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SUMMARY

Described are the theoretical development and computer implementation of reliable and efficient
methods for the analysis of coupled mechanical problems that involve the interaction of mechanical,
thermal, phase-change and electromagnetic subproblems. The focus application has been the
modeling of superconductivity and associated quantum-state phase-change phenomena. In support
of this objective the work has addressed the following issues: (1) development of variational
principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling
of thermal and mechanical effects, and (4) computer implementation and solution of the
superconductivity transition problem. The main accomplishments have been: (1) the development
of the theory of parametrized and gauged variational principles, (2) the application of those principled
to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling
of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed
finite element simulations of bulk superconductors, in particular the Meissner effect and the nature
of the normal conducting boundary layer. The theoretical development is described in two volumes.
Volume I describes mostly formulations for specific problems. Volume II describes generalization
of those formulations.
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1. INTRODUCTION

Many engineering applications of interest to NASA require the solution of coupled mechanical prob-
lems. A coupled problem consists of two or more subproblems that can be separately characterized
by virtue of their physical nature. Simulation of coupled problems is complicated by the two-way
nature of the interaction between the subproblems. This interaction has to be considered when
seeking steady-state or transient solutions. The treatment of subproblems as a coupled problem,
as opposed to considering them as a single, indivisible problem, arises from the different physical
nature of each subproblem. Such differences encourages customized treatment, from modeling
through computer implementation. Examples of coupled problems in aerospace are: design of
propulsion systems (coupling structures, flow, thermomechanics and combustion), active vibration
control of space structures (coupling structures and control), prediction of flutter in turbomachinery
(coupling structures, combustion, and gasdynamics) and airplane wings (coupling structures and
aerodynamics).

The work reported here deals with coupled problems that contain an electromagnetic field as one of
their subproblems. The research has addressed both theoretical and application components. The
theoretical component deals generally with methods for finite element modeling of electromagnetic,
thermal, mechanical and phase-change effects individually and then considering their interaction
in coupled problems. Because the domain of applications that lead to such problems is extremely
wide and as yet remains largely unexplored, the application component of the research was focused
on the particular problem of superconductivity.

Superconductivity involves primarily the interaction of electromagnetic and thermal fields. It may
secondarily interact with mechanical effects such as motion or couling fluid flow. Transition from
normal to superconducting state is a phase change phenomenon that involves quantum-mechanics
effects. For conventional Type I and II bulk superconductors transition is largely controlled by
magnetic field intensity and temperature. Consequently the transition problem displays three of the
four effects addressed in the theoretical component of this work.

The following narrative outlines the main developments and accomplishment of this research project.
Details are provided in the attached publication material.

2. DEVELOPMENT OF THERMOMECHANICAL ELEMENTS

Initial effort over the period September 1988 through February 1989 was focused on the variational
basis for constructing high-performance mechanical and thermal elements. This primarily theo-
retical effort was carried out by one of the P.Ls (CAF) with the assistance of Carmelo Militello
(a doctoral graduate student mainly supported by a research fellowship). The point of departure
was previous research, funded by ONR and NRL, on the free-formulation variational principles
reported in References [1-3].

A more general variational formulation for the mechanical elements, which includes the assumed
natural strain (ANS) formulation, was established and reported in References [5-7,9]. One key
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byproduct of this work was the Assumed Natural Deviatoric Strain (ANDES) formulation, which
is as a modification of the ANS that satisfies a priori the patch test. The ANDES formulation
was reported in References [5,10,18]. It became eventually a focus of Militello’s thesis [15],
and the basis for constructing several high-performance mechanical plate and membrane elements
[14,20-22].

New representations of thermal fields were not addressed as standard formulations were considered
adequate for the coupled-field phases of this research. The framework of parametrized variational
principles was extended, however, to encompass incompressibility [16,17], micropolar elasticity
[23,24] and electromagnetodynamics [25].

