elevation Bearing Temp (Motor)      | 72        | °C       | -3070         | 3         | 16    | 9586 |
| Elevation Bearing Temp (Cable Wrap) | 73        | °C       | -3070         | 3         | 16    | 9589 |
| Sensor Module Temp                  | 74        | °C       | -3070         | 3         | 16    | 9592 |
| Sensor Elect Temp                   | 75        | °C       | -3070         | 3         | 16    | 9595 |
| Main Cover Motor Temp               | 76        | °C       | -3070         | 3         | 16    | 9598 |
| SWICS Photodiode Temp               | 77        | °C       | -3070         | 3         | 16    | 9601 |
| MAM Total Baffle Temp #1            | 78        | °C       | -30 70        | 3         | 16    | 9604 |
| MAM Total Baffle Temp #2            | 79        | °C       | -30 70        | 3         | 16    | 9607 |
| MAM SW Assembly Temp                | 80        | °C       | -30 70        | ວ<br>2    | 10    | 0610 |
| MAM Total Assembly Temp             | 00<br>Q1  | °C.      | -0070         | ა<br>ი    | 10    | 0010 |
| DAA Badiator Temp                   | 10        | °C       | -30.70        | 3         | 10    | 0010 |
| and the second second               | 02        | <u> </u> | -3070         | 3         | 10    | 3010 |

| escription                           | Parameter | Units    | Range  | Elements/ | Bits/ | Elem |
|--------------------------------------|-----------|----------|--------|-----------|-------|------|
|                                      | Number    |          |        | Record    | Elem  | Num  |
|                                      |           | 0.5      |        |           |       |      |
|                                      | 83        | °C<br>No | -3070  | 3         | 16    | 9619 |
|                                      | 84        | °С<br>90 | -3070  | 3         | 16    | 9622 |
|                                      | 85        | °C       | -3070  | 3         | 16    | 9625 |
| ECA Rediator Temp                    | 86        | °C<br>∾⊂ | -3070  | 3         | 16    | 9628 |
|                                      | 87        | -C<br>00 | -3070  | 3         | 16    | 9631 |
|                                      | 88        | °C<br>10 | -3070  | 3         | 16    | 9634 |
|                                      | 89        | °C       | -3070  | 3         | 16    | 9637 |
| Azimuth Lower Bearing Temp           | 90        | °С<br>10 | -3070  | 3         | 16    | 9640 |
| Azimuth Upper Bearing Temp           | 91        | °С<br>00 | -3070  | 3         | 16    | 9643 |
| ICA Radiator Temp                    | 92        | °С<br>90 | -3070  | 3         | 10    | 9646 |
|                                      | 93        | °C<br>00 | -3070  | 3         | 16    | 9649 |
|                                      | 94        | °C<br>10 | -3070  | 3         | 16    | 9652 |
|                                      | 95        | °C<br>00 | -3070  | 3         | 16    | 9655 |
|                                      | 96        | °C<br>10 | -3070  | 3         | 16    | 9658 |
|                                      | 97        | °С<br>10 | -3070  | 3         | 16    | 9661 |
| PCA Electronics Temp                 | 98        | °C       | -3070  | 3         | 16    | 9664 |
| PCA Q1 Transistor Case Temp          | 99        | °C       | -3070  | 3         | 16    | 9667 |
| Pedestal Temp #1 (Brake Hsg)         | 100       | чС<br>С  | -3070  | 3         | 16    | 9670 |
| Pedestal Temp #2 (@ Isolator)        | 101       | ъс       | -3070  | 3         | 16    | 9673 |
| BDS_Voltage_Measurements             |           |          |        |           |       |      |
| BDS_Raw_Voltage_Count                |           |          |        |           |       |      |
| 3_Raw_Volt_Samples is Array[3] of:   |           |          |        |           |       |      |
| 3_Raw_Volt_Samples_per_Scan          |           |          |        |           |       |      |
| Sensor +120V Bias Count              | 102       | count    | 04095  | 3         | 12    | 9676 |
| Sensor -120V Bias Count              | 103       | count    | 04095  | 3         | 12    | 9679 |
| SWICS Photodiode Output Count        | 104       | count    | 04095  | 3         | 12    | 9682 |
| SWICS Lamp Current Count             | 105       | count    | 04095  | 3         | 12    | 9685 |
| ICA +5V Digital Count                | 106       | count    | 04095  | 3         | 12    | 9688 |
| ICA +15V (to ECA/ACA) Count          | 107       | count    | 04095  | 3         | 12    | 9691 |
| ICA -15V (to ECA/ACA) Count          | 108       | count    | 04095  | 3         | 12    | 9694 |
| ICA +18V Count                       | 109       | count    | 04095  | 3         | 12    | 9697 |
| ICA -18V Count                       | 110       | count    | 04095  | 3         | 12    | 9700 |
| ICA +15V (Internal) Count            | 111       | count    | 04095  | 3         | 12    | 9703 |
| ICA -15V (Internal) Count            | 112       | count    | 04095  | 3         | 12    | 9706 |
| DAA Ground #1 Count                  | 113       | count    | 04095  | 3         | 12    | 9709 |
| DAA Ground #2 Count                  | 114       | count    | 04095  | 3         | 12    | 9712 |
| DAA -10V Reference Count             | 115       | count    | 04095  | 3         | 12    | 9715 |
| DAA +130V Count                      | 116       | count    | 04095  | 3         | 12    | 9718 |
| DAA -130V Count                      | 117       | count    | 04095  | 3         | 12    | 9721 |
| DAA +12V Count                       | 118       | count    | 04095  | 3         | 12    | 9724 |
| DAA -12V Count                       | 119       | count    | 04095  | 3         | 12    | 9727 |
| DAA +15V Count                       | 120       | count    | 04095  | 3         | 12    | 9730 |
| DAA -15V Count                       | 121       | count    | 04095  | 3         | 12    | 9733 |
| DAA +18V Count                       | 122       | count    | 04095  | 3         | 12    | 9736 |
| DAA -18V Count                       | 123       | count    | 04095  | 3         | 12    | 9739 |
| 12_Raw_Volt_Samples is Array[12] of: |           |          |        |           |       |      |
| 12_Raw_Volt_Samples_per_Scan         |           |          |        |           |       |      |
| Elevation Torque Output Count        | 124       | count    | 04095  | 12        | 12    | 9742 |
| Azimuth Torque Output Count          | 125       | count    | 04095  | 12        | 12    | 9754 |
| BDS_Converted_Voltage                |           |          |        |           |       |      |
| 3_Volt_Samples is Array[3] of:       |           |          |        |           |       |      |
| 3_Volt_Samples_per_Scan              |           |          |        |           |       |      |
| Sensor +120V Bias                    | 126       | volt     | 115125 | 3         | 16    | 9766 |

# Volume II

| scription                             | Parameter<br>Number | Units    | Range     | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num  |
|---------------------------------------|---------------------|----------|-----------|---------------------|---------------|--------------|
| Sensor - 1201 V Riss                  | 127                 | volt     | -125 -115 | 3                   | 16            | 9769         |
| SWICS Photodiade Output               | 127                 | volt     | -125115   | 3                   | 10            | 9709         |
| SWICS Lamp Current                    | 120                 | milliamo | 0.100     | 3                   | 16            | 9775         |
|                                       | 120                 | volt     | 0.100     | 3                   | 16            | 9779<br>0779 |
|                                       | 131                 | volt     | 0.20      | 3                   | 16            | 0791         |
|                                       | 192                 | volt     | 20.0      | 3                   | 10            | 0704         |
|                                       | 133                 | volt     | -200      | 3                   | 16            | 9704         |
|                                       | 134                 | volt     | -20.0     | 3                   | 16            | 0700         |
|                                       | 134                 | volt     | -200      | 3                   | 10            | 9790         |
|                                       | 135                 | voit     | 30.0      | 3                   | 10            | 9/93         |
|                                       | 130                 | voit     | -300      | 3                   | 10            | 9790         |
|                                       | 137                 | voit     | 010       | 3                   | 10            | 9799         |
| DAA Ground #2                         | 136                 | voit     | 010       | 3                   | 10            | 9802         |
| DAA -10V Reference                    | 139                 | VOIt     | -200      | 3                   | 16            | 9805         |
|                                       | 140                 | von      | 90170     | 3                   | 10            | 9808         |
|                                       | 141                 | VOII     | -22436    | 3                   | 16            | 9811         |
|                                       | 142                 | VOIT     | 020       | 3                   | 16            | 9814         |
|                                       | 143                 | VOIT     | -200      | 3                   | 16            | 9817         |
|                                       | 144                 | VOIT     | 020       | 3                   | 16            | 9820         |
|                                       | 145                 | Volt     | -200      | 3                   | 16            | 9823         |
|                                       | 146                 | volt     | 020       | 3                   | 16            | 9826         |
|                                       | 147                 | volt     | -200      | 3                   | 16            | 9829         |
| 12_Volt_Samples is Array[12] of:      |                     |          |           |                     |               |              |
| 12_Volt_Samples_per_Scan              |                     |          |           |                     |               |              |
| Elevation Torque Output               | 148                 | volt     | -2020     | 12                  | 16            | 9832         |
| Azimuth Torque Output                 | 149                 | volt     | -2020     | 12                  | 16            | 9844         |
| BDS_Position_Measurements             |                     |          |           |                     |               |              |
| BDS_Haw_Position_Count                |                     |          |           |                     |               |              |
| 3_Pos_Samples is Array[3] of:         |                     |          |           |                     |               |              |
| 3_Pos_Samples_per_Scan                |                     |          |           |                     |               |              |
| ACA Encoder Clear Track A Count       | 150                 | count    | 04095     | 3                   | 12            | 9856         |
| ACA Encoder Clear Track B Count       | 151                 | count    | 04095     | 3                   | 12            | 9859         |
| ECA Encoder Clear Track A Count       | 152                 | count    | 04095     | 3                   | 12            | 9862         |
| ECA Encoder Clear Track B Count       | 153                 | count    | 04095     | 3                   | 12            | 9865         |
| Main Cover Pos #1 Count               | 154                 | count    | 04095     | 3                   | 12            | 9868         |
| Main Cover Pos #2 Count               | 155                 | count    | 04095     | 3                   | 12            | 9871         |
| MAM Cover Pos Count                   | 156                 | count    | 04095     | 3                   | 12            | 9874         |
| Azimuth Caging (Brake) Pos Count      | 157                 | count    | 04095     | 3                   | 12            | 9877         |
| 60_Pos_Samples is Array[60] of:       |                     |          |           |                     |               |              |
| 60_Pos_Samples_per_Scan               |                     |          |           |                     |               |              |
| SPS 1 Narrow Field Output Count       | 158                 | count    | 04095     | 60                  | 12            | 9880         |
| SPS 1 Wide Field Output Count         | 159                 | count    | 04095     | 60                  | 12            | 9940         |
| SPS 2 Narrow Field Output Count       | 160                 | count    | 04095     | 60                  | 12            | 10000        |
| SPS 2 Wide Field Output Count         | 161                 | count    | 04095     | 60                  | 12            | 10060        |
| 660_Raw_Pos_Samples is Array[660] of: |                     |          |           |                     |               |              |
| 660_Raw_Pos_Samples_per_Scan          |                     |          |           |                     |               |              |
| Elevation Position Count              | 162                 | count    | 065535    | 660                 | 16            | 10120        |
| Azimuth Position Count                | 163                 | count    | 065535    | 660                 | 16            | 10780        |
| BDS_Converted_Position                |                     |          |           |                     |               |              |
| 3_Conv_Pos_Samples is Array[3] of:    |                     |          |           |                     |               |              |
| 3_Conv_Pos_Samples_per_Scan           |                     |          |           |                     |               |              |
| ACA Encoder Clear Track A             | 164                 | deg      | 0360      | 3                   | 16            | 11440        |
| ACA Encoder Clear Track B             | 165                 | deg      | 0360      | 3                   | 16            | 11443        |
| ECA Encoder Clear Track A             | 166                 | deg      | 0360      | 3                   | 16            | 11446        |

| Table | B-2. | Continued |  |
|-------|------|-----------|--|
|-------|------|-----------|--|

| Description                                          | Parameter | Units | Range   | Elements/ | Bits/ | Elem  |
|------------------------------------------------------|-----------|-------|---------|-----------|-------|-------|
|                                                      | Number    |       |         | Record    | Elem  | Num   |
|                                                      |           |       |         |           |       |       |
| ECA Encoder Clear Track B                            | 167       | deg   | 0360    | 3         | 16    | 11449 |
| Main Cover Pos #1                                    | 168       | inch  | TBD     | 3         | 16    | 11452 |
| Main Cover Pos #2                                    | 169       | inch  | TBD     | 3         | 16    | 11455 |
| MAM Cover Pos                                        | 170       | deg   | TBD     | 3         | 16    | 11458 |
| Azimuth Caging (Brake) Pos                           | 171       | N/A   | TBD     | 3         | 16    | 11461 |
| 60_Conv_PosSamples is Array[60] of:                  |           |       |         |           |       |       |
| 60_Conv_Pos_Samples_per_Scan                         |           |       |         |           |       |       |
| SPS 1 Narrow Field Output                            | 172       | N/A   | TBD     | 60        | 16    | 11464 |
| SPS 1 Wide Field Output                              | 173       | N/A   | TBD     | 60        | 16    | 11524 |
| SPS 2 Narrow Field Output                            | 174       | N/A   | TBD     | 60        | 16    | 11584 |
| SPS 2 Wide Field Output                              | 175       | N/A   | TBD     | 60        | 16    | 11644 |
| 660_Conv_Pos_Samples is Array[660] of:               |           |       |         |           |       |       |
| 660_Conv_Pos_Samples_per_Scan                        |           |       |         |           |       |       |
| Elevation Scan Position                              | 176       | deg   | 0260    | 660       | 16    | 11704 |
| Azimuth Scan Position                                | 177       | deg   | 0360    | 660       | 16    | 12364 |
| BDS_Raw_Digital_Status_Measurement                   |           |       |         |           |       |       |
| BDS Internal Cal Status                              |           |       |         |           |       |       |
| BB Temp Setpoint                                     | 178       | N/A   | 04095   | 1         | 12    | 13024 |
| BB Temp Control                                      | 179       | N/A   | 01      | 1         | 1     | 13025 |
| SWICS Intensity Command                              | 180       | N/A   | 0.3     | 1         | 2     | 13026 |
| BDS Sensor Operation                                 |           |       | 00      | •         | -     | 10020 |
| BDS Detector Controls                                |           |       |         |           |       |       |
| Total Temp Set Point                                 | 181       | N/A   | 0 4095  | 4         | 12    | 13027 |
| Total Detector Temporature Control Status            | 192       |       | 0.3     | 1         | 2     | 12020 |
| SW Temp Set Boint                                    | 192       |       | 0.4005  | 1         | 12    | 13020 |
| SW Detector Temperature Control Status               | 183       | N/A   | 0.,4095 | -         | 12    | 10029 |
| Sw Delector Temperature Control Status               | 184       | N/A   | 03      | 1         | 2     | 13030 |
| Window Temp Set Point                                | 185       | N/A   | 04095   | 1         | 12    | 13031 |
| Window Detector Temperature Control Status           | 186       | N/A   | 03      | 1         | 2     | 13032 |
|                                                      | 107       |       |         |           |       |       |
| I otal Bridge Bal Coarse DAC Value                   | 187       | N/A   | 04095   | 1         | 12    | 13033 |
| Total Bridge Bal Fine DAC Value                      | 188       | N/A   | 04095   | 1         | 12    | 13034 |
| Total Detector Bridge Bal Control Status             | 189       | N/A   | 07      | 1         | 3     | 13035 |
| Total Detector Bridge Bal DAC Update Status          | 190       | N/A   | 01      | 1         | 1     | 13036 |
| Total Detector Bridge Bal Reset Calculation Counter  | 191       | N/A   | 031     | 1         | 5     | 13037 |
| SW_Detector_Bridge_Bal                               |           |       |         |           |       |       |
| SW Bridge Bal Coarse DAC Value                       | 192       | N/A   | 04095   | 1         | 12    | 13038 |
| SW Bridge Bal Fine DAC Value                         | 193       | N/A   | 04095   | 1         | 12    | 13039 |
| SW Detector Bridge Bal Control Status                | 194       | N/A   | 07      | 1         | 3     | 13040 |
| SW Detector Bridge Bal DAC Update Status             | 195       | N/A   | 01      | 1         | 1     | 13041 |
| SW Detector Bridge Bal Reset Calculation Counter     | 196       | N/A   | 031     | 1         | 5     | 13042 |
| Wn_Detector_Bridge_Bal                               |           |       |         |           |       |       |
| Window Bridge Balance Coarse DAC Value               | 197       | N/A   | 04095   | 1         | 12    | 13043 |
| Window Bridge Bal Fine DAC Value                     | 198       | N/A   | 04095   | 1         | 12    | 13044 |
| Window Detector Bridge Bal Control Status            | 199       | N/A   | 07      | 1         | 3     | 13045 |
| Window Detector Bridge Bal DAC Update Status         | 200       | N/A   | 01      | 1         | 1     | 13046 |
| Window Detector Bridge Bal Reset Calculation Counter | 201       | N/A   | 031     | 1         | 5     | 13047 |
| BDS_Bridge_Balance_Status                            |           |       |         |           |       |       |
| Bridge Bal Window Low                                | 202       | N/A   | 04095   | 1         | 12    | 13048 |
| Bridge Bal Window High                               | 203       | N/A   | 04095   | 1         | 12    | 13049 |
| Bridge Bal Set Point                                 | 204       | N/A   | 04095   | 1         | 12    | 13050 |
| Bridge Bal Spacelook Start                           | 205       | N/A   | 04095   | 1         | 12    | 13051 |
| Bridge Bal Spacelook End                             | 206       | N/A   | 0.,4095 | 1         | 12    | 13052 |
| Bridge Bal DAC Update                                | 207       | N/A   | 04095   | 1         | 12    | 13053 |
| - ·                                                  |           |       |         |           |       |       |

# Volume II

| Description                           | Parameter | Units | Range  | Elements/ | Bits/ | Elem  |
|---------------------------------------|-----------|-------|--------|-----------|-------|-------|
|                                       | Number    |       |        | Record    | Elem  | Num   |
| BDS_Space_Look_Status                 |           |       |        |           |       |       |
| Total Spacelook Average               | 208       | N/A   | 04095  | 1         | 12    | 13054 |
| SW Spacelook Average                  | 209       | N/A   | 04095  | 1         | 12    | 13055 |
| Window Spacelook Average              | 210       | N/A   | 04095  | 1         | 12    | 13056 |
| BDS_Cover_Status                      |           |       |        |           |       |       |
| Main_Cover_Status                     |           |       |        |           |       |       |
| Main Cover Command                    | 211       | N/A   | 015    | 1         | 4     | 13057 |
| Main Cover Motion Status              | 212       | N/A   | 015    | 1         | 4     | 13058 |
| Main Cover Position Status            | 213       | N/A   | 015    | 1         | 4     | 13059 |
| Main Cover Active Position Sensor     | 214       | N/A   | 03     | 1         | 2     | 13060 |
| Main Cover Commanded Position         | 215       | N/A   | 04095  | 1         | 12    | 13061 |
| Main Cover Step Count                 | 216       | N/A   | 065535 | 1         | 16    | 13062 |
| Main Cover Closed Position Definition | 217       | N/A   | 04095  | 1         | 12    | 13063 |
| Main Cover Open Position Definition   | 218       | N/A   | 04095  | 1         | 12    | 13064 |
| Main Cover Closed Margin Definition   | 219       | N/A   | 04095  | 1         | 12    | 13065 |
| Main Cover Open Margin Definition     | 220       | N/A   | 04095  | 1         | 12    | 13066 |
| MAM_Cover_Status                      |           |       |        |           |       |       |
| MAM Cover Command                     | 221       | N/A   | 015    | 1         | 4     | 13067 |
| MAM Cover Motion Status               | 222       | N/A   | 015    | 1         | 4     | 13068 |
| MAM Cover Position Status             | 223       | N/A   | 015    | 1         | 4     | 13069 |
| MAM Cover Active Position Sensor      | 224       | N/A   | 03     | 1         | 2     | 13070 |
| MAM Cover Commanded Position          | 225       | N/A   | 04095  | 1         | 12    | 13071 |
| MAM Cover Step Count                  | 226       | N/A   | 065535 | 1         | 16    | 13072 |
| MAM Cover Closed Position Definition  | 227       | N/A   | 04095  | 1         | 12    | 13073 |
| MAM Cover Open Position Definition    | 228       | N/A   | 04095  | 1         | 12    | 13074 |
| MAM Cover Closed Margin Definition    | 229       | N/A   | 04095  | 1         | 12    | 13075 |
| MAM Cover Open Margin Definition      | 230       | N/A   | 04095  | 1         | 12    | 13076 |
| BDS_Gimbal_Operation                  |           |       |        |           |       |       |
| BDS_Elevation_Status                  |           |       |        |           |       |       |
| Elevation Status                      | 231       | N/A   | 03     | 1         | 2     | 13077 |
| Elevation scan mode                   | 232       | N/A   | 031    | 1         | 5     | 13078 |
| On-Deck Elevation Scan Mode           | 233       | N/A   | 031    | 1         | 5     | 13079 |
| Elevation Encoder LED Level           | 234       | N/A   | 01     | 1         | 1     | 13080 |
| Elevation Offset Correction           | 235       | N/A   | 065535 | 1         | 16    | 13081 |
| BDS_Azimuth_Status                    |           |       |        |           |       |       |
| Azimuth Mode                          | 236       | N/A   | 031    | 1         | 5     | 13082 |
| Azimuth Motion Status                 | 237       | N/A   | 031    | 1         | 5     | 13083 |
| Azimuth Direction Status              | 238       | N/A   | 01     | 1         | 1     | 13084 |
| Azimuth Position Status               | 239       | N/A   | 015    | 1         | 4     | 13085 |
| Azimuth Motor Drive Status            | 240       | N/A   | 01     | 1         | 1     | 13086 |
| Azimuth Encoder LED Level             | 241       | N/A   | 01     | 1         | 1     | 13087 |
| Azimuth Offset Correction             | 242       | N/A   | 065535 | 1         | 16    | 13088 |
| BDS_Azimuth_Definition_Status         |           |       |        |           |       |       |
| Crosstrack Position Definition        | 243       | N/A   | 065535 | 1         | 16    | 13089 |
| Cal Position Definition               | 244       | N/A   | 065535 | 1         | 16    | 13090 |
| Azimuth Position A Definition         | 245       | N/A   | 065535 | 1         | 16    | 13091 |
| Azimuth Position A Definition         | 246       | N/A   | 065535 | 1         | 16    | 13092 |
| Azimuth Caged Position Definition     | 247       | N/A   | 065535 | 1         | 16    | 13093 |
| Spare Azimuth Position Definition #1  | 248       | N/A   | 065535 | 1         | 16    | 13094 |
| Spare Azimuth Position Definition #2  | 249       | N/A   | 065535 | 1         | 16    | 13095 |
| Spare Azimuth Position Definition #3  | 250       | N/A   | 065535 | 1         | 16    | 13096 |
| Normal Azimuth Scan Rate Definition   | 251       | N/A   | 065535 | 1         | 16    | 13097 |
| Unsync Azimuth Scan Rate Definition   | 252       | N/A   | 065535 | 1         | 16    | 13098 |
| Number         Record         Elser         Number           Syn: A Jamuhl Scan Bale Dafinston         253         NA         0.55535         1         16         13009           Brase Mokon Status         256         NA         0.15         1         4         13101           Brase Position Status         256         NA         0.15         1         12         13103           Brake Commanded Position Dafinition         256         NA         0.4055         1         12         13103           Brake Applied Position Dafinition         256         NA         0.4055         1         12         13105           Brake Applied Position Dafinition         260         NA         0.4055         1         12         13105           Brake Applied Position Dafinition         261         NA         0.4055         1         12         13105           Brake Applied Margin         262         NA         0.4065         1         12         13105           Brake Applied Margin         265         NA         0.4065         1         16         13112           DAP Processor Status         265         NA         0.1         1         13112           DAP Processor Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Description                                   | Parameter | Units | Range          | Elements/ | Bits/  | Elem           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|-------|----------------|-----------|--------|----------------|
| Sync Armuh San Rate Definition         253         NA         0.65535         1         16         1300           Brake Command Status         254         NA         0.15         1         4         13100           Brake Deation Status         255         NA         0.15         1         4         13102           Brake Deation Status         256         NA         0.15         1         4         13122           Brake Status         256         NA         0.4095         1         12         13106           Brake Status         258         NA         0.4095         1         12         13106           Brake Applied Positon Definition         259         NA         0.4095         1         12         13106           Brake Applied Margin         261         NA         0.4095         1         12         13109           BDS Processor Status         265         NA         0.4095         1         12         13109           DAP Processor Status         264         NA         0.4095         1         12         13109           DAP Processor Status         265         NA         0.1         1         13111         1         13111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | Number    |       | U              | Record    | Elem   | Num            |
| Sync Armun Scan Rale Definition         253         NA         0.653.5         1         4         13100           Brake Mosion Status         255         NA         0.15         1         4         13101           Brake Mosion Status         255         NA         0.155         1         4         13102           Brake Commanded Position         257         NA         0.4055         1         12         13103           Brake Sing Count         258         NA         0.4055         1         12         13105           Brake Acpited Position Definition         260         NA         0.4095         1         12         13105           Brake Acpited Position Definition         261         NA         0.4095         1         12         13105           Brake Acpited Margin         262         NA         0.4095         1         12         13105           Brake Acpited Margin         263         NA         0.4095         1         12         13105           Brake Acpited Margin         264         NA         0.4095         1         16         13113           DAP Mocessor Status         266         NA         0.1         1         16         13115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |           |       |                |           |        |                |
| Brake Commands Status         244         NA         0.15         1         4         13101           Brake Position Status         256         NA         0.15         1         4         13101           Brake Costion Status         256         NA         0.15         1         4         13104           Brake Costion Definition         257         NA         0.4065         1         12         13105           Brake Acqued Rostion Definition         261         NA         0.4065         1         12         13106           Brake Acqued Rostion Definition         261         NA         0.4065         1         12         13106           Brake Applied Margin         263         NA         0.4065         1         12         13101           BOS Processor State         BDS         Processor State         BD         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sync Azimuth Scan Rate Definition             | 253       | N/A   | 065535         | 1         | 16     | 13099          |
| Brake Motion Status         255         N/A         015         1         4         13102           Brake Commanded Position         257         N/A         0.4095         1         12         13105           Brake Spe Count         259         N/A         0.4095         1         12         13105           Brake Speciant Definition         260         N/A         0.4095         1         12         13105           Brake Applied Margin         261         N/A         0.4095         1         12         13105           Brake Applied Margin         262         N/A         0.4095         1         12         13105           Brake Applied Margin         264         N/A         0.4095         1         12         13105           Brake Caped Margin         264         N/A         0.4095         1         16         13114           DAP Processor Status         265         N/A         0.11         1         1         1         13115           DAP Processor Vachog Enable         265         N/A         0.5535         1         16         13114           DAP Processor Vachog Enable         270         N/A         0000.FFFF(449)         1         16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Brake Command Status                          | 254       | N/A   | 015            | 1         | 4      | 13100          |
| Brike Position Slutz         256         N.A         0.15         1         4         13102           Brake Step Count         257         N.A         0.4095         1         12         13105           Brake Released Position Definition         259         N.A         0.4095         1         12         13105           Brake Applied Position Definition         261         N.A         0.4095         1         12         13105           Brake Applied Margin         263         N.A         0.4095         1         12         13106           Brake Applied Margin         263         N.A         0.4095         1         12         13105           Box Applied Margin         263         N.A         0.4095         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Brake Motion Status                           | 255       | N/A   | 015            | 1         | 4      | 13101          |
| Brake Commanded Position         257         N/A         0.4095         1         12         13105           Brake Spie Court         258         N/A         0.4035         1         12         13105           Brake Applied Position Definition         260         N/A         0.4035         1         12         13105           Brake Applied Margin         261         N/A         0.4095         1         12         13107           Brake Applied Margin         262         N/A         0.4095         1         12         13107           Brake Caged Margin         264         N/A         0.4095         1         12         13110           BDS Processor Status         265         N/A         0.11         1         1         11         13112           DAP Processor Bool Status         267         N/A         N/A         1         16         13113           DAP Processor Vachod Count         268         N/A         0.000.FFFF(Hex)         1         16         13113           DAP Memory Dump Start Address Offset         270         N/A         0000.FFFF(Hex)         1         16         13119           DAP Memory Dump End Address Offset         272         N/A         0000.FFFF(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Brake Position Status                         | 256       | N/A   | 015            | 1         | 4      | 13102          |
| Brake Step Count         259         N/A         065535         1         15           Brake Applied Position Definition         260         N/A         04085         1         12         13106           Brake Applied Position Definition         261         N/A         04085         1         12         13107           Brake Applied Margin         262         N/A         04085         1         12         13108           Brake Caged Margin         263         N/A         04085         1         12         13108           BOS Processor Status         266         N/A         04085         1         1         13111           DAP Processor Status         266         N/A         01         1         1         11         13111           DAP Processor Status         267         N/A         065335         1         16         13113           DAP Processor Status         267         N/A         0.000.FFFF(Hex)         1         16         13115           DAP Memory Dump Stat Address Offset         270         N/A         0.000.FFFF(Hex)         1         16         13115           DAP Memory Dump End Address Offset         272         N/A         0.000.FFFF(Hex)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Brake Commanded Position                      | 257       | N/A   | 04095          | 1         | 12     | 13103          |
| Brake Apilear Destino Identificion         259         N/A         04095         1         12         13105           Brake Caged Position Definition         261         N/A         04095         1         12         13105           Brake Apilear Margin         262         N/A         04095         1         12         13106           Brake Apilear Margin         263         N/A         04095         1         12         13109           Brake Apilear Margin         266         N/A         04095         1         12         13109           BDS. Processor Status         266         N/A         04095         1         1         13111           DAP Processor Matchog Enable         266         N/A         0.1         1         1         15         13115           DAP Processor Matchog Enable         266         N/A         0.65535         1         16         13115           DAP Memory Dump Start Address Ofset         270         N/A         0000.FFFF(Hex)         1         16         13115           DAP Memory Dump End Address Ofset         271         N/A         0000.FFFF(Hex)         1         16         13116           DAP Memory Dump End Address Offset         273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Brake Step Count                              | 258       | N/A   | 065535         | 1         | 16     | 13104          |
| Brake Applied Position Definition         260         N/A         0.4095         1         12         13106           Brake Applied Margin         261         N/A         0.4095         1         12         13108           Brake Applied Margin         263         N/A         0.4095         1         12         13108           Brake Applied Margin         264         N/A         0.4095         1         12         13108           BDS. Processor Status         265         N/A         0.1         1         1         13111           DAP Processor Status         265         N/A         0.1         1         1         16         13113           DAP Processor Machine Were Status         267         N/A         0.65535         1         16         13114           DAP Cocesor PGM Power Status         270         N/A         0000.FFFF(Hex)         1         16         13114           DAP Cocesor PGM Power Status         271         N/A         0000.FFFF(Hex)         1         16         13114           DAP Memory Dump Stat Address Offset         273         N/A         0000.FFFF(Hex)         1         16         13112           DAP Memory Dump End Address Offset         274         N/A </td <td>Brake Released Position Definition</td> <td>259</td> <td>N/A</td> <td>04095</td> <td>1</td> <td>12</td> <td>13105</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Brake Released Position Definition            | 259       | N/A   | 04095          | 1         | 12     | 13105          |
| Brake Caged Fosition Definition         261         N/A         04095         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Brake Applied Position Definition             | 260       | N/A   | 04095          | 1         | 12     | 131 <b>0</b> 6 |
| Brake Released Margin         262         N/A         0.4095         1         12         13109           Brake Caged Margin         263         N/A         0.4095         1         12         13109           BDS Processor Status         BDS DAP Status         VIA         0.4095         1         12         1310           BDS DAP Status         BDS DAP Status         265         N/A         0.1         1         1         13111           DAP Processor Status         266         N/A         0.1         1         16         13113           DAP Processor Scan Period Count         266         N/A         0.6000.FFFF(Hex)         1         16         13116           DAP Memory Dump Start Address Offset         270         N/A         0000.FFFF(Hex)         1         16         13116           DAP Memory Dump End Address Segment         271         N/A         0000.FFFF(Hex)         1         16         13119           DAP Memory Dump End Address Offset         273         N/A         0000.FFFF(Hex)         1         16         13120           DAP Memory Dump Packet Address Segment         274         N/A         0.6000.FFFF(Hex)         1         16         13122           DAP Memory Dump Asset Addre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Brake Caged Position Definition               | 261       | N/A   | 04095          | 1         | 12     | 13107          |
| Brake Applied Margin         263         N/A         04095         1         12         13109           BDS, Frocessor, Situs         BDS, DAP, Status         International Consist Const Consist Const Consist Consist Consist Consist Const Consist Cons | Brake Released Margin                         | 262       | N/A   | 04095          | 1         | 12     | 13108          |
| Brake Caged Margin         264         N/A         0.4095         1         12         1110           BDS DAP. Status         BDS DAP. Status         BDS         N/A         0.1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Brake Applied Margin                          | 263       | N/A   | 04095          | 1         | 12     | 13109          |
| BDS. Processor Status           BDS. DAP. Status         265         N/A         0.1         1         1         1         13111           DAP Processor Mathidog Enable         266         N/A         0.1         1         1         13112           DAP Processor PEOM Power Status         267         N/A         0.65535         1         16         13114           DAP Processor PEOM Ower Status         269         N/A         0.000.FFFF(Hex)         1         16         13117           DAP Memory Dump Stat Address Softset         270         N/A         0000.FFFF(Hex)         1         16         13117           DAP Memory Dump End Address Softset         272         N/A         0000.FFFF(Hex)         1         16         13112           DAP Memory Dump End Address Softset         274         N/A         0000.FFFF(Hex)         1         16         13120           DAP Memory Dump Packet Address Softset         274         N/A         0.000.FFFF(Hex)         1         16         13120           DAP Memory Dump Packet Address Softset         276         N/A         0.1023         1         10         13123           DAP Maximum Execution Sample         276         N/A         0.1023         1         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Brake Caged Margin                            | 264       | N/A   | 04095          | 1         | 12     | 13110          |
| BDS, DAP. Status         DAP Processor Bol Status         265         N/A         01         1         1         13111           DAP Processor PROM Power Status         266         N/A         01         1         1         1         13112           DAP Processor PROM Power Status         267         N/A         0.65535         1         16         13115           DAP Processor Cacn Perod Count         268         N/A         0.000FFFF(Hex)         1         16         13115           DAP Memory Dump Start Address Offset         270         N/A         0000FFFF(Hex)         1         16         13117           DAP Memory Dump End Address Offset         271         N/A         0000FFFF(Hex)         1         16         13112           DAP Memory Dump End Address Offset         273         N/A         0000FFFF(Hex)         1         16         13121           DAP Memory Dump Packet Address Segment         276         N/A         0.65535         1         16         13122           DAP Minimum Execution Time         276         N/A         0.1023         1         10         13123           DAP Maximum Execution Time         276         N/A         065535         1         16         13126 </td <td>BDS_Processor_Status</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BDS_Processor_Status                          |           |       |                |           |        |                |
| DAP Processor Bool Status         265         N/A         01         1         1         13112           DAP Processor PROM Power Status         266         N/A         01         1         1         13113           DAP Processor Vatchdog Enable         267         N/A         N/A         1         16         13113           DAP Processor Scan Period Count         268         N/A         0.065535         1         16         13114           DAP Code Checksum         269         N/A         0000_FFFF(Hex)         1         16         13116           DAP Memory Dump Start Address Offset         271         N/A         0000_FFFF(Hex)         1         16         13112           DAP Memory Dump End Address Segment         273         N/A         0000_FFFF(Hex)         1         16         13120           DAP Memory Dump Packet Address Segment         275         N/A         0.000_FFFF(Hex)         1         16         13123           DAP Memory Dump Packet Address Segment         276         N/A         065535         1         16         13123           DAP Memory Dump Packet Address Segment         277         N/A         01023         1         10         13123           DAP Maximum Execution Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BDS_DAP_Status                                |           |       |                |           |        |                |
| DAP Processor Watchdog Enable         266         N/A         0.1         1         1         1112           DAP Processor Watchdog Enable         267         N/A         N/A         1         16         13112           DAP Processor PGOM Perod Count         268         N/A         0.65535         1         16         13114           DAP Code Checksum         269         N/A         0000.FFFF(Hex)         1         16         13115           DAP Memory Dump Start Address Segment         270         N/A         0000.FFFF(Hex)         1         16         13117           DAP Memory Dump End Address Segment         273         N/A         0000.FFFF(Hex)         1         16         13112           DAP Memory Dump Packet Address Segment         275         N/A         0.000.FFFF(Hex)         1         16         13121           DAP Memory Dump Packet Address Softset         276         N/A         0.000.FFFF(Hex)         1         16         13124           DAP Memory Dump Packet Address Softset         276         N/A         0.0123         1         10         13123           DAP Memory Dump End Address Oftset         276         N/A         0.1023         1         16         13124           DAP Maximum E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DAP Processor Boot Status                     | 265       | N/A   | 01             | 1         | 1      | 13111          |
| DAP Processor PROM Power Status         267         N/A         N/A         1         16         13113           DAP Processor Scan Period Count         268         N/A         0.65355         1         16         13114           DAP Code Checksum         269         N/A         0000.FFFF(Hex)         1         16         13116           DAP Memory Dump Start Address Offset         270         N/A         0000.FFFF(Hex)         1         16         13117           DAP Memory Dump End Address Offset         271         N/A         0000.FFFF(Hex)         1         16         13112           DAP Memory Dump Packet Address Offset         274         N/A         0000.FFFF(Hex)         1         16         13120           DAP Memory Dump Packet Address Offset         274         N/A         0.65535         1         16         13122           DAP Memory Dump Packet Address Offset         277         N/A         0.1023         1         10         13123           DAP Maximum Execution Time         276         N/A         0.65535         1         16         13124           DAP Maximum Execution Sample         277         N/A         0.1023         1         10         13123           DAP Maximum Execution Time<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DAP Processor Watchdog Enable                 | 266       | N/A   | 01             | 1         | 1      | 13112          |
| DAP Processor Scan Period Count         268         N/A         0.65535         1         16         13114           DAP Code Checksum         269         N/A         0000.FFFF(Hex)         1         16         13115           DAP Memory Dump Start Address Offset         270         N/A         0000.FFFF(Hex)         1         16         13117           DAP Memory Dump End Address Offset         272         N/A         0000.FFFF(Hex)         1         16         13116           DAP Memory Dump End Address Offset         274         N/A         0000.FFFF(Hex)         1         16         13121           DAP Memory Dump Packet Address Offset         276         N/A         0.65535         1         16         13122           DAP Memory Dump Packet Address Segment         276         N/A         0.1023         1         10         13124           DAP Maximum Execution Time         278         N/A         0.1023         1         16         13126           DAP Maximum Execution Sample         279         N/A         0.1023         1         16         13126           DAP Maximum Execution Time         280         N/A         0.11         1         1         13126           DCP Processor Boot Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DAP Processor PROM Power Status               | 267       | N/A   | N/A            | 1         | 16     | 13113          |
| DAP Code Checksum         269         N/A         0000.FFFF(Hex)         1         16         13115           DAP Memory Dump Start Address Offset         270         N/A         0000.FFFF(Hex)         1         16         13117           DAP Memory Dump End Address Offset         271         N/A         0000.FFFF(Hex)         1         16         13117           DAP Memory Dump End Address Offset         272         N/A         0000.FFFF(Hex)         1         16         13119           DAP Memory Dump Packet Address Offset         274         N/A         0000.FFFF(Hex)         1         16         13120           DAP Memory Dump Packet Address Offset         277         N/A         0.000.FFFF(Hex)         1         16         13122           DAP Minimum Execution Time         276         N/A         0.65535         1         16         13125           DAP Maximum Execution Sample         279         N/A         0.1023         1         10         13125           DAP Execution Time         280         N/A         0.65535         1         16         13126           DAP Execution Time         281         N/A         0.11         1         1         13127           ICP Processor Boot Status         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DAP Processor Scan Period Count               | 268       | N/A   | 065535         | 1         | 16     | 13114          |
| DAP Memory Dump Start Address Soffset         270         N/A         0000FFFF(Hex)         1         16         13116           DAP Memory Dump End Address Soffset         271         N/A         0000FFFF(Hex)         1         16         13117           DAP Memory Dump End Address Soffset         272         N/A         0000FFFF(Hex)         1         16         13119           DAP Memory Dump End Address Soffset         273         N/A         0000FFFF(Hex)         1         16         13120           DAP Memory Dump Packet Address Segment         275         N/A         0.000FFFF(Hex)         1         16         13122           DAP Minimum Execution Time         276         N/A         065535         1         16         13123           DAP Maximum Execution Time         278         N/A         065535         1         16         13124           DAP Maximum Execution Time         280         N/A         0.1023         1         10         13125           DAP Execution Time         280         N/A         065535         1         16         13126           DCP Processor Bool Status         281         N/A         0.1         1         1         13128           ICP Processor Scan Perio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DAP Code Checksum                             | 269       | N/A   | 0000FFFF(He:   | κ) 1      | 16     | 13115          |
| DAP Memory Dump Start Address Segment         271         N/A         0000FFFF(Hex)         1         16         13117           DAP Memory Dump End Address Ofset         272         N/A         0000FFFF(Hex)         1         16         13118           DAP Memory Dump End Address Segment         273         N/A         0000FFFF(Hex)         1         16         13120           DAP Memory Dump Packet Address Segment         275         N/A         0000FFFF(Hex)         1         16         13121           DAP Memory Dump Packet Address Segment         275         N/A         0.000FFFF(Hex)         1         16         13122           DAP Minimum Execution Time         276         N/A         0.65535         1         16         13125           DAP Maximum Execution Time         278         N/A         0.65535         1         16         13126           DAP Execution Time         281         N/A         0.1023         1         10         13125           DAP Execution Time         281         N/A         0.65535         1         16         13126           ICP Processor Valchdog Enable Status         281         N/A         0.1         1         1         13127           ICP Processor PROM Powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DAP Memory Dump Start Address Offset          | 270       | N/A   | 0000FFFF(He:   | k) 1      | 16     | 13116          |
| DAP Memory Dump End Address Offset         272         N/A         0000.FFFF(Hex)         1         16         13118           DAP Memory Dump End Address Segment         273         N/A         0000.FFFF(Hex)         1         16         13120           DAP Memory Dump Packet Address Segment         275         N/A         0000.FFFF(Hex)         1         16         13120           DAP Memory Dump Packet Address Segment         276         N/A         0.65535         1         16         13122           DAP Maximum Execution Time         276         N/A         0.1023         1         10         13123           DAP Maximum Execution Sample         277         N/A         0.1023         1         16         13124           DAP Maximum Execution Sample         279         N/A         0.1023         1         16         13126           DAP Execution Time         280         N/A         0.65535         1         16         13126           ICP Processor Bool Status         281         N/A         0.1         1         1         13126           ICP Processor PROM Power Status         283         N/A         0.1         1         16         13130           ICP Memory Dump Start Address Segment <t< td=""><td>DAP Memory Dump Start Address Segment</td><td>271</td><td>N/A</td><td>0000FFFF(He</td><td>k) 1</td><td>16</td><td>13117</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DAP Memory Dump Start Address Segment         | 271       | N/A   | 0000FFFF(He    | k) 1      | 16     | 13117          |
| DAP Memory Dump End Address Segment         273         N/A         0000.FFFF(Hex)         1         16         13119           DAP Memory Dump Packet Address Offset         274         N/A         0000.FFFF(Hex)         1         16         13121           DAP Memory Dump Packet Address Segment         275         N/A         0.65535         1         16         13122           DAP Minimum Execution Time         276         N/A         0.65535         1         16         13123           DAP Maximum Execution Time         278         N/A         0.65535         1         16         13124           DAP Maximum Execution Sample         279         N/A         0.1023         1         10         13125           DAP Execution Time         280         N/A         0.65535         1         16         13126           DAP Execution Time         280         N/A         0.11         1         1         13126           DAP Execution Time         280         N/A         0.11         1         1         13126           DCP Processor Boot Status         281         N/A         0.11         1         1         13129           ICP Processor Scan Period Count         284         N/A         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DAP Memory Dump End Address Offset            | 272       | N/A   | 0000FFFF(He:   | κ) 1      | 16     | 13118          |
| DAP Memory Dump Packet Address Offsel         274         N/A         0000FFFF(Hex)         1         16         13120           DAP Memory Dump Packet Address Segment         275         N/A         0000FFFF(Hex)         1         16         13121           DAP Minimum Execution Time         276         N/A         0.65535         1         16         13122           DAP Minimum Execution Sample         277         N/A         0.1023         1         10         13125           DAP Maximum Execution Sample         279         N/A         0.1023         1         16         13126           DAP Maximum Execution Time         279         N/A         0.1023         1         10         13125           DAP Execution Time         280         N/A         0.65535         1         16         13126           BDS_ICP. Status         281         N/A         0.11         1         1         13128           ICP Processor Vatchdog Enable Status         283         N/A         0.11         1         1         13129           ICP Processor PROM Power Status         284         N/A         0.65535         1         16         13130           ICP Code Checksum         285         N/A <t< td=""><td>DAP Memory Dump End Address Segment</td><td>273</td><td>N/A</td><td>0000FFFF(He:</td><td>k) 1</td><td>16</td><td>13119</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DAP Memory Dump End Address Segment           | 273       | N/A   | 0000FFFF(He:   | k) 1      | 16     | 13119          |
| DAP Memory Dump Packet Address Segment         275         N/A         0000.FFFF(Hex)         1         16         13121           DAP Minimum Execution Time         276         N/A         0.65535         1         16         13122           DAP Minimum Execution Sample         277         N/A         0.1023         1         10         13123           DAP Maximum Execution Sample         277         N/A         0.65535         1         16         13124           DAP Maximum Execution Sample         279         N/A         0.1023         1         10         13125           DAP Execution Time         280         N/A         0.65535         1         16         13126           BDS_ICP_Status         281         N/A         0.11         1         1         13129           ICP Processor Watchdog Enable Status         283         N/A         0.1         1         1         13129           ICP Processor Vatchdog Enable Status         283         N/A         0.1         1         16         13130           ICP Processor Vatchdog Enable Status         286         N/A         0000.FFFF(Hex)         1         16         13131           ICP Memory Dump Start Address Offset         286         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DAP Memory Dump Packet Address Offset         | 274       | N/A   | 0000FFFF(He    | K) 1      | 16     | 13120          |
| DAP Minimum Execution Time         276         N/A         065535         1         16         13122           DAP Minimum Execution Sample         277         N/A         01023         1         10         13123           DAP Maximum Execution Sample         278         N/A         065535         1         16         13124           DAP Maximum Execution Sample         279         N/A         01023         1         10         13125           DAP Execution Time         280         N/A         065535         1         16         13126           BDS JCP_Status         281         N/A         01         1         1         13127           ICP Processor PROM Power Status         283         N/A         01         1         1         13128           ICP Processor PROM Power Status         283         N/A         01         1         16         13131           ICP Processor Scan Period Count         284         N/A         065535         1         16         13132           ICP Memory Dump Start Address Offset         286         N/A         00000FFFF(Hex)         1         16         13132           ICP Memory Dump End Address Segment         287         N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DAP Memory Dump Packet Address Segment        | 275       | N/A   | 0000FFFF(He:   | () 1      | 16     | 13121          |
| DAP Minimum Execution Sample       277       N/A       0.1023       1       10       13123         DAP Maximum Execution Time       278       N/A       0.65535       1       16       13124         DAP Maximum Execution Sample       279       N/A       0.1023       1       10       13125         DAP Execution Time       280       N/A       0.65535       1       16       13126         BDS_ICP_Status       281       N/A       0.11       1       1       13127         ICP Processor Bool Status       281       N/A       0.11       1       1       13128         ICP Processor PROM Power Status       282       N/A       0.11       1       1       13128         ICP Processor Scan Period Count       284       N/A       0.65535       1       16       13131         ICP Processor Scan Period Count       286       N/A       0000FFFF(Hex)       1       16       13131         ICP Memory Dump Start Address Offset       286       N/A       0000FFFF(Hex)       1       16       13132         ICP Memory Dump End Address Offset       280       N/A       0000FFFF(Hex)       1       16       13135         ICP Memory Dump Packet Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DAP Minimum Execution Time                    | 276       | N/A   | 065535         | ,<br>1    | 16     | 13122          |
| DAP Maximum Execution Time       278       N/A       0.65535       1       16       13124         DAP Maximum Execution Sample       279       N/A       0.1023       1       10       13125         DAP Execution Time       280       N/A       0.65535       1       16       13126         BDS_ICP_Status       281       N/A       0.11       1       1       13127         ICP Processor Boot Status       281       N/A       0.11       1       1       13128         ICP Processor Watchdog Enable Status       283       N/A       0.11       1       1       13129         ICP Processor Vachdodg Enable Status       283       N/A       0.65535       1       16       13130         ICP Code Checksum       285       N/A       0000FFFF(Hex)       1       16       13131         ICP Memory Dump Start Address Stegment       286       N/A       0000FFFF(Hex)       1       16       13132         ICP Memory Dump End Address Stegment       289       N/A       0000FFFF(Hex)       1       16       13133         ICP Memory Dump Packet Address Stegment       290       N/A       0000FFFF(Hex)       1       16       13134         ICP Memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DAP Minimum Execution Sample                  | 277       | N/A   | 01023          | 1         | 10     | 13123          |
| DAP Maximum Execution Sample         279         N/A         01023         1         10         13125           DAP Execution Time         280         N/A         065535         1         16         13126           BDS_ICP_Status         281         N/A         01         1         1         13127           ICP Processor Boot Status         281         N/A         01         1         1         13128           ICP Processor Vatchdog Enable Status         282         N/A         01         1         1         13129           ICP Processor Scan Period Count         283         N/A         065535         1         16         13130           ICP Processor Scan Period Count         285         N/A         0000.FFFF(Hex)         1         16         13131           ICP Memory Dump Start Address Offset         286         N/A         0000.FFFF(Hex)         1         16         13133           ICP Memory Dump End Address Offset         280         N/A         0000.FFFF(Hex)         1         16         13136           ICP Memory Dump Packet Address Segment         289         N/A         0000FFFF(Hex)         1         16         13136           ICP Memory Dump Packet Address Segment         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DAP Maximum Execution Time                    | 278       | N/A   | 065535         | 1         | 16     | 13124          |
| DAP Execution Time         280         N/A         0.65535         1         16         13126           BDS_ICP_Status         ICP Processor Boot Status         281         N/A         0.1         1         1         13127           ICP Processor Watchdog Enable Status         282         N/A         0.1         1         1         13128           ICP Processor Vatchdog Enable Status         282         N/A         0.1         1         1         13129           ICP Processor Scan Period Count         283         N/A         0.65535         1         16         13131           ICP Memory Dump Start Address Offset         286         N/A         00000_FFFF(Hex)         1         16         13131           ICP Memory Dump Start Address Offset         286         N/A         00000_FFFF(Hex)         1         16         13132           ICP Memory Dump End Address Offset         288         N/A         00000_FFFF(Hex)         1         16         13133           ICP Memory Dump End Address Offset         289         N/A         00000_FFFF(Hex)         1         16         13136           ICP Memory Dump Packet Address Segment         290         N/A         00000_FFFF(Hex)         1         16         13137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DAP Maximum Execution Sample                  | 279       | N/A   | 01023          | 1         | 10     | 13125          |
| BDS_ICP_Status       281       N/A       01       1       1       13127         ICP Processor Boot Status       282       N/A       01       1       1       13128         ICP Processor Watchdog Enable Status       282       N/A       01       1       1       13129         ICP Processor Scan Period Count       283       N/A       01       1       1       13129         ICP Code Checksum       285       N/A       0.000FFFF(Hex)       1       16       13130         ICP Memory Dump Start Address Offset       286       N/A       0000FFFF(Hex)       1       16       13132         ICP Memory Dump End Address Offset       286       N/A       0000FFFF(Hex)       1       16       13133         ICP Memory Dump End Address Offset       288       N/A       0000FFFF(Hex)       1       16       13134         ICP Memory Dump End Address Offset       290       N/A       0000FFFF(Hex)       1       16       13134         ICP Memory Dump Packet Address Segment       291       N/A       0000FFFF(Hex)       1       16       13134         ICP Memory Dump Packet Address Segment       291       N/A       0.65535       1       16       13141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DAP Execution Time                            | 280       | N/A   | 065535         | 1         | 16     | 13126          |
| ICP Processor Boot Status       281       N/A       01       1       1       13127         ICP Processor Watchdog Enable Status       282       N/A       01       1       1       13128         ICP Processor PROM Power Status       283       N/A       01       1       1       13129         ICP Processor Scan Period Count       284       N/A       065535       1       16       13130         ICP Code Checksum       285       N/A       0000FFFF(Hex)       1       16       13131         ICP Memory Dump Start Address Offset       286       N/A       0000FFFF(Hex)       1       16       13132         ICP Memory Dump End Address Offset       287       N/A       0000FFFF(Hex)       1       16       13133         ICP Memory Dump End Address Offset       288       N/A       0000FFFF(Hex)       1       16       13134         ICP Memory Dump End Address Offset       290       N/A       0000FFFF(Hex)       1       16       13134         ICP Memory Dump Packet Address Segment       291       N/A       0000FFFF(Hex)       1       16       13134         ICP Memory Dump Packet Address Segment       291       N/A       0655355       1       16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BDS_ICP_Status                                |           |       |                |           |        |                |
| ICP Processor Watchdog Enable Status       282       N/A       01       1       13128         ICP Processor PROM Power Status       283       N/A       01       1       13129         ICP Processor Scan Period Count       284       N/A       065535       1       16       13130         ICP Code Checksum       285       N/A       0000FFFF(Hex)       1       16       13131         ICP Memory Dump Start Address Offset       286       N/A       0000FFFF(Hex)       1       16       13132         ICP Memory Dump End Address Segment       287       N/A       0000FFFF(Hex)       1       16       13133         ICP Memory Dump End Address Segment       289       N/A       0000FFFF(Hex)       1       16       13136         ICP Memory Dump Packet Address Segment       290       N/A       0000FFFF(Hex)       1       16       13136         ICP Memory Dump Packet Address Segment       291       N/A       0000FFFF(Hex)       1       16       13139         ICP Memory Dump Packet Address Segment       291       N/A       065535       1       16       13140         ICP Minimum Execution Time       292       N/A       065535       1       16       13141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ICP Processor Boot Status                     | 281       | N/A   | 01             | 1         | 1      | 13127          |
| ICP Processor PROM Power Status       283       N/A       01       1       1       13129         ICP Processor Scan Period Count       284       N/A       0.65535       1       16       13130         ICP Code Checksum       285       N/A       0000FFFF(Hex)       1       16       13131         ICP Memory Dump Start Address Offset       286       N/A       0000FFFF(Hex)       1       16       13132         ICP Memory Dump Start Address Segment       287       N/A       0000FFFF(Hex)       1       16       13133         ICP Memory Dump End Address Segment       288       N/A       0000FFFF(Hex)       1       16       13134         ICP Memory Dump End Address Segment       289       N/A       0000FFFF(Hex)       1       16       13135         ICP Memory Dump Packet Address Segment       290       N/A       0000FFFF(Hex)       1       16       13136         ICP Memory Dump Packet Address Segment       291       N/A       0000FFFF(Hex)       1       16       13137         ICP Memory Dump Packet Address Segment       291       N/A       0.65535       1       16       13143         ICP Minimum Execution Time       292       N/A       0.65535       1 <td>ICP Processor Watchdog Enable Status</td> <td>282</td> <td>N/A</td> <td>01</td> <td>1</td> <td>1</td> <td>13128</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ICP Processor Watchdog Enable Status          | 282       | N/A   | 01             | 1         | 1      | 13128          |
| ICP Processor Scan Period Count       284       N/A       065535       1       16       13130         ICP Code Checksum       285       N/A       0000FFFF(Hex)       1       16       13131         ICP Memory Dump Start Address Offset       286       N/A       0000FFFF(Hex)       1       16       13132         ICP Memory Dump Start Address Segment       287       N/A       0000FFFF(Hex)       1       16       13133         ICP Memory Dump End Address Offset       288       N/A       0000FFFF(Hex)       1       16       13134         ICP Memory Dump End Address Offset       289       N/A       0000FFFF(Hex)       1       16       13136         ICP Memory Dump End Address Segment       290       N/A       0000FFFF(Hex)       1       16       13136         ICP Memory Dump Packet Address Segment       290       N/A       0000FFFF(Hex)       1       16       13137         ICP Memory Dump Packet Address Segment       291       N/A       0.000FFFF(Hex)       1       16       13138         ICP Memory Dump Packet Address Segment       291       N/A       065535       1       16       13149         ICP Minimum Execution Time       292       N/A       01023 <td>ICP Processor PROM Power Status</td> <td>283</td> <td>N/A</td> <td>01</td> <td>1</td> <td>1</td> <td>13129</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP Processor PROM Power Status               | 283       | N/A   | 01             | 1         | 1      | 13129          |
| ICP Code Checksum       285       N/A       0000FFFF(Hex)       1       16       13131         ICP Memory Dump Start Address Offset       286       N/A       0000FFFF(Hex)       1       16       13132         ICP Memory Dump Start Address Segment       287       N/A       0000FFFF(Hex)       1       16       13133         ICP Memory Dump End Address Segment       288       N/A       0000FFFF(Hex)       1       16       13134         ICP Memory Dump End Address Segment       289       N/A       0000FFFF(Hex)       1       16       13135         ICP Memory Dump End Address Segment       290       N/A       0000FFFF(Hex)       1       16       13136         ICP Memory Dump Packet Address Segment       291       N/A       0000FFFF(Hex)       1       16       13137         ICP Memory Dump Packet Address Segment       291       N/A       0.000FFFF(Hex)       1       16       13138         ICP Minimum Execution Time       292       N/A       065535       1       16       13140         ICP Maximum Execution Sample       293       N/A       01023       1       10       13141         ICP Maximum Execution Sample       295       N/A       065535 <t< td=""><td>ICP Processor Scan Period Count</td><td>284</td><td>N/A</td><td>065535</td><td>1</td><td>16</td><td>13130</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ICP Processor Scan Period Count               | 284       | N/A   | 065535         | 1         | 16     | 13130          |
| ICP Memory Dump Start Address Offset       286       N/A       0000FFFF(Hex)       1       16       13132         ICP Memory Dump Start Address Segment       287       N/A       0000FFFF(Hex)       1       16       13133         ICP Memory Dump End Address Offset       288       N/A       0000FFFF(Hex)       1       16       13133         ICP Memory Dump End Address Segment       289       N/A       0000FFFF(Hex)       1       16       13136         ICP Memory Dump Packet Address Segment       290       N/A       0000FFFF(Hex)       1       16       13136         ICP Memory Dump Packet Address Segment       291       N/A       0000FFFF(Hex)       1       16       13136         ICP Memory Dump Packet Address Segment       291       N/A       0000FFFF(Hex)       1       16       13136         ICP Memory Dump Packet Address Segment       291       N/A       0000FFFF(Hex)       1       16       13137         ICP Minimum Execution Time       292       N/A       065535       1       16       13139         ICP Maximum Execution Sample       293       N/A       01023       1       10       13141         ICP Maximum Execution Time       296       N/A       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ICP Code Checksum                             | 285       | N/A   | 0000FFFF(He)   | o) 1      | 16     | 13131          |
| ICP Memory Dump Start Address Segment       287       N/A       0000FFFF(Hex)       1       16       13133         ICP Memory Dump End Address Offset       288       N/A       0000FFFF(Hex)       1       16       13134         ICP Memory Dump End Address Offset       289       N/A       0000FFFF(Hex)       1       16       13134         ICP Memory Dump End Address Segment       289       N/A       0000FFFF(Hex)       1       16       13135         ICP Memory Dump Packet Address Offset       290       N/A       0000FFFF(Hex)       1       16       13136         ICP Memory Dump Packet Address Segment       291       N/A       0000FFFF(Hex)       1       16       13137         ICP Memory Dump Packet Address Segment       291       N/A       0.000FFFF(Hex)       1       16       13138         ICP Minimum Execution Time       292       N/A       065535       1       16       13139         ICP Maximum Execution Sample       293       N/A       01023       1       10       13141         ICP Execution Time       296       N/A       065535       1       16       13142         BDS_General_Instrument_Status       297       N/A       015       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP Memory Dump Start Address Offset          | 286       | N/A   | 0000FFFF(He)   | ,<br>0 1  | 16     | 13132          |
| ICP Memory Dump End Address Offset       288       N/A       0000FFFF(Hex)       1       16       13134         ICP Memory Dump End Address Segment       289       N/A       0000FFFF(Hex)       1       16       13135         ICP Memory Dump Packet Address Segment       290       N/A       0000FFFF(Hex)       1       16       13136         ICP Memory Dump Packet Address Segment       291       N/A       0000FFFF(Hex)       1       16       13137         ICP Memory Dump Packet Address Segment       291       N/A       0000FFFF(Hex)       1       16       13137         ICP Minimum Execution Time       292       N/A       065535       1       16       13138         ICP Maximum Execution Sample       293       N/A       01023       1       10       13140         ICP Execution Time       294       N/A       065535       1       16       13142         BDS_General_Instrument_Status       296       N/A       0155       1       4       13143         Packet Data Version       297       N/A       011       1       1       13144         Packet Timecode Indicator       299       N/A       011       1       1       13145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ICP Memory Dump Start Address Segment         | 287       | N/A   | 0000FFFF(He)   | 0 1       | 16     | 13133          |
| ICP Memory Dump End Address Segment       269       N/A       0000FFFF(Hex)       1       16       13135         ICP Memory Dump Packet Address Offset       290       N/A       0000FFFF(Hex)       1       16       13136         ICP Memory Dump Packet Address Segment       291       N/A       0000FFFF(Hex)       1       16       13136         ICP Memory Dump Packet Address Segment       291       N/A       0000FFFF(Hex)       1       16       13137         ICP Minimum Execution Time       292       N/A       065535       1       16       13138         ICP Maximum Execution Sample       293       N/A       01023       1       10       13140         ICP Execution Time       294       N/A       065535       1       16       13140         ICP Execution Time       296       N/A       01023       1       10       13141         ICP Execution Time       296       N/A       065535       1       16       13142         BDS_General_Instrument_Status       297       N/A       015       1       4       13143         Packet Data Version       298       N/A       031       1       5       13144         Packet Cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ICP Memory Dump End Address Offset            | 288       | N/A   | 0000FFFF(He)   | a) 1      | 16     | 13134          |
| ICP Memory Dump Packet Address Offset       290       N/A       0000FFFF(Hex)       1       16       13136         ICP Memory Dump Packet Address Segment       291       N/A       0000FFFF(Hex)       1       16       13137         ICP Minimum Execution Time       292       N/A       065535       1       16       13138         ICP Minimum Execution Sample       293       N/A       01023       1       10       13139         ICP Maximum Execution Time       294       N/A       065535       1       16       13140         ICP Maximum Execution Sample       293       N/A       01023       1       10       13141         ICP Execution Time       296       N/A       065535       1       16       13142         BDS_General_Instrument_Status       296       N/A       0155       1       4       13143         Packet Data Indicator (Data format indicator)       297       N/A       015       1       4       13144         Packet Timecode Indicator       299       N/A       011       1       1       13145         Packet Counter       300       N/A       065535       1       16       13146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP Memory Dump End Address Segment           | 289       | N/A   | 0000FFFF(He)   | a) 1      | 16     | 13135          |
| ICP Memory Dump Packet Address Segment       291       N/A       0000FFFF(Hex)       1       16       13137         ICP Minimum Execution Time       292       N/A       065535       1       16       13138         ICP Minimum Execution Sample       293       N/A       01023       1       10       13139         ICP Maximum Execution Time       294       N/A       065535       1       16       13140         ICP Maximum Execution Time       294       N/A       065535       1       16       13140         ICP Maximum Execution Sample       295       N/A       01023       1       10       13141         ICP Execution Time       296       N/A       065535       1       16       13142         BDS_General_Instrument_Status       296       N/A       0155       1       4       13143         Packet Data Indicator (Data format indicator)       297       N/A       015       1       4       13143         Packet Timecode Indicator       298       N/A       031       1       5       13144         Packet Counter       300       N/A       065535       1       16       13145         Packet Counter       300<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP Memory Dump Packet Address Offset         | 290       | N/A   | 0000FFFF(He)   | a) 1      | 16     | 13136          |
| ICP Minimum Execution Time       292       N/A       065535       1       16       13138         ICP Minimum Execution Sample       293       N/A       01023       1       10       13139         ICP Maximum Execution Time       294       N/A       065535       1       16       13140         ICP Maximum Execution Sample       295       N/A       01023       1       10       13141         ICP Execution Time       296       N/A       065535       1       16       13142         BDS_General_Instrument_Status       296       N/A       0155       1       4       13143         Packet Data Indicator (Data format indicator)       297       N/A       015       1       4       13143         Packet Data Version       298       N/A       031       1       5       13144         Packet Timecode Indicator       299       N/A       01       1       1       13145         Packet Counter       300       N/A       065535       1       16       13146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ICP Memory Dump Packet Address Segment        | 291       | N/A   | 0000 .EEEE(He) | 0 1       | 16     | 13137          |
| ICP Minimum Execution Sample       293       N/A       01023       1       10       13139         ICP Maximum Execution Time       294       N/A       065535       1       16       13140         ICP Maximum Execution Sample       295       N/A       01023       1       10       13141         ICP Execution Time       296       N/A       065535       1       16       13142         BDS_General_Instrument_Status       296       N/A       065535       1       16       13143         Packet Data Indicator (Data format indicator)       297       N/A       015       1       4       13143         Packet Data Version       298       N/A       031       1       5       13144         Packet Counter       299       N/A       01       1       1       13145         Packet Counter       300       N/A       065535       1       16       13146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ICP Minimum Execution Time                    | 292       | N/A   | 0 65535        | ·, ·<br>1 | 16     | 13138          |
| ICP Maximum Execution Time       294       N/A       065535       1       16       13140         ICP Maximum Execution Sample       295       N/A       01023       1       10       13141         ICP Execution Time       296       N/A       065535       1       16       13142         BDS_General_Instrument_Status       297       N/A       015       1       4       13143         Packet Data Indicator (Data format indicator)       297       N/A       015       1       4       13143         Packet Data Version       298       N/A       011       1       5       13144         Packet Timecode Indicator       299       N/A       01       1       1       13145         Packet Counter       300       N/A       065535       1       16       13146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | 293       | N/A   | 0 1023         | 1         | 10     | 13139          |
| ICP Maximum Execution Sample       295       N/A       01023       1       10       13140         ICP Maximum Execution Sample       295       N/A       01023       1       10       13141         ICP Execution Time       296       N/A       065535       1       16       13142         BDS_General_Instrument_Status       297       N/A       015       1       4       13143         Packet Data Indicator (Data format indicator)       297       N/A       031       1       5       13144         Packet Data Version       298       N/A       031       1       5       13144         Packet Counter       300       N/A       065535       1       16       13145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICP Maximum Execution Time                    | 200       | N/A   | 0 65535        | 1         | 16     | 13140          |
| ICP Execution Time       296       N/A       01250       1       10       13141         ICP Execution Time       296       N/A       065535       1       16       13142         BDS_General_Instrument_Status       297       N/A       015       1       4       13143         Packet Data Indicator (Data format indicator)       297       N/A       015       1       4       13143         Packet Data Version       298       N/A       031       1       5       13144         Packet Timecode Indicator       299       N/A       01       1       1       13145         Packet Counter       300       N/A       065535       1       16       13146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ICP Maximum Execution Sample                  | 204       | N/A   | 01023          | 1         | 10     | 13141          |
| BDS_General_Instrument_Status         297         N/A         00533         1         4         13142           BDS_General_Instrument_Status         297         N/A         015         1         4         13143           Packet Data Indicator (Data format indicator)         298         N/A         031         1         5         13144           Packet Data Version         299         N/A         01         1         1         13145           Packet Counter         300         N/A         065535         1         16         13146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               | 200       | N/A   | 0 65535        | 1         | 16     | 13142          |
| Packet Data Indicator (Data format indicator)       297       N/A       015       1       4       13143         Packet Data Version       298       N/A       031       1       5       13144         Packet Timecode Indicator       299       N/A       011       1       1       13145         Packet Counter       300       N/A       065535       1       16       13146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BDS General Instrument Status                 | 200       | 1.00  | 0              |           | 10     | 10172          |
| Packet Data Version     297     N/A     015     1     4     15/45       Packet Data Version     298     N/A     031     1     5     13/144       Packet Timecode Indicator     299     N/A     01     1     1     13/145       Packet Counter     300     N/A     065535     1     16     13/146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Packet Data Indicator (Data format indicator) | 207       | N/A   | 0.15           | 1         | 4      | 13142          |
| Packet Timecode Indicator         299         N/A         01         1         1         13145           Packet Counter         300         N/A         065535         1         16         13146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Packet Data Molector (Data format molector)   | 237       | N/A   | 0.31           | 1         | 4<br>5 | 13140          |
| Packet Counter         300         N/A         01         1         1         13145           Packet Counter         300         N/A         065535         1         16         13146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Packet Timecode Indicator                     | 200       | N/A   | 0              | 4         | J<br>1 | 13145          |
| r acres overnier 300 11/A 0.65555 1 16 13146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | 233       | N/A   | 0.65525        |           | 10     | 12140          |
| Instrument II) Number 201 N/A 0.62 1 6 10147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Instrument ID Number                          | 300       | N/A   | 0.63           | 4         | 10     | 12140          |

# Volume II

| Description                            | Parameter | Units | Range                  | Elements/ | Bits/  | Elem  |
|----------------------------------------|-----------|-------|------------------------|-----------|--------|-------|
|                                        | Number    |       |                        | Record    | Elem   | Num   |
| Instrument Mode (Sequence #)           | 302       | N/A   | 031                    | 1         | 5      | 13148 |
| Instrument Previous Mode (Sequence #)  | 303       | N/A   | 031                    | 1         | 5      | 13149 |
| Mode(Sequence) Changed by              | 304       | N/A   | 07                     | 1         | 3      | 13150 |
| Instrument Command Counter             | 305       | N/A   | 065535                 | 1         | 16     | 13151 |
| Instrument Error Counter               | 306       | N/A   | 065535                 | 1         | 16     | 13152 |
| Sequence Command Index                 | 307       | N/A   | 031                    | 1         | 5      | 13153 |
| Sequence Execution Status              | 308       | N/A   | 07                     | 1         | 3      | 13154 |
| Sequence Time to Next Command          | 309       | N/A   | 0255                   | 1         | 8      | 13155 |
| S/C Safe Hold A Input Status           | 310       | N/A   | 01                     | 1         | - 1    | 13156 |
| S/C Safe Hold B Input Status           | 311       | N/A   | 01                     | 1         | 1      | 13157 |
| S/C Safe Hold A Response Status        | 312       | N/A   | 01                     | 1         | 1      | 13158 |
| S/C Safe Hold B Besponse Status        | 313       | N/A   | 01                     | 1         | 1      | 13159 |
| BDS Solar Sensor Status                |           |       |                        |           | ·      |       |
| Solar Presence Status                  | 314       | N/A   | 0.16383                | 1         | 14     | 13160 |
| SPS1 Noise Threshold                   | 315       | N/A   | 0.4095                 | 1         | 12     | 13161 |
| SPS1 Batio Threshold                   | 316       | N/A   | 0 127                  | 1         | 7      | 13162 |
| SPS1 Count Threshold                   | 317       | N/A   | 0.63                   | . 1       | ,<br>A | 13163 |
| SPS2 Noise Threshold                   | 318       | N/A   | 0.4095                 | 1         | 12     | 13164 |
| SPS2 Batio Threshold                   | 319       | N/A   | 0 127                  | 1         | 7      | 13165 |
| SPS2 Count Threshold                   | 320       | N/A   | 0.63                   | 1         | ,<br>6 | 13166 |
|                                        | 020       | 19/1  | 000                    |           | 0      | 10100 |
| Command and Error Stacks               |           |       |                        |           |        |       |
| Instrument Command Echo Stack          | 321       | N/A   | 0 2 81 1014            | 8         | 48     | 13167 |
| Instrument Error Stack                 | 322       | N/A   | 0.85535                | 8         | 16     | 13175 |
| BDS Satalita Data                      | ULL       |       | 000000                 | Ŭ         | 10     | 10170 |
| BDS Rew Set Enhem and Att              |           |       |                        |           |        |       |
| BDS Satellite Position                 |           |       |                        |           |        |       |
| Satellite Position (X) Count           | 323       | count | 0 4 29×10 <sup>9</sup> | 1         | 32     | 13183 |
| Satellite Position (X) Count           | 324       | count | 0.4.20×109             | 1         | 32     | 13184 |
| Satellite Position (7) Count           | 325       | count | 0.4.20-109             | ,         | 22     | 12195 |
| BDS Satellite Velocity                 | 020       | count | 0                      |           | 04     | 13103 |
| Satellite Velocity (X) Count           | 326       | count | 0 4 20-109             | 1         | 30     | 13196 |
| Satellite Velocity (X) Count           | 327       | count | 0 4 29×10              | 1         | 32     | 13187 |
| Satellite Velocity (7) Count           | 328       | count | 0.4.29×10              | 1         | 32     | 12100 |
| BDS Satellite Attitude                 | 520       | count | 04.23210               |           | 32     | 13100 |
| Satellite Attitude (Boli) Count        | 330       | count | 0 65575                | 1         | 16     | 12100 |
| Satellite Attitude (Pitch) Count       | 329       | count | 0.65535                |           | 10     | 10109 |
| Satellite Attitude (Frich) Count       | 330       | count | 0.65535                |           | 10     | 10101 |
| BBC Setellite Attitude Dete            | 331       | count | 000000                 | 1         | 16     | 13191 |
|                                        | 000       |       | 0.05505                |           | 46     | 40400 |
| Satellite Attitude Rate (Roll) Count   | 332       | count | 000030                 | 1         | 16     | 13192 |
| Satellite Attitude Rate (Pitch) Count  | 333       | count | 065535                 | 1         | 16     | 13193 |
|                                        | 334       | count | 000000                 | ł         | 16     | 13194 |
|                                        | 005       | A11   | 0.00 4.00              |           |        |       |
|                                        | 335       | AU    | 0.98 1.02              | 1         | 16     | 13195 |
|                                        | 336       | N/A   | IBD                    | 1         | 16     | 13196 |
| Colatitude of Sun at observation       | 337       | aeg   | 0180                   | 1         | 16     | 13197 |
| Longitude of Sun at observation        | 338       | deg   | 0360                   | 1         | 16     | 13198 |
| BUS_Sateline_Positions                 |           |       |                        |           |        |       |
| Satellite_Pos_Record_Start             |           |       |                        |           |        |       |
| Satellite Position (X) at record start | 339       | km    | -80008000              | 1         | 32     | 13199 |
| Satellite Position (Y) at record start | 340       | km    | -80008000              | 1         | 32     | 13200 |
| Satellite Position (Z) at record start | 341       | km    | -80008000              | 1         | 32     | 13201 |
| Satellite_Pos_Record_End               |           |       |                        |           |        |       |