3. DEVELOPMENT OF ELECTROMAGNETIC ELEMENTS

3.1 Theoretical Developments

Early in this research phase it was decided to base the development of electromagnetic (EM)
finite elements on variational principles that utilize electric and magnetic potentials as primary
fields rather than on the EM field intensity and/or fluxes (as done in most of the existing EM
finite element technology). It was felt that this choice provides for a generality of application that
encompasses both normal and superconducting materials as well as taking care automatically of
boundary and interior interfaces. These advantages more than compensate two difficulties: no
general variational formulation of this finite element class existed, and potential fields are less
physically meaningful than intensity and flux fields. The first obstacle was effectively removed
by the developments outlined below. The difficulty with physical meaning of potentials impacts
primarily a priori understanding on how to specify boundary conditions, and can be overcome by
solving a range of practical problems.

Early work on this subject, carried out by one of the P.Is (CAF) from September 1988 through
August 1989, was exploratory in nature. The scalar potential formulation of acoustoelastic fluid
fields, which satisfy the same governing equations as the electric-potential field, was investigated
in collaboration with R. Ohayon of ONERA (France). This research, reported in References [4,8],
did clarify the way to obtain general potential-based variational principles than can be procedurally
translated to the far more complex EM case, which involves vector potentials.

3.2 Normal-Conducting One-Dimensional EM Elements

On January 1989 James J. Schuler, a first-year graduate student, started his Ph. D. research in
electromagnetic finite elements with full support from this grant. By late 1989 a new class of
electromagnetic finite elements based on a four-potential variational principle had been formulated
and tested. The development steps are summarized below, and described more fully in a journal
article [11].

A variational statement for the electromagnetic equations (Maxwell equations) in an arbitrary ma-
terial was obtained. The primary variable of this principle is the four-potential, which integrates
the scalar electric potential with the vector magnetic potential. The principle derived here gener-
alizes those previously published in the literature, which are restricted to free space. Because of
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its generality, it can serve as a basis to model ferromagnetic, semiconductor and superconducting

_materials. The principle was initially constructed using the canonical decomposition method for-
merly validated for the acoustoelastic-fluid potential by Felippa and Ohayon [4,8]. A simplified
formulation for non-polarizable materials was found later “working backwards” from the general
principle and is the one presented in Reference [11].

The variational principle is applicable for one, two and three space dimensions. It is applicable
to both static and dynamic analysis under harmonic or transient loading. To quickly validate
the application to finite elements, the principle was specialized to normal conductors with one-
dimensional axisymmetric geometry. A finite element model with linear variation of the radial
potential component in space was developed and implemented in straightforward fashion. The
development of the forcing function, however, was more involved. The resulting implementation
was tested on the static problem of the field associated with a cylindrical conductor and excellent
agreement with the analytical solution was obtained [11].

3.3 Normal-Conducting Two-Dimensional EM Elements

Extension of the methodology outlined in 3.2 to multiple space dimensions brought surprises. Intwo
and three dimensions it was found that the Lorentz gauge constraint was not automatically enforced
by the finite element shape functions. The constraint was added through a Lagrangian multiplier,
thus producing the so-called “gauged potential variational principle” presented by Schuler and
Felippa [13]. The modification delayed the development of multidimensional EM elements for
several months while several ways of discretizing the gauged potential were tried and evaluated.
Eventually it was decided to treat the multiplier as an element-level degree of freedom that enforces
gauge interaction in a mean sense over each element.

The multidimensional EM elements were incorporated into a program that can solve problems
with arbitrary axisymmetric geometry. The program is restricted to treat static (time-independent)
problems with a known current density distribution. Excellent results, reported in Reference [13],
were obtained for two problems of simple geometry.

3.4 Current Predicting EM Elements

For the envisioned extension to superconductivity it was realized that the problems described in
Sections 3.2 and 3.3 were overly restricted in that the distribution of the electric current is assumed
known a priori and is uniform throughout a conductor. In general, temperature gradients within
a conductor and a conductor’s geometry cause the current distribution within a conductor to be
non-uniform and therefore unknown. To accurately capture the effects of thermal-electromagnetic
coupling it was therefore necessary to construct an electromagnetic finite element that could predict
electric current densities given the total electric current. This task was started on June 1991 by
Schuler and Felippa and required further modifications of the four-potential variational principle.
A one-dimensional time-independent axisymmetric geometry element was tested on a variable
current problem with known analytical solution. Values for the current density as computed by the
finite element method agreed well with analytical predictions. These developments are reported in
References [19,25,26].