#### Table B-2. Concluded

| Description                             | Parameter<br>Number | Units                | Range     | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|-----------------------------------------|---------------------|----------------------|-----------|---------------------|---------------|-------------|
| Satellite Position (X) at record end    | 342                 | km                   | -80008000 | 1                   | 32            | 13202       |
| Satellite Position (Y) at record end    | 343                 | km                   | -80008000 | 1                   | 32            | 13203       |
| Satellite Position (Z) at record end    | 344                 | km                   | -80008000 | 1                   | 32            | 13204       |
| Satellite_Vel_Record_Start              |                     |                      |           |                     |               |             |
| Satellite Velocity (X) at record start  | 345                 | km sec <sup>-1</sup> | -1010     | 1                   | 32            | 13205       |
| Satellite Velocity (Y) at record start  | 346                 | km sec <sup>-1</sup> | -1010     | 1                   | 32            | 13206       |
| Satellite Velocity (Z) at record start  | 347                 | km sec <sup>-1</sup> | -1010     | 1                   | 32            | 13207       |
| Satellite_Vel_Record_End                |                     |                      |           |                     |               |             |
| Satellite Velocity (X) at record end    | 348                 | km sec <sup>-1</sup> | -1010     | 1                   | 32            | 13208       |
| Satellite Velocity (Y) at record end    | 349                 | km sec <sup>-1</sup> | -1010     | 1                   | 32            | 13209       |
| Satellite Velocity (Z) at record end    | 350                 | km sec <sup>-1</sup> | -1010     | 1                   | 32            | 13210       |
| Satellite_Geolocations                  |                     |                      |           |                     |               |             |
| Colatitude of satellite at record start | 351                 | deg                  | 0180      | 1                   | 16            | 13211       |
| Longitude of satellite at record start  | 352                 | deg                  | 0360      | 1                   | 16            | 13212       |
| Colatitude of satellite at record end   | 353                 | deg                  | 0180      | 1                   | 16            | 13213       |
| Longitude of Satellite at record end    | 354                 | deg                  | 0360      | 1                   | 16            | 13214       |
| Total Meta Bita/File:                   | 256                 |                      |           |                     |               |             |
| Total Data Bits/Record:                 | 200796              |                      |           |                     |               |             |
| Total Records/File:                     | 13091               |                      |           |                     |               |             |
| Total Data Bits/File:                   | 2628620436          |                      |           |                     |               |             |
| Total Bits/File:                        | 2628620692          |                      |           |                     |               |             |
|                                         |                     |                      |           |                     |               |             |

## **Instrument Earth Scans (IES)**

The IES data product contains the equivalent of one hour of data from a single CERES scanner. The data records are ordered along the orbital ground track, with each footprint position related to the space-craft's suborbital point at the start of the hour. The spatial ordering of records within this product will ease the comparison of CERES data with cloud imager data in subsystem 4. The footprint record is the basic data structure for this data product. This record contains the following kinds of information:

- 1. Time of observation
- 2. Geolocation data (at both the top of atmosphere (TOA) and at Earth's surface)
- 3. Filtered radiances (at satellite altitude), with associated quality measures
- 4. Spacecraft orbital data
- 5. Footprint viewing geometric data

The IES data product contains only measurements that view the Earth. For the TRMM mission, this means that approximately 225 Earth-viewing footprints (records) are stored on the IES from each 3.3 second half-scan. Because the Earth scan pattern of the CERES instrument in the biaxial scan mode is irregular, the exact number of pixels in each IES data product varies. This variation is caused by the lack of predictability of the azimuth position at both the start and end of the hour. If the azimuth angle near the start (or end) of an hour is near the crosstrack position, then the number of footprints in the IES product is near the estimated value given below. If the azimuth angle is near the alongtrack position, some of the footprints are instead spatially located within the previous (or next) hour's IES. Thus, we have used an estimate of the number of 3.3 second half-scans per hour (approximately 1091) times the number of Earth-viewing measurements in a half-scan (TRMM estimate is 225, EOS estimate is 195) to arrive at our IES product sizing. For TRMM, this is estimated as 245 475 measurements per IES data product and for EOS the estimate is 212 745 measurements. The larger of these two measures is used to determine product sizing.

| Level: 1B         | Portion of Globe Covered    |
|-------------------|-----------------------------|
| Type: Internal    | File: Satellite swath       |
| Frequency: 1/hour | Record: One CERES footprint |
|                   |                             |

Time Interval Covered File: 1 hour Record: 100 Hz Portion of Atmosphere Covered File: Satellite altitude

## Table B-3. Instrument Earth Scans (IES)

| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Parameter<br>Number | Units                              | Range      | Elements/<br>Becord | Bits/<br>Flem | Elem<br>Num |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------|------------|---------------------|---------------|-------------|
| IES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11001               |                                    |            |                     | Lioin         |             |
| IES File Header                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | N/A                                |            | 1                   | 256           |             |
| IES Start Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                    |            | •                   | 200           |             |
| Julian Day at Hour Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | dav                                | 2449353 24 | 158500 1            | 32            |             |
| Julian Time at Hour Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | day                                | 0 1        | 1                   | 32            |             |
| Colatitude of satellite at IES start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | dag                                | 0.190      | 1                   | 16            |             |
| Longitude of satellite at IES start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | deg                                | 0.360      | 1                   | 16            |             |
| Number of featurints in IES product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                    | 1.045475   | 1                   | 22            |             |
| Number of robits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | IN/A                               | 1245475    |                     | 32            |             |
| Number of orbits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | N/A                                | IBU        |                     | 10            |             |
| IES_FOOTPrints is Array[245475] of.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                    |            |                     |               |             |
| ES_Footprint_Records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                    |            |                     |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                    |            |                     |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                    | 0.400      |                     |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                   | deg                                | 0180       | 1                   | 16            | 1           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                   | deg                                | 0360       | 1                   | 16            | 2           |
| Surface_CoLat_&_Long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                    |            |                     |               | _           |
| Colatitude of CERES FOV at surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                   | deg                                | 0180       | 1                   | 16            | 3           |
| Longitude of CERES FOV at surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                   | deg                                | 0360       | 1                   | 16            | 4           |
| Zenith_Angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                    |            |                     |               |             |
| CERES viewing zenith at TOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                   | deg                                | 090        | 1                   | 16            | 5           |
| CERES solar zenith at TOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                   | deg                                | 0180       | 1                   | 16            | 6           |
| CERES relative azimuth at TOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                   | deg                                | 0360       | 1                   | 16            | 7           |
| CERES viewing azimuth at TOA wrt North                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                   | deg                                | 0360       | 1                   | 16            | 8           |
| Miscellaneous_Angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                    |            |                     |               |             |
| Cross-track angle of CERES FOV at TOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                   | deg                                | -9090      | 1                   | 16            | 9           |
| Along-track angle of CERES FOV at TOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                  | deg                                | 0360       | 1                   | 16            | 10          |
| Clock_&_Cone_Angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                    |            |                     |               |             |
| Cone angle of CERES FOV at satellite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                  | deg                                | 0180       | 1                   | 16            | 11          |
| Clock angle of CERES FOV at satellite wrt inertial velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                  | deg                                | 0180       | 1                   | 16            | 12          |
| Rate of change of cone angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13                  | deg sec <sup>-1</sup>              | -100100    | 1                   | 16            | 13          |
| Rate of change of clock angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                  | deg sec <sup>-1</sup>              | -1010      | 1                   | 16            | 14          |
| SC_Velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                    |            |                     |               |             |
| X component of satellite inertial velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                  | km sec <sup>-1</sup>               | -1010      | 1                   | 16            | 15          |
| Y component of satellite inertial velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16                  | km sec <sup>-1</sup>               | -1010      | 1                   | 16            | 16          |
| Z component of satellite inertial velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                  | km sec <sup>-1</sup>               | -1010      | 1                   | 16            | 17          |
| Filtered Radiances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                    |            |                     |               |             |
| CERES total filtered radiance, upwards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                  | W-m <sup>-2</sup> sr <sup>-1</sup> | 0700       | 1                   | 16            | 18          |
| CERES shortwave filtered radiance, upwards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19                  | W-m <sup>-2</sup> sr <sup>-1</sup> | -10510     | 1                   | 16            | 19          |
| CERES window filtered radiance, upwards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                  | W-m <sup>-2</sup> sr <sup>-1</sup> | 050        | 1                   | 16            | 20          |
| Satellite & Sun Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | -                                  |            |                     |               |             |
| Colatitude of satellite at observation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                  | deo                                | 0180       | 1                   | 16            | 21          |
| Longitude of satellite at observation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                  | dea                                | 0360       | 1                   | 16            | 22          |
| Badius of satellite from center of Earth at observation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23                  | km                                 | 6000 8000  | 1                   | 32            | 23          |
| Colatitude of Sun at observation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24                  | dea                                | 0 180      | 1                   | 16            | 24          |
| Longitude of Sun at observation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25                  | deg                                | 0.360      | 1                   | 16            | 25          |
| Earth Sun distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                  | ALL                                | 0.98 1.02  | 1                   | 16            | 26          |
| Character References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                  | AU                                 | 0.56 1.02  | 1                   | 10            | 20          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 07                  | N1/A                               | 1 660      | 1                   | 16            | 07          |
| Scan sample humber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27                  | N/A                                | 0.055      | 1                   | 16            | 27          |
| The of electronic and a second s | 20                  | in/A<br>day                        | 0255       | 1                   | 20            | 20          |
| Time of observation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29                  | uay                                | U I        | I                   | 32            | 29          |
| Total Meta Bits/File:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 400                 |                                    |            |                     |               |             |
| Total Data Bits/Record:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 496                 |                                    |            |                     |               |             |
| Total Records/File:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 245475              |                                    |            |                     |               |             |
| Total Data Bits/File:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121755600           |                                    |            |                     |               |             |
| Total Bits/File:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121756000           |                                    |            |                     |               |             |

# Clouds and the Earth's Radiant Energy System (CERES)

# **Algorithm Theoretical Basis Document**

ERBE-Like Inversion to Instantaneous TOA and Surface Fluxes

# (Subsystem 2.0)

Richard Green<sup>1</sup> John Robbins<sup>2</sup>

<sup>1</sup>Atmospheric Sciences Division, NASA Langley Research Center, Hampton, Virginia 23681-0001 <sup>2</sup>Science Applications International Corporation (SAIC), Hampton, Virginia 23666

## Abstract

This Inversion Subsystem converts filtered radiometric measurements in engineering units to instantaneous flux estimates at the top of the atmosphere (TOA). The basis for this procedure is the ERBE Data Management System, which produced TOA fluxes from the ERBE scanning radiometers aboard the ERBS, NOAA-9, and NOAA-10 satellites over a 5-year period from November 1984 to February 1990 (Barkstrom 1984; Barkstrom and Smith 1986). The ERBE Inversion Subsystem is a mature set of algorithms that has been well documented and tested. The strategy for the ERBE-like products is to process the CERES data through the same processing system as ERBE with only minimal changes necessary to adapt to the CERES instrument characteristics. This system will be coded and operational at launch. An overview of the ERBE Inversion Subsystem is given by Smith et al. (1986).

## 2.0. ERBE-Like Inversion to Instantaneous TOA and Surface Fluxes

#### 2.1. Introduction

The ERBE-like Inversion Subsystem consists of a number of algorithms which are described in the following sections. The Spectral Correction Algorithm corrects the filtered radiances to unfiltered radiances. The observed scene type is then identified with the Maximum Likelihood Estimation (MLE) technique. Once the scene type is known, the Radiance-to-Flux Conversion is accomplished with the Angular Distribution Models (ADM). Finally, the Regional Averaging Algorithm produces regional fluxes from the instantaneous fluxes. At many points during the processing Quality Checks are performed to eliminate erroneous results.

#### 2.2. Algorithm Description

#### 2.2.1. Spectral Correction

The Spectral Correction Algorithm corrects the radiometric measurements for the imperfect spectral response of the optical path in the instrument. Radiation from the scene is collected and focused by primary and secondary mirrors, passes through the filter (for the shortwave and window channels), impinges on the detector, and causes a signal which is sampled and processed by the electronics, resulting in a filtered measurement (see subsystem 1). To correct this filtered signal, we need to know the spectral response of the individual channels and the spectral nature of the observed scene. The objective is to determine the reflected (or shortwave) radiation below 5  $\mu$ m, the emitted (or longwave) radiation above 5  $\mu$ m and the window radiation from 8 to 12  $\mu$ m.

We model the "filtered" scanner measured radiance as

$$I_F^j = \int_0^\infty S_\lambda^j I_\lambda d\lambda + \varepsilon^j \qquad j = SW, \ TOT, \ WN$$

where  $\lambda$  is wavelength in  $\mu$ m;  $I_{\lambda}$  is the spectral radiance incident on the instrument in W-m<sup>-2</sup>sr<sup>-1</sup> $\mu$ m<sup>-1</sup>;  $S_{\lambda}$  is the normalized spectral response of the instrument (fig. 1-2) such that  $0 \le S_{\lambda} \le 1$ ;  $\varepsilon$  is the instrument error in W-m<sup>-2</sup>sr<sup>-1</sup> with mean 0 and variance  $\sigma_{\varepsilon}^2$  which results from count conversion error, instrument noise, and any instrument error except spectral dependence effects; and *j* denotes the

shortwave, total, or window scanner channel. We desire to estimate the "unfiltered" scanner radiances which are defined as

$$I^{i} = \int_{0}^{\infty} C^{i}_{\lambda} I_{\lambda} d\lambda \qquad \qquad i = SW, LW, WN$$

where

$$C_{\lambda}^{SW} = \begin{cases} 1 & (0 \le \lambda < 5\mu m) \\ 0 & (Otherwise) \end{cases}$$

$$C_{\lambda}^{LW} = \begin{cases} 0 & (5 \le \lambda \le 50\mu m) \\ 1 & (Otherwise) \end{cases}$$

$$C_{\lambda}^{WN} = \begin{cases} 1 & (8\mu m \le \lambda \le 12\mu m) \\ 0 & (Otherwise) \end{cases}$$

Let us consider  $I_{\lambda}$  and  $\varepsilon$  as random variables so that both the filtered and unfiltered radiances are random variables. We desire to estimate the unfiltered radiances from the filtered radiances given the statistics of  $I_{\lambda}$  and  $\varepsilon$ . For simplicity, define the random vector of filtered radiances Y and the random vector of unfiltered radiances X as

$$Y = \begin{bmatrix} I_F^{SW} \\ I_F^{TOT} \\ I_F^{WN} \end{bmatrix} \qquad \qquad X = \begin{bmatrix} I^{SW} \\ I^{LW} \\ I^{WN} \end{bmatrix}$$

We will assume a linear estimator  $\hat{X} = BY$  and choose to minimize the diagonal terms of the matrix  $E[(\hat{X} - X)(\hat{X} - X)^T]$  where E[x] is the statistical expectation operator. This estimator is called the minimum mean square error estimator. From the Gauss-Markoff theorem (Liebelt 1967) we have

$$\hat{X} = E[XY^T] \left( E[YY^T] \right)^{-1} Y$$

We will define the quantities  $E[XY^T]$  and  $E[YY^T]$  empirically from data. The general elements are

$$E[X^{i}Y^{j}] = \int_{0}^{\infty} \int_{0}^{\infty} C_{\lambda}^{i} S_{\lambda}^{j} E[I_{\lambda}I_{\lambda'}] d\lambda d\lambda' \equiv \overline{X^{i}Y^{j}} \qquad i = SW, LW, WN$$
  
$$j = SW, TOT, WN$$
  
$$E[Y^{r}Y^{s}] = \int_{0}^{\infty} \int_{0}^{\infty} S_{\lambda}^{r} S_{\lambda}^{s} E[I_{\lambda}I_{\lambda'}] d\lambda d\lambda' \equiv \overline{Y^{r}Y^{s}} + \sigma_{rs}^{2} \qquad r, s = SW, TOT, WN$$

We have modeled  $I_{\lambda}$  as a random variable (or random function) over the ensemble of all possible scenes. Let us assume knowledge of a finite number (say N) of these possible scenes and approximate the expected value with a simple weighted average or

$$E[I_{\lambda}I_{\lambda'}] \approx \sum_{k=1}^{N} p^{k} I_{\lambda}^{k} I_{\lambda'}^{k} \equiv \overline{I_{\lambda}I_{\lambda'}}.$$

where  $p^k$  is the probability of  $I^k_{\lambda}$  and  $\sum_k p^k = 1$ . Thus, we have

$$E[X^{i}Y^{j}] \approx \int_{0}^{\infty} \int_{0}^{\infty} C_{\lambda}^{i} S_{\lambda}^{j} \overline{I_{\lambda}I_{\lambda'}} d\lambda d\lambda' \equiv \overline{X^{i}Y^{j}} \qquad i = SW, LW, WN$$
  
$$j = SW, TOT, WN$$
  
$$E[Y^{r}Y^{s}] \approx \int_{0}^{\infty} \int_{0}^{\infty} S_{\lambda}^{r} S_{\lambda}^{s} \overline{I_{\lambda}I_{\lambda'}} d\lambda d\lambda' \equiv \overline{Y^{r}Y^{s}} + \sigma_{rs}^{2} \qquad r, s = SW, TOT, WN$$

The spectral correction coefficients are mean values and thus introduce error into the process. This error is minimized by determining different coefficients for ocean, land, desert, snow, and cloud over three latitude ranges. In addition, the spectra shift with viewing zenith, solar zenith, and relative azimuth angles so that the coefficients are also functions of these angles.

The scene must be identified before the radiances can be unfiltered. However, the scene identification algorithm requires unfiltered radiances to determine the scene. This problem is overcome by first unfiltering the radiances based on the surface type and a global a priori cloud cover. This global unfiltering is within 5% of the true value. After the scene is identified, the unfiltered radiances are recomputed using the correct scene.

The spectral correction equations have been developed in general where all 3 channels affect each of the 3 unfiltered radiances. The CERES processing will use this approach (see section 4.5.3.1.). For ERBE-like processing, the shortwave and longwave radiances will be defined by the shortwave and total channels with no effect from the window channel. This unfiltering more closely resembles the ERBE spectral correction algorithm which relied almost entirely on the total and shortwave channels with only minimal effect from the nonflat longwave channel. For ERBE-like processing, the unfiltered window radiance will depend on the window channel alone with no effect from the shortwave and total channels.

The Spectral Correction Algorithm has been used very successfully on the ERBE. The best references are Avis et al. (1984) and Smith et al. (1986).

#### 2.2.2. Scene Identification

The unfiltered radiances are a direct measurement of radiance, while the desired product is radiative flux at the top of the atmosphere (TOA). Derivation of radiative flux using the scanner radiance observations then requires the use of angular distribution models (ADM) to correct for the anisotropy of the radiation field. Two of the major causes of variability in the ADM's are change in geographic surface type (ocean, land, etc.) and change in cloud conditions (variable cloud cover, for example). The surface types can be handled using a static geographic map. Cloud conditions, however, require dynamic identification of the scene being viewed to achieve accurate flux estimates. Four basic cloud categories are defined which encompass all cloud conditions. These four types are clear (0%–5% cloud cover), partly cloudy (5%–50% cloud cover), mostly cloudy (50%–95% cloud cover), and overcast (95%–100% cloud cover). Surface type and cloud condition are combined to give the 12 ERBE scene types given in Table 2-1.

| Index | Scene types                       |
|-------|-----------------------------------|
| 1     | Clear ocean                       |
| 2     | Clear land                        |
| 3     | Clear snow                        |
| 4     | Clear desert                      |
| 5     | Clear land-ocean mix (coastal)    |
| 6     | Partly cloudy over ocean          |
| 7     | Partly cloudy over land or desert |
| 8     | Partly cloudy over land-ocean mix |
| 9     | Mostly cloudy over ocean          |
| 10    | Mostly cloudy over land or desert |
| 11    | Mostly cloudy over land-ocean mix |
| 12    | Overcast                          |

Table 2-1. ERBE Scene Types

The scene identification procedure first classifies the underlying surface by its geographic type: land, ocean, snow, desert, or land-ocean mix for  $2.5^{\circ} \times 2.5^{\circ}$  regions. The cloud class for a given measurement pair (shortwave and longwave radiances) is selected by comparing the measurement pair to a priori statistics developed from a classification of Nimbus-7 ERB scanning radiometer data. The cloud class chosen is the class which most probably produced the measurements. This classification method is known as the Maximum Likelihood Estimation (MLE) and is fully documented by Wielicki and Green (1989).

#### 2.2.3. Radiance-to-Flux Conversion

We define the outgoing radiance I at the TOA as

$$I = \pi^{-1} F R$$

where F is the flux in W-m<sup>-2</sup> and R is the Angular Distribution Model (ADM). To convert satellite radiance to flux at the TOA, we solve for F or

$$\hat{F} = \frac{\pi I}{R}$$

where I is the unfiltered measured radiance and R is a numerical model of the anisotropy evaluated at the viewing and solar geometry. A complete set of ADM's for the 12 ERBE scene types has been developed from Nimbus-7 data for both shortwave and longwave radiance and are given by Suttles et al. (1988, 1989).

#### 2.2.4. Spatial Averaging

For each scanner measurement of radiance, the instantaneous flux is computed. These flux values are then averaged to produce estimates of the instantaneous regional fluxes. In the ERBE data analysis, all measurements whose center points lie within a  $2.5^{\circ} \times 2.5^{\circ}$  region are averaged with equal weight to produce the estimate of regional average flux, as has been done previously in analyses of the Earth radiation budget. In forming the estimate of the regional average flux, one encounters errors due to the spatial sampling or coverage problem. This spatial sampling problem has been studied by Smith and Bess (1978) and Smith et al. (1983).

#### 2.3. Implementation Issues

#### 2.3.1. Quality Checks

Restrictions are imposed on the inversion process to eliminate sensitive areas of high errors. Measurements with viewing zenith angles greater than 70° are not processed. Also, measurements in areas where the ADM anisotropy exceeds 2.0 (or twice Lambertian) are not inverted.

A number of quality control checks are performed. Each measurement is associated with a flag which is set to "good" or "bad." If the measurement is flagged "bad" for any reason by any subsystem, it is not processed. If the measurement is flagged "good," it is processed and then tested. The TOA flux estimates are replaced by default values if the estimate of albedo is outside the range 0.02-1.00 or the estimate of longwave flux is outside the range  $50-400 \text{ W-m}^{-2}$ . The MLE selects the most probable scene type. When it is 8 standard deviations away from its a priori expectation, the scene identification is considered unreliable and the measurement is not inverted to the TOA.

#### 2.4. References

Avis, L. M. 1984: A Robust Pseudo-Inverse Spectral Filter Applied to the Earth Radiation Budget Experiment (ERBE) Scanning Channels. NASA TM-85781.

Barkstrom, B. R. 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Am. Meteorol. Soc., vol. 65, pp. 1170-1185.

- Barkstrom, B. R. and Smith, G. L. 1986: The Earth Radiation Budget Experiment-Science and Implementation. *Rev. Geophys.*, vol. 24, pp. 379-390.
- Liebelt, Paul B. 1967: An Introduction to Optimal Estimation. Addison-Wesley.
- Smith, G. L.; and Bess, T. D. 1978: Systems Considerations for an Earth Radiation Budget Scanning Radiometer. Presented at the Fourth Symposium on Meteorological Observations and Instrumentations, Am. Meteorol. Soc.
- Smith, G. L.; Bess, T. D.; and Minnis, P. 1983: Sampling Errors in Regional Radiation Results Based on Satellite Radiation Measurements. Presented at the Ninth Conference on Aerospace and Aeronautical Meteorology, Am. Meteorol. Soc.
- Smith, G. L.; Green, R. N.; Avis, L. M.; Suttles, J. T.; Wielicki, B. A.; Raschke, E.; and Davies, R. 1986: Inversion Methods for Satellite Studies of the Earth Radiation Budget—Development of Algorithms for the ERBE Mission. *Rev. Geophys.*, vol. 24, pp. 407–421.
- Suttles, J. T.; Green, R. N.; Minnis, P.; Smith, G. L.; Staylor, W. F.; Wielicki, B. A.; Walker, I. J.; Young, D. F.; Taylor, V. R.; and Stowe, L. L. 1988a: Angular Radiation Models for Earth-Atmosphere System. Volume I-Shortwave Radiation. NASA RP-1184.
- Suttles, J. T.; Green, R. N.; Smith, G. L.; Wielicki, B. A.; Walker, I. J.; Taylor, V. R.; and Stowe, L. L. 1988b: Angular Radiation Models for Earth-Atmosphere System. II-Longwave Radiation. NASA RP-1184.
- Wielicki, Bruce A.; and Green, Richard N. 1989: Cloud Identification for ERBE Radiative Flux Retrieval. J. Appl. Meteorol., vol. 28, pp. 1133–1146.

# Appendix A

# **Input Data Products**

## ERBE-Like Inversion to Instantaneous TOA and Surface Fluxes (Subsystem 2.0)

This appendix describes the data products which are used by the algorithms in this subsystem. Table A-1 below summarizes these products, listing the CERES and EOSDIS product codes or abbreviations, a short product name, the product type, the production frequency, and volume estimates for each individual product as well as a complete data month of production. The product types are defined as follows:

| Archival products:  | Assumed to be permanently stored by EOSDIS      |
|---------------------|-------------------------------------------------|
| Internal products:  | Temporary storage by EOSDIS (days to years)     |
| Ancillary products: | Non-CERES data needed to interpret measurements |

The following pages describe each product. An introductory page provides an overall description of the product and specifies the temporal and spatial coverage. The table which follows the introductory page briefly describes every parameter which is contained in the product. Each product may be thought of as metadata followed by data records. The metadata (or header data) is not well-defined yet and is included mainly as a placeholder. The description of parameters which are present in each data record includes parameter number (a unique number for each distinct parameter), units, dynamic range, the number of elements per record, an estimate of the number of bits required to represent each parameter, and an element number (a unique number for each instance of every parameter). A summary at the bottom of each table shows the current estimated sizes for metadata, each data record, and the total data product. A more detailed description of each data product will be contained in a user's guide to be published before the first CERES launch.

| Product Code |        |                        |          |           |          | Monthly  |
|--------------|--------|------------------------|----------|-----------|----------|----------|
| CERES        | EOSDIS | Name                   | Туре     | Frequency | Size, MB | size, MB |
| BDS          | CER01  | Bidirectional scan     | archival | 1/day     | 313.6    | 9722     |
| ASTR         | CER34  | Atmospheric structures | archival | 1/hour    | 10.5     | 7797     |

Table A-1. Input Products Summary

#### **Bidirectional Scan (BDS)**

The BDS data product is an archival product containing level 1B CERES scanner data obtained for a 24 hour period. All science scan modes are included in the BDS, including the fixed and rotating azimuth scan modes that perform normal earth, internal calibration, and short scan elevation profiles. The BDS product includes samples taken at all scan elevation positions (including space looks and internal calibration views).

The BDS includes the raw count data stream and the converted engineering representative data. These data are divided into the following seven groups that are carried forward from the level-0 product:

- 1. Time
- 2. Instrument status
- 3. Radiometric channel counts
- 4. Instrument telescope pointing (elevation and azimuth)
- 5. Temperatures
- 6. Voltages and currents
- 7. Satellite ephemeris and ancillary data

In addition, we add the following filtered radiance data from the three radiometric channels and their associated field of view location geometry:

- 8. Filtered Radiances, including quality flags
- 9. Earth location Geometry, including quality flags

In the BDS data product, the filtered radiances and the Earth location geometry are considered a multiband, single data element footprint. Quality flags are used to indicate the reliability of the radiance and Earth location measurements. This product is also used to diagnose instrument performance conditions.

Level: 1B Type: Archival Frequency: 1/Day Portion of Globe Covered File: Satellite swath Record: N/A

**Time Interval Covered File:** 24 hours **Record:** Single 6.6 second scans Portion of Atmosphere Covered File: Satellite altitude

# Table A-2. Bidirectional Scan (BDS)

| Description                               | Parameter<br>Number | Units                              | Range     | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num  |
|-------------------------------------------|---------------------|------------------------------------|-----------|---------------------|---------------|--------------|
| BDS<br>BDS File Header                    |                     | NI/A                               |           | 1                   | 256           |              |
| BDS Date is Array[13091] of               |                     | 11/7                               |           | 1                   | 200           |              |
| BDS_Bacord                                |                     |                                    |           |                     |               |              |
| Julian Day at Scan Start                  | 1                   | dav                                | 2449353 2 | 458500 1            | 32            | 1            |
| Julian Time at Scan Start                 | 2                   | day                                | 0 1       |                     | 32            | י<br>כ       |
| BDS Instrument Status                     | 2                   |                                    | 0.65535   | 1                   | 16            | 2            |
| BDS Scen Information                      | 5                   |                                    | 000000    |                     | 10            | Ŭ            |
| BDS_stan_information                      |                     |                                    |           |                     |               |              |
| BDS_Nationetric_Data is Anaytoooj ol.     |                     |                                    |           |                     |               |              |
| BDS_Fixer_hadiometric                     |                     |                                    |           |                     |               |              |
| CEDES total filtered radiance, upwards    | 4                   | W-m <sup>-2</sup> er <sup>-1</sup> | 0 700     | 660                 | 16            |              |
| CERES Iolar Intered radiance, upwards     |                     | W-m <sup>-2</sup> er <sup>-1</sup> | -10 510   | 660                 | 16            |              |
| CERES shortwave intered radiance, upwards | 5                   | W-m <sup>-2</sup> er <sup>-1</sup> | -10510    | 660                 | 16            | 1224         |
| PDS Quality Elege                         | 7                   | N/A                                | 050       | 660                 | 16            | 1094         |
| BDS Quality Flags                         | ,                   | 11/0                               | 000000    | 000                 | 10            | 1904         |
| Total Detector Output                     | 0                   | count                              | 0 4005    | 660                 | 10            | 2644         |
| SM Detector Output                        | 8                   | count                              | 0.4095    | 660                 | 12            | 2044         |
| Sw Detector Output                        | 9                   | count                              | 04095     | 660                 | 12            | 3064         |
|                                           | 10                  | count                              | 04095     | 000                 | 12            | 3904         |
| BDS_Location_Data is Array[660] of:       |                     |                                    |           |                     |               |              |
|                                           |                     |                                    |           |                     |               |              |
| BDS_Haw_Location                          |                     |                                    | 0 65535   | 660                 | 10            | 4604         |
| Azimuth Position Count                    | 11                  | count                              | 0.05535   | 000                 | 10            | 4024         |
| Elevation Position Count                  | 12                  | count                              | 065535    | 660                 | 10            | 5284         |
|                                           | 10                  | ما بد <b>ا</b> م                   | 0 100     |                     | 10            | 5044         |
|                                           | 13                  | aeg                                | 0180      | 660                 | 10            | 5944         |
| Longitude of CERES FOV at TOA             | 14                  | aeg                                | 0360      | 660                 | 10            | 7004         |
|                                           | 15                  | aeg                                | 090       | 660                 | 10            | 7204         |
| CERES solar zenith at TOA                 | 16                  | aeg                                | 0180      | 660                 | 10            | 7924         |
| CERES relative azimuth at TOA             | 17                  | aeg                                | 0360      | 660                 | 16            | 8584         |
|                                           |                     |                                    |           |                     |               |              |
| BDS_Temperature_Measurements              |                     |                                    |           |                     |               |              |
| BDS_Raw_remperature_Count                 |                     |                                    |           |                     |               |              |
| 12_Haw_I emp_Samples is Array[12] of:     |                     |                                    |           |                     |               |              |
| 12_Haw_Temp_Samples_per_Scan              | 10                  | NI/A                               | 0 4005    | 10                  | 10            | 0244         |
| Shill Leater DAC Value                    | 18                  | N/A                                | 0.4095    | 12                  | 10            | 9244         |
| Sw Heater DAC Value                       | 19                  | IN/A                               | 0.4095    | 12                  | 10            | 9200         |
| Reliester DAC Value                       | 20                  | N/A                                | 04095     | 12                  | 10            | 9200         |
| Total Control Tomp Count                  | 21                  | nun<br>count                       | 0.4095    | 12                  | 12            | 9200         |
| Total Massured Temp Count                 | 22                  | count                              | 0.4095    | 12                  | 10            | 9292         |
| Oth Control Tomo Count                    | 23                  | count                              | 0.4095    | 12                  | 12            | 0216         |
| SW Measured Temp Count                    | 24                  | count                              | 0.4095    | 12                  | 12            | 9310         |
| Nindew Centrel Temp Count                 | 25                  | count                              | 0.4095    | 12                  | 12            | 0340         |
| Window Control Temp Count                 | 20                  | count                              | 0.4095    | 12                  | 12            | 0252         |
| Total Blockbody Temp Count                | 27                  | count                              | 0.4095    | 12                  | 12            | 9352         |
| I M Blackbody Temp Count                  | 20                  | count                              | 0.4095    | 12                  | 12            | 0276         |
| LW Blackbody Temp Count                   | 25                  | COUNT                              | 04095     | 12                  | 12            | 3370         |
| 3_Haw_I emp_Samples is Array[3] of:       |                     |                                    |           |                     |               |              |
| 3_Haw_Iemp_Samples_per_Scan               |                     |                                    | 0 4005    | •                   | 10            | 0200         |
| Elevation Spinole Temp (Motor) Count      | 30                  | count                              | 0.4005    | 3                   | 12            | 9000<br>0201 |
| Elevation Spinole Temp (Cable Wrap) Count | 31                  | count                              | 0.4005    | 3                   | 12            | 9091         |
| Elevation Bearing Temp (Motor) Count      | 32                  | count                              | 0.4095    | 3                   | 12            | 9394         |
| Elevation Bearing Temp (Cable Wrap) Count | 33                  | count                              | 0.4095    | 3                   | 12            | 338/         |
| Switts Photogloge Temp Count              | 34                  | count                              | 04090     | 3                   | 12            | 3400         |