3.5 Superconducting EM Elements

This task also started in 1991. The generality of the previously outlined four-potential variational
formulation allowed for the straightforward extension of this method to Type I and II bulk super-
conductors treated by the Ginzburg-Landau model. Only the time-independent one-dimensional
case was explored because of the extremely nonlinear nature of the problem and the presence of
extremely high gradients that necessitates highly graded meshes to treat boundary layers. The
nonlinearities are in part due to the boundary type behavior of the current density stream that occurs
within a bulk superconductor.

Initial attempts using the potential based variational approach predicted desired EM quantities but
numerical problems surfaced that caused the investigators to suspect the validity of the numerical
solutions. These problems and the original formulation of the problem are described in a preliminary
report [18]. These numerical difficulties were eventually overcome through the use of a highly
graded finite element mesh, a reformulation of the quantum mechanical wavefunction ¥, and a
four-part scaling scheme. The resulting finite element was eventually thermally coupled through
temperature dependent material parameters as discussed in Section 4 below.

4. THE COUPLED PROBLEM

4.1 Thermomechanical'Interaction

One of the P.I.s (KCP) contributed his expertise in partitioned analysis methods to the development
and testing of an unconditionally-stable, second-order accurate, staggered time integration proce-
dure for treating thermomechanical coupling. This research was led by Professor C. Farhat, who
was supported by other sources, and is reported in Reference [12]. The method described in this
article is the basis for ongoing work in thermomechanical coupling for supersonic atmospheric and
reentry vehicle structures.

4.2 Thermoelectromagnetic Interaction

On May 1992, work on a suitable finite element model for thermal conduction in a normal conductor
was started. A conventional heat conduction finite element was used and heat convection boundary
conditions were assumed. The main difference with respect to usual heat conduction analysis is
that material properties of the normal conducting finite element were allowed to be temperature
dependent. the temperature of the conductor, and that the internal heat source is coupled to the EM
current intensity via by Ohm’s law. The conducting wire problem was used as test for the computer
implementation. Insertion of actual values for material properties gave a highly ill-conditioned
system of equations for the independent variables. The ill-conditioning was overcome by use of a
specialized finite element mesh and matrix scaling techniques. These techniques as well as resuits
for the thermal elements are discussed in Reference [25].



4.3 Modeling of Quantum-State Phase Changes

After developing EM finite elements for the normal and superconducting phases of a conductor
and adding thermal effects to each element separately, they were used to form a comprehensive
program that could choose the correct quantum-state (QS). The correct state is determined by
checking whether the critical temperature of the conductor and the critical magnetic field have been
exceeded. If they are, the program uses the current-predicting element discussed in Section 3.3,
coupled with the thermal element of Section 4.2. Otherwise the the program uses the Ginsburg-
Landau superconducting finite element discussed in Section 3.5. In the most general case these
conditions hold over different regions of a partly-superconducting system.

4.4 Analysis of Fully Coupled Problem

The coupled EM-thermal-QS finite element models were first tested on a one-dimensional time-
independent Type I superconductor cylindrical wire carrying a specified total current. Even for this
highly idealized situation there is no available analytical solution. The finite element performed
extremely well in that several important physical phenomena were predicted. First and foremost
was the identification of the Meissner effect, which is the almost total expulsion of the magnetic
field from the superconducting interior of the conductor. The phenomenon is caused by the current
density stream traveling in a thin (skin) boundary layer at the conductor’s surface, an expected
physical behavior that was also clearly displayed by the finite element solution. The value of the
magnetic field at the conductor’s surface can be determined by analytical means and the finite
element model correctly predicted that condition.

Finally, the finite element model of the foregoing problem was tested using a variety of temperature
and current loads. These tests also followed expected physical behavior — as either the current
load or the temperature of the system was increased, the depth of the boundary layer increased
to accommodate the increasing energy of the system. The complete program performed well and
determined the correct equilibrium state, as expected, for a varity of thermal and current loadings.
These results, as well as the tracing of the nonlinear equilibrium path using incremental