# Volume II

| Description                    | Parameter<br>Number | Units | Range | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num  |
|--------------------------------|---------------------|-------|-------|---------------------|---------------|--------------|
| Sensor Module Temp Count       | 35                  | count | 04095 | 3                   | 12            | 9403         |
| Sensor Electronics Temp Coun   | t 36                | count | 04095 | 3                   | 12            | 9406         |
| Main Cover Motor Temp Count    | 37                  | count | 04095 | 3                   | 12            | 9409         |
| MAM Total Baffle Temp #1 Cou   | int 38              | count | 04095 | 3                   | 12            | 9412         |
| MAM Total Baffle Temp #2 Cou   | int 39              | count | 04095 | 3                   | 12            | 9415         |
| MAM SW Assembly Temp Cou       | nt 40               | count | 04095 | 3                   | 12            | 9418         |
| MAM Total Assembly Temp Co     | unt 41              | count | 04095 | 3                   | 16            | 9421         |
| DAA Radiator Temp Count        | 42                  | count | 04095 | 3                   | 12            | 9424         |
| DAA CPU Elect Temp Count       | 43                  | count | 04095 | 3                   | 12            | 9427         |
| DAA Prom Elect Temp Count      | 44                  | count | 04095 | 3                   | 12            | 9430         |
| DAA RAM Elect Temp Count       | 45                  | count | 04095 | 3                   | 12            | 9433         |
| DAA ADC Elect Temp Count       | 46                  | count | 04095 | 3                   | 12            | 9436         |
| ECA Radiator Temp Count        | 47                  | count | 04095 | 3                   | 12            | 9439         |
| ECA Elect Temp Count           | 48                  | count | 04095 | 3                   | 12            | 9442         |
| ACA Elect Temp Count           | 49                  | count | 04095 | 3                   | 12            | 9445         |
| Azimuth Lower Bearing Temp C   | Count 50            | count | 04095 | 3                   | 12            | 9448         |
| Azimuth High Bearing Temp Co   | ount 51             | count | 04095 | 3                   | 12            | 9451         |
| ICA Radiator Temp Count        | 52                  | count | 04095 | 3                   | 12            | 9454         |
| ICA CPU Elect Temp Count       | 53                  | count | 04095 | 3                   | 12            | 9457         |
| ICA Prom Elect Temp Count      | 54                  | count | 04095 | 3                   | 12            | 9460         |
| ICA RAM Elect Temp Count       | 55                  | count | 04095 | 3                   | 12            | 9463         |
| ICA ADC Elect Temp Cnt         | 56                  | count | 04095 | 3                   | 12            | 9466         |
| PCA Radiator Temp Count        | 57                  | count | 04095 | 3                   | 12            | 9469         |
| PCA Electronics Temp Count     | 58                  | count | 04095 | 3                   | 12            | 9472         |
| PCA Q1 Transistor Case Temp    | Count 59            | count | 04095 | 3                   | 12            | 9475         |
| Pedestal Temp #1 (Brake Hsg)   | Count 60            | count | 04095 | 3                   | 12            | 9478         |
| Pedestal Temp #2 (@ Isolator)  | Count 61            | count | 04095 | 3                   | 12            | 9481         |
| BDS_Converted_Temperature      |                     |       |       |                     |               |              |
| 12_Temp_Samples is Array[12    | 2] of:              |       |       |                     |               |              |
| 12_Temp_Samples_per_Sca        | n                   |       |       |                     |               |              |
| Total Control Temp             | 62                  | °C    | 3640  | 12                  | 16            | 9484         |
| Total Measured Temp            | 63                  | °C    | 3640  | 12                  | 16            | 9496         |
| SW Control Temp                | 64                  | °C    | 3640  | 12                  | 16            | 9508         |
| SW Measured Temp               | 65                  | °C    | 3640  | 12                  | 16            | 9520         |
| Window Control Temp            | 66                  | °C    | 3640  | 12                  | 16            | 9532         |
| Window Measured Temp           | 67                  | °C    | 3640  | 12                  | 16            | 9544         |
| Total Blackbody Temp           | 68                  | °C    | -1560 | 12                  | 16            | 9556         |
| LW Blackbody Temp              | 69                  | °C    | -1560 | 12                  | 16            | 9568         |
| 3_Temp_Samples is Array[3] o   | f:                  |       |       |                     |               |              |
| 3_Temp_Samples_per_Scan        |                     |       |       |                     |               |              |
| Elevation Spindle Temp (Motor) | 70                  | °C    | -3070 | 3                   | 16            | 9580         |
| Elevation Spindle Temp (Cable  | Wrap) 71            | °C    | -3070 | 3                   | 16            | 9583         |
| Elevation Bearing Temp (Motor  | ) 72                | °C    | -3070 | 3                   | 16            | 9586         |
| Elevation Bearing Temp (Cable  | Wrap) 73            | °C    | -3070 | 3                   | 16            | 9589         |
| Sensor Module Temp             | 74                  | °C    | -3070 | 3                   | 16            | 9592         |
| Sensor Elect Temp              | 75                  | °C    | -3070 | 3                   | 16            | <b>959</b> 5 |
| Main Cover Motor Temp          | 76                  | °C    | -3070 | 3                   | 16            | 9598         |
| SWICS Photodiode Temp          | 77                  | °C    | -3070 | - 3                 | 16            | 9601         |
| MAM Total Baffle Temp #1       | 78                  | °C    | -3070 | 3                   | 16            | 9604         |
| MAM Total Baffle Temp #2       | 79                  | °C    | -3070 | 3                   | 16            | 9607         |
| MAM SW Assembly Temp           | 80                  | °C    | -3070 | 3                   | 16            | 9610         |
| MAM Total Assembly Temp        | 81                  | °C    | -3070 | 3                   | 16            | 9613         |
| DAA Radiator Temp              | 82                  | °C    | -3070 | 3                   | 16            | 9616         |

| Description                          | Parameter     | Units | Range  | Elements/ | Bits/ | Elem             |
|--------------------------------------|---------------|-------|--------|-----------|-------|------------------|
|                                      | Number        |       |        | necora    | Elem  | num              |
| DAA CPU Elect Temp                   | 83            | °C    | -3070  | 3         | 16    | 9619             |
| DAA Prom Elect Temp                  | 84            | °C    | -3070  | 3         | 16    | 9622             |
| DAA RAM Elect Temp                   | 85            | °C    | -3070  | 3         | 16    | 9625             |
| DAA ADC Elect Temp                   | 86            | °C    | -3070  | 3         | 16    | 9628             |
| ECA Radiator Temp                    | 87            | °C    | -3070  | 3         | 16    | 9631             |
| ECA Elect Temp                       | 88            | °C    | -3070  | 3         | 16    | 9634             |
| ACA Elect Temp                       | 89            | °C    | -3070  | 3         | 16    | 9637             |
| Azimuth Lower Bearing Temp           | 90            | °C    | -3070  | 3         | 16    | 9640             |
| Azimuth Upper Bearing Temp           | 91            | °C    | -3070  | 3         | 16    | 9643             |
| ICA Radiator Temp                    | 92            | °C    | -3070  | 3         | 16    | 9646             |
| ICA CPU Elect Temp                   | 93            | °C    | -3070  | 3         | 16    | 9649             |
| ICA Prom Elect Temp                  | 94            | °C    | -3070  | 3         | 16    | 9652             |
| ICA RAM Elect Temp                   | 95            | °C    | -3070  | 3         | 16    | <del>96</del> 55 |
| ICA ADC Elect Temp                   | 96            | °C    | -3070  | 3         | 16    | 9658             |
| PCA Radiator Temp                    | 97            | °C    | -3070  | 3         | 16    | 9661             |
| PCA Electronics Temp                 | 98            | °C    | -3070  | 3         | 16    | 9664             |
| PCA Q1 Transistor Case Temp          | <del>99</del> | °C    | -3070  | 3         | 16    | 9 <b>6</b> 67    |
| Pedestal Temp #1 (Brake Hsg)         | 100           | °C    | -3070  | 3         | 16    | 9670             |
| Pedestal Temp #2 (@ Isolator)        | 101           | °C    | -3070  | 3         | 16    | 9673             |
| BDS_Voltage_Measurements             |               |       |        |           |       |                  |
| BDS_Raw_Voltage_Count                |               |       |        |           |       |                  |
| 3. Raw_Volt. Samples is Array[3] of: |               |       |        |           |       |                  |
| 3_Raw_Volt_Samples_per_Scan          |               |       |        |           |       |                  |
| Sensor +120V Bias Count              | 102           | count | 04095  | 3         | 12    | 9676             |
| Sensor -120V Bias Count              | 103           | count | 04095  | 3         | 12    | 9679             |
| SWICS Photodiode Output Count        | 104           | count | 04095  | 3         | 12    | 9682             |
| SWICS Lamp Current Count             | 105           | count | 04095  | 3         | 12    | 9685             |
| ICA +5V Digital Count                | 106           | count | 04095  | 3         | 12    | 9688             |
| ICA +15V (to ECA/ACA) Count          | 107           | count | 04095  | 3         | 12    | 9691             |
| ICA -15V (to ECA/ACA) Count          | 108           | count | 04095  | 3         | 12    | 9694             |
| ICA +18V Count                       | 109           | count | 04095  | 3         | 12    | 9697             |
| ICA -18V Count                       | 110           | count | 04095  | 3         | 12    | 9700             |
| ICA +15V (Internal) Count            | 111           | count | 04095  | 3         | 12    | 9703             |
| ICA -15V (Internal) Count            | 112           | count | 04095  | 3         | 12    | 9706             |
| DAA Ground #1 Count                  | 113           | count | 04095  | 3         | 12    | 9709             |
| DAA Ground #2 Count                  | 114           | count | 04095  | 3         | 12    | 9712             |
| DAA -10V Reference Count             | 115           | count | 04095  | 3         | 12    | 9715             |
| DAA +130V Count                      | 116           | count | 04095  | 3         | 12    | 9718             |
| DAA -130V Count                      | 117           | count | 04095  | 3         | 12    | 9721             |
| DAA +12V Count                       | 118           | count | 04095  | 3         | 12    | 9724             |
| DAA -12V Count                       | 119           | count | 04095  | 3         | 12    | 9727             |
| DAA +15V Count                       | 120           | count | 04095  | 3         | 12    | 9730             |
| DAA -15V Count                       | 121           | count | 04095  | 3         | 12    | 9733             |
| DAA +18V Count                       | 122           | count | 04095  | 3         | 12    | 9736             |
| DAA -18V Count                       | 123           | count | 04095  | 3         | 12    | 9739             |
| 12_Raw_Volt_Samples is Array[12] of: |               |       |        |           |       |                  |
| 12_Raw_Volt_Samples_per_Scan         |               |       |        |           |       |                  |
| Elevation Torque Output Count        | 124           | count | 04095  | 12        | 12    | 9742             |
| Azimuth Torque Output Count          | 125           | count | 04095  | 12        | 12    | 9754             |
| BDS_Converted_Voltage                |               |       |        |           |       |                  |
| 3_Volt_Samples is Array[3] of:       |               |       |        |           |       |                  |
| 3_Volt_Samples_per_Scan              |               |       |        |           |       |                  |
| Sensor +120V Bias                    | 126           | volt  | 115125 | 3         | 16    | 9766             |

## Volume II

| Descri | ption                                 | Parameter<br>Number | Units    | Range   | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|--------|---------------------------------------|---------------------|----------|---------|---------------------|---------------|-------------|
|        | Sensor -120V Bias                     | 127                 | volt     | -125115 | 3                   | 16            | 9769        |
|        | SWICS Photodiode Output               | 128                 | volt     | 08      | 3                   | 16            | 9772        |
|        | SWICS Lamp Current                    | 129                 | milliamp | 0100    | 3                   | 16            | 9775        |
|        | ICA +5V Digital                       | 130                 | volt     | 08      | 3                   | 16            | 9778        |
|        | ICA +15V (to ECA/ACA)                 | 131                 | volt     | 020     | 3                   | 16            | 9781        |
|        | ICA -15V (to ECA/ACA)                 | 132                 | volt     | -200    | 3                   | 16            | 9784        |
|        | ICA +18V                              | 133                 | volt     | 020     | 3                   | 16            | 9787        |
|        | ICA -18V                              | 134                 | volt     | -200    | 3                   | 16            | 9790        |
|        | ICA +15V (Internal)                   | 135                 | volt     | 030     | 3                   | 16            | 9793        |
|        | ICA -15V (Internal)                   | 136                 | volt     | -300    | 3                   | 16            | 9796        |
|        | DAA Ground #1                         | 137                 | volt     | 010     | 3                   | 16            | 9799        |
|        | DAA Ground #2                         | 138                 | volt     | 010     | 3                   | 16            | 9802        |
|        | DAA -10V Reference                    | 139                 | volt     | -200    | 3                   | 16            | 9805        |
|        | DAA +130V                             | 140                 | volt     | 90170   | 3                   | 16            | 9808        |
|        | DAA -130V                             | 141                 | volt     | -22436  | 3                   | 16            | 9811        |
|        | DAA +12V                              | 142                 | volt     | 020     | 3                   | 16            | 9814        |
|        | DAA -12V                              | 143                 | volt     | -200    | 3                   | 16            | 9817        |
|        | DAA +15V                              | 144                 | volt     | 020     | 3                   | 16            | 9820        |
|        | DAA -15V                              | 145                 | volt     | -200    | 3                   | 16            | 9823        |
|        | DAA +18V                              | 146                 | volt     | 020     | 3                   | 16            | 9826        |
|        | DAA -18V                              | 147                 | volt     | -200    | 3                   | 16            | 9829        |
|        | 12_Volt_Samples is Array[12] of:      |                     |          |         |                     |               |             |
|        | 12_Volt_Samples_per_Scan              |                     |          |         |                     |               |             |
|        | Elevation Torque Output               | 148                 | volt     | -2020   | 12                  | 16            | 9832        |
|        | Azimuth Torque Output                 | 149                 | volt     | -2020   | 12                  | 16            | 9844        |
| B      | DS_Position_Measurements              |                     |          |         |                     |               |             |
| I      | BDS_Raw_Position_Count                |                     |          |         |                     |               |             |
|        | 3_Pos_Samples is Array[3] of:         |                     |          |         |                     |               |             |
|        | 3_Pos_Samples_per_Scan                |                     |          |         |                     |               |             |
|        | ACA Encoder Clear Track A Count       | 150                 | count    | 04095   | 3                   | 12            | 9856        |
|        | ACA Encoder Clear Track B Count       | 151                 | count    | 04095   | 3                   | 12            | 9859        |
|        | ECA Encoder Clear Track A Count       | 152                 | count    | 04095   | 3                   | 12            | 9862        |
|        | ECA Encoder Clear Track B Count       | 153                 | count    | 04095   | 3                   | 12            | 9865        |
|        | Main Cover Pos #1 Count               | 154                 | count    | 04095   | 3                   | 12            | 9868        |
|        | Main Cover Pos #2 Count               | 155                 | count    | 04095   | 3                   | 12            | 9871        |
|        | MAM Cover Pos Count                   | 156                 | count    | 04095   | 3                   | 12            | 9874        |
|        | Azimuth Caging (Brake) Pos Count      | 157                 | count    | 04095   | 3                   | 12            | 9877        |
|        | 60_Pos_Samples is Array[60] of:       |                     |          |         |                     |               |             |
|        | 60_Pos_Samples_per_Scan               |                     |          |         |                     |               |             |
|        | SPS 1 Narrow Field Output Count       | 158                 | count    | 04095   | 60                  | 12            | 9880        |
|        | SPS 1 Wide Field Output Count         | 159                 | count    | 04095   | 60                  | 12            | 9940        |
|        | SPS 2 Narrow Field Output Count       | 160                 | count    | 04095   | 60                  | 12            | 10000       |
|        | SPS 2 Wide Field Output Count         | 161                 | count    | 04095   | 60                  | 12            | 10060       |
|        | 660_Raw_Pos_Samples is Array[660] of: |                     |          |         |                     |               |             |
|        | 660_Raw_Pos_Samples_per_Scan          |                     |          |         |                     |               |             |
|        | Elevation Position Count              | 162                 | count    | 065535  | 660                 | 16            | 10120       |
|        | Azimuth Position Count                | 163                 | count    | 065535  | 660                 | 16            | 10780       |
| 1      | BDS_Converted_Position                |                     |          |         |                     |               |             |
|        | 3_Conv_Pos_Samples is Array[3] of:    |                     |          |         |                     |               |             |
|        | 3_Conv_Pos_Samples_per_Scan           |                     |          |         |                     |               |             |
|        | ACA Encoder Clear Track A             | 164                 | deg      | 0360    | 3                   | 16            | 11440       |
|        | ACA Encoder Clear Track B             | 165                 | deg      | 0360    | 3                   | 16            | 11443       |
|        | ECA Encoder Clear Track A             | 166                 | deg      | 0360    | 3                   | 16            | 11446       |
|        |                                       |                     | -        |         |                     |               |             |

| Description                                          | Parameter<br>Number | Units | Range  | Elements/<br>Record | Bits/<br>Elem | Elem  |
|------------------------------------------------------|---------------------|-------|--------|---------------------|---------------|-------|
|                                                      |                     |       |        |                     | 210111        |       |
| ECA Encoder Clear Track B                            | 167                 | deg   | 0360   | 3                   | 16            | 11449 |
| Main Cover Pos #1                                    | 168                 | inch  | TBD    | 3                   | 16            | 11452 |
| Main Cover Pos #2                                    | 169                 | inch  | TBD    | 3                   | 16            | 11455 |
| MAM Cover Pos                                        | 170                 | deg   | TBD    | 3                   | 16            | 11458 |
| Azimuth Caging (Brake) Pos                           | 171                 | N/A   | TBD    | 3                   | 16            | 11461 |
| 60_Conv_Pos_Samples is Array[60] of:                 |                     |       |        |                     |               |       |
| 60_Conv_Pos_Samples_per_Scan                         |                     |       |        |                     |               |       |
| SPS 1 Narrow Field Output                            | 172                 | N/A   | TBD    | 60                  | 16            | 11464 |
| SPS 1 Wide Field Output                              | 173                 | N/A   | TBD    | 60                  | 16            | 11524 |
| SPS 2 Narrow Field Output                            | 174                 | N/A   | TBD    | 60                  | 16            | 11584 |
| SPS 2 Wide Field Output                              | 175                 | N/A   | TBD    | 60                  | 16            | 11644 |
| 660_Conv_Pos_Samples is Array[660] of:               |                     |       |        |                     |               |       |
| 660_Conv_Pos_Samples_per_Scan                        |                     |       |        |                     |               |       |
| Elevation Scan Position                              | 176                 | deg   | 0260   | 660                 | 16            | 11704 |
| Azimuth Scan Position                                | 177                 | deg   | 0360   | 660                 | 16            | 12364 |
| BDS_Raw_Digital_Status_Measurement                   |                     |       |        |                     |               |       |
| BDS_Internal_Cal_Status                              |                     |       |        |                     |               |       |
| BB Temp Setpoint                                     | 178                 | N/A   | 04095  | 1                   | 12            | 13024 |
| BB Temp Control                                      | 179                 | N/A   | 01     | 1                   | 1             | 13025 |
| SWICS Intensity Command                              | 180                 | N/A   | 03     | 1                   | 2             | 13026 |
| BDS Sensor Operation                                 |                     |       |        |                     | -             |       |
| BDS Detector Controls                                |                     |       |        |                     |               |       |
| Total Temp Set Point                                 | 181                 | N/A   | 0 4095 | 1                   | 12            | 13027 |
| Total Detector Temperature Control Status            | 182                 | N/A   | 0.3    | 1                   | 2             | 13028 |
| SW Temp Set Point                                    | 183                 | N/A   | 0.4095 | , 1                 | 12            | 13020 |
| SW Detector Temperature Control Status               | 184                 | N/A   | 0.3    | 1                   | 21            | 13020 |
| Window Temp Set Point                                | 185                 | N/A   | 0.4095 | ,<br>1              | 12            | 12021 |
| Window Detector Temporatura Control Status           | 100                 | N/A   | 04095  | 1                   | 12            | 13031 |
| Totel Detector Perideo Bel                           | 100                 | IN/A  | 03     | I                   | 2             | 13032 |
| Lotal_Detector_Bridge_Bai                            | 107                 | N1/A  | 0 4005 |                     | 40            | 10000 |
| Total Bridge Bal Coarse DAC Value                    | 187                 | N/A   | 04095  | 1                   | 12            | 13033 |
| Total Bridge Bal Fine DAC Value                      | 188                 | N/A   | 04095  | 1                   | 12            | 13034 |
| Total Detector Bridge Bal Control Status             | 189                 | N/A   | 07     | 1                   | 3             | 13035 |
| Total Detector Bridge Bal DAC Update Status          | 190                 | N/A   | 01     | 1                   | 1             | 13036 |
| Total Detector Bridge Bal Reset Calculation Counter  | 191                 | N/A   | 031    | 1                   | 5             | 13037 |
| SW_Detector_Bridge_Bal                               |                     |       |        |                     |               |       |
| SW Bridge Bal Coarse DAC Value                       | 192                 | N/A   | 04095  | 1                   | 12            | 13038 |
| SW Bridge Bal Fine DAC Value                         | 193                 | N/A   | 04095  | 1                   | 12            | 13039 |
| SW Detector Bridge Bal Control Status                | 194                 | N/A   | 07     | 1                   | 3             | 13040 |
| SW Detector Bridge Bal DAC Update Status             | 195                 | N/A   | 01     | 1                   | 1             | 13041 |
| SW Detector Bridge Bal Reset Calculation Counter     | 1 <b>9</b> 6        | N/A   | 031    | 1                   | 5             | 13042 |
| Wn_Detector_Bridge_Bat                               |                     |       |        |                     |               |       |
| Window Bridge Balance Coarse DAC Value               | 197                 | N/A   | 04095  | 1                   | 12            | 13043 |
| Window Bridge Bal Fine DAC Value                     | 198                 | N/A   | 04095  | 1                   | 12            | 13044 |
| Window Detector Bridge Bal Control Status            | 199                 | N/A   | 07     | 1                   | 3             | 13045 |
| Window Detector Bridge Bal DAC Update Status         | 200                 | N/A   | 01     | 1                   | 1             | 13046 |
| Window Detector Bridge Bal Reset Calculation Counter | 201                 | N/A   | 031    | 1                   | 5             | 13047 |
| BDS_Bridge_Balance_Status                            |                     |       |        |                     |               |       |
| Bridge Bal Window Low                                | 202                 | N/A   | 04095  | 1                   | 12            | 13048 |
| Bridge Bal Window High                               | 203                 | N/A   | 04095  | 1                   | 12            | 13049 |
| Bridge Bal Set Point                                 | 204                 | N/A   | 04095  | 1                   | 12            | 13050 |
| Bridge Bal Spacelook Start                           | 205                 | N/A   | 04095  | 1                   | 12            | 13051 |
| Bridge Bal Spacelook End                             | 206                 | N/A   | 04095  | 1                   | 12            | 13052 |
| Bridge Bal DAC Update                                | 207                 | N/A   | 04095  | 1                   | 12            | 13053 |

# Volume II

| Description                                      | Parameter<br>Number | Units       | Range   | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|--------------------------------------------------|---------------------|-------------|---------|---------------------|---------------|-------------|
| BDS_Space_Look_Status<br>Total Spacelook Average | 208                 | N/A         | 0 4095  | 1                   | 12            | 13054       |
| SW Spacelook Average                             | 209                 | N/A         | 0.4095  | 1                   | 12            | 13055       |
| Window Spacelook Average                         | 210                 | N/A         | 0.4095  | 1                   | 12            | 13056       |
| BDS Cover Status                                 | 2.0                 |             |         | •                   |               |             |
| Main Cover Status                                |                     |             |         |                     |               |             |
| Main Cover Command                               | 211                 | N/A         | 0 15    | 1                   | ٨             | 13057       |
| Main Cover Motion Status                         | 212                 | N/A         | 0.15    | 1                   | 4             | 13058       |
| Main Cover Position Status                       | 213                 | N/A         | 0.15    | 1                   | 4             | 13059       |
| Main Cover Active Position Sensor                | 214                 | N/A         | 0.3     | 1                   | 2             | 13060       |
| Main Cover Commanded Position                    | 215                 | N/A         | 0 4095  | 1                   | 12            | 13061       |
| Main Cover Step Count                            | 216                 | N/A         | 0 65535 | 1                   | 16            | 13062       |
| Main Cover Closed Position Definition            | 210                 | N/A         | 0 4095  | 1                   | 12            | 13063       |
| Main Cover Open Position Definition              | 218                 | N/A         | 0.4095  | 1                   | 12            | 13064       |
| Main Cover Closed Margin Definition              | 210                 | N/A         | 0 4095  | 1                   | 12            | 13065       |
| Main Cover Open Margin Definition                | 220                 | N/A         | 0 4095  | 1                   | 12            | 13066       |
| MAM Cover Status                                 | 220                 |             | 04000   | •                   | 12            | 10000       |
| MAM Cover Command                                | 221                 | N/A         | 0 15    | 1                   | 4             | 13067       |
| MAM Cover Motion Status                          | 222                 | N/A         | 0.15    |                     | -<br>-        | 13068       |
| MAM Cover Position Status                        | 222                 | N/A         | 0.15    | 1                   | -<br>-        | 13060       |
| MAM Cover Active Position Sensor                 | 223                 | N/A         | 0.3     | 1                   | -<br>2        | 13070       |
|                                                  | 224                 | N/A         | 0       | 1                   | 12            | 13070       |
| MAM Cover Step Count                             | 225                 | N/A         | 04093   | 1                   | 16            | 12072       |
| MAM Cover Closed Position Definition             | 220                 | N/A         | 0.4095  | 1                   | 10            | 13072       |
| MAM Cover Open Position Definition               | 227                 | N/A         | 04095   | 1                   | 10            | 12074       |
| MAM Cover Closed Margin Definition               | 220                 | N/A         | 04095   | 1                   | 12            | 12075       |
| MAM Cover Onen Margin Definition                 | 229                 |             | 04095   | 1                   | 12            | 12075       |
| BDS Gimbel Operation                             | 230                 | NVA .       | 04095   | I                   | 12            | 13076       |
| BDS_Gimbal_Operation                             |                     |             |         |                     |               |             |
| Elevation Status                                 | 221                 | NI/A        | 0.2     | 1                   | 2             | 12077       |
| Elevation status                                 | 231                 | N/A         | 03      | 1                   | ۲<br>ح        | 13077       |
| On Dack Elevation Scan Mode                      | 202                 | NVA<br>NVA  | 0.31    | 1                   | 5             | 13078       |
| Elevation Encoder   ED   aval                    | 200                 | N/A         | 031     | 1                   | 5             | 12090       |
| Elevation Offset Correction                      | 204                 | N/A         | 0.0     | 1                   | 16            | 12001       |
|                                                  | 200                 | N/A         | 005535  | I                   | 10            | 13061       |
| Azimuth Mode                                     | 000                 | N1/A        | 0.01    |                     | _             | 10000       |
| Azimuth Motion Status                            | 230                 | N/A<br>N/A  | 031     | 1                   | э<br>-        | 13082       |
| Azimuth Direction Status                         | 237                 | NVA<br>NVA  | 031     |                     | 5             | 13083       |
| Azimuth Direction Status                         | 238                 |             | 01      |                     | 1             | 13064       |
| Azimuth Position Status                          | 239                 |             | 015     | 1                   | 4             | 13085       |
| Azimuth Fooder   ED   aval                       | 240                 | NVA<br>NVA  | 01      |                     |               | 13086       |
|                                                  | 241                 |             | U I     | 1                   | 1             | 13087       |
| RDS Asimuth Definition Status                    | 242                 | N/A         | 000030  | 1                   | 10            | 13088       |
| Croastrack Boolition Definition                  | 040                 | <b>N1/A</b> | 0.05505 |                     | 40            | 40000       |
| Crosstrack Position Definition                   | 243                 |             | 000030  | 1                   | 16            | 13089       |
|                                                  | 244                 | N/A         | 065535  | 1                   | 16            | 13090       |
|                                                  | 245                 | N/A         | 065535  | 1                   | 16            | 13091       |
|                                                  | 246                 |             | 065535  | 1                   | 16            | 13092       |
|                                                  | 247                 | N/A         | 065535  | 1                   | 16            | 13093       |
| Spare Azimuth Position Definition #1             | 248                 | N/A         | 065535  | 1                   | 16            | 13094       |
| Spare Azimuth Position Definition #2             | 249                 | N/A         | U65535  | 1                   | 16            | 13095       |
| Spare Azimuth Position Definition #3             | 250                 | N/A         | 065535  | 1                   | 16            | 13096       |
| Normal Azimuth Scan Hate Definition              | 251                 | N/A         | 065535  | 1                   | 16            | 13097       |
| Unsync Azimuth Scan Hate Definition              | 252                 | N/A         | 065535  | 1                   | 16            | 13098       |

| Description                                   | Parameter<br>Number | Units      | Range El      | ements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|-----------------------------------------------|---------------------|------------|---------------|-------------------|---------------|-------------|
| Svnc Azimuth Scan Bate Definition             | 253                 | N/A        | 0 65535       | 1                 | 16            | 13000       |
| Brake Command Status                          | 250                 | N/A        | 0.15          | 1                 | 10            | 12100       |
| Brake Motion Status                           | 255                 | N/A        | 0.15          | 1                 | 4             | 13101       |
| Brake Position Status                         | 256                 | N/A        | 0.15          | , 1               | 4             | 13102       |
| Brake Commanded Position                      | 250                 | N/A        | 0.4095        | , 1               | 12            | 13103       |
| Brake Step Count                              | 258                 | N/A        | 0 65535       | 1                 | 16            | 13104       |
| Brake Beleased Position Definition            | 259                 | N/A        | 0 4095        | 1                 | 12            | 13105       |
| Brake Applied Position Definition             | 260                 | N/A        | 0.4095        |                   | 10            | 13106       |
| Brake Caged Position Definition               | 200                 | N/A        | 04095         | 1                 | 12            | 13100       |
| Brake Beleased Margin                         | 201                 | N/A        | 04095         | 1                 | 12            | 13109       |
| Brake Applied Margin                          | 202                 | NI/A       | 04095         | 1                 | 12            | 13100       |
| Brake Cagod Margin                            | 203                 | N/A        | 04095         | 1                 | 12            | 12110       |
| BDS Processor Status                          | 204                 | 19/7       | 04030         |                   | 12            | 13110       |
|                                               |                     |            |               |                   |               |             |
| DAP Processor Boot Status                     | 265                 | NI/A       | 0.1           | 1                 | 1             | 13111       |
| DAP Processor Watchdon Englin                 | 200                 |            | 0.1           | 1                 | 1             | 13112       |
| DAP Processol Watchuog Enable                 | 200                 | N/A        | 01            | 1                 | 10            | 10112       |
| DAP Processor PROM Power Status               | 267                 | N/A<br>N/A |               | 1                 | 10            | 10110       |
| DAP Processor Scan Period Count               | 208                 | IN/A       | 003535        | · ·               | 10            | 10116       |
| DAP Code Checksum                             | 269                 | IN/A       | 0000.FFFF(Hex | ) I<br>\ 1        | 10            | 10110       |
| DAP Memory Dump Start Address Onset           | 270                 |            |               | ) (<br>\ •        | 10            | 10117       |
| DAP Memory Dump Start Address Segment         | 271                 |            | 0000FFFF(Hex  |                   | 10            | 13117       |
| DAP Memory Dump End Address Onset             | 272                 |            | 0000FFFF(Hex  |                   | 10            | 13118       |
| DAP Memory Dump End Address Segment           | 2/3                 | N/A        | 0000FFFF(Hex  | ) I<br>\ -        | 16            | 13119       |
| DAP Memory Dump Packet Address Offset         | 2/4                 | N/A        | 0000FFFF(Hex  | ) 1               | 16            | 13120       |
| DAP Memory Dump Packet Address Segment        | 2/5                 | N/A        | 0000FFFF(Hex  | ) 1<br>-          | 16            | 13121       |
| DAP Minimum Execution Time                    | 276                 | N/A        | 065535        | 1                 | 16            | 13122       |
| DAP Minimum Execution Sample                  | 2//                 | N/A        | 01023         | 1                 | 10            | 13123       |
| DAP Maximum Execution Time                    | 278                 | N/A        | 065535        | 1                 | 16            | 13124       |
| DAP Maximum Execution Sample                  | 279                 | N/A        | 01023         | 1                 | 10            | 13125       |
| DAP Execution Time                            | 280                 | N/A        | 065535        | 1                 | 16            | 13126       |
| BDS_ICP_Status                                |                     |            |               |                   |               |             |
| ICP Processor Boot Status                     | 281                 | N/A        | 01            | 1                 | 1             | 13127       |
| ICP Processor Watchdog Enable Status          | 282                 | N/A        | 01            | 1                 | 1             | 13128       |
| ICP Processor PROM Power Status               | 283                 | N/A        | 01            | 1                 | 1             | 13129       |
| ICP Processor Scan Period Count               | 284                 | N/A        | 065535        | ۱<br>۲            | 10            | 13130       |
|                                               | 285                 | N/A        | 0000FFFF(Hex  | ) 1<br>\ 1        | 16            | 13131       |
| ICP Memory Dump Start Address Offset          | 286                 | N/A        | 0000FFFF(Hex  | ) I<br>\ .        | 16            | 13132       |
| ICP Memory Dump Start Address Segment         | 287                 | N/A        | 0000.FFFF(Hex | ) 1               | 10            | 13133       |
| ICP Memory Dump End Address Offset            | 288                 | N/A        | 0000FFFF(Hex  | ) I<br>\ 1        | 10            | 13134       |
| ICP Memory Dump End Address Segment           | 289                 | N/A        | 0000FFFF(Hex  | ) I               | 16            | 13135       |
| ICP Memory Dump Packet Address Offset         | 290                 | N/A        | 0000FFFF(Hex  | ) I<br>\ .        | 10            | 13136       |
| ICP Memory Dump Packet Address Segment        | 291                 | N/A        | 0000FFFF(Hex  | ) 1               | 16            | 13137       |
|                                               | 292                 | N/A        | 000000        | -                 | 10            | 10100       |
| ICP Minimum Execution Sample                  | 293                 | N/A        | 01023         | 1                 | 10            | 13139       |
| ICP Maximum Execution Time                    | 294                 | N/A        | 065535        |                   | 10            | 13140       |
| ICP Maximum Execution Sample                  | 295                 | N/A        | 01023         | 1                 | 10            | 13141       |
|                                               | 296                 | n/A        | 0000005       | 1                 | 16            | 13142       |
| BDS_General_Instrument_Status                 |                     | N1/A       | 0.15          | -                 |               | 101.10      |
| Packet Data Indicator (Data format indicator) | 297                 | INV/A      | 015           | 1                 | 4             | 10143       |
| Packet Data Version                           | 298                 | NVA        | 031           | 1                 | 5             | 13144       |
| Packet Limecode Indicator                     | 299                 | N/A        | 01            | 1                 | 1             | 13145       |
| Packet Counter                                | 300                 | N/A        | 065535        | 1                 | 16            | 13146       |
| Instrument ID Number                          | 301                 | N/A        | 063           | 1                 | 6             | 13147       |

# Volume II

| Description                            | Parameter<br>Number | Units | Range                  | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|----------------------------------------|---------------------|-------|------------------------|---------------------|---------------|-------------|
| Instrument Mode (Sequence #)           | 302                 | N/A   | 031                    | 1                   | 5             | 13148       |
| Instrument Previous Mode (Sequence #)  | 303                 | N/A   | 031                    | 1                   | 5             | 13149       |
| Mode(Sequence) Changed by              | 304                 | N/A   | 07                     | 1                   | 3             | 13150       |
| Instrument Command Counter             | 305                 | N/A   | 065535                 | 1                   | 16            | 13151       |
| Instrument Error Counter               | 306                 | N/A   | 065535                 | 1                   | 16            | 13152       |
| Sequence Command Index                 | 307                 | N/A   | 031                    | 1                   | 5             | 13153       |
| Sequence Execution Status              | 308                 | N/A   | 07                     | 1                   | 3             | 13154       |
| Sequence Time to Next Command          | 309                 | N/A   | 0255                   | 1                   | 8             | 13155       |
| S/C Safe Hold A Input Status           | 310                 | N/A   | 01                     | 1                   | 1             | 13156       |
| S/C Safe Hold B Input Status           | 311                 | N/A   | 01                     | 1                   | 1             | 13157       |
| S/C Safe Hold A Response Status        | 312                 | N/A   | 01                     | 1                   | 1             | 13158       |
| S/C Safe Hold B Response Status        | 313                 | N/A   | 01                     | 1                   | 1             | 13159       |
| BDS_Solar_Sensor_Status                |                     |       |                        |                     |               |             |
| Solar Presence Status                  | 314                 | N/A   | 016383                 | 1                   | 14            | 13160       |
| SPS1 Noise Threshold                   | 315                 | N/A   | 04095                  | 1                   | 12            | 13161       |
| SPS1 Ratio Threshold                   | 316                 | N/A   | 0127                   | 1                   | 7             | 13162       |
| SPS1 Count Threshold                   | 317                 | N/A   | 063                    | 1                   | 6             | 13163       |
| SPS2 Noise Threshold                   | 318                 | N/A   | 04095                  | 1                   | 12            | 13164       |
| SPS2 Ratio Threshold                   | 319                 | N/A   | 0127                   | 1                   | 7             | 13165       |
| SPS2 Count Threshold                   | 320                 | N/A   | 063                    | 1                   | 6             | 13166       |
| 8_Dig_Samples is Array[8] of:          |                     |       |                        |                     |               |             |
| Command_and_Error_Stacks               |                     |       |                        |                     |               |             |
| Instrument Command Echo Stack          | 321                 | N/A   | 02.81x10 <sup>14</sup> | 8                   | 48            | 13167       |
| Instrument Error Stack                 | 322                 | N/A   | 065535                 | 8                   | 16            | 13175       |
| BDS_Satellite_Data                     |                     |       |                        |                     |               |             |
| BDS_Raw_Sat_Ephem_and_Att              |                     |       |                        |                     |               |             |
| BDS_Satellite_Position                 |                     |       |                        |                     |               |             |
| Satellite Position (X) Count           | 323                 | count | 04.29x10 <sup>9</sup>  | 1                   | 32            | 13183       |
| Satellite Position (Y) Count           | 324                 | count | 04.29x10 <sup>9</sup>  | 1                   | 32            | 13184       |
| Satellite Position (Z) Count           | 325                 | count | 04.29x10 <sup>9</sup>  | 1                   | 32            | 13185       |
| BDS_Satellite_Velocity                 |                     |       |                        |                     |               |             |
| Satellite Velocity (X) Count           | 326                 | count | 04.29x10 <sup>9</sup>  | 1                   | 32            | 13186       |
| Satellite Velocity (Y) Count           | 327                 | count | 04.29x10 <sup>9</sup>  | 1                   | 32            | 13187       |
| Satellite Velocity (Z) Count           | 328                 | count | 04.29x10 <sup>9</sup>  | 1                   | 32            | 13188       |
| BDS_Satellite_Attitude                 |                     |       |                        |                     |               |             |
| Satellite Attitude (Roll) Count        | 329                 | count | 065535                 | 1                   | 16            | 13189       |
| Satellite Attitude (Pitch) Count       | 330                 | count | 065535                 | 1                   | 16            | 13190       |
| Satellite Attitude (Yaw) Count         | 331                 | count | 065535                 | 1                   | 16            | 13191       |
| BDS_Satellite_Attitude_Rate            |                     |       |                        |                     |               |             |
| Satellite Attitude Rate (Roll) Count   | 332                 | count | 065535                 | 1                   | 16            | 13192       |
| Satellite Attitude Rate (Pitch) Count  | 333                 | count | 065535                 | 1                   | 16            | 13193       |
| Satellite Attitude Rate (Yaw) Count    | 334                 | count | 065535                 | 1                   | 16            | 13194       |
| Miscellaneous_Measures                 |                     |       |                        |                     |               |             |
| Earth-Sun distance                     | 335                 | AU    | 0.98 1.02              | 1                   | 16            | 13195       |
| Number of orbits                       | 336                 | N/A   | TBD                    | 1                   | 16            | 13196       |
| Colatitude of Sun at observation       | 337                 | deg   | 0180                   | 1                   | 16            | 13197       |
| Longitude of Sun at observation        | 338                 | deg   | 0360                   | 1                   | 16            | 13198       |
| BDS_Satellite_Positions                |                     | 5     | <b>-</b>               | ·                   | . 🕶           |             |
| Satellite_Pos_Record_Start             |                     |       |                        |                     |               |             |
| Satellite Position (X) at record start | 339                 | km    | -80008000              | 1                   | 32            | 13199       |
| Satellite Position (Y) at record start | 340                 | km    | -80008000              | 1                   | 32            | 13200       |
| Satellite Position (Z) at record start | 341                 | km    | -80008000              | ,<br>1              | 32            | 13201       |
| Satellite_Pos_Record_End               |                     |       |                        |                     |               |             |

#### Table A-2. Concluded

| Description                             | Parameter<br>Number | Units                | Range     | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|-----------------------------------------|---------------------|----------------------|-----------|---------------------|---------------|-------------|
| Satellite Position (X) at record end    | 342                 | km                   | -80008000 | 1                   | 32            | 13202       |
| Satellite Position (Y) at record end    | 343                 | km                   | -80008000 | 1                   | 32            | 13203       |
| Satellite Position (Z) at record end    | 344                 | km                   | -80008000 | 1                   | 32            | 13204       |
| Satellite_Vel_Record_Start              |                     |                      |           |                     |               |             |
| Satellite Velocity (X) at record start  | 345                 | km sec <sup>-1</sup> | -1010     | 1                   | 32            | 13205       |
| Satellite Velocity (Y) at record start  | 346                 | km sec <sup>-1</sup> | -1010     | 1                   | 32            | 13206       |
| Satellite Velocity (Z) at record start  | 347                 | km sec <sup>-1</sup> | -1010     | 1                   | 32            | 13207       |
| Satellite_Vel_Record_End                |                     |                      |           |                     |               |             |
| Satellite Velocity (X) at record end    | 348                 | km sec <sup>-1</sup> | -1010     | 1                   | 32            | 13208       |
| Satellite Velocity (Y) at record end    | 349                 | km sec <sup>-1</sup> | -1010     | 1                   | 32            | 13209       |
| Satellite Velocity (Z) at record end    | 350                 | km sec <sup>-1</sup> | -1010     | 1                   | 32            | 13210       |
| Satellite_Geolocations                  |                     |                      |           |                     |               |             |
| Colatitude of satellite at record start | 351                 | deg                  | 0180      | 1                   | 16            | 13211       |
| Longitude of satellite at record start  | 352                 | deg                  | 0360      | 1                   | 16            | 13212       |
| Colatitude of satellite at record end   | 353                 | deg                  | 0180      | 1                   | 16            | 13213       |
| Longitude of Satellite at record end    | 354                 | deg                  | 0360      | 1                   | 16            | 13214       |
| Total Meta Bits/File:                   | 256                 |                      |           |                     |               |             |
| Total Data Bits/Record:                 | 200796              |                      |           |                     |               |             |
| Total Records/File:                     | 13091               |                      |           |                     |               |             |
| Total Data Bits/File:                   | 2628620436          |                      |           |                     |               |             |
| Total Bits/File:                        | 2628620692          |                      |           |                     |               |             |

## **Atmospheric Structures (ASTR)**

The CERES archival product, atmospheric structures (ASTR), is produced by the CERES Regrid Humidity and Temperature Subsystem. Each ASTR file contains meteorological data for one hour, and is used by several of the CERES subsystems. Data on the ASTR are derived from several data sources external to the CERES system, such as NMC, MODIS, SAGE, and various other meteorological satellites. These data arrive anywhere from four times daily to once a month. These data are also horizontally and vertically organized differently from what the CERES system requires. The Regrid Humidity and Temperature Subsystem interpolates these data temporally, horizontally, and vertically to conform with CERES processing requirements.

The ASTR contains

- Surface temperature and pressure
- Vertical profiles for up to 38 internal atmospheric levels of temperature, humidity, pressure, and geopotential height
- Column precipitable water
- Vertical ozone profiles for 26 (of the 38) internal atmospheric levels
- Column ozone
- Total column aerosol
- Stratospheric aerosol

The 38 internal atmospheric levels, in hPa, as requested by the CERES Clouds and SARB working groups are:

| Surface      | 925 | 775 | 550 | 275 | 125 | 5 |
|--------------|-----|-----|-----|-----|-----|---|
| Surface - 10 | 900 | 750 | 500 | 250 | 100 | 1 |
| Surface - 20 | 875 | 725 | 450 | 225 | 70  |   |
| 1000         | 850 | 700 | 400 | 200 | 50  |   |
| 975          | 825 | 650 | 350 | 175 | 30  |   |
| 950          | 800 | 600 | 300 | 150 | 10  |   |

Level: 3 Type: Archival Frequency: 1/hour

Time Interval Covered File: 1 hour Record: 1 hour **Portion of Globe Covered File:** Global **Record:** 1.25-deg equal area region

**Portion of Atmosphere Covered File:** Surface and internal

# Table A-3. Atmospheric Structures (ASTR)

| Description                                             | <sup>p</sup> arameter<br>Number | Units              | Range       | Elements/<br>Record | Bits/Elem<br>ElemNum |     |
|---------------------------------------------------------|---------------------------------|--------------------|-------------|---------------------|----------------------|-----|
| Meta Data                                               |                                 |                    |             |                     |                      |     |
| Header                                                  |                                 |                    |             | 1                   | 320                  |     |
| Regional Data                                           |                                 |                    |             |                     |                      |     |
| Region Number                                           | 1                               | N/A                | 126542      | 1                   | 16                   | 1   |
| Surface Data                                            |                                 |                    |             |                     |                      |     |
| Surface Temperature                                     | 2                               | к                  | 175375      | 1                   | 16                   | 2   |
| Surface Pressure                                        | 3                               | hPa                | 1100400     | 1                   | 16                   | 3   |
| Flag, Source Surface Data                               | 4                               | N/A                | TBD         | 1                   | 16                   | 4   |
| Temperature and Humidity Profiles                       |                                 |                    |             |                     |                      |     |
| Geopotential Height Profiles                            | 5                               | km                 | 050         | 38                  | 16                   | 5   |
| Pressure Profiles                                       | 6                               | hPa                | 11000       | 38                  | 16                   | 43  |
| Temperature Profiles                                    | 7                               | к                  | 175375      | 38                  | 16                   | 81  |
| Humidity Profiles                                       | 8                               | N/A                | 0100        | 38                  | 16                   | 119 |
| Flag, Source Temp. and Humidity Profiles                | 9                               | N/A                | TBD         | 1                   | 16                   | 157 |
| Column Precipitable Water                               |                                 |                    |             |                     |                      |     |
| Precipitable Water                                      | 10                              | cm                 | 0.0018.000  | 1                   | 16                   | 158 |
| Precipitable Water, std                                 | 11                              | cm                 | TBD         | 1                   | 16                   | 159 |
| Flag, Source Column Precipitable Water                  | 12                              | N/A                | TBD         | 1                   | 16                   | 160 |
| Ozone Profile Data                                      |                                 |                    |             |                     |                      |     |
| Ozone Profiles                                          | 13                              | g kg <sup>-1</sup> | 0.000020.02 | 26                  | 16                   | 161 |
| Flag, Source Ozone Profile Data                         | 14                              | N/A                | TBD         | 1                   | 16                   | 187 |
| Column Ozone                                            |                                 |                    |             |                     |                      |     |
| Column Ozone                                            | 15                              | du                 | 200500      | 1                   | 16                   | 188 |
| Flag, Source Column Ozone                               | 16                              | N/A                | TBD         | 1                   | 16                   | 189 |
| Total Column Aerosol                                    |                                 |                    |             |                     |                      |     |
| Aerosol Mass Loading, Total Column                      | 17                              | g m <sup>-2</sup>  | TBD         | 1                   | 16                   | 190 |
| Flag, Source Aerosol Mass Loading, Total Column         | 18                              | N/A                | TBD         | 1                   | 16                   | 191 |
| Optical Depth, Total Column                             | 19                              | N/A                | 0.02.0      | 1                   | 16                   | 192 |
| Flag, Source Optical Depth, Total Column                | 20                              | N/A                | TBD         | 1                   | 16                   | 193 |
| Asymmetry Factor, Total Column                          | 21                              | N/A                | 0.01.0      | 1                   | 16                   | 194 |
| Flag, Source Asymmetry Factor, Total Column             | 22                              | N/A                | TBD         | 1                   | 16                   | 195 |
| Single Scattering Albedo, Total Column                  | 23                              | N/A                | 0.01.0      | 1                   | 16                   | 196 |
| Flag, Source Single Scattering Albedo, Total Column     | 24                              | N/A                | TBD         | 1                   | 16                   | 197 |
| Effective Particle Size, Total Column                   | 25                              | μm                 | 0.020.0     | 1                   | 16                   | 198 |
| Flag, Source Effective Particle Size, Total Column      | 26                              | N/A                | TBD         | 1                   | 16                   | 199 |
| Mean Aerosol Layer Temperature, Total Column            | 27                              | к                  | 150280      | 1                   | 16                   | 200 |
| Flag, Source Mean Aerosol Layer Temperature, Total Colu | umn 28                          | N/A                | TBD         | 1                   | 16                   | 201 |
| Stratospheric Aerosol                                   |                                 |                    |             |                     |                      |     |
| Optical Depth, Stratosphere                             | 29                              | N/A                | 0.00.5      | 1                   | 16                   | 202 |
| Asymmetry Factor, Stratosphere                          | 30                              | N/A                | 0.01.0      | 1                   | 16                   | 203 |
| Single Scattering Albedo, Stratosphere                  | 31                              | N/A                | 0.01.0      | 1                   | 16                   | 204 |
| Effective Particle Size, Stratosphere                   | 32                              | μm                 | 0.010.0     | 1                   | 16                   | 205 |
| Mean Aerosol Layer Temperature, Stratosphere            | 33                              | к                  | 150280      | 1                   | 16                   | 206 |
| Flag, Source Stratospheric Aerosol                      | 34                              | N/A                | TBD         | 1                   | 16                   | 207 |

| Total Meta Bits/File:   | 320      |
|-------------------------|----------|
| Total Data Bits/Record: | 3312     |
| Total Records/File:     | 26542    |
| Total Data Bits/File:   | 87907104 |
| Total Bits/File:        | 87907424 |

# **Appendix B**

# **Output Data Products**

## ERBE-Like Inversion to Instantaneous TOA and Surface Fluxes (Subsystem 2.0)

This appendix describes the data products which are produced by the algorithms in this subsystem. Table B-1 below summarizes these products, listing the CERES and EOSDIS product codes or abbreviations, a short product name, the product type, the production frequency, and volume estimates for each individual product as well as a complete data month of production. The product types are defined as follows:

| Archival products: | Assumed to be permanently stored by EOSDIS  |
|--------------------|---------------------------------------------|
| Internal products: | Temporary storage by EOSDIS (days to years) |

The following pages describe each product. An introductory page provides an overall description of the product and specifies the temporal and spatial coverage. The table which follows the introductory page briefly describes every parameter which is contained in the product. Each product may be thought of as metadata followed by data records. The metadata (or header data) is not well-defined yet and is included mainly as a placeholder. The description of parameters which are present in each data record includes parameter number (a unique number for each distinct parameter), units, dynamic range, the number of elements per record, an estimate of the number of bits required to represent each parameter, and an element number (a unique number for each instance of every parameter). A summary at the bottom of each table shows the current estimated sizes for metadata, each data record, and the total data product. A more detailed description of each data product will be contained in a User's Guide to be published before the first CERES launch.

| Produc | ct Code |                             |          |           |          | Monthly  |
|--------|---------|-----------------------------|----------|-----------|----------|----------|
| CERES  | EOSDIS  | Name                        | Туре     | Frequency | Size, MB | size, MB |
| EDDB   | None    | ERBE-like daily data base   | internal | 1/month   | 113.5    | 114      |
| ES-8   | CER02   | ERBE-like science product 8 | archival | 1/day     | 217.8    | 6752     |

Table B-1. Output Products Summary

#### **ERBE-Like Daily Data Base Product (EDDB)**

Subsystem 2 includes ERBE-like Inversion and the ERBE-like daily database processor. ERBE-like inversion passes averaged regional data to the daily database processor using the ERBE-like EID-6 file, and the daily database processor updates the 36 latitudinal band files in the EDDB data store. The daily database processor also maintains a housekeeping file with information about the status of the regional data. The housekeeping and regional data are stored in the EDDB for processing by the ERBE-like monthly time and space averaging process. The following table describes the parameters associated with a single 2.5-deg region. Instances of this record are accumulated by the daily processor for the regions that are received in the EID-6 records from ERBE-like inversion. After accumulating a month of data, the regional data for each latitudinal band are sorted by the daily processor and stored in a second set of 36 files for processing by the ERBE-like Monthly Time and Space Averaging Subsystem. The housekeeping file, also described in the following table, is a random access file. The housekeeping random access records store either arrays of integers (32-bit elements), or double precision floating point arrays (64-bit elements). Each parameter of the housekeeping file corresponds to one or more random access records.

Level: 2 Type: Internal Frequency: 1/month

Time Interval Covered File: Month Record: Month Portion of Globe Covered File: Regional Record: Regional

**Portion of Atmosphere Covered File:** Surface and TOA

## Table B-2. ERBE-Like Daily Database Product (EDDB)

| Description                                                               | Parameter | Units             | Range          | Elements/ | Bits/ | Elem |
|---------------------------------------------------------------------------|-----------|-------------------|----------------|-----------|-------|------|
| EDDB                                                                      | Number    |                   |                | Record    | Elem  | Num  |
| EDDB File Header                                                          |           | N/A               |                |           |       |      |
| Regional_Data is Array[36] of:                                            |           |                   |                |           |       |      |
| Regional_Files is Array[2] of:                                            |           |                   |                |           |       |      |
| Latitudinal_Bands                                                         |           |                   |                |           |       |      |
| Regional                                                                  |           |                   |                |           |       |      |
| Regional_Descriptive                                                      |           |                   |                |           |       |      |
| 2.5 degree one-dimensional region number                                  | 1         | N/A               | 1 <b>10368</b> | 72        | 32    | 1    |
| The hour day number index is one of 24 hours for each of 31 days          | 2         | N/A               | 1744           | 72        | 32    | 3    |
| Average whole Julian date for one record                                  | 3         | day               | 2.4 2.5*1E0    | 6 72      | 32    | 5    |
| Average fractional Julian date                                            | 4         | day               | 01             | 72        | 32    | 7    |
| Regional_Average_Estimates                                                |           |                   |                |           |       |      |
| Estimate of the average shortwave flux at the TOA                         | 5         | W-m <sup>-2</sup> | 01400          | 72        | 32    | 9    |
| Estimate of the average longwave flux at the TOA                          | 6         | ₩-m <sup>-2</sup> | 0400           | 72        | 32    | 11   |
| Regional_Estimate_Statistics                                              |           |                   |                |           |       |      |
| Regional_SW_Stats                                                         |           |                   |                |           |       |      |
| Number of individual shortwave estimates                                  | 7         | N/A               | 0200           | 72        | 32    | 13   |
| Standard deviation of individual shortwave estimates                      | 8         | W-m <sup>-2</sup> | 0999           | 72        | 32    | 15   |
| Minimum value of individual shortwave flux at TOA                         | 9         | W-m <sup>-2</sup> | 01400          | 72        | 32    | 17   |
| Maximum individual estimate of shortwave flux at TOA                      | 10        | W-m⁻²             | 01400          | 72        | 32    | 19   |
| Regional_LW_Stats                                                         |           |                   |                |           |       |      |
| Number of individual longwave estimates                                   | 11        | N/A               | 0200           | 72        | 32    | 21   |
| Standard deviation of individual longwave estimates                       | 12        | W-m <sup>-2</sup> | 0400           | 72        | 32    | 23   |
| Minimum of individual longwave flux at TOA                                | 13        | W-m <sup>-2</sup> | 0400           | 72        | 32    | 25   |
| Maximum individual longwave flux at TOA                                   | 14        | W-m <sup>-2</sup> | 0400           | 72        | 32    | 27   |
| Regional_Regions                                                          |           |                   |                |           |       |      |
| Geographic scene type of this 2.5 degree region                           | 15        | N/A               | 15             | 72        | 32    | 29   |
| Regional_Fractional_Components                                            |           |                   |                |           |       |      |
| Fraction of clear sky areas in this 2.5 degree region                     | 16        | N/A               | 01             | 72        | 32    | 31   |
| Fraction of partly cloudy areas in this 2.5 degree region                 | 17        | N/A               | 01             | 72        | 32    | 33   |
| Fraction of mostly cloudy areas in this 2.5 degree region                 | 18        | N/A               | 01             | 72        | 32    | 35   |
| Fraction of overcast areas in this 2.5 degree region                      | 19        | N/A               | 01             | 72        | 32    | 37   |
| Regional_Albedos                                                          |           |                   |                |           |       |      |
| Albedo of clear sky areas in 2.5 degree region                            | 20        | N/A               | 01             | 72        | 32    | 39   |
| Albedo of partly cloudy areas in 2.5 degree region                        | 21        | N/A               | 01             | 72        | 32    | 41   |
| Albedo of mostly cloudy areas in 2.5 degree region                        | 22        | N/A               | 01             | 72        | 32    | 43   |
| Albedo of overcast areas in 2.5 degree region                             | 23        | N/A               | 01             | 72        | 32    | 45   |
| Regional_Statistics                                                       |           |                   |                |           |       |      |
| Angular_Averages_Scaled                                                   |           |                   |                |           |       |      |
| Average of individual cosines of solar zenith angle at target point for S | SW 24     | N/A               | 01             | 72        | 32    | 47   |
| Average of individual spacecraft zenith angles from target point          | 25        | deg               | 090            | 72        | 32    | 49   |
| Average of individual relative azimuth at target point                    | 26        | deg               | 0180           | 72        | 32    | 51   |
| Standard deviation of individual SW albedos for clear sky areas           | 27        | N/A               | 01             | 72        | 32    | 53   |
| Average of individual LW estimates of flux at TOA clear sky               | 28        | W-m <sup>-2</sup> | 0400           | 72        | 32    | 55   |
| Standard deviation of LW estimates of flux at TOA clear sky               | 29        | W-m <sup>-2</sup> | 0400           | 72        | 32    | 57   |
| Number of individual longwave estimates for clear sky areas               | 30        | N/A               | 0200           | 72        | 32    | 59   |
| Regional Spares is Array[2] of:                                           |           |                   |                |           |       |      |
| Spares                                                                    | 31        | N/A               | N/A            | 144       | 32    | 61   |
|                                                                           |           |                   |                | 177       |       | 01   |

#### Table B-2. Concluded

| Description                                                           | Parameter<br>Number | Units | Range | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|-----------------------------------------------------------------------|---------------------|-------|-------|---------------------|---------------|-------------|
| Housekeeping                                                          |                     |       |       |                     |               |             |
| Records_for_Records_Per_Region is Array[72] of:                       |                     |       |       |                     |               |             |
| Direct_Access_Records is Array[144] of:                               |                     |       |       |                     |               |             |
| 144 integer array storing the number of records per region.           | 32                  | N/A   | TBD   | 10368               | 32            | 1           |
| ERBE-like_Product_Key_Record                                          |                     |       |       |                     |               |             |
| Product used for validation of the Housekeeping file.                 | 33                  | N/A   | N/A   | 1                   | 64            | 10369       |
| Housekeeping_Ibuf_Array is Array[9] of:                               |                     |       |       |                     |               |             |
| 9 integer array containing file information.                          | 34                  | N/A   | N/A   | 9                   | 32            | 10370       |
| Scale_Factors_Record is Array[45] of:                                 |                     |       |       |                     |               |             |
| Scale factors for various data elements.                              | 35                  | N/A   | N/A   | 45                  | 64            | 10379       |
| Days_with_Data_Information_Record is Array[34] of:                    |                     |       |       |                     |               |             |
| Array of integer flags denoting days with inversion processing.       | 36                  | N/A   | N/A   | 34                  | 32            | 10424       |
| File_Sorted_Record is Array[36] of:                                   |                     |       |       |                     |               |             |
| Array of flags indicating sort status of regional data.               | 37                  | N/A   | N/A   | 36                  | 32            | 10458       |
| Julian_Start_Inversion_Header_Record is Array[33] of:                 |                     |       |       |                     |               |             |
| Start dates and times for each of 31 days, prior and succeeding days. | 38                  | N/A   | N/A   | 33                  | 64            | 10494       |
| Julian_End_Inversion_Header_Record is Array[33] of:                   |                     |       |       |                     |               |             |
| End dates and times for 31 days, prior and succeeding days.           | 39                  | N/A   | N/A   | 33                  | 64            | 10560       |
| ERBE-like_Product_key_Record_for_Files is Array[33] of:               |                     |       |       |                     |               |             |
| Product keys for 31 days, prior and succeeding days.                  | 40                  | N/A   | N/A   | 33                  | 64            | 10593       |

| Total Meta Bits/EDDB Product | 343584    |
|------------------------------|-----------|
| Total Data Bits/Day          | 30720000  |
| Total Data Bits/Month        | 952320000 |
| Total Bits/EDDB Product      | 952663584 |

## **ERBE-Like Science Product 8 (ES-8)**

The ES-8 data product contains a 24-hour, single-satellite, instantaneous view of scanner fluxes at the top-of-atmosphere reduced from spacecraft altitude unfiltered radiances using the ERBE scanner inversion algorithms and the ERBE shortwave (SW) and longwave (LW) ADM's. The ES-8 also includes the SW, LW, and window (WN) channel radiometric data; SW, LW, and WN unfiltered radiance values; the ERBE scene identification results on a pixel basis; and surface parameters<sup>\*</sup>, including SW and LW fluxes and precipitable water. This data is organized according to the CERES 3.3-sec scan into 6.6-sec records. These records contain only Earth-viewing measurements, approximately 450 for TRMM and 390 for EOS. As long as there is one valid scanner measurement within a record, the ES-8 record will be generated.

The ES-8 is output by the CERES ERBE-like process. The TOA and surface fluxes for each CERES pixel will be archived on the ES-8, as well as flags describing instrument status, the radiometric data, and FOV location.

Specifically, the ES-8 contains the following kinds of information:

- 1. Scan-Level Data
  - a. Julian date and time
  - b.Earth-Sun distance
  - c. Satellite position and velocity and sun position
- 2. Pixel-Level Data
  - a. Satellite instrument field of view data
  - b.Radiometric Data
  - c. Satellite and sun geometry data
  - d. Unfiltered Radiances
  - e. TOA Fluxes and surface fluxes
  - f. ERBE Scene Identification

Record: 6.6 seconds

| (1) clear ocean  | (5) clear coastal             | (9) mostly-cloudy ocean        |
|------------------|-------------------------------|--------------------------------|
| (2) clear land   | (6) partly-cloudy ocean       | (10) mostly-cloudy land-desert |
| (3) clear snow   | (7) partly-cloudy land-desert | (11) mostly-cloudy coastal     |
| (4) clear desert | (8) partly-cloudy coastal     | (12) overcast                  |

The ES-8 will be produced starting at launch and will be externally archived for use by the global scientific community.

| Level: 2              | Portion of Globe Covered                   |
|-----------------------|--------------------------------------------|
| Type: Archival        | File: Satellite swath                      |
| Frequency: 1/day      | Record: N/A                                |
| Time Interval Covered | Portion of Atmosphere Covered              |
| File: 24 hours        | File: Satellite altitude, TOA, and surface |

<sup>\*</sup>Surface parameters have been transferred from the ES-8 to the SSF data product.

# Table B-3. ERBE-Like Science Product 8 (ES-8)

| Description                                | Parameter<br>Number | Units                              | Range      | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|--------------------------------------------|---------------------|------------------------------------|------------|---------------------|---------------|-------------|
| ES-8                                       |                     |                                    |            | 1                   | 64            |             |
| ES-8 File Header                           |                     | N/A                                |            |                     |               |             |
| Scale Factors is Arrav[10056] of:          |                     |                                    |            | 10056               | 32            |             |
| Offsets is Array[10056] of:                |                     |                                    |            | 10056               | 32            |             |
| ES-8_Data_Record                           |                     |                                    |            |                     |               |             |
| Scan_Level_Data                            |                     |                                    |            |                     |               |             |
| Julian_Date                                |                     |                                    |            |                     |               |             |
| Julian day                                 | 1                   | day                                | 2449353 24 | 458500 1            | 32            | 1           |
| Julian time                                | 2                   | day                                | 0.0 1.0    | 1                   | 32            | 2           |
| Earth-Sun_Distance                         |                     |                                    |            |                     |               |             |
| Earth-Sun distance                         | 3                   | AU                                 | 0.98 1.02  | 1                   | 16            | 3           |
| Satellite_State_Vector                     |                     |                                    |            |                     |               |             |
| Satellite_Position_Vector                  |                     |                                    |            |                     |               |             |
| X component of satellite position          | 4                   | km                                 | -8000 8000 | ) 2                 | 32            | 4           |
| Y component of satellite position          | 5                   | km                                 | -8000 8000 | ) 2                 | 32            | 6           |
| Z component of satellite position          | 6                   | km                                 | -8000 8000 | ) 2                 | 32            | 8           |
| Satellite_Velocity_Vector                  |                     |                                    |            |                     |               |             |
| X component of satellite inertial velocity | 7                   | km/sec                             | -1010      | 2                   | 32            | 10          |
| Y component of satellite inertial velocity | 8                   | km/sec                             | -10 10     | 2                   | 32            | 12          |
| Z component of satellite inertial velocity | 9                   | km/sec                             | -10 10     | 2                   | 32            | 14          |
| Satellite Nadir                            |                     |                                    |            |                     |               |             |
| Colatitude of satellite at observation     | 10                  | deg                                | 0180       | 2                   | 16            | 16          |
| Longitude of satellite at observation      | 11                  | deg                                | 0360       | 2                   | 16            | 18          |
| Sun Position                               |                     | ÷                                  |            |                     |               |             |
| Colatitude of Sun at observation           | 12                  | deg                                | 0180       | 1                   | 16            | 20          |
| Longitude of Sun at observation            | 13                  | deg                                | 0360       | 1                   | 16            | 21          |
| Orbit Number                               |                     | -                                  |            |                     |               |             |
| Satellite orbit number                     | 14                  | N/A                                | 054000     | 1                   | 16            | 22          |
| Pixel Level Data                           |                     |                                    |            |                     |               |             |
| FOV Location at TOA                        |                     |                                    |            |                     |               |             |
| Colatitude of CERES FOV at TOA             | 15                  | deg                                | 0180       | 450                 | 16            | 23          |
| Longitude of CERES FOV at TOA              | 16                  | deg                                | 0360       | 450                 | 16            | 473         |
| Radiometric Data                           |                     | •                                  |            |                     |               |             |
| CERES total filtered radiance, upwards     | 17                  | W-m <sup>-2</sup> sr <sup>-1</sup> | 0700       | 450                 | 16            | 923         |
| CERES shortwave filtered radiance, upwards | 18                  | W-m <sup>-2</sup> sr <sup>-1</sup> | -10510     | 450                 | 16            | 1373        |
| CERES window filtered radiance, upwards    | 19                  | W-m <sup>-2</sup> sr <sup>-1</sup> | 050        | 450                 | 16            | 1823        |
| FOV_Geometry_at_TOA                        |                     |                                    |            |                     |               |             |
| CERES viewing zenith at TOA                | 20                  | deg                                | 090        | 450                 | 16            | 2273        |
| CERES solar zenith at TOA                  | 21                  | deg                                | 0180       | 450                 | 16            | 2723        |
| CERES relative azimuth at TOA              | 22                  | deg                                | 0360       | 450                 | 16            | 3173        |
| Unfiltered_Measurements                    |                     |                                    |            |                     |               |             |
| CERES shortwave radiance, upwards          | 23                  | W-m <sup>-2</sup>                  | -10 . 510  | 450                 | 16            | 3623        |
| CERES longwave radiance, upwards           | 24                  | W-m <sup>-2</sup>                  | 0 200      | 450                 | 16            | 4073        |
| CERES window radiance, upwards             | 25                  | W-m <sup>-2</sup>                  | 050        | 450                 | 16            | 4523        |
| TOA_Estimates                              |                     |                                    |            |                     |               |             |
| CERES shortwave flux at TOA, upwards       | 26                  | W-m <sup>-2</sup>                  | 01200      | 450                 | 16            | 4973        |
| CERES longwave flux at TOA, upwards        | 27                  | W-m <sup>-2</sup>                  | 50 400     | 450                 | 16            | 5423        |
| ERBE scene type for inversion process      | 28                  | N/A                                | 012.4      | 450                 | 16            | 5873        |
| Surface Parameters                         |                     |                                    |            |                     |               |             |
| Surface_Flux                               |                     |                                    |            |                     |               |             |
| CERES shortwave flux at surface, downwards | 29                  | W-m <sup>-2</sup>                  | 01200      | 450                 | 16            | 6323        |

# Volume II

Total Bits/File:

## Table B-3. Concluded

| Description                               | Parameter<br>Number | Units             | Range     | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|-------------------------------------------|---------------------|-------------------|-----------|---------------------|---------------|-------------|
| CERES longwave flux at surface, downwards | 30                  | W-m⁻²             | 50 400    | 450                 | 16            | 7223        |
| CERES net shortwave flux at surface       | 31                  | W-m <sup>-2</sup> | 01200     | 450                 | 16            | 6773        |
| CERES net longwave flux at surface        | 32                  | W-m <sup>-2</sup> | 50 400    | 450                 | 16            | 7673        |
| Precipitable water                        | 33                  | cm                | 0.001 8.0 | 450                 | 16            | 8123        |
| Fiag_Words_Data                           |                     |                   |           |                     |               |             |
| Scanner operations flag word              | 34                  | N/A               | N/A       | 2                   | 16            | 8573        |
| Quality flag for total radiance value     | 35                  | N/A               | N/A       | 33                  | 16            | 8575        |
| Quality flag for shortwave radiance value | 36                  | N/A               | N/A       | 33                  | 16            | 8608        |
| Quality flag for window radiance value    | 37                  | N/A               | N/A       | 33                  | 16            | 8641        |
| Quality flag for FOV                      | 38                  | N/A               | N/A       | 33                  | 16            | 8674        |
| Total Meta Bits/File:                     | 643648              |                   |           |                     |               |             |
| Total Data Bits/Record:                   | 139520              |                   |           |                     |               |             |
| Total Records/File:                       | 13091               |                   |           |                     |               |             |
| Total Data Bits/File:                     | 1826456320          |                   |           |                     |               |             |

1827099968

182709996

# Clouds and the Earth's Radiant Energy System (CERES)

# **Algorithm Theoretical Basis Document**

# ERBE-Like Averaging to Monthly TOA

(Subsystem 3.0)

Edwin F. Harrison<sup>1</sup> Patrick Minnis<sup>1</sup> David F. Young<sup>2</sup> Gary G. Gibson<sup>2</sup> Olivia C. Smith<sup>3</sup>

<sup>1</sup>NASA Langley Research Center, Hampton, Virginia 23681-0001
 <sup>2</sup>Analytical Services & Materials, Inc., Hampton, Virginia 23666
 <sup>3</sup>Science Applications International Corporation (SAIC), Hampton, Virginia 23666



# **CERES Top Level Data Flow Diagram**

#### Abstract

This subsystem describes methods to temporally interpolate CERES measurements to compute ERBE-like averages of top-ofatmosphere (TOA) radiative parameters. CERES observations of shortwave (SW) and longwave (LW) flux are time-averaged using a data interpolation method similar to that employed by the Earth Radiation Budget Experiment (ERBE). The averaging process produces daily, monthly-hourly, and monthly means of TOA SW and LW flux on regional, zonal, and global spatial scales. Separate calculations are performed for clear-sky and total-sky fluxes.

# 3.0. ERBE-Like Averaging to Monthly TOA

#### 3.1. Introduction

The satellites that carry the CERES instrument do not provide continuous spatial and temporal coverage of the Earth's entire surface. Historically, the sparse distribution of satellite measurements is the most critical factor in temporal averaging of radiation data from regional to global scales (Brooks et al. 1986). Because a satellite does not view all portions of the Earth at all times, temporal modeling of the diurnal variability of the Earth's radiation field is required to recover daily or monthly averaged radiative parameters. A clear understanding of the Earth's radiative behavior demands realistic models of diurnal variations that depend on the surface type and cloud cover and accurately describe the solar zenith angle dependence of albedo and longwave exitance.

A major emphasis of radiation budget research is on the monitoring and analysis of long-term variations in the Earth's climate. This can only be accomplished using stable, long-term global data sets. In order to fulfill this research need, CERES will produce an ERBE-like product to provide a data set processed in a manner consistent with the earlier experiment (see Brooks et al. 1986).

#### **3.2. Input**

The chief input to the ERBE-like monthly time-space averaging (TSA) subsystem is the stream of CERES SW and LW TOA flux observations. Included with each measurement is necessary information such as satellite viewing geometry, the latitude and longitude of the observation, and the underlying geographic scene type. In addition, cloud amount is estimated for each pixel in the ovserved area. See appendix A for tables describing the input data products. Additional input data include TOA albedo angular distribution models (ADM's) and solar declination data.

#### 3.3. Output

The TSA process produces daily, monthly-hourly, and monthly means of TOA SW and LW flux on regional, zonal, and global spatial scales. Separate calculations are performed for clear-sky and total-sky fluxes. Daily SW clear-sky fluxes are provided only for days with clear-sky measurements; daily clear-sky LW over land regions is not provided. See appendix B for tables describing the output data products.

#### 3.4. Summary of Processes

One month of data is sorted and averaged into the standard ERBE  $2.5^{\circ}$  latitude  $\times 2.5^{\circ}$  longitude grid. All data within each grid box are sorted and averaged in 1-hour increments (hour boxes).

Total-sky TOA LW flux is estimated for all hours during the month by interpolating between those hours containing observations. Linear interpolation is used over oceans, while a half-sine curve fit is applied over land and desert regions based on studies by Brooks and Minnis (1984). Monthly and monthly-hourly means are then computed using the combination of observed and interpolated values.

Clear-sky TOA LW flux is calculated in the same manner as total-sky TOA LW in oceanic regions. However, over land regions, a different technique is used to compensate for the effects of undersampling. Hours with clear-sky LW observations are averaged over the month for each local hour. A single half-sine curve is fitted to this monthly composited data, and the monthly-hourly means from this fit are averaged to produce monthly means.

Monthly mean total-sky and clear-sky TOA SW fluxes are produced in a manner similar to total-sky TOA LW flux. For all days with at least one SW observation, a value of SW flux is interpolated for all daylight hours using models of the albedo variation with solar zenith angle (Suttles et al. 1988). Monthly mean albedos are calculated by summing the modeled SW flux values and dividing that sum by the sum of solar incident flux from the same hours. Monthly mean SW flux is calculated by multiplying the monthly mean albedo by a more precise value of monthly mean solar incident flux that is produced by integrating the solar incident flux over all days of the month.

Finally, the TOA LW and SW fluxes are averaged on zonal and global scales using the appropriate area weighting functions for each latitude.

#### 3.5. Technical Basis

The ultimate goal of radiation budget monitoring experiments such as ERBE (Barkstrom 1984; Barkstrom and Smith 1986) and CERES (Wielicki and Barkstrom 1991) is to accurately determine the components of the Earth's radiation budget on regional, zonal, and global spatial scales at various temporal resolutions. Regional and global analyses of the large sets of highly accurate satellite measurements of incoming and outgoing energy in the Earth's climate system can be achieved only by adequately sampling the radiation fields and properly averaging the data in space and time. The CERES Data Management System will produce a data product which is processed in a manner consistent with ERBE to provide a stable, long-term data set for monitoring and analyzing Earth's climate variations. The averaging processes which are used in the CERES ERBE-like processing are described below.

ERBE is the most accurate experiment to date for measuring the Earth's radiation budget (Barkstrom et al. 1990), the diurnal variability of radiation (Harrison et al. 1988; Hartmann et al. 1991; Cheruy et al. 1991), cloud-radiative forcing (Ramanathan et al. 1989a; Ramanathan et al. 1989b; Harrison et al. 1990b), and volcanic climate radiative forcing (Minnis et al. 1993). For a discussion of the ERBE errors, see Harrison et al. (1990b) and Barkstrom et al. (1990). The largest sources of uncertainty in the pre-ERBE radiation budget missions arose from errors due to calibration and stability, sampling, and data analysis methods. The ERBE instruments reflect an improved understanding of instrument operation and incorporate reliable calibration sources for better measurement accuracy.

ERBE used multiple satellites to account for widespread semiregular diurnal variations in cloudiness that can cause substantial errors in regional radiation budgets derived with single Sun-synchronous satellite measurements (Harrison et al. 1983). The multisatellite ERBE measurements, combined with models to estimate fluxes at unsampled hours, produced the best estimates to date of the diurnal variability of TOA radiation (Harrison et al. 1988; Harrison et al. 1990a; Hartmann et al. 1991).

CERES instruments will also be flown on multiple satellites to provide the diurnal sampling necessary to obtain accurate monthly flux averages using the ERBE-like interpolation techniques. The temporal coverage of the three CERES satellites (TRMM, EOS-AM, and EOS-PM) for 1 month of observations is shown in figure 3-1. The TRMM spacecraft is in a 35°-inclined, precessing orbit which covers all local times at the equator in slightly over 26 days. The EOS satellites are in Sun-synchronous


Figure 3-1. Temporal coverage of CERES satellites.

orbits, sampling at the same local times each day. From figure 3-1, it is evident that a single satellite cannot provide sufficient temporal sampling to accurately estimate SW and LW fluxes at all local hours.

For ERBE, a comprehensive set of LW and SW angular dependence models was developed (Suttles et al. 1988 and 1989) and used to convert radiances to fluxes. A method for separating and identifying clear-sky and cloud-contaminated measurements (Wielicki and Green 1989) was constructed to improve radiance interpretation for selecting the correct angular models and to better understand the effects of clouds. Geostationary satellite data were used to develop a more accurate technique for averaging the data over the diurnal cycle (Brooks and Minnis 1984).

All of these improvements in the instruments, satellite sampling, and the data processing system allowed ERBE to meet many of the goals of the scientific community. CERES will make further improvements in ERB measurements, particularly in determining more accurate and com-prehensive cloud information. However, in the interest of compiling a long-term, consistent data set for climate studies, an ERBE-like data product will be produced.

#### 3.5.1. Temporal Interpolation and Spatial Averaging

The first step in the averaging process is to sort the data in space and time. CERES data enter this subsystem as a chronologically-ordered stream of flux measurements. Spatially, these data are averaged and processed on an ERBE  $2.5^{\circ} \times 2.5^{\circ}$  grid. Each region (grid box) is processed independently from all others. Within each region, a month of CERES measurements is sorted and averaged into local time intervals of one hour (referred to as hour boxes). There is a maximum of 744 hour boxes in a month (24 hours/day  $\times$  31 days).

The averaging of the LW flux is straightforward. All observations from a region that were measured within an hour box are linearly combined. Since albedo is a function of solar zenith angle, each SW measurement is first corrected to the central time, latitude, and longitude of the regional hour box into which it is collected. The temporal correction is performed using 12 ADM's. As shown in figure 3-2, there are separate ADM's for the five ERBE clear-sky geographical scene types (ocean, land, snow,



Figure 3-2. ERBE angular distribution models (ADM's).

desert, and coast). Over land and ocean surfaces, there are models for partly cloudy and mostly cloudy ERBE scene classifications. Finally, a single model is used for overcast conditions over all surfaces. The ADM's for partly and mostly cloudy coastal scenes are not shown. Within each hour box, a separate mean albedo is calculated for each cloud class, and a histogram of cloud class is also retained. The geographic scene type for each region is constant for a month.

### 3.5.2. Total-Sky TOA LW Flux

The ERBE TSA algorithm was designed to provide daily model fits to the TOA LW flux data as well as monthly averages of these data. To accomplish this goal, an estimate of LW flux is made for every hour box. This interpolation is performed in one of two ways, depending on the geographic scene type of the region.

Over ocean regions, there is little diurnal variability in LW flux due to solar insulation. The greatest variations in LW flux over the oceans occur due to changes in the amount and types of clouds. Therefore, no attempt is made to develop complex models for estimating the LW flux between the times of observations. Rather, it is assumed that changes in LW flux are due to changes in cloud conditions, and that this change is linear. Therefore, simple linear interpolation is used to provide a value of LW flux for each hour box not observed by CERES. At the beginning of the month, all hours preceding the first observation are filled with the value from the first observed time. The same procedure is applied at the end of the month using the last observed LW flux. This technique is also used for regions designated as either snow-covered or coastal.

Over land and desert regions, the effects of solar heating are much more pronounced than over ocean regions. During relatively cloud-free periods, there is generally a sinusoidal variation in LW flux over the daylight hours. In order to account for this variation, these regions are treated in a different manner from oceans in the TSA algorithm. For any day when an observation was made during daylight hours and during the preceding and following nights, the LW flux for the remaining hours of the day is modeled by fitting a half-sine curve to the observations. The modeling is performed by linear interpolation on days lacking the required observations or having any daylight observations of LW flux that are less than the nighttime values, or when the resultant half-sine curve has a negative amplitude.

The results of this type of interpolation are demonstrated in figure 3-3 that shows a time series of ERBE scanner data from April 1985 over a 2.5° region in eastern New Mexico. In this figure, observations are represented by circles, and the interpolated values are displayed as the solid line. The early part of the month was relatively clear, and half-sine fits were performed on days 1, 2, 4, 6, 7, and 8. However, on days 10, 11, and 12, no half-sine fit was used since low values of LW were observed in the late afternoon, which indicates that clouds must have been developing. In such cases, the half-sine fit is not realistic, and linear interpolation is used.

Once all hour boxes for the month have been filled with a value of LW flux, it is a simple matter to calculate daily, monthly-hourly, and monthly means. Two slightly different techniques are used to compute monthly means. In the first method (monthly-daily), a daily mean is computed by averaging the 24-hour box values for each day. The monthly mean TOA LW flux,  $\overline{F}_{LW}$ , is then computed by averaging all of the daily means:

$$\bar{F}_{LW} = \sum_{d=1}^{D} \frac{\sum_{h=1}^{24} F_{LW}(d,h)/24}{D}$$
(3.1)

where  $F_{LW}(d, h)$  is the TOA LW flux for day d and local hour h, and D is the total number of days in the month. In the second method (monthly-hourly), hour box values for all days in which an observation



Figure 3-3. Time series of ERBS and NOAA-9 ERBE scanner TOA LW flux data and diurnal models for a 2.5° region in eastern New Mexico in April 1985.

was made are averaged at each local hour. The resulting 24 monthly-hourly means are then averaged to produce a monthly mean:

$$\bar{F}_{LW} = \sum_{h=1}^{24} \frac{\sum_{l=1}^{D_{LW}} F_{LW}(d,h) / D_{LW}}{24}$$
(3.2)

where  $D_{LW}$  is the total number of days in the month with at least one LW measurement. The two estimates of monthly mean LW flux will be equal unless there were days during the month when no observations were made.

#### 3.5.3. Clear-Sky TOA LW Flux

The above algorithm works very well for total-sky LW flux for regions that are well-sampled in local time. However, problems may arise when applying this technique to clear-sky LW flux data. The ERBE cloud classification procedure is quite restrictive in terms of classifying an observation as clear (Wielicki and Green 1989). Also, there are many regions over the globe where cloudy conditions prevail throughout the month. Consequently, a region may have a very limited number of clear-sky observations during the month. In addition, satellite sampling patterns often result in a local-time bias in the occurrence of clear-sky measurements. An example of this is shown in figure 3-4 for the same 2.5° ERBE region over New Mexico discussed in the above section. For this case, with the exception of the two measurements from days 4 and 5, all of the limited number of clear-sky observations occurred during daylight hours. The lack of nighttime data means that the requirements for performing the diurnal half-sine fits are never met. The linear interpolation between the times of observation results in a monthly average that is unrealistically high because only daytime values are available. This problem is particularly serious over land and desert regions where large diurnal variations in LW flux are expected during clear-sky conditions. Since clear ocean areas generally have a much smaller LW flux diurnal



Figure 3-4. Time series of ERBS and NOAA-9 ERBE scanner clear-sky TOA LW flux data and diurnal models for a 2.5° region in eastern New Mexico in April 1985.

change, the day-night sampling bias does not severely affect the ocean monthly means. Therefore, in ocean regions, the clear-sky LW flux is averaged in a manner identical to the total-sky data.

Because of these problems associated with obtaining accurate averages of clear-sky LW flux over land and deserts, an improved TSA algorithm has been developed that involves calculating a single diurnal fit to the monthly ensemble of all clear-sky LW flux data. In the clear-sky case, it is reasonable to process all of the measurements together because the scene is essentially unchanged throughout the month and, consequently, the variance of measurements at the same local hour is expected to be small. Some exceptions occur due to scene variability of the measurement footprints within the region, changing atmospheric conditions such as water vapor content, wind, and surface temperature during the month, cloud contamination of presumably clear-sky scenes, and possible errors due to measurements taken at high viewing zenith angles. The underlying assumption is that this variability is small relative to the overall diurnal variation and can be effectively averaged out for a region having several clear-sky observations over the course of a month.

The clear-sky LW flux averaging technique is demonstrated in figure 3-5. The data shown in figure 3-4 have been sorted and averaged for the entire month in terms of local hour. The daytime points (open symbols) are then modeled using a least-squares half-sine fit weighted by the number of measurements at each local hour during the month. The nighttime data (filled symbols) are simply averaged and the constant value is used for all nighttime hours. The monthly mean is then calculated by averaging the fit over 24 hours if the fit meets five basic criteria:

- (a) There must be at least one daylight measurement located more than one hour from the terminator
- (b) There must be at least one nighttime measurement
- (c) The least squares half-sine fit to the daylight data produces a positive amplitude
- (d) The peak value of the fit must not exceed 400 W-m<sup>-2</sup>
- (e) The length of day 15 of the month must be greater than 2 hours



Figure 3-5. ERBE time averaged monthly-hourly clear-sky TOA LW flux results for the region shown in figure 3-4.

If these criteria are not met, no monthly mean TOA LW clear-sky flux is calculated for the region. Since the modeling process is performed on data accumulated throughout the month, daily means are not calculated for land and desert regions.

This technique produces realistic values of monthly mean clear-sky LW flux, even in regions with sparse data sampling. However, in many regions no estimate can be made due to the total lack of nighttime, clear-sky data due to persistent overcast conditions or the overly restrictive ERBE clear classification scheme. To compensate for missing nighttime data, the clear-sky averaging algorithm attempts to correct for the misclassification of nighttime clear pixels as partly cloudy. For each nighttime hour box over land regions, a new clear-sky amount is estimated by assuming that 10% of the pixels classified as partly cloudy are actually clear. If the new clear-sky amount exceeds 5% and is greater than the original clear-sky percentage, then the clear-sky longwave flux is recalculated using the mean and standard deviation of the total longwave flux.

#### 3.5.4. Total-Sky and Clear-Sky TOA SW Flux

The procedure for producing diurnal, monthly-hourly, and monthly means of SW flux is quite different from that for LW flux. Since TOA SW flux is obviously only pertinent to daylight hours, the difficulty of interpolating across day-night boundaries that causes problems in modeling sparsely sampled LW data is not encountered. Furthermore, as shown in figure 3-2, there exist well-developed models of the variation of albedo with solar zenith angle for various clear and cloudy backgrounds (Suttles et al. 1988). These angular distribution models (ADM's) are used to interpolate observations to other times of the day. In addition, the clear-sky SW flux (or albedo) can be modeled in the same manner as the totalsky since the lack of nighttime clear data is not a factor.

As explained in the section on spatial averaging, for each hour box with an observation, a separate albedo is calculated for each of the four ERBE cloud classifications: clear, partly cloudy, mostly cloudy, and overcast. In addition, a frequency histogram of the relative quantity of each type is stored. Because the diurnal variability of SW radiation is pronounced even within a single hour, measured values are first adjusted to the nearest local solar half hour. For a given surface type and cloud cover category (i.e., scene type for selecting an ADM), the normalized ADM function,  $\delta_i(\mu_o)$ , at time t is defined as the ratio of the albedo at time t and the albedo at overhead sun:



Figure 3-6. An example of time interpolation of albedo for days with only 1 hour of observation.

$$\delta_i(\mu_o(t)) = \frac{\alpha_{\text{mod}_i}(\mu_o(t))}{\alpha_{\text{mod}_i}(\mu_o = 1)}$$
(3.3)

where  $\mu_o$  is the cosine of the solar zenith angle and  $\alpha_{mod_i}$  is the ADM albedo for scene type *i* (from fig. 3-2). The albedo at any time *t'* (e.g., at the local solar half hour) can be expressed as the product of the observed albedo and the ratio of the normalized ADM functions from *t'* and the time of observation,  $t_{obs}$ :

$$\alpha_i(t') = \alpha_i(\mu_o(t_{obs})) \frac{\delta_i(\mu_o(t'))}{\delta_i(\mu_o(t_{obs}))}$$
(3.4)

For days with only one SW flux measurement, each of the four cloud type albedos from the hour of observation is modeled to all daylight hours using equation (3.4) and the appropriate ADM's. This modeling is illustrated in figure 3-6. The albedos for the four cloud types are then recombined by weighting each cloud type albedo with the appropriate areal coverage fraction to obtain the mean albedo at each hour for the entire region (solid line in fig. 3-6). This process assumes that the relative abundance of the cloud classifications remains constant throughout the day.

For days with more than one measurement, this technique is modified as illustrated in figure 3-7. This figure presents albedos for all hours for each of the two measurements individually, and then shows how the two are combined to determine the best estimates of albedo. All daylight hours preceding the first measurement of the day and following the last measurement assume constant cloud class from the nearest measurement. These hours are modeled using equation (3.4) in the single measurement case. For hours between two measurements, it is assumed that the cloud histograms are varying linearly over that span. The four cloud type albedos are modeled from each surrounding measurement using equation (3.4) and the appropriate ADM's. Total albedo for each hour between the two measurements is then produced by inversely weighting the two estimates by the time from the hour of interest.



Figure 3-7. An example of time interpolation of albedo with 2 hours of observation during a day.

Monthly means are calculated once all hours are filled with albedo values for days with at least one measurement. The SW flux at each hour h of a given day d is:

$$F_{SW}(d,h) = E_o(d)\mu_o(d,h)\alpha(d,h)$$
(3.5)

where  $E_o$  is the mean daily distance-corrected solar constant. The SW flux is summed over all hours for days with measure ind divided by a summation of solar incident flux over the same hours to produce a monthly mean albedo:

$$\bar{\alpha} = \sum_{d=1}^{D_{SW}} \left( \sum_{h=1}^{24} F_{SW}(d,h)/24 \right) / D_{SW} / S_o$$
(3.6)

where  $F_{SW}(d,h)$  is the TOA SW flux for day d and local hour h,  $D_{SW}$  is the total number of days in the month with at least one SW measurement, and  $S_o$  is the summed solar incident SW flux. Monthly mean SW flux,  $\overline{F}_{SW}$  is then calculated by multiplying monthly mean albedo by the incident solar flux integrated and averaged over all hours of the month:

$$\overline{F}_{SW} = \alpha S'_{\rho} \tag{3.7}$$

where  $S'_{o}$  is the integrated solar incident SW flux.

Mean clear-sky SW flux is produced in a similar manner. In fact, the process is simpler because only the clear albedo from each hour box needs to be interpolated to non-measured hours. Again, only days with at least one measurement are filled using the clear-sky ADM's, and values from these days are combined to produce daily, monthly-hourly, and monthly means.

#### 3.5.5. Zonal and Global Means

Zonal and global means of TOA LW and SW flux are calculated in the same manner as used with ERBE data. Since this product is produced on the ERBE 2.5° equal-angle grid, the regional means must be weighted by area when computing global means. The 2.5° regional data will also be nested into 5° and 10° grids as was done with ERBE.

#### 3.6. Uncertainty Estimates

Although a complete, rigorous error analysis for all of the ERBE products is not yet available, several studies of the ERBE error sources have resulted in reliable estimates of the uncertainties in monthly mean TOA LW and SW radiation. Bias errors for monthly mean regional total-sky fluxes are less than  $1 \text{ W-m}^{-2}$ . The rms uncertainties in total-sky LW and SW fluxes are estimated to be  $3 \text{ W-m}^{-2}$  and  $5 \text{ W-m}^{-2}$ , respectively. In terms of SW albedo, the error is approximately  $\pm 0.014$ . The rms errors in clear-sky LW and SW fluxes are estimated to be  $2 \text{ W-m}^{-2}$ . The clear-sky LW fluxes, however, may be overestimated by about  $4 \text{ W-m}^{-2}$ . The clear-sky reflected flux is overestimated by approximately  $1 \text{ W-m}^{-2}$ . For an overview of the uncertainties in the ERBE monthly mean flux values, see Harrison et al. (1990b).

### 3.7. Strategic Concerns

Estimates of surface fluxes can be produced using TOA-to-surface parameterization schemes and included as part of the archived output from the ERBE-like processing of subsystem 3. These surface fluxes were originally planned for inclusion with the ERBE-like products. However, it has been decided that they will not be included in subsystem 3 for Release 1, in order for this subsystem to produce only truly ERBE-like results. However, surface fluxes will be produced in subsystem 10.

The basic algorithmic development for this subsystem has already been accomplished because of the similarities with the existing ERBE TSA code. New concerns arise only in the possible inclusion of the TOA-surface flux parameterization schemes. All information necessary to use these models is available from the data stream or from the ancillary atmospheric data, with the exception of the cloud base temperature which will be needed to calculate surface total-sky LW flux if surface fluxes are included in future releases. This parameter may be available if ISCCP C1 data are the source for the GEO ancillary data set. Otherwise, another source must be identified.

The ERBE TSA currently extrapolates total-sky LW as a constant from the first observation back to the beginning of the month and from the last observation forward to the end of the month. The simple solution to the problems caused by this is to always average using only those days that contain at least one measurement.

Currently, the 2.5° regional data will also be nested into 5° and 10° grids as was done with ERBE. The need for these two additional product spatial resolutions should be evaluated. Eliminating these products would reduce the data volume considerably, and the nesting could easily be performed by research analysts using the basic  $2.5^{\circ}$  data.

#### **3.8. References**

Barkstrom, B. R. 1984: The Earth Radiation Budget Experiment (ERBE). Am. Meteorol. Soc., vol. 65, pp. 1170-1185.

- Barkstrom, B. R.; and Smith G. L. 1986: The Earth Radiation Budget Experiment---Science and Implementation. Rev. Geophys., vol. 24, pp. 379-390.
- Barkstrom, Bruce R.; Harrison, Edwin F.; and Lee, Robert B., III 1990: Earth Radiation Budget Experiment-Preliminary Seasonal Results. EOS, vol. 71, p. 279, 299, 304 and 305.
- Brooks, D. R.; and Minnis, P. 1984: Simulation of the Earth's Monthly Average Regional Radiation Balance Derived From Satellite Measurements. J. Climat. & Appl. Meteorol., vol. 23, pp. 392–403.
- Brooks, D. R.; Harrison, E. F.; Minnis, P.; Suttles, J. T.; and Kandel, R. S. 1986: Development of Algorithms for Understanding the Temporal and Spatial Variability of the Earth's Radiation Balance. *Rev. Geophys.*, vol. 24, pp. 422–438.
- Cheruy, F.; Kandel, R. S.; and Duvel, J. P. 1991: Outgoing Longwave Radiation and Its Diurnal Variation From Combined ERBE and Meteosat Observations. I—Estimating OLR From Meteosat Data. II—Using Meteosat Data to Determine the Longwave Diurnal Cycle. J. Geophys. Res., vol. 96, p. 22, 611–622 and 630.

- Harrison, Edwin F.; Brooks, David R.; Minnis, Patrick; Wielicki, Bruce A.; and Staylor, W. Frank 1988: First Estimates of the Diurnal Variation of Longwave Radiation From the Multiple-Satellite Earth Radiation Budget Experiment (ERBE). Bull. Am. Meteorol. Soc., vol. 69, pp. 1144–1151.
- Harrison, Edwin F.; Minnis, Patrick; and Gibson, Gary G. 1983: Orbital and Cloud Cover Sampling Analyses for Multisatellite Earth Radiation Budget Experiment. J. Spacecr. & Rockets, vol. 20, no. 5, pp. 491-495.
- Harrison, E. F.; Minnis, P.; Barkstrom, B. R.; Wielicki, B. A.; Gibson, G. G.; Denn, F. M.; and Young, D. F. 1990a: Seasonal Variation of the Diurnal Cycles of Earth's Radiation Budget Determined From ERBE. Am. Meteorol. Soc., pp. 87–91.
- Harrison, E. F.; Minnis, P.; Barkstrom, B. R.; Ramanathan, V.; and Cess, R. D. 1990b: Seasonal Variation of Cloud Radiative Forcing Derived From the Earth Radiation Budget Experiment. J. Geophys. Res., vol. 95, pp. 18687–18703.
- Hartmann, Dennis L.; Kowalewsky, Karen J.; and Michelsen, Marc L. 1991: Diurnal Variations of Outgoing Longwave Radiation and Albedo From ERBE Scanner Data. J. Climat., vol. 4, pp. 598-617.
- Minnis, P.; Harrison, E. F.; Stowe, L. L.; Gibson, G. G.; Denn, F. M.; Doelling, D. R.; and Smith, W. L. 1993: Radiative Climate Forcing by the Mount Pinatubo Eruption. Science, vol. 259, no. 5100, pp. 1411-1414.
- Ramanathan, V.; Barkstrom, Bruce R.; and Harrison, Edwin F. 1989a: Climate and the Earth's Radiation Budget. *Phys. Today*, vol. 42, pp. 22-32.
- Ramanathan, V.; Cess, R. D.; Harrison, E. F.; Minnis, P.; and Barkstrom, B. R. 1989b: Cloud-Radiative Forcing and Climate— Results From the Earth Radiation Budget Experiment. Science, vol. 243, pp. 57–63.
- Suttles, J. T.; Green, R. N.; Smith, G. L.; Wielicki, B. A.; Walker, I. J.; Taylor, V. R.; and Stowe, L. L. 1989: Angular Radiation Models for Earth-Atmosphere System. II-Longwave Radiation. NASA RP-1184.
- Suttles, J. T.; Green, R. N.; Minnis, P.; Smith, G. L.; Staylor, W. F.; Wielicki, B. A.; Walker, I. J.; Young, D. F.; Taylor, V. R.; and Stowe, L. L. 1988: Angular Radiation Models for Earth-Atmosphere System. Volume 1: Shortwave Radiation. NASA RP-1184.
- Wielicki, Bruce A.; and Barkstrom, Bruce R. 1991: Clouds and the Earth's Radiant Energy System (CERES)-An Earth Observing System Experiment. Am. Meteorol. Soc., pp. 11-16.
- Wielicki, Bruce A.; and Green, Richard N. 1989: Cloud Identification for ERBE Radiative Flux Retrieval. J. Appl. Meteorol., vol. 28, pp. 1133–1146.

# Appendix A

### **Input Data Products**

#### ERBE-Like Averaging to Monthly TOA and Surface Fluxes (Subsystem 3.0)

This appendix describes the data products which are used by the algorithms in this subsystem. Table A-1 below summarizes these products, listing the CERES and EOSDIS product codes or abbreviations, a short product name, the product type, the production frequency, and volume estimates for each individual product as well as a complete data month of production. The product types are defined as follows:

| Archival products:  | Assumed to be permanently stored by EOSDIS      |
|---------------------|-------------------------------------------------|
| Internal products:  | Temporary storage by EOSDIS (days to years)     |
| Ancillary products: | Non-CERES data needed to interpret measurements |

The following pages describe each product. An introductory page provides an overall description of the product and specifies the temporal and spatial coverage. The table which follows the introductory page briefly describes every parameter which is contained in the product. Each product may be thought of as metadata followed by data records. The metadata (or header data) is not well-defined yet and is included mainly as a placeholder. The description of parameters which are present in each data record includes parameter number (a unique number for each distinct parameter), units, dynamic range, the number of elements per record, an estimate of the number of bits required to represent each parameter, and an element number (a unique number for each instance of every parameter). A summary at the bottom of each table shows the current estimated sizes of metadata, each data record, and the total data product. A more detailed description of each data product will be contained in a user's guide to be published before the first CERES launch.

Table A-1. Input Products Summary

| Product code |        |                          |          |           |          | Monthly  |
|--------------|--------|--------------------------|----------|-----------|----------|----------|
| CERES        | EOSDIS | Name                     | Туре     | Frequency | Size, MB | size, MB |
| EDDB         | None   | ERBE-like daily database | Internal | 1/month   | 113.5    | 114      |

#### **ERBE-Like Daily Database Product (EDDB)**

Subsystem 2 includes ERBE-like Inversion and the ERBE-like daily database processor. ERBE-like inversion passes averaged regional data to the daily database processor using the ERBE-like EID-6 file, and the daily database processor updates the 36 latitudinal band files in the EDDB data store. The daily database processor also maintains a housekeeping file with information about the status of the regional data. The housekeeping and regional data are stored in the EDDB for processing by the ERBE-like monthly time and space averaging process. The following table describes the parameters associated with a single 2.5-deg region. Instances of this record are accumulated by the daily processor for the regions that are received in the EID-6 records from ERBE-like inversion. After accumulating a month of data, the regional data for each latitudinal band are sorted by the daily processor and stored in a second set of 36 files for processing by the ERBE-like Monthly Time and Space Averaging Subsystem. The housekeeping file, also described in the following table, is a random access file. The housekeeping random access records store either arrays of integers (32-bit elements), or double precision floating point arrays (64-bit elements). Each parameter of the housekeeping file corresponds to one or more random access records.

Level: 2 Type: Internal Frequency: 1/month

Time Interval Covered File: Month Record: Month **Portion of Globe Covered File:** Regional **Record:** Regional

**Portion of Atmosphere Covered File:** Surface and TOA

# Table A-2. ERBE-Like Daily Database Product (EDDB)

| escription                                                                 | Parameter | Units             | Range       | Elements/ | Bits/ | Elem |
|----------------------------------------------------------------------------|-----------|-------------------|-------------|-----------|-------|------|
|                                                                            | Number    |                   |             | Record    | Elem  | Num  |
|                                                                            |           |                   |             |           |       |      |
| EDDB File Header                                                           |           | N/A               |             |           |       |      |
| Regional_Data is Array[36] of:                                             |           |                   |             |           |       |      |
| Regional_Files is Array[2] of:                                             |           |                   |             |           |       |      |
| Latitudinal_Bands                                                          |           |                   |             |           |       |      |
| Regional                                                                   |           |                   |             |           |       |      |
| Regional_Descriptive                                                       |           |                   |             |           |       |      |
| 2.5 degree one-dimensional region number                                   | 1         | N/A               | 110368      | 72        | 32    | 1    |
| The hour day number index is one of 24 hours for each of 31 days           | 2         | N/A               | 1744        | 72        | 32    | 3    |
| Average whole Julian date for one record                                   | 3         | day               | 2.4 2.5*1EC | 6 72      | 32    | 5    |
| Average fractional Julian date                                             | 4         | day               | 01          | 72        | 32    | 7    |
| Regional_Average_Estimates                                                 |           |                   |             |           |       |      |
| Estimate of the average shortwave flux at the TOA                          | 5         | W-m⁻²             | 01400       | 72        | 32    | 9    |
| Estimate of the average longwave flux at the TOA                           | 6         | W-m⁻²             | 0400        | 72        | 32    | 11   |
| Regional_Estimate_Statistics                                               |           |                   |             |           |       |      |
| Regional_SW_Stats                                                          |           |                   |             |           |       |      |
| Number of individual shortwave estimates                                   | 7         | N/A               | 0200        | 72        | 32    | 13   |
| Standard deviation of individual shortwave estimates                       | 8         | W-m <sup>-2</sup> | 0999        | 72        | 32    | 15   |
| Minimum value of individual shortwave flux at TOA                          | 9         | W-m <sup>-2</sup> | 01400       | 72        | 32    | 17   |
| Maximum individual estimate of shortwave flux at TOA                       | 10        | W-m <sup>-2</sup> | 01400       | 72        | 32    | 19   |
| Regional_LW_Stats                                                          |           |                   |             |           |       |      |
| Number of individual longwave estimates                                    | 11        | N/A               | 0200        | 72        | 32    | 21   |
| Standard deviation of individual longwave estimates                        | 12        | W-m <sup>-2</sup> | 0400        | 72        | 32    | 23   |
| Minimum of individual longwave flux at TOA                                 | 13        | W-m <sup>-2</sup> | 0400        | 72        | 32    | 25   |
| Maximum individual longwave flux at TOA                                    | 14        | W-m <sup>-2</sup> | 0400        | 72        | 32    | 27   |
| Regional Regions                                                           |           |                   |             |           |       |      |
| Geographic scene type of this 2.5 degree region                            | 15        | N/A               | 15          | 72        | 32    | 29   |
| Regional Fractional Components                                             |           |                   |             |           |       |      |
| Eraction of clear sky areas in this 2.5 degree region                      | 16        | N/A               | 01          | 72        | 32    | 31   |
| Fraction of partly cloudy areas in this 2.5 degree region                  | 17        | N/A               | 01          | 72        | 32    | 33   |
| Fraction of mostly cloudy areas in this 2.5 degree region                  | 18        | N/A               | 0.1         | 72        | 32    | 35   |
| Fraction of overcast areas in this 2.5 degree region                       | 19        | N/A               | 0 1         | 72        | 32    | 37   |
| Regional Albedos                                                           |           |                   | •           |           |       | •.   |
| Albedo of clear sky areas in 2.5 degree region                             | 20        | N/A               | 0 1         | 72        | 32    | 39   |
| Albedo of partly cloudy areas in 2.5 degree region                         | 21        | N/A               | 0.1         | 72        | 32    | 41   |
| Albedo of mostly cloudy areas in 2.5 degree region                         | 22        | N/A               | 0.1         | 72        | 32    | 43   |
| Albado of overcast areas in 2.5 degree region                              | 23        | N/A               | 0.1         | 72        | 32    | 45   |
| Besievel Statistics                                                        | 20        | 1977              | 0           | , 2       | 02    | 45   |
| Appular Averages Seeled                                                    |           |                   |             |           |       |      |
| Angular_Averages_scaled                                                    |           | N1/A              | 0.1         | 70        | 20    | 47   |
| Average of individual cosines of solar zenitri angle at target point for S | 0VV 24    | IN/A<br>daa       | 01          | 72        | 32    | 40   |
| Average of individual spacecraft zenith angles from target point           | 20        | deg               | 090         | 72        | 32    | 49   |
| Average of individual relative azimuth at target point                     | 26        | deg               | 0180        | 72        | 32    | 51   |
| Standard deviation of individual SW albedos for clear sky areas            | 27        | IN/A              | U1          | 72        | 32    | 53   |
| Average of individual LW estimates of flux at TOA clear sky                | 28        | w-m*              | 0400        | 72        | 32    | 55   |
| Standard deviation of LW estimates of flux at TOA clear sky                | 29        | ₩-m*              | 0400        | 72        | 32    | 57   |
| Number of individual longwave estimates for clear sky areas                | 30        | N/A               | 0200        | 72        | 32    | 59   |
| Regional_Spares is Array[2] of:                                            |           |                   |             |           |       |      |
| Spares                                                                     | 31        | N/A               | N/A         | 144       | 32    | 61   |

### Table A-2. Concluded

| Description                                                           | Parameter | Units | Range | Elements/ | Bits/ | Elem  |
|-----------------------------------------------------------------------|-----------|-------|-------|-----------|-------|-------|
|                                                                       | Number    |       |       | Record    | Elem  | Num   |
| Housekeeping                                                          |           |       |       |           |       |       |
| Records_for_Records_Per_Region is Array[72] of:                       |           |       |       |           |       |       |
| Direct_Access_Records is Array[144] of:                               |           |       |       |           |       |       |
| 144 integer array storing the number of records per region.           | 32        | N/A   | TBD   | 10368     | 32    | 1     |
| ERBE-like_Product_Key_Record                                          |           |       |       |           |       |       |
| Product used for validation of the Housekeeping file.                 | 33        | N/A   | N/A   | 1         | 64    | 10369 |
| Housekeeping_Ibuf_Array is Array[9] of:                               |           |       |       |           |       |       |
| 9 integer array containing file information.                          | 34        | N/A   | N/A   | 9         | 32    | 10370 |
| Scale_Factors_Record is Array[45] of:                                 |           |       |       |           |       |       |
| Scale factors for various data elements.                              | 35        | N/A   | N/A   | 45        | 64    | 10379 |
| Days_with_Data_Information_Record is Array[34] of:                    |           |       |       |           |       |       |
| Array of integer flags denoting days with inversion processing.       | 36        | N/A   | N/A   | 34        | 32    | 10424 |
| File_Sorted_Record is Array[36] of:                                   |           |       |       |           |       |       |
| Array of flags indicating sort status of regional data.               | 37        | N/A   | N/A   | 36        | 32    | 10458 |
| Julian_Start_Inversion_Header_Record is Array[33] of:                 |           |       |       |           |       |       |
| Start dates and times for each of 31 days, prior and succeeding days. | 38        | N/A   | N/A   | 33        | 64    | 10494 |
| Julian_End_Inversion_Header_Record is Array[33] of:                   |           |       |       |           |       |       |
| End dates and times for 31 days, prior and succeeding days.           | 39        | N/A   | N/A   | 33        | 64    | 10560 |
| ERBE-like_Product_key_Record_for_Files is Array[33] of:               |           |       |       |           |       |       |
| Product keys for 31 days, prior and succeeding days.                  | 40        | N/A   | N/A   | 33        | 64    | 10593 |
|                                                                       |           |       |       |           |       |       |

| Total Meta Bits/EDDB Product | 343584                 |
|------------------------------|------------------------|
| Total Data Bits/Day          | 30720000               |
| Total Data Bits/Month        | 952320000              |
| Total Bits/EDDB Product      | 952 <del>6</del> 63584 |

# **Appendix B**

## **Output Data Products**

### ERBE-Like Averaging to Monthly TOA and Surface Fluxes (Subsystem 3.0)

This appendix describes the data products which are produced by the algorithms in this subsystem. Table B-1 below summarizes these products, listing the CERES and EOSDIS product codes or abbreviations, a short product name, the product type, the production frequency, and volume estimates for each individual product as well as a complete data month of production. The product types are defined as follows:

Archival products:Assumed to be permanently stored by EOSDISInternal products:Temporary storage by EOSDIS (days to years)

The following pages describe each product. An introductory page provides an overall description of the product and specifies the temporal and spatial coverage. The table which follows the introductory page briefly describes every parameter which is contained in the product. Each product may be thought of as metadata followed by data records. The metadata (or header data) is not well-defined yet and is included mainly as a placeholder. The description of parameters which are present in each data record includes parameter number (a unique number for each distinct parameter), units, dynamic range, the number of elements per record, an estimate of the number of bits required to represent each parameter, and an element number (a unique number for each instance of every parameter). A summary at the bottom of each table shows the current estimated sizes for metadata, each data record, and the total data product. A more detailed description of each data product will be contained in a user's guide to be published before the first CERES launch.

| Product code |        |                       |          |           |          | Monthly  |
|--------------|--------|-----------------------|----------|-----------|----------|----------|
| CERES        | EOSDIS | Name                  | Туре     | Frequency | Size, MB | size, MB |
| ES-4         | CER03  | Geographical averages | archival | 1/month   | 27.6     | 28       |
| ES-4G        | CER03  | Gridded averages      | archival | 1/month   | 24.5     | 25       |
| ES-9         | CER03  | Regional averages     | archival | 1/month   | 104.2    | 104      |

| Table | <b>B</b> -1. | Output | Products | Summary |
|-------|--------------|--------|----------|---------|
|       |              |        |          | -       |

### **ERBE-Like Science Product 4 (ES-4)**

The ES-4 data is a regional, zonal, and global averages product. The instantaneous scanner estimates at the TOA and surface are arranged temporally to hours, days, and the month, and they are averaged spatially to regions, latitude zones, and the globe. There are seven sets of records constituting a maximum of 13737 records across all sets. Each record set corresponds to a regional, nested regional, zonal, or global average. For example, there are 10368 2.5-degree regions in the scanner field of view for the ERBE-like data. Therefore, there is a maximum of 10368 records in the 2.5 degree regional record set. The second set of records is the 2.5 degree nested to 5.0 degree regional data which constitutes 2592 records. The third set of records is the 5.0 degree nested to 10.0 degree regional data which constitutes 648 records. The fourth, fifth, and sixth sets of records are the 2.5 degree, 5.0 degree, and 10.0 degree zonally averaged data which constitute 72, 36, and 18 records, respectively. The last set is the global data which constitutes 3 records.

| Level: 3                                              | <b>Portion of Globe Covered</b>                                      |
|-------------------------------------------------------|----------------------------------------------------------------------|
| Type: Archival                                        | <b>File:</b> Regional, zonal, global                                 |
| Frequency: 1/month                                    | <b>Record:</b> Regional, zonal, global                               |
| Time Interval Covered<br>File: Month<br>Record: Month | <b>Portion of Atmosphere Covered</b><br><b>File:</b> Surface and TOA |

# Table B-2. ERBE-Like Science Product 4 (ES-4)

| Description                                      | Parameter<br>Number | Units               | Range    | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|--------------------------------------------------|---------------------|---------------------|----------|---------------------|---------------|-------------|
| ES-4                                             |                     |                     |          |                     |               |             |
| ES-4_Header_Vector is Array[9] of:               |                     |                     |          |                     |               |             |
| File header vector                               |                     | N/A                 | N/A      | 9                   | 32            |             |
| ES-4_Record_Mapping_Matrix is Array[30] of:      |                     |                     |          |                     |               |             |
| 10 X 3 mapping matrix for spatial boundaries     |                     | N/A                 | N/A      | 30                  | 32            |             |
| ES-4_Record_Data_Scaling is Array[1213] of:      |                     |                     |          |                     |               |             |
| Scale factor vector for repeating data records   |                     | N/A                 | N/A      | 1213                | 32            |             |
| ES-4ES-4_Nested_Data_Records is Array[13737] of: |                     |                     |          |                     |               |             |
| ES-4_Record                                      |                     |                     |          |                     |               |             |
| ES-4_Record_Inatance                             |                     |                     |          |                     |               |             |
| ES-4_32-bit_Data(TOA)                            |                     |                     |          |                     |               |             |
| Mth_Avg_Day                                      |                     |                     |          |                     |               |             |
| Solar Incidence for Monthly Averages by Day      | 1                   | W h m <sup>-2</sup> | 0500000  | 1                   | 32            | 1           |
| Monthly net radiant flux by day                  | 2                   | W-m <sup>-2</sup>   | -200 200 | 1                   | 32            | 2           |
| Clear sky net radiant flux, monthly by day       | 3                   | W-m <sup>-2</sup>   | -200 200 | 1                   | 32            | 3           |
| Clear sky solar incidence, monthly by day        | 4                   | W-m <sup>-2</sup>   | 0500000  | 1                   | 32            | 4           |
| Mth_Avg_Hr                                       |                     |                     |          |                     |               |             |
| Monthly net radiant flux by hour                 | 5                   | W-m <sup>-2</sup>   | -200 200 | 1                   | 32            | 5           |
| Solar incidence, monthly by hour                 | 6                   | Whm <sup>-2</sup>   | 0500000  | 1                   | 32            | 6           |
| Clear sky net radiant flux, monthly by hour      | 7                   | W-m <sup>-2</sup>   | -200 200 | 1                   | 32            | 7           |
| Clear sky solar incidence, monthly by hour       | 8                   | W h m <sup>-2</sup> | 0500000  | 1                   | 32            | 8           |
| Solinc                                           |                     |                     |          |                     |               |             |
| Day is Array[31] of:                             |                     |                     |          |                     |               |             |
| Daily solar incidence                            | 9                   | Whm <sup>-2</sup>   | 0500000  | 31                  | 32            | 9           |
| Hr is Array[24] of:                              |                     |                     |          |                     |               |             |
| Hourly solar incidence                           | 10                  | Whm <sup>-2</sup>   | 0500000  | 24                  | 32            | 40          |
| CirSky is Array[24] of:                          |                     |                     |          |                     |               |             |
| Clear sky solar incidence                        | 11                  | Whm <sup>-2</sup>   | 0 500000 | 24                  | 32            | 64          |
| ES-4_16-bit_Data                                 |                     |                     |          |                     |               |             |
| ES-4_Descriptive                                 |                     |                     |          |                     |               |             |
| Region numbered consecutively from east to west  | 12                  | N/A                 | 1144     | 1                   | 16            | 88          |
| Year and month (YYMM) of data processed          | 13                  | N/A                 | N/A      | 1                   | 16            | 89          |
| Spacecraft code (TBD)                            | 14                  | N/A                 | TBD      | 1                   | 16            | 90          |
| Mth_Avg_Day                                      |                     |                     |          |                     |               |             |
| TOA                                              |                     |                     |          |                     |               |             |
| Flux_and_Albedo                                  |                     |                     |          |                     |               |             |
| Longwave flux                                    | 15                  | W-m <sup>-2</sup>   | 50 400   | 1                   | 16            | 91          |
| Short wave flux                                  | 16                  | W-m <sup>-2</sup>   | 01200    | 1                   | 16            | 92          |
| Monthly mean albedo                              | 17                  | N/A                 | 01       | 1                   | 16            | 93          |
| CirSky_Flux_and_Albedo                           |                     |                     |          |                     |               |             |
| Clear sky longwave flux                          | 18                  | W-m <sup>-2</sup>   | 50 400   | 1                   | 16            | 94          |
| Clear sky short wave flux                        | 19                  | W-m <sup>-2</sup>   | 01200    | 1                   | 16            | 95          |
| Monthly mean clear sky albedo                    | 20                  | N/A                 | 01       | 1                   | 16            | 96          |
| Surface_Day                                      |                     |                     |          |                     |               |             |
| SW_Flux_Sfc_Day                                  |                     |                     |          |                     |               |             |
| Short wave surface flux downwards by day         | 21                  | W-m <sup>-2</sup>   | TBD      | 1                   | 16            | 97          |
| Short wave surface flux net by day               | 22                  | W-m <sup>-2</sup>   | TBD      | 1                   | 16            | 98          |
| LW_Flux_Sfc_Day                                  |                     |                     |          |                     |               |             |
| Longwave surface flux downward by day            | 23                  | W-m <sup>-2</sup>   | 50 400   | 1                   | 16            | 99          |
| Longwave surface flux net by day                 | 24                  | W-m <sup>-2</sup>   | 50 400   | 1                   | 16            | 100         |
| Water vapor data by day                          | 25                  | cm                  | TBD      | 1                   | 16            | 101         |

| Description                                   | Parameter      | Units             | Range         | Elements/ | Bits/ | Elem |
|-----------------------------------------------|----------------|-------------------|---------------|-----------|-------|------|
|                                               | Number         |                   |               | necora    | Cleiu | Num  |
| Mth_Avg_Hr                                    |                |                   |               |           |       |      |
|                                               |                |                   |               |           |       |      |
| Flux_and_Albedo                               |                |                   |               |           |       |      |
| Longwave flux by the hour                     | 26             | W-m²              | 50 400        | 1         | 16    | 102  |
| Short wave flux by the hour                   | 27             | W-m²²             | 01200         | 1         | 16    | 103  |
| Monthly average albedo by the hour            | 28             | N/A               | 01            | 1         | 16    | 104  |
| CirSky_Flux_and_Albedo                        |                | -                 |               |           |       |      |
| Clear sky longwave flux by the hour           | 2 <del>9</del> | W-m <sup>-2</sup> | 50 400        | 1         | 16    | 105  |
| Clear sky short wave flux by the hour         | 30             | W-m <sup>-2</sup> | 0 1200        | 1         | 16    | 106  |
| Clear sky Monthly averaged albedo by the hour | 31             | N/A               | 01            | 1         | 16    | 107  |
| Surface_Hr                                    |                |                   |               |           |       |      |
| SW_Flux_Sfc_Hr                                |                | _                 |               |           |       |      |
| Short wave surface flux downward by the hour  | 32             | W-m <sup>-2</sup> | TBD           | 1         | 16    | 108  |
| Short wave surface flux net by the hour       | 33             | W-m <sup>-2</sup> | TBD           | 1         | 16    | 109  |
| LW_Flux_Sfc_Hr                                |                | -                 |               |           |       |      |
| Longwave surface flux downward by the hour    | 34             | W-m <sup>-2</sup> | 50 <b>400</b> | 1         | 16    | 110  |
| Longwave surface flux net by the hour         | 35             | W-m⁻²             | 50 400        | 1         | 16    | 111  |
| Surface water vapor data by the hour          | 36             | cm                | TBD           | 1         | 16    | 112  |
| Mth_Avg_Daily                                 |                |                   |               |           |       |      |
| TOA_Daily                                     |                |                   |               |           |       |      |
| Fiux_and_Albedo_Daily                         |                |                   |               |           |       |      |
| LW_Flux_Vector is Array[31] of:               |                |                   |               |           |       |      |
| Longwave flux, daily                          | 37             | ₩-m <sup>-2</sup> | 50 400        | 31        | 16    | 113  |
| SW_Flux_Vector is Array[31] of:               |                |                   |               |           |       |      |
| Short wave flux, daily                        | 38             | W-m <sup>-2</sup> | 01 <b>200</b> | 31        | 16    | 144  |
| Albedo Vector is Array[31] of:                |                |                   |               |           |       |      |
| Monthly mean albedo, daily                    | 39             | N/A               | 01            | 31        | 16    | 175  |
| CirSky_Flux_and_Albedo_Daily                  |                |                   |               |           |       |      |
| CIrSky_Flux_LW_Vector is Array[31] of:        |                |                   |               |           |       |      |
| Clear sky longwave flux, daily                | 40             | W-m <sup>-2</sup> | 50 400        | 31        | 16    | 206  |
| ClrSky_Flux_SW_Vector is Array[31] of:        |                |                   |               |           |       |      |
| Clear sky short wave flux, daily              | 41             | W-m⁻²             | 01200         | 31        | 16    | 237  |
| CIrSky_Albedo_Vector is Array[31] of:         |                |                   |               |           |       |      |
| Monthly mean clear sky albedo, daily          | 42             | N/A               | 01            | 31        | 16    | 268  |
| Surface_Daily                                 |                |                   |               |           |       |      |
| SW_Flux_Sfc_Daily                             |                |                   |               |           |       |      |
| SW_Flux_Vector_Daily is Array[31] of:         |                |                   |               |           |       |      |
| Short wave surface flux downwards, daily      | 43             | W-m <sup>-2</sup> | TBD           | 31        | 16    | 299  |
| SW_Flux_Net_Vector_Daily is Array[31] of:     |                |                   |               |           |       |      |
| Short wave surface flux net, daily            | 44             | W-m <sup>-2</sup> | TBD           | 31        | 16    | 330  |
| LW_Flux_Sfc_Daily                             |                |                   |               |           |       |      |
| LW_Flux_Vector_Daily is Array[31] of:         |                |                   |               |           |       |      |
| Longwave surface flux downward, daily         | 45             | W-m <sup>-2</sup> | 50 400        | 31        | 16    | 361  |
| LW_Flux_Net_Vector_Daily is Array[31] of:     |                |                   |               |           |       |      |
| Longwave surface flux net, daily              | 46             | W-m <sup>-2</sup> | 50 400        | 31        | 16    | 392  |
| H2OV_Vector_Daily is Array[31] of:            |                |                   |               |           |       |      |
| Water vapor data, daily                       | 47             | cm                | TBD           | 31        | 16    | 423  |
| Mth_Avg_Hourly                                |                |                   |               |           |       |      |
| TOA_Hourly                                    |                |                   |               |           |       |      |
| Flux_and_Albedo_Hourly                        |                |                   |               |           |       |      |
| LW_Flux_Vector_Hourly is Array[24] of:        |                |                   |               |           |       |      |
| Longwave flux, hourly                         | 48             | W-m <sup>-2</sup> | 50 400        | 24        | 16    | 454  |
| SW_Flux_Vector_Hourly is Array[24] of:        |                |                   |               |           |       |      |

| Description                                           | Parameter<br>Number | Units             | Range  | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|-------------------------------------------------------|---------------------|-------------------|--------|---------------------|---------------|-------------|
| Short wave flux, hourly                               | 49                  | W-m <sup>-2</sup> | 0 1200 | 24                  | 16            | 478         |
| Albedo Vector Houriv is Arrav[24] of:                 |                     |                   |        |                     |               |             |
| Monthly average albedo, hourly                        | 50                  | N/A               | 01     | 24                  | 16            | 502         |
| CirSicy Elux and Albedo Houriy                        |                     |                   | •      |                     |               |             |
| CirSky Flux I W Vector Houriy is Array[24] of         |                     |                   |        |                     |               |             |
| Clear sky longwaye flux, hourly                       | 51                  | W-m <sup>-2</sup> | 50 400 | 24                  | 16            | 526         |
| CirShar Elux SW Vector House is Array (24) of         | 51                  | <b>WW</b> -111    | 30 400 | 24                  |               | 020         |
| Clear sky short wave flux, bouth                      | 52                  | W-m <sup>-2</sup> | 0 1200 | 24                  | 16            | 550         |
| Circles Athede Vector Housty is Arrow 24) of          | JE                  | ••                | 01200  | 24                  | 10            | 550         |
| Clear also Manthly averaged albeda, havdy             | 53                  | NI/A              | 0 1    | 24                  | 16            | 574         |
| Clear sky Monthly averaged abedo, nodny               | 55                  | N/A               | 01     | 24                  | 10            | 5/4         |
|                                                       |                     |                   |        |                     |               |             |
|                                                       |                     |                   |        |                     |               |             |
| SW_Flux_Vector_Hrly is Array[24] of:                  |                     |                   |        |                     |               |             |
| Short wave surface flux downward, hourly              | 54                  | w-m -             | IBD    | 24                  | 16            | 598         |
| SW_Flux_Net_Vector_Hrly is Array[24] of:              |                     |                   |        |                     |               |             |
| Short wave surface flux net, hourly                   | 55                  | W-m <sup>-2</sup> | TBD    | 24                  | 16            | 622         |
| LW_Flux_Sfc_Hrly                                      |                     |                   |        |                     |               |             |
| LW_Flux_Vector_Hrly is Array[24] of:                  |                     |                   |        |                     |               |             |
| Longwave surface flux downward, hourly                | 56                  | W-m <sup>-2</sup> | 50 400 | 24                  | 16            | 646         |
| LW_Flux_Net_Vector_Hrly is Array[24] of:              |                     | _                 |        |                     |               |             |
| Longwave surface flux net, hourly                     | 57                  | W-m <sup>-2</sup> | 50 400 | 24                  | 16            | 670         |
| H2OV_Vector_Hrly is Array[24] of:                     |                     |                   |        |                     |               |             |
| Surface water vapor data, hourly                      | 58                  | cm                | TBD    | 24                  | 16            | 694         |
| ES-4_8-bit_Data                                       |                     |                   |        |                     |               |             |
| Number_of_Observations                                |                     |                   |        |                     |               |             |
| Daily_Observations                                    |                     |                   |        |                     |               |             |
| TOA_Observations                                      |                     |                   |        |                     |               |             |
| LW_Vector is Array[31] of:                            |                     |                   |        |                     |               |             |
| Number of observations for LW, daily                  | 59                  | N/A               | TBD    | 31                  | 8             | 718         |
| SW_Vector is Array[31] of:                            |                     |                   |        |                     |               |             |
| Number of observations SW, daily                      | 60                  | N/A               | TBD    | 31                  | 8             | 749         |
| Surface_Observations                                  |                     |                   |        |                     |               |             |
| Surface_LW_Vector is Array[31] of:                    |                     |                   |        |                     |               |             |
| Number of observations for Surface LW, Daily          | 61                  | N/A               | TBD    | 31                  | 8             | 780         |
| Surface_SW_Vector is Array[31] of:                    |                     |                   |        |                     |               |             |
| Number of observations for Surface SW, daily          | 62                  | N/A               | TBD    | 31                  | 8             | 811         |
| Surface_Net_LW_Vector is Array[31] of:                |                     |                   |        |                     |               |             |
| Number of Observations for surface net LW             | 63                  | N/A               | TBD    | 31                  | 8             | 842         |
| Surface_Net_SW_Vector is Array[31] of:                |                     |                   |        |                     |               |             |
| Number of observations for surface net SW             | 64                  | N/A               |        | 31                  | 8             | 873         |
| Surface_H2OV_Vector is Array[31] of:                  |                     |                   |        |                     |               |             |
| Number of observations for surface water vapor, daily | 65                  | N/A               | TBD    | 31                  | 8             | 904         |
| CirSky Observations                                   |                     |                   |        |                     |               |             |
| CirSky LW Observ Vector is Arrav[31] of:              |                     |                   |        |                     |               |             |
| Number of observations for clear sky I.W. daily       | 66                  | N/A               | TBD    | 31                  | 8             | 935         |
| CirSky SW Observ Vector is Array[31] of               |                     |                   |        |                     | -             |             |
| Number of observations for clear sky SW daily         | 67                  | N/A               | TBD    | 31                  | 8             | 966         |
| Houriv Observations                                   | 0,                  |                   | 100    | 01                  | U             | 000         |
|                                                       |                     |                   |        |                     |               |             |
|                                                       |                     |                   |        |                     |               |             |
| Number of observations for LWL housing                | 60                  | NVA               | TED    | ~                   | •             | 007         |
| Number of observations for Lwy, nouny                 | 68                  | IWA               | עסו    | 24                  | 8             | 997         |
| Str_vocior_nodity is Allay(24) 00                     |                     | NI/A              | TPO    |                     | ~             | 1004        |
| Number of observations for SW, nouny                  | 69                  | IN/A              | IBU    | 24                  | 8             | 1021        |

#### Table B-2. Concluded

| Description                                            | Parameter<br>Number | Units | Range | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|--------------------------------------------------------|---------------------|-------|-------|---------------------|---------------|-------------|
| Surface_Observations_Hourly                            |                     |       |       |                     |               |             |
| Surface_LW_Vector_Hourly is Array[24] of:              |                     |       |       |                     |               |             |
| Number of observations for surface LW, hourly          | 70                  | N/A   | TBD   | 24                  | 8             | 1045        |
| Number of observations for surface net SW, hourly      | 73                  | N/A   | TBD   | 24                  | 8             | 1117        |
| Surface_SW_Vector_Hourly is Array[24] of:              |                     |       |       |                     |               |             |
| Number of observations for surface SW, hourly          | 71                  | N/A   | TBD   | 24                  | 8             | 1069        |
| Surface_Net_LW_Vector_Hourly is Array[24] of:          |                     |       |       |                     |               |             |
| Number of observations for surface net LW, hourly      | 72                  | N/A   | TBD   | 24                  | 8             | 1093        |
| Surface_Net_SW_Vector_Hourly is Array[24] of:          |                     |       |       |                     |               |             |
| Surface_H2OV_Vector_Hourly is Array[24] of:            |                     |       |       |                     |               |             |
| Number of observations for surface water vapor, hourly | 74                  | N/A   | TBD   | 24                  | 8             | 1141        |
| CirSky_Observations_Hourly                             |                     |       |       |                     |               |             |
| CirSky_LW_Observ_Vector_Hourly is Array[24] of:        |                     |       |       |                     |               |             |
| Number of observations for clear sky LW, hourly        | 75                  | N/A   | TBD   | 24                  | 8             | 1165        |
| CirSky_SW_Observ_Vector_Hourly is Array[24] of:        |                     |       |       |                     |               |             |
| Number of observations for clear sky SW, hourly        | 76                  | N/A   | TBD   | 24                  | 8             | 1189        |
| Geographical scene type                                | 77                  | N/A   | 15    | 1                   | 8             | 1213        |
| Total Meta Bits/File:                                  | 40064               |       |       |                     |               |             |
| Total Data Bits/Record:                                | 16832               |       |       |                     |               |             |
| Total Records/File:                                    | 13737               |       |       |                     |               |             |
| Total Data Bits/File:                                  | 231221184           |       |       |                     |               |             |
| Total Bits/File :                                      | 231261248           |       |       |                     |               |             |

### **ERBE-Like Science Product 4 Gridded (ES-4G)**

The ES-4G data product stores the same time and space averages as the ES-4 science data product, with the difference being the arrangement of the data. While the ES-4 is arranged by region, the ES-4G file presents a gridded data product with all regions for a given data parameter grouped together. The regional presentation of the data is in the same order as that described for the ES-4 product. The 2.5 degree regional parameters are presented as 10368-element vectors, the 2.5 nested to 5.0 degree data is presented as 2592-element vectors, and the 5.0 nested to 10.0 degree data is presented as 648-element vectors. The 2.5, 5.0, and 10.0 degree zonal data is presented as 72, 26, and 18-element vectors, respectively. The global data are presented as 3-element vectors.

| Level: 3              | Portion of Globe Covered        |
|-----------------------|---------------------------------|
| Type: Archival        | File: Global, zonal, regional   |
| Frequency: 1/month    | Record: Global, zonal, regional |
| Time Interval Covered | Portion of Atmosphere Covered   |
| File: Month           | File: Surface to TOA            |

File: Month Record: Month

# Table B-3. ERBE-Like Science Product 4 Gridded (ES-4G)

| Description                                                  | Parameter<br>Number | Units              | Range    | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|--------------------------------------------------------------|---------------------|--------------------|----------|---------------------|---------------|-------------|
| ES-4G                                                        |                     |                    |          |                     |               |             |
| Regional,Zonal_and_Global_Averages                           |                     |                    |          |                     |               |             |
| Multifile_Format                                             |                     |                    |          |                     |               |             |
| ES-4G_32-Drt_Data                                            |                     |                    |          |                     |               |             |
| Monthly_Averages_Day                                         |                     |                    |          |                     |               |             |
| MthAvg_Day_Solar_Incidence is Array[10368] of:               |                     |                    |          |                     |               |             |
| Monthly average solar incidence                              | 1                   | ₩-h-m <sup>*</sup> | 0500000  | 10368               | 32            | 1           |
| MTNAVg_Day_Net IS Array[10368] ot:                           |                     |                    |          |                     |               |             |
| Monthly net flux                                             | 2                   | W-m <sup>-2</sup>  | -200 200 | 10368               | 32            | 10369       |
| MthAvg_Day_Clear_Sky_Net is Array[10368] of:                 |                     |                    |          |                     |               |             |
| Monthly average clear sky net flux                           | 3                   | W-m*               | -200 200 | 10368               | 32            | 20737       |
| MtnAvg_Day_Clear_Sky_Solar_Incidence is Array[10368] of:     |                     |                    |          |                     |               |             |
| Montniy average clear sky solar incidence                    | 4                   | W-h-m*             | 050000   | 10368               | 32            | 31105       |
| Monthly_Averages_Hour                                        |                     |                    |          |                     |               |             |
| MthAvg_Hour_Net is Array[10368] or:                          | _                   |                    |          |                     |               |             |
| Monthly average net flux                                     | 5                   | w-m -              | -200 200 | 10368               | 32            | 41473       |
| MTRAVE_HOUR_Solar_Incidence is Array[10368] or:              | •                   |                    |          |                     |               |             |
| Monthly average solar incidence                              | 6                   | w-n-m ∸            | 0500000  | 10368               | 32            | 51841       |
| MtnAvg_Hour_Clear_Sky_Net is Array[10368] of:                | _                   |                    |          |                     |               |             |
| Monthly average clear sky net flux                           | /                   | w-m -              | -200 200 | 10368               | 32            | 62209       |
| MtnAvg_Hour_Clear_Sky_Solar_Incloance is Array[10368] or:    | _                   |                    |          |                     |               |             |
| Monthly average clear sky solar incidence                    | 8                   | w-n-m -            | 0500000  | 10368               | 32            | 72577       |
| Monthly_Averages_Daily_32 is Array[321408] of:               |                     |                    |          |                     |               |             |
| Monthly average solar incidence (daily)                      | 9                   | w-n-m -            | 0500000  | 321408              | 32            | 82945       |
| Monthly_Averages_Houriy                                      |                     |                    |          |                     |               |             |
| MTNAVg_Houriy_Solar_Incidence is Array[248832] of:           |                     |                    |          |                     |               |             |
| Monthly average solar incidence (houriy)                     | 10                  | ₩-h-m°*            | 0500000  | 248832              | 32            | 404353      |
| MthAvg_Hourly_Clear_Sky_Solar_Incidence is Array[248832] of: |                     |                    |          |                     |               |             |
| Monthly average clear sky solar incidence (hourly)           | 11                  | w-h-m -            | 0500000  | 248832              | 32            | 653185      |
|                                                              |                     |                    |          |                     |               |             |
| Monthly_Averages_Day                                         |                     |                    |          |                     |               |             |
| MinAvg_Day_Lw_Flux is Array[10368] or:                       | 10                  | M/2                | 0 000    | 10000               | 10            | 000017      |
|                                                              | 12                  | <b>VV-</b> (f) =   | 0800     | 10366               | 10            | 902017      |
| Menthly average SW flux (day)                                | 10                  | 14/2               | 0 400    | 10000               | 10            | 010005      |
| Monthly average Sw hux (day)                                 | 13                  | vv-m -             | 0400     | 10368               | 16            | 912385      |
| Manthu susses albeda (dau)                                   |                     | <b>N</b> 1/A       | <u> </u> | 10000               | 10            | 000750      |
| Monthly average albedo (day)                                 | 14                  | IN/A               | 01       | 10300               | 10            | 922/00      |
| Manthu susses sher sin LM flue (dec)                         | 15                  | 141                | 0 000    | 10000               | 10            | 000101      |
| Monthly average clear sky Lw hux (day)                       | 15                  | vv-m -             | 0800     | 10368               | 10            | 933121      |
| Monthly average clear sky_SW_Flux is Array[10300] 01.        | 16                  | MI m-2             | 0 400    | 10269               | 16            | 042490      |
| Noninity average clear sky SW ilux (day)                     | 10                  | <b>VV</b> ~(()     | 0400     | 10306               | 10            | 943409      |
| Monthly average clear sky albedo                             | 17                  | NJ/A               | 0 1      | 10269               | 16            | 053857      |
| MthAva Day Surface Date                                      | 17                  | 19/2               | 01       | 10305               | 10            | 900007      |
| MthAve Dev Surface SW Eluxic Array[10368] of                 |                     |                    |          |                     |               |             |
| Monthly average day surface SW flux                          | 18                  | W-m <sup>-2</sup>  | TBD      | 10368               | 16            | 964225      |
| Noniny average bay surface SW Not Elux is Array(10368) of:   | 10                  | ¥¥-111             | 180      | 10308               | 10            | 304223      |
| Monthly average day surface SW net flux                      | 10                  | W-m <sup>-2</sup>  | TBD      | 10368               | 16            | 074503      |
|                                                              | 15                  | <b>VV</b> -111     | 100      | 10000               | 10            | 314333      |
| Monthly average day surface I W flux                         | 20                  | W-m <sup>-2</sup>  | 50 400   | 10369               | 16            | 984961      |
| With Avg Day Surface I W Net Flux is Array[10368] of         | 20                  | ¥¥-111             | 30 400   | 10300               | 10            | 304301      |
| Monthly average day surface I W net flow                     | 01                  | W-m <sup>-2</sup>  | 50 400   | 10360               | 16            | 995320      |
| Mthâva Dav Surface Darametere is Arrow[10369] of             | 21                  | <b>₩</b> ₩-111     | 50400    | 10000               | 10            | 333323      |
| Monthly average day surface water yaper                      | 22                  | ¢m.                | TRD      | 10260               | 16 -          | 1005697     |
| Monthly Averages Hour                                        | 22                  |                    |          | 10000               | 10            |             |
| mennit_risimBas_liss                                         |                     |                    |          |                     |               |             |

# Table B-3. Continued

| Description                                           | Parameter<br>Number | Units             | Range  | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|-------------------------------------------------------|---------------------|-------------------|--------|---------------------|---------------|-------------|
| MthAvg_Hr_LW_Flux is Array[10368] of:                 |                     |                   |        |                     |               |             |
| Monthly average LW flux (hour)                        | 23                  | W-m <sup>-2</sup> | 0800   | 10368               | 16            | 1016065     |
| MthAvg_Hr_SW_Flux is Array[10368] of:                 |                     |                   |        |                     |               |             |
| Monthly average SW flux (hour)                        | 24                  | ₩-m <sup>-2</sup> | 0400   | 10368               | 16            | 1026433     |
| MthAvg_Hr_Albedo_ES-4G is Array[10368] of:            |                     |                   |        |                     |               |             |
| Monthly average albedo (hour)                         | 25                  | N/A               | 01     | 10368               | 16            | 1036801     |
| MthAvg_Hr_Clear_Sky_LW_Flux is Array[10368] of:       |                     |                   |        |                     |               |             |
| Monthly average clear sky LW flux (hour)              | 26                  | W-m <sup>-2</sup> | 0 800  | 10368               | 16            | 1047169     |
| MthAvg_Hr_Clear_Sky_SW_Flux is Array[10368] of:       |                     |                   |        |                     |               |             |
| Monthly average clear sky SW flux (hour)              | 27                  | W-m <sup>-2</sup> | 0400   | 10368               | 16            | 1057537     |
| MthAvg_Hr_Clear_Sky_Albedo is Array[10368] of:        |                     |                   |        |                     |               |             |
| Monthly average clear sky albedo (hour)               | 28                  | W-m <sup>-2</sup> | 01     | 10368               | 16            | 1067905     |
| MthAvg_Hour_Surface_Data                              |                     |                   |        |                     |               |             |
| MthAvg_Hour_Surface_SW_Flux is Array[10368] of:       |                     |                   |        |                     |               |             |
| Monthly average hour surface SW flux                  | 29                  | W-m <sup>-2</sup> | TBD    | 10368               | 16            | 1078273     |
| MthAvg_Hour_Surface_SW_Net_Flux is Array[10368] of:   |                     |                   |        |                     |               |             |
| Monthly average hour surface SW net flux              | 30                  | W-m⁻²             | TBD    | 10368               | 16            | 1088641     |
| MthAvg_Hour_Surface_LW_Flux is Array[10368] of:       |                     |                   |        |                     |               |             |
| Monthly average hour surface LW flux                  | 31                  | W-m <sup>-2</sup> | 50 400 | 10368               | 16            | 1099009     |
| MthAvg_Hour_Surface_LW_Net_Flux is Array[10368] of:   |                     |                   |        |                     |               |             |
| Monthly average hour surface LW net flux              | 32                  | W-m <sup>-2</sup> | 50 400 | 10368               | 16            | 1109377     |
| MthAvg_Hour_Surface_Parameters is Array[10368] of:    |                     |                   |        |                     |               |             |
| Monthly average hour surface water vapor              | 33                  | cm                | TBD    | 10368               | 16            | 1119745     |
| Monthly_Averages_Dally                                |                     |                   |        |                     |               |             |
| MthAvg_Dly_LW_Flux is Array[321408] of:               |                     |                   |        |                     |               |             |
| Monthly average LW flux (daily)                       | 34                  | W-m <sup>-2</sup> | 0800   | 321408              | 16            | 1130113     |
| MthAvg_Dly_SW_Flux is Array[321408] of:               |                     |                   |        |                     |               |             |
| Monthly average SW flux (daily)                       | 35                  | W-m <sup>-2</sup> | 0400   | 321408              | 16            | 1451521     |
| MthAvg_Dly_Albedo_ES-4G is Array[321408] of:          |                     |                   |        |                     |               |             |
| Monthly average albedo (daily)                        | 36                  | N/A               | 01     | 321408              | 16            | 1772929     |
| MthAvg_Dly_Clear_Sky_LW_Flux is Array[321408] of:     |                     |                   |        |                     |               |             |
| Monthly average clear sky LW flux (daily)             | 37                  | W-m <sup>-2</sup> | 0800   | 321408              | 16            | 2094337     |
| MthAvg_Diy_Clear_Sky_SW_Flux is Array[321408] of:     |                     |                   |        |                     |               |             |
| Monthly average clear sky SW flux (daily)             | 38                  | W-m <sup>-2</sup> | 0400   | 321408              | 16            | 2415745     |
| MthAvg_Dly_Clear_Sky_Albedo is Array[321408] of:      |                     |                   |        |                     |               |             |
| Monthly average clear sky albedo (daily)              | 39                  | N/A               | 01     | 321408              | 16            | 2737153     |
| MthAvg_Daily_Surface_Data                             |                     |                   |        |                     |               |             |
| MthAvg_Daily_Surface_SW_Flux is Array[321408] of:     |                     |                   |        |                     |               |             |
| Monthly average daily surface SW flux                 | 40                  | W-m⁻²             | TBD    | 321408              | 16            | 3058561     |
| MthAvg_Daily_Surface_SW_Net_Flux is Array[321408] of: |                     |                   |        |                     |               |             |
| Monthly average daily surface SW net flux             | 41                  | W-m <sup>-2</sup> | TBD    | 321408              | 16            | 3379969     |
| MthAvg_Daily_Surface_LW_Flux is Array[321408] of:     |                     |                   |        |                     |               |             |
| Monthly average daily surface LW flux                 | 42                  | W-m <sup>-2</sup> | 50 400 | 321408              | 16            | 3701377     |
| MthAvg_Daily_Surface_LW_Net_Flux is Array[321408] of: |                     |                   |        |                     |               |             |
| Monthly average daily surface LW net flux             | 43                  | ₩-m <sup>-2</sup> | 50 400 | 321408              | 16            | 4022785     |
| MthAvg_Daily_Surface_Parameters is Array[321408] of:  |                     |                   |        |                     |               |             |
| Monthly average daily surface water vapor             | 44                  | cm                | TBD    | 321408              | 16            | 4344193     |
| Monthly Averages Hourly                               |                     |                   |        |                     |               |             |
| MthAvg_Hrly_LW_Flux is Arrav[248832] of:              |                     |                   |        |                     |               |             |
| Monthly average LW flux (houriv)                      | 45                  | W-m <sup>-2</sup> | 0800   | 248832              | 16            | 4665601     |
| MthAvg_Hriv_SW_Flux is Arrav[248832] of:              |                     |                   |        |                     |               |             |
| Monthly average SW flux (hourly)                      | 46                  | W-m⁻²             | 0400   | 248832              | 16            | 4914433     |
| MthAvg_Hrly_Albedo_ES-4G is Array[248832] of:         |                     |                   |        |                     |               |             |
| · · · ·                                               |                     |                   |        |                     |               |             |

110

| Description                                                     | Parameter<br>Number | Units             | Range  | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|-----------------------------------------------------------------|---------------------|-------------------|--------|---------------------|---------------|-------------|
| Monthly average albedo (hourly)                                 | 47                  | N/A               | 0 1    | 249922              | 16            | 5163365     |
| MthAvo Hriv Clear Sky I W Flux is Array(248832) of              | 47                  | 19/25             | U 1    | 240032              | 10            | 5103205     |
| Monthly average clear sky I W flux (bourty)                     | 40                  | W m-2             | 0 000  | 040000              | 16            | 5410007     |
| NithAva Hrly Clear Sky SW Elivis Array(249832) of               | 40                  | **-111            | 0800   | 240032              | 10            | 5412097     |
| Monthly average clear sky SW flux (houris)                      | 40                  | W-m <sup>-2</sup> | 0 400  | 248822              | 16            | 5660020     |
| MthAva Hriv Clear Sky Albedo is Array(248832) of                | 40                  | ¥¥-111            | 0400   | 240032              | 10            | 5000929     |
| Monthly average clear sky albedo (hourty)                       | 50                  | N/A               | 0 1    | 248832              | 16            | 5000761     |
| MthAva Hourly Surface Data                                      | 50                  | n/A               | 01     | 240032              | 10            | 3909701     |
| MthAve Hourly Surface SW Flux is Array/2488321 of               |                     |                   |        |                     |               |             |
| Monthly average bourty surface SW flux                          | 51                  | W-m <sup>-2</sup> | TRO    | 248832              | 16            | 6158503     |
| MithAvo Hourly Surface SW Net Flux is Arrav[248832] of          | 51                  | ***               | 100    | 240002              | 10            | 0130333     |
| Monthly average bourly surface SW net flux                      | 50                  | M m <sup>-2</sup> | TPD    | 240022              | 16            | 6407405     |
| Monthly average nodity surface 1 W Elux is Array(249932) of:    | JE                  | ••-111            | 100    | 240002              | 10            | 0407423     |
| Monthly average hourly surface I W flux                         | 53                  | W.m <sup>-2</sup> | 50 400 | 248832              | 16            | 6656257     |
| MthAva Hourly Surface I W Net Flux is Array(2/18932) of         | 55                  | ¥4-111            | 50400  | 240032              | 10            | 0030237     |
| Monthly average bourdy surface   W net flux                     | 54                  | W-m <sup>-2</sup> | 50 400 | 248832              | 16            | 6005080     |
| MithAva Houriv Surface Peremeters is Array(2/8832) of           | 54                  | **-111            | 50 400 | 240032              | 10            | 0903009     |
| MinAvg_houng_surface_ratameters is Alray[240052] 01.            | E E                 |                   | TOD    | 040000              | 16            | 7152001     |
| ESAC shit Data                                                  | 55                  | CHI               | IBU    | 240032              | 10            | 7155921     |
| Number of Observations Daily                                    |                     |                   |        |                     |               |             |
| Number_of_Observations_Daily                                    |                     |                   |        |                     |               |             |
| Number_of_observations_LW_flux (doi/u)                          | 50                  | N1/A              | TDD    | 201409              |               | 7400750     |
| Number of Observations SW Flux is Array(221408) of:             | 90                  | N/A               | 160    | 321406              | 0             | /402/53     |
| Number_of_Doservations_Sw_Flux is Array(321406) of:             |                     | <b>N1/A</b>       | TRO    | 001400              | •             | 7704404     |
| Number of Observations Sw flux (daily)                          | 57                  | N/A               | IBD    | 321408              | 8             | //24161     |
| Number_ol_Observations_clear_Sky_Lw_Flux is Array[321406] 01:   | 50                  | N1/A              | TRO    | 221400              |               | 0045560     |
| Number of Observations Clear Size SM Elux is Array(201409) of   | 20                  | N/A               | IBD    | 321406              | 0             | 0040009     |
| Number_of_observations_clear_sky_Sty_riux is Array[321406] 01.  | 50                  | N1/A              | TRO    | 221409              |               | 0266077     |
| Number of Observations, Daily, Surface, Data                    | 59                  | IN/A              | IBU    | 321400              | 0             | 6300977     |
| Ober: Delly Surface SW Elux is Array(201409) of                 |                     |                   |        |                     |               |             |
| Obsrv_Dally_Surface_Sw_Flux is Allay[321406] 01.                | 60                  | 61/A              | N1/A   | 221409              |               | 0000005     |
| Obern Delly Surface SW Net Elysis Arrou(201408) of              | 60                  | n/A               | IN/A   | 321400              | 0             | 0000303     |
| Number observations daily surface SM set flux                   | 61                  | <b>NU</b> /A      | TRO    | 201409              |               | 0000702     |
| Obery Delhy Systems LW Elux is Arroy (201409) of                | 01                  | N/A               | IBD    | 321408              | 0             | 9009793     |
| Number observations daily surface LW flux                       | 60                  | NI/A              | TBD    | 221409              | 0             | 0221201     |
|                                                                 | 02                  | N/A               | IBD    | 321400              | 0             | 9331201     |
| Number observations daily surface L W pet flux                  | 62                  | N//A              | TOD    | 221409              |               | 0650600     |
| Number of Observations Daily Surface Peremeters is Array(32140) | Plof:               | 17/0              | 160    | 321400              | 0             | 3032003     |
| Number observations daily surface water vanor                   | 5] UI.<br>64        | N/A               | TRD    | 321408              | R             | 0074017     |
|                                                                 | 04                  | 19/0              | 180    | 321400              | 0             | 3374017     |
| Number of Observations Hrly I W Elux is Array(249832) of        |                     |                   |        |                     |               |             |
| Number_of_observations   W flux (hourly)                        | 65                  | NI/Å              | TRD    | 248832              | 8             | 10205425    |
| Number of Observations Live lide (nounly)                       |                     | 19/25             | 100    | 240002              | 0             | 10233423    |
| Number of observations SW/ flux (bourly)                        | 66                  | N/A               | TRO    | 248832              | ø             | 10544257    |
| Number of Observations Hrly CirSky I W Elux is Array(249932) of | 00                  | 17/0              | 100    | 240002              | 0             | 10044207    |
| Number of observations clear sky I W flux (hourly)              | 67                  | N/A               | TBD    | 248832              | 8             | 10793089    |
| Number of Observations Hriv CirSky SW Elux is Array(248832) of  | 0/                  | 11/0              | 100    | 240002              | Ŭ             | 10/30003    |
| Number of observations clear sky SW flux (hourly)               | 68                  | N/A               | TBD    | 248832              | R             | 11041921    |
| Number of Observations Hourly Surface Data                      | 00                  | 1977              |        | 2-10002             | 0             | 1041361     |
| Ohen Hourly Surface SW Elux is Arrou(249922) of                 |                     |                   |        |                     |               |             |
| Number observations bourly surface SW flux                      | 60                  | N/A               | TRD    | 246622              | ٥             | 11200752    |
| Ohen Houriv Surface SW Net Elux is Arrow (240022) of            | 09                  | IN/A              | 100    | 240032              | o             | 1230/33     |
| Number observations bourty surface SW act flux                  | 70                  | N/A               | тво    | 249932              | ٥             | 11530595    |
| Humber Observations nouny sunace Say net litt                   | 70                  | 11/11             | 100    | 240002              | 0             | 11000000    |

### Table B-3. Concluded

| Description                                               | Parameter<br>Number | Units | Range | Elements/<br>Record | Bita/<br>Elem | Elem<br>Num |
|-----------------------------------------------------------|---------------------|-------|-------|---------------------|---------------|-------------|
| Obsrv_Hourly_Surface_LW_Flux is Array[248832] of:         |                     |       |       |                     |               |             |
| Number observations hourly surface LW flux                | 71                  | N/A   | TBD   | 248832              | 8             | 11788417    |
| Obsrv_Hourly_Surface_LW_Net_Flux is Array[248832] of:     |                     |       |       |                     |               |             |
| Number observations hourly surface LW net flux            | 72                  | N/A   | TBD   | 248832              | 8             | 12037249    |
| Number_of_Observations_Hourly_Surface_Parameters is Array | [248832] of:        |       |       |                     |               |             |
| Number observations hourly surface water vapor            | 73                  | N/A   | TBD   | 248832              | 8             | 12286081    |
| Geotype_Instances is Array(10368) of:                     |                     |       |       |                     |               |             |
| Geotype - surface type for current region                 | 74                  | N/A   | 05    | 10368               | 8             | 12534913    |
| Total Meta Bits/File:                                     | 0                   |       |       |                     |               |             |
| Total Data Bita/Record:                                   | 174016512           |       |       |                     |               |             |
| Total Records/File:                                       | 7                   |       |       |                     |               |             |
| Total Data Bita/File:                                     | 1218115584          |       |       |                     |               |             |
| Total Bits/File :                                         | 1218115584          |       |       |                     |               |             |

# **ERBE-Like Science Product 9 (ES-9)**

The ES-9 stores data for each 2.5 degree region observed during a month. There are 10368 possible regions and a given region is viewed by the scanner several times as the spacecraft passes overhead. For each region, data is stored by the hour for each hour of each day in the month. Stored data includes the mean estimates of shortwave and longwave radiant flux at the top of the atmosphere, the standard deviations of these estimates, the maximum and minimum estimate, and scene information or cloud condition. Similar parameters are determined for those scanner measurements that were identified as viewing clear sky areas. New with the CERES instrument are the surface downward shortwave flux, the surface downward longwave flux, the net shortwave and longwave flux at the surface, and water vapor data. Daily, monthly hourly, and monthly averages are also stored.

Level: 3 Type: Archival Frequency: 1/month

Time Interval Covered File: 1 month Record: Hour box data **Portion of Globe Covered File:** Global **Record:** Regional

**Portion of Atmosphere Covered File:** Surface to TOA

# Table B-4. ERBE-Like Science Product 9 (ES-9)

| Description                                                               | Parameter<br>Number | Units             | Range          | Elements/<br>Record | Bits/<br>Fiem | Elem<br>Num |
|---------------------------------------------------------------------------|---------------------|-------------------|----------------|---------------------|---------------|-------------|
| E\$-9                                                                     | 142111201           |                   |                | nooora              | Light         | 102111      |
| ES-9_File_Header is Array[9] of:                                          |                     |                   |                |                     |               |             |
| File header is currently a 9-word vector used for validation              |                     | N/A               |                | 9                   | 32            |             |
| ES-9_Record_Level_Data_Scaling is Array[66] of:                           |                     |                   |                |                     |               |             |
| A scale factor vector with scale factors to be applied to the record data |                     | N/A               |                | 66                  | 32            |             |
| ES-9_Data_Records is Array[10368] of:                                     |                     |                   |                |                     |               |             |
| Region number for the current data record                                 | 1                   | N/A               | 110368         | 1                   | 16            | 1           |
| Geographic scene for this region                                          | 2                   | N/A               | 15             | 1                   | 16            | 2           |
| Scene_Fraction_Data is Array[4] of:                                       |                     |                   |                |                     |               |             |
| Scene fraction histogram                                                  | 3                   | N/A               |                | 4                   | 16            | 3           |
| Monthly_Averages_Day                                                      |                     | -                 |                |                     |               |             |
| SW flux                                                                   | 4                   | W-m <sup>-2</sup> | 0 1 <b>200</b> | 1                   | 16            | 7           |
| SW flux minimum value                                                     | 5                   | W-m <sup>-2</sup> | 01 <b>200</b>  | 1                   | 16            | 8           |
| SW flux maximum value                                                     | 6                   | W-m <sup>-2</sup> | 01200          | 1                   | 16            | 9           |
| SW flux standard deviation                                                | 7                   | W-m <sup>-2</sup> | TBD            | 1                   | 16            | 10          |
| SW flux number of days with at least one sample                           | 8                   | day               | TBD            | 1                   | 16            | 11          |
| LW flux                                                                   | 9                   | ₩-m <sup>-2</sup> | 50 <b>400</b>  | 1                   | 16            | 12          |
| LW flux minimum value                                                     | 10                  | W-m <sup>-2</sup> | 50 400         | 1                   | 16            | 13          |
| LW flux maximum value                                                     | 11                  | W-m <sup>-2</sup> | 50 400         | 1                   | 16            | 14          |
| LW flux standard deviation                                                | 12                  | W-m <sup>-2</sup> | TBD            | 1                   | 16            | 15          |
| LW flux number of days with at least 1 sample                             | 13                  | day               | TBD            | 1                   | 16            | 16          |
| Mean albedo                                                               | 14                  | N/A               | 01             | 1                   | 16            | 17          |
| Mean net flux                                                             | 15                  | W-m <sup>-2</sup> | TBD            | 1                   | 16            | 18          |
| MthAvg_Day_Solar_Incidence is Array[2] of:                                |                     |                   |                |                     |               |             |
| Monthly total integrated solar incidence                                  | 16                  | N/A               | TBD            | 2                   | 16            | 19          |
| Clear sky SW flux                                                         | 17                  | W-m <sup>-2</sup> | 0 12 <b>00</b> | 1                   | 16            | 21          |
| Clear sky SW flux minimum value                                           | 18                  | W-m <sup>-2</sup> | 01200          | 1                   | 16            | 22          |
| Clear sky SW flux maximum value                                           | 19                  | W-m <sup>-2</sup> | 01200          | 1                   | 16            | 23          |
| Clear sky SW flux standard deviation                                      | 20                  | W-m <sup>-2</sup> | TBD            | 1                   | 16            | 24          |
| Clear sky SW flux number of days with at least 1 sample                   | 21                  | day               | TBD            | 1                   | 16            | 25          |
| Clear sky LW flux average flux                                            | 22                  | W-m <sup>-2</sup> | 50 <b>40</b> 0 | 1                   | 16            | 26          |
| Clear sky LW flux minimum value                                           | 23                  | W-m <sup>-2</sup> | 50 <b>400</b>  | 1                   | 16            | 27          |
| Clear sky LW flux maximum value                                           | 24                  | W-m <sup>-2</sup> | 50 400         | 1                   | 16            | 28          |
| Clear sky LW flux standard deviation                                      | 25                  | W-m <sup>-2</sup> | TBD            | 1                   | 16            | 29          |
| Clear sky LW flux number of days with at least 1 sample                   | 26                  | day               | TBD            | 1                   | 16            | 30          |
| Clear sky albedo                                                          | 27                  | N/A               | 01             | 1                   | 16            | 31          |
| Clear sky net radiant flux                                                | 28                  | W-m <sup>-2</sup> | TBD            | 1                   | 16            | 32          |
| MthAvg_Day_CirSky_Solar_incidence is Array[2] of:                         |                     |                   |                |                     |               |             |
| Clear sky solar incidence                                                 | 29                  | N/A               | TBD            | 2                   | 16            | 33          |
| Surface SW downward flux                                                  | 30                  | W-m <sup>-2</sup> | 0 <b>1200</b>  | 1                   | 16            | 35          |
| Surface SW downward flux minimum value                                    | 31                  | W-m <sup>-2</sup> | 0 1 <b>200</b> | 1                   | 16            | 36          |
| Surface SW downward flux maximum value                                    | 32                  | W-m <sup>-2</sup> | 01200          | 1                   | 16            | 37          |
| Surface SW downward flux standard deviation                               | 33                  | W-m⁻²             | TBD            | 1                   | 16            | 38          |
| Surface SW downward flux number of days with at least 1 sample            | 34                  | day               | TBD            | 1                   | 16            | 39          |
| Surface SW net flux                                                       | 35                  | W-m <sup>-2</sup> | 0 1200         | 1                   | 16            | 40          |
| Surface SW net flux minimum value                                         | 36                  | W-m <sup>-2</sup> | 01200          | 1                   | 16            | 41          |
| Surface SW net maximun value                                              | 37                  | W-m <sup>-2</sup> | 0 1200         | 1                   | 16            | 42          |
| Surface SW net standard deviation                                         | 38                  | W-m <sup>-2</sup> | TBD            | 1                   | 16            | 43          |
| Surface SW net number of days with at least 1 sample                      | 39                  | day               | TBD            | 1                   | 16            | 44          |
| Surface LW downward flux                                                  | 40                  | W-m <sup>-2</sup> | 50 400         | 1                   | 16            | 45          |
| Surface LW downward flux minimum value                                    | 41                  | W-m <sup>-2</sup> | 50 400         | 1                   | 16            | 46          |

| Description                                                    | Parameter<br>Number | Units                  | Range  | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num |
|----------------------------------------------------------------|---------------------|------------------------|--------|---------------------|---------------|-------------|
| Surface LW downward flux maximum value                         | 42                  | W-m <sup>-2</sup>      | 50 400 | 1                   | 16            | 47          |
| Surface LW downward flux standard deviation                    | 43                  | W-m <sup>-2</sup>      | TBD    | 1                   | 16            | 48          |
| Surface LW downward flux number of days with at least 1 sample | 44                  | day                    | TBD    | 1                   | 16            | 49          |
| Surface LW net flux                                            | 45                  | W-m <sup>-2</sup>      | 50 400 | 1                   | 16            | 50          |
| Surface LW net flux minimum value                              | 46                  | W-m <sup>-2</sup>      | 50 400 | 1                   | 16            | 51          |
| Surface LW net flux maximum value                              | 47                  | W-m <sup>-2</sup>      | 50 400 | 1                   | 16            | 52          |
| Surface LW net flux standard deviation                         | 48                  | W-m <sup>-2</sup>      | TBD    | 1                   | 16            | 53          |
| Surface LW net flux number of days with a least 1 sample       | 49                  | day                    | TBD    | 1                   | 16            | 54          |
| Water vapor data (monthly average - day)                       | 50                  | cm                     | TBD    | 1                   | 16            | 55          |
| Water vapor data minimum value                                 | 51                  | cm                     | TBD    | 1                   | 16            | 56          |
| Water vapor data maximum value                                 | 52                  | cm                     | TBD    | 1                   | 16            | 57          |
| Water vapor data standard deviation                            | 53                  | cm                     | TBD    | 1                   | 16            | 58          |
| Water vapor data number of days with a least 1 sample          | 54                  | dav                    | TBD    | 1                   | 16            | 59          |
| Monthly_Averages_Hour                                          |                     | ,                      |        |                     |               |             |
| SW flux                                                        | 55                  | W-m <sup>-2</sup>      | 01200  | 1                   | 16            | 60          |
| SW flux minimum value                                          | 56                  | W-m <sup>-2</sup>      | 01200  | 1                   | 16            | 61          |
| SW flux maximum value                                          | 57                  | W-m <sup>-2</sup>      | 01200  | 1                   | 16            | 62          |
| SW flux standard deviation                                     | 58                  | W-m <sup>-2</sup>      | TBD    | 1                   | 16            | 63          |
| SW flux number of days with at least 1 sample                  | 59                  | dav                    | TBD    | 1                   | 16            | 64          |
| LW flux                                                        | 60                  | W-m <sup>-2</sup>      | 50 400 | 1                   | 16            | 65          |
| LW flux minimum value                                          | 61                  | W-m <sup>-2</sup>      | 50 400 | ,<br>1              | 16            | 66          |
| LW flux maximum value                                          | 62                  | W-m <sup>-2</sup>      | 50 400 | 1                   | 16            | 67          |
| LW flux standard deviation                                     | 63                  | W-m <sup>-2</sup>      |        | 1                   | 16            | 68          |
| W flux number of days with at least 1 sample                   | 64                  | dav                    | TBD    | 1                   | 16            | 60          |
| Albedo                                                         | 65                  | N/A                    | 0 1    | 1                   | 16            | 70          |
| Net flux                                                       | 66                  | W-m <sup>-2</sup>      |        | , 1                 | 16            | 70          |
| MthAvg Hr Solar Incidence is Arrav(2) of:                      |                     | ••••                   | 100    | •                   | 10            | ,,          |
| Solar incidence                                                | 67                  | N/A                    | TBD    | 2                   | 16            | 72          |
| Clear sky SW flux                                              | 68                  | W-m <sup>-2</sup>      | 0 1200 | - 1                 | 16            | 74          |
| Clear sky SW flux minimum value                                | 69                  | W-m <sup>-2</sup>      | 0 1200 | 1                   | 16            | 75          |
| Clear sky SW flux maximum value                                | 70                  | W-m <sup>-2</sup>      | 0 1200 | 1                   | 16            | 76          |
| Clear sky SW flux standard deviation                           | 71                  | W-m <sup>-2</sup>      | TBD    | 1                   | 16            | 77          |
| Clear sky SW flux number of days with at least 1 sample        | 72                  | dav                    | TBD    | 1                   | 16            | 78          |
| Clear sky LW flux                                              | 73                  | W-m <sup>-2</sup>      | 50 400 | 1                   | 16            | 79          |
| Clear sky LW flux minimum value                                | 74                  | W-m <sup>-2</sup>      | 50400  | 1                   | 16            | 80          |
| Clear sky LW flux maximum value                                | 75                  | W-m <sup>-2</sup>      | 50 400 | 1                   | 16            | 81          |
| Clear sky LW flux standard deviation                           | 76                  | W-m <sup>-2</sup>      | TBD    | 1                   | 16            | 82          |
| Clear sky LW flux number of days with at least 1 sample        | 77                  | dav                    | TBD    | 1                   | 16            | 83          |
| Clear sky albedo                                               | 78                  | N/A                    | 01     | 1                   | 16            | 84          |
| Clear sky net flux                                             | 79                  | W-m <sup>-2</sup>      | TBD    | 1                   | 16            | 85          |
| MthAvg Hr CirSky Solar Incidence is Array[2] of:               |                     |                        |        |                     |               |             |
| Clear sky solar incidence                                      | 80                  | N/A                    | TBD    | 2                   | 16            | 86          |
| Surface SW downward flux                                       | 81                  | W-m <sup>-2</sup>      | 01200  | - 1                 | 16            | 88          |
| Surface SW downward flux minimum value                         | 82                  | W-m <sup>-2</sup>      | 01200  | 1                   | 16            | 89          |
| Surface SW downward flux maximum value                         | 83                  | W-m <sup>-2</sup>      | 01200  | 1                   | 16            | 90          |
| Surface SW downward flux standard deviation                    | 84                  | W-m <sup>-2</sup>      | TBD    | 1                   | 16            | 91          |
| Surface SW downward flux number of days with at least 1 sample | 85                  | dav                    | TBD    | 1                   | 16            | 92          |
| Surface SW net flux                                            | 86                  | W-m <sup>-2</sup>      | 01200  | 1                   | 16            | 93          |
| Surface SW net flux minimum value                              | 87                  | W-m <sup>-2</sup>      | 01200  | 1                   | 16            | 94          |
| Surface SW net flux maximum value                              | 88                  | W-m <sup>-2</sup>      | 01200  | 1                   | 16            | 95          |
| Surface SW net flux standard deviation                         | 89                  | W-m <sup>-2</sup>      | TBD    | 1                   | 16            | 96          |
| Surface SW net flux no days with at least 1 sample             | 90                  | dav                    | TBD    | ,<br>1              | 16            | 97          |
| Surface LW downward flux                                       | 91                  | ,<br>W-m <sup>-2</sup> | 50 400 | 1                   | 16            | 98          |

| Description                                                    | Parameter<br>Number | Units             | Range I        | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num  |
|----------------------------------------------------------------|---------------------|-------------------|----------------|---------------------|---------------|--------------|
| Surface LW downward flux minimum value                         | 92                  | W-m <sup>-2</sup> | 50 400         | 1                   | 16            | 99           |
| Surface LW downward flux maximum value                         | 93                  | W-m <sup>-2</sup> | <b>50 400</b>  | 1                   | 16            | 100          |
| Surface LW downward flux standard deviation                    | 94                  | W-m <sup>-2</sup> | TBD            | 1                   | 16            | 101          |
| Surface LW downward flux no days with at least 1 sample        | 95                  | day               | TBD            | 1                   | 16            | 1 <b>0</b> 2 |
| Surface LW net flux                                            | 96                  | W-m⁻²             | 50 400         | 1                   | 16            | 103          |
| Surface LW net flux minimum value                              | 97                  | W-m <sup>-2</sup> | <b>50 400</b>  | 1                   | 16            | 104          |
| Surface LW net flux maximum value                              | 98                  | W-m <sup>-2</sup> | 50 400         | 1                   | 16            | 105          |
| Surface LW net flux standard deviation                         | 99                  | W-m <sup>-2</sup> | TBD            | 1                   | 16            | 106          |
| Surface LW net flux no days with at least 1 sample             | 100                 | day               | TBD            | 1                   | 16            | 107          |
| Surface water vapor data                                       | 101                 | cm                | TBD            | 1                   | 16            | 108          |
| Surface water vapor data minimum value                         | 102                 | cm                | TBD            | 1                   | 16            | 109          |
| Surface water vapor data maximum value                         | 103                 | cm                | TBD            | 1                   | 16            | 110          |
| Surface water vapor data standard deviation                    | 104                 | cm                | TBD            | 1                   | 16            | 111          |
| Surface water vapor data number of days with at least 1 sample | 105                 | day               | TBD            | 1                   | 16            | 112          |
| Monthly_Averages_Daily is Array[31] of:                        |                     |                   |                |                     |               |              |
| Solar constant, distance corrected                             | 106                 | W-m <sup>-2</sup> | 1364 140       | 0 31                | 16            | 113          |
| SW flux                                                        | 107                 | W-m <sup>-2</sup> | 01200          | 31                  | 16            | 144          |
| SW flux minimum value                                          | 108                 | W-m <sup>-2</sup> | 0 1 <b>200</b> | 31                  | 16            | 175          |
| SW flux maximum value                                          | 109                 | W-m <sup>-2</sup> | 01200          | 31                  | 16            | 206          |
| SW flux standard deviation                                     | 110                 | W-m <sup>-2</sup> | TBD            | 31                  | 16            | 237          |
| SW flux number of days with at least 1 sample                  | 111                 | day               | TBD            | 31                  | 16            | 268          |
| LW flux                                                        | 112                 | W-m <sup>-2</sup> | 50 400         | 31                  | 16            | 299          |
| LW flux minimum value                                          | 113                 | W-m <sup>-2</sup> | 50 400         | 31                  | 16            | 330          |
| LW flux maximum value                                          | 114                 | W-m <sup>-2</sup> | 50 400         | 31                  | 16            | 361          |
| LW flux standard deviation                                     | 115                 | W∙m <sup>∙2</sup> | TBD            | 31                  | 16            | 392          |
| LW flux number of days with at least 1 sample                  | 116                 | day               | TBD            | 31                  | 16            | 423          |
| Albedo                                                         | 117                 | N/A               | 01             | 31                  | 16            | 454          |
| MthAvg_Dly_Solar_Incidence is Array[2] of:                     |                     |                   |                |                     |               |              |
| Solar incidence                                                | 118                 | N/A               | TBD            | 62                  | 16            | 485          |
| Clear sky SW flux                                              | 119                 | W-m <sup>-2</sup> | 01200          | 31                  | 16            | 487          |
| Clear sky SW flux minimum value                                | 120                 | W-m⁻²             | 01200          | 31                  | 16            | 518          |
| Clear sky SW flux maximum value                                | 121                 | W-m⁻²             | 01200          | 31                  | 16            | 549          |
| Clear sky SW flux standard deviation                           | 122                 | W-m <sup>-2</sup> | TBD            | 31                  | 16            | 580          |
| Clear sky SW flux number of days with at least 1 sample        | 123                 | day               | TBD            | 31                  | 16            | 611          |
| Clear sky LW flux                                              | 124                 | W-m <sup>-2</sup> | 50 <b>400</b>  | 31                  | 16            | 642          |
| Clear sky LW flux minimum value                                | 125                 | W-m⁻²             | 50 <b>400</b>  | 31                  | 16            | 673          |
| Clear sky LW flux maximum value                                | 126                 | W-m⁻²             | 50 400         | 31                  | 16            | 704          |
| Clear sky LW flux standard deviation                           | 127                 | W-m <sup>-2</sup> | TBD            | 31                  | 16            | 735          |
| Clear sky LW flux number of days with at least 1 sample        | 128                 | day               | TBD            | 31                  | 16            | 766          |
| Clear sky albedo                                               | 129                 | N/A               | 01             | 31                  | 16            | 797          |
| Surface SW downward flux                                       | 130                 | W-m <sup>-2</sup> | 01200          | 31                  | 16            | 828          |
| Surface SW downward flux minimum value                         | 131                 | W-m <sup>-2</sup> | 0 <b>120</b> 0 | 31                  | 16            | 859          |
| Surface SW downward flux maximum value                         | 132                 | W-m <sup>-2</sup> | 0 1 <b>200</b> | 31                  | 16            | 890          |
| Surface SW downward flux standard deviation                    | 133                 | W-m <sup>-2</sup> | TBD            | 31                  | 16            | 921          |
| Surface SW downward flux number of days with at least 1 sample | 134                 | day               | TBD            | 31                  | 16            | 952          |
| Surface SW net flux                                            | 135                 | W-m <sup>-2</sup> | 01200          | 31                  | 16            | 983          |
| Surface SW net flux minimum value                              | 136                 | W-m <sup>-2</sup> | 01200          | 31                  | 16            | 1014         |
| Surface SW net flux maximum value                              | 137                 | W-m <sup>-2</sup> | 01200          | 31                  | 16            | 1045         |
| Surface SW net flux standard deviation                         | 138                 | W-m <sup>-2</sup> | TBD            | 31                  | 16            | 1076         |
| Surface SW net flux number of days with at least 1 sample      | 139                 | day               | TBD            | 31                  | 16            | 1107         |
| Surface LW downward flux                                       | 140                 | W-m <sup>-2</sup> | 50 400         | 31                  | 16            | 1138         |
| Surface LW downward flux minimum value                         | 141                 | W-m <sup>-2</sup> | 50 400         | 31                  | 16            | 1169         |
| Surface LW downward flux maximum value                         | 142                 | W-m <sup>-2</sup> | 50 400         | 31                  | 16            | 1200         |

| Description                                                       | Parameter<br>Number | Units                     | Range           | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num   |
|-------------------------------------------------------------------|---------------------|---------------------------|-----------------|---------------------|---------------|---------------|
| Surface LW downward flux standard deviation                       | 143                 | W-m <sup>-2</sup>         | TBD             | 31                  | 16            | 1231          |
| Surface LW downward flux number of days with at least 1 sample    | 144                 | day                       | TBD             | 31                  | 16            | 1262          |
| Surface LW net radiant flux                                       | 145                 | W-m <sup>-2</sup>         | 50 400          | 31                  | 16            | 1293          |
| Surface LW net radiant flux minimum value                         | 146                 | W-m <sup>-2</sup>         | 50 400          | 31                  | 16            | 1324          |
| Surface LW net radiant flux maximum value                         | 147                 | W-m⁻²                     | 50 <b>40</b> 0  | 31                  | 16            | 1355          |
| Surface LW net radiant flux standard deviation                    | 148                 | W-m <sup>-2</sup>         | TBD             | 31                  | 16            | 1386          |
| Surface LW net radiant flux number of days with at least 1 sample | 149                 | day                       | TBD             | 31                  | 16            | 1417          |
| Surface water vapor data                                          | 150                 | cm                        | TBD             | 31                  | 16            | 1448          |
| Surface water vapor data minimum value                            | 151                 | cm                        | TBD             | 31                  | 16            | 1479          |
| Surface water vapor data maximum value                            | 152                 | cm                        | TBD             | 31                  | 16            | 1510          |
| Surface water vapor data standard deviation                       | 153                 | cm                        | TBD             | 31                  | 16            | 1541          |
| Surface water vapor number of days with at least 1 sample         | 154                 | day                       | TBD             | 31                  | 16            | 1572          |
| Monthly_Averages_Hourly is Array[24] of:                          |                     |                           |                 |                     |               |               |
| SW flux                                                           | 155                 | W-m <sup>-2</sup>         | 01200           | 24                  | 16            | 1603          |
| SW flux minimum value                                             | 156                 | W-m <sup>-2</sup>         | 01200           | 24                  | 16            | 1627          |
| SW flux maximum value                                             | 157                 | W-m <sup>-2</sup>         | 0 1200          | 24                  | 16            | 1651          |
| SW flux standard deviation                                        | 158                 | W-m <sup>-2</sup>         | TBD             | 24                  | 16            | 1675          |
| SW flux number of days with at least 1 sample                     | 159                 | day                       | TBD             | 24                  | 16            | 1699          |
| MthAvg_Hrly_SW_Stats_Sum is Array[2] of:                          |                     | -                         |                 |                     |               |               |
| SW sum of estimates                                               | 160                 | N/A                       | TBD             | 48                  | 16            | 1723          |
| MthAvg_Hrly_SW_Stats_Sum_Squared is Array[2] of:                  |                     |                           |                 |                     |               |               |
| SW sum of estimates squared                                       | 161                 | N/A                       | TBD             | 48                  | 16            | 1725          |
| LW flux                                                           | 162                 | W-m <sup>-2</sup>         | 50 <b>400</b>   | 24                  | 16            | 1727          |
| LW flux minimum value                                             | 163                 | W-m <sup>-2</sup>         | 50 400          | 24                  | 16            | 1751          |
| LW flux maximum value                                             | 164                 | W-m <sup>-2</sup>         | 50 400          | 24                  | 16            | 1775          |
| LW flux standard deviation                                        | 165                 | W-m <sup>-2</sup>         | TBD             | 24                  | 16            | 1799          |
| LW flux number of days with at least 1 sample                     | 166                 | day                       | TBD             | 24                  | 16            | 1823          |
| MthAvg_Hrly_LW_Stats_Sum is Array[2] of:                          |                     | -                         |                 |                     |               |               |
| LW flux sum of estimates                                          | 167                 | N/A                       | TBD             | 48                  | 16            | 1847          |
| MthAvg_Hrly_LW_Stats_Sum_Squared is Array[2] of:                  |                     |                           |                 |                     |               |               |
| LW sum of estimates squared                                       | 168                 | N/A                       | TBD             | 48                  | 16            | 1849          |
| Albedo                                                            | 169                 | N/A                       | 01              | 24                  | 16            | 1 <b>8</b> 51 |
| MthAvg_Hrly_Solar_Incidence is Array[2] of:                       |                     |                           |                 |                     |               |               |
| Solar incidence                                                   | 170                 | N/A                       | TBD             | 48                  | 16            | 1875          |
| Clear sky SW flux                                                 | 171                 | W-m <sup>-2</sup>         | 0 1200          | 24                  | 16            | 1877          |
| Clear sky SW flux minimum value                                   | 172                 | W-m <sup>-2</sup>         | 0 1200          | 24                  | 16            | 1901          |
| Clear sky SW flux maximum value                                   | 173                 | <b>W-</b> m <sup>-2</sup> | 01200           | 24                  | 16            | 1925          |
| Clear sky SW flux standard deviation                              | 174                 | W-m <sup>-2</sup>         | TBD             | 24                  | 16            | 1949          |
| Clear sky SW flux number of days with at least 1 sample           | 175                 | day                       | TBD             | 24                  | 16            | 1973          |
| MthAvg_Hrly_ClrSky_SW_Stats_Sum is Array[2] of:                   |                     |                           |                 |                     |               |               |
| Clear sky SW sum of estimates                                     | 176                 | N/A                       | TBD             | 48                  | 16            | 1997          |
| MthAvg_Hrly_ClrSky_SW_Stats_Sum_Squared is Array[2] of:           |                     |                           |                 |                     |               |               |
| Clear sky SW sum of estimates squared                             | 177                 | N/A                       | TBD             | 48                  | 16            | 1999          |
| Clear sky LW flux                                                 | 178                 | W-m <sup>-2</sup>         | 50 <b>400</b>   | 24                  | 16            | 2001          |
| Clear sky LW flux minimum value                                   | 179                 | W-m <sup>-2</sup>         | 50 4 <b>0</b> 0 | 24                  | 16            | 2025          |
| Clear sky LW flux maximum value                                   | 180                 | W-m <sup>-2</sup>         | 50 <b>400</b>   | 24                  | 16            | 2049          |
| Clear sky LW flux standard deviation                              | 181                 | W-m⁻²                     | TBD             | 24                  | 16            | 2073          |
| Clear sky LW flux number of days with at least 1 sample           | 182                 | day                       | TBD             | 24                  | 16            | 2097          |
| MthAvg_Hrly_ClrSky_LW_Sum is Array[2] of:                         |                     |                           |                 |                     |               |               |
| Clear sky LW sum of estimates                                     | 183                 | N/A                       | TBD             | 48                  | 16            | 2121          |
| MthAvg_Hrly_ClrSky_LW_Sum_Squared is Array[2] of:                 |                     |                           |                 |                     |               |               |
| Clear sky LW sum of estimates squared                             | 184                 | N/A                       | TBD             | 48                  | 16            | 2123          |
| Clear sky albedo                                                  | 1 <b>8</b> 5        | N/A                       | 01              | 24                  | 16            | 2125          |

| Description                                                    | Parameter<br>Number | Units                     | Range E      | lements/<br>Record | Bits/<br>Elem | Elem<br>Num   |
|----------------------------------------------------------------|---------------------|---------------------------|--------------|--------------------|---------------|---------------|
| MthAvg_Hrly_ClrSky_Solar_Incidence is Array[2] of:             |                     |                           |              |                    |               |               |
| Clear sky solar incidence                                      | 186                 | N/A                       | TBD          | 48                 | 16            | 2149          |
| Surface SW downward flux                                       | 187                 | W-m <sup>-2</sup>         | 01200        | 24                 | 16            | 2151          |
| Surface SW downward flux minimum value                         | 188                 | W-m⁻²                     | 01200        | 24                 | 16            | 2175          |
| Surface SW downward flux maximum value                         | 189                 | W-m <sup>-2</sup>         | 01200        | 24                 | 16            | 21 <b>9</b> 9 |
| Surface SW downward flux standard deviation                    | 190                 | W-m <sup>-2</sup>         | TBD          | 24                 | 16            | 2223          |
| Surface SW downward flux number of days with at least 1 sample | 191                 | day                       | TBD          | 24                 | 16            | 2247          |
| Surface SW net flux                                            | 192                 | W-m <sup>-2</sup>         | 01200        | 24                 | 16            | 2271          |
| Surface SW net flux minimum value                              | 193                 | W-m <sup>-2</sup>         | 01200        | 24                 | 16            | 2295          |
| Surface SW net flux maximum value                              | 194                 | W-m <sup>-2</sup>         | 0 1200       | 24                 | 16            | 2319          |
| Surface SW net flux standard deviation                         | 195                 | W-m <sup>-2</sup>         | TBD          | 24                 | 16            | 2343          |
| Surface SW net flux no days with at least 1 sample             | 196                 | day                       | TBD          | 24                 | 16            | 2367          |
| Surface LW downward flux                                       | 197                 | W-m <sup>-2</sup>         | 50 400       | 24                 | 16            | 2391          |
| Surface LW downward flux minimum value                         | 198                 | W-m <sup>-2</sup>         | 50 400       | 24                 | 16            | 2415          |
| Surface LW downward flux maximum value                         | 199                 | <b>W</b> -m <sup>-2</sup> | 50 400       | 24                 | 16            | 2439          |
| Surface LW downward flux standard deviation                    | 200                 | W-m <sup>-2</sup>         | TBD          | 24                 | 16            | 2463          |
| Surface LW downward flux number of days with at least 1 sample | 201                 | day                       | TBD          | 24                 | 16            | 2487          |
| Surface LW net flux                                            | 202                 | W-m <sup>-2</sup>         | 50 400       | 24                 | 16            | 2511          |
| Surface LW net flux minimum value                              | 203                 | W-m <sup>-2</sup>         | 50 400       | 24                 | 16            | 2535          |
| Surface LW net flux maximum value                              | 204                 | W-m <sup>-2</sup>         | 50 400       | 24                 | 16            | 2559          |
| Surface LW net flux standard deviation                         | 205                 | W-m <sup>-2</sup>         | TBD          | 24                 | 16            | 2583          |
| Surface LW net flux no days with at least 1 sample             | 206                 | day                       | TBD          | 24                 | 16            | 2607          |
| Surface water vapor data                                       | 207                 | cm                        | TBD          | 24                 | 16            | 2631          |
| Surface water vapor data minimum value                         | 208                 | cm                        | TBD          | 24                 | 16            | 2655          |
| Surface water vapor data maximum value                         | 209                 | cm                        | TBD          | 24                 | 16            | 2679          |
| Surface water vapor data standard deviation                    | 210                 | cm                        | TBD          | 24                 | 16            | 2703          |
| Surface water vapor data no days with at least 1 sample        | 211                 | dav                       | TBD          | 24                 | 16            | 2727          |
| Number of hour boxes                                           | 212                 | Hour boxes                | 1744         | 24                 | 16            | 2751          |
| MthAvo Hriv Spare values is Arrav[14] of:                      |                     |                           |              |                    |               |               |
| Spares                                                         | 213                 | N/A                       | N/A          | 336                | 16            | 2775          |
| Houriv Per Day is Array(744) of:                               |                     |                           |              |                    |               |               |
| Hour box number                                                | 214                 | N/A                       | 1 <b>744</b> | 744                | 16            | 2789          |
| Hrly_Per_Day_Date is Array[2] of:                              |                     |                           |              |                    |               |               |
| Whole part of Julian date                                      | 215                 | day                       | 244935324585 | 00 1488            | 16            | 3533          |
| Fractional part of Julian day                                  | 216                 | day                       | 01           | 744                | 16            | 3535          |
| Hriv Per Day Scene Fraction is Array[4] of:                    |                     | -                         |              |                    |               |               |
| Scene fraction                                                 | 217                 | N/A                       | TBD          | 2976               | 16            | 4279          |
| Hrly_Per_Day_Albedo is Array[4] of:                            |                     |                           |              |                    |               |               |
| Albedo vector                                                  | 218                 | N/A                       | 01           | 2976               | 16            | 4283          |
| Cosine of the solar zenith angle                               | 219                 | N/A                       | 01           | 744                | 16            | 4287          |
| Satellite zenith angle                                         | 220                 | deg                       | 090          | 744                | 16            | 5031          |
| Azimuth angle                                                  | 221                 | deg                       | 0360         | 744                | 16            | 5775          |
| Solar incidence                                                | 222                 | N/A                       | TBD          | 744                | 16            | 6519          |
| SW flux                                                        | 223                 | W-m <sup>-2</sup>         | 01200        | 744                | 16            | 7263          |
| SW flux minimum value                                          | 224                 | W-m <sup>-2</sup>         | 01200        | 744                | 16            | 8007          |
| SW flux maximum value                                          | 225                 | W-m <sup>-2</sup>         | 01200        | 744                | 16            | 8751          |
| SW flux standard deviation                                     | 226                 | W-m <sup>-2</sup>         | TBD          | 744                | 16            | 9495          |
| SW flux number of days with at least 1 sample                  | 227                 | dav                       | TBD          | 744                | 16            | 10239         |
| LW flux                                                        | 228                 | W-m <sup>-2</sup>         | 50 400       | 744                | 16            | 10983         |
| LW flux minimum value                                          | 229                 | W-m <sup>-2</sup>         | 50 400       | 744                | 16            | 11727         |
| LW flux maximum value                                          | 230                 | W-m <sup>-2</sup>         | 50 400       | 744                | 16            | 12471         |
| LW flux standard deviation                                     | 231                 | W-m <sup>-2</sup>         | TBD          | 744                | 16            | 13215         |
| LW flux number of days with at least 1 sample                  | 232                 | day                       | TBD          | 744                | 16            | 13959         |
|                                                                |                     | •                         |              |                    |               |               |

| Description                          | Parameter<br>Number | Units             | Range  | Elements/<br>Record | Bits/<br>Elem | Elem<br>Num   |
|--------------------------------------|---------------------|-------------------|--------|---------------------|---------------|---------------|
| SW flux maximum difference           | 233                 | W-m <sup>-2</sup> | TBD    | 744                 | 16            | 14703         |
| LW flux maximum difference           | 234                 | W-m <sup>-2</sup> | TBD    | 744                 | 16            | 15447         |
| Clear sky albedo                     | 235                 | N/A               | 01     | 744                 | 16            | 16191         |
| Clear sky LW flux                    | 236                 | W-m <sup>-2</sup> | 50 400 | 744                 | 16            | 16935         |
| Clear sky LW flux standard deviation | 237                 | W-m <sup>-2</sup> | TBD    | 744                 | 16            | 17679         |
| Clear sky LW flux number samples     | 238                 | N/A               | TBD    | 744                 | 16            | 18423         |
| Surface SW downward flux             | 239                 | W-m <sup>-2</sup> | 0 1200 | 744                 | 16            | 19167         |
| Surface SW net flux                  | 240                 | W-m <sup>-2</sup> | 0 1200 | 744                 | 16            | 19911         |
| Surface LW flux                      | 241                 | W-m <sup>-2</sup> | 50 400 | 744                 | 16            | 20655         |
| Surface LW net flux                  | 242                 | W-m <sup>-2</sup> | 50 400 | 744                 | 16            | 21399         |
| Water vapor data                     | 243                 | cm                | TBD    | 744                 | 16            | <b>2</b> 2143 |

| Total Meta Bits/File:   | 2400      |
|-------------------------|-----------|
| Total Data Bits/Record: | 498528    |
| Total Records/File:     | 10368     |
| Total Data Bits/File:   | 873771008 |
| Total Bits/File :       | 873773408 |

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                              | Form Approved<br>OMB No. 0704-0188            |                                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|--|
| Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,<br>gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this<br>collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson<br>Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |                                                                              |                                               |                                                     |  |
| 1. AGENCY USE ONLY (Leave blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2. REPORT DATE<br>December 1995                             | 3. REPORT TYPE AND<br>Reference Public                                       | AT TYPE AND DATES COVERED<br>ence Publication |                                                     |  |
| 4. TITLE AND SUBTITLE<br>Clouds and the Earth's Radiant Energy System (CERES) Algorithm<br>Theoretical Basis Document. Volume II—Geolocation, Calibration, and<br>ERBE-Like Analyses (Subsystems 1-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             | 5. FUNDING NUMBERS<br>WU 148-65-41-01                                        |                                               |                                                     |  |
| 6. AUTHOR(S)<br>CERES Science Team                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             |                                                                              |                                               |                                                     |  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)<br>NASA Langley Research Center<br>Hampton, VA 23681-0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER<br>L-17521                       |                                               |                                                     |  |
| 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)<br>National Aeronautics and Space Administration<br>Washington, DC 20546-0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             | 10. SPONSORING/MONITORING<br>AGENCY REPORT NUMBER<br>NASA RP-1376, Volume II |                                               |                                                     |  |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                                              |                                               |                                                     |  |
| 12a. DISTRIBUTION/AVAILABILITY ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATEMENT                                                     |                                                                              | 12b. DISTR                                    | BUTION CODE                                         |  |
| Unclassified–Unlimited<br>Subject Category 47<br>Availability: NASA CASI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (301) 621-0390                                              |                                                                              |                                               |                                                     |  |
| <ul> <li>13. ABSTRACT (Maximum 200 words)         The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume II details the techniques used to geolocate and calibrate the CERES scanning radiometer measurements of shortwave and longwave radiance to invert the radiances to top-of-the-atmosphere (TOA) and surface fluxes following the Earth Radiation Budget Experiment (ERBE) approach, and to average the fluxes over various time and spatial scales to produce an ERBE-like product. Spacecraft ephemeris and sensor telemetry are used with calibration coefficients to produce a chronologically ordered data product called bidirectional scan (BDS) radiances. A spatially organized instrument Earth scan product is developed for the cloud-processing subsystem. The ERBE-like inversion subsystem converts BDS radiances to unfiltered instantaneous TOA and surface fluxes. The TOA fluxes are determined by using ERBE methods. Hourly surface fluxes are estimated from TOA fluxes by using simple parameterizations based on recent research. The averaging process produces daily, monthly-hourly, and monthly means of TOA and surface fluxes at various scales. This product provides a continuation of the ERBE record.     </li> </ul> |                                                             |                                                                              |                                               |                                                     |  |
| Earth Observing System; Clouds and the Earth's Radiant Energy System;<br>Earth radiation budget; Clouds satellite measurements; Surface radiation;<br>Atmospheric radiative divergence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                              |                                               | 15. NUMBER OF PAGES<br>136<br>16. PRICE CODE<br>A07 |  |
| 17. SECURITY CLASSIFICATION<br>OF REPORT<br>Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18. SECURITY CLASSIFICATION<br>OF THIS PAGE<br>Unclassified | 19. SECURITY CLASSIF<br>OF ABSTRACT<br>Unclassified                          | CATION                                        | 20. LIMITATION<br>OF ABSTRACT                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |                                                                              |                                               |                                                     |  |

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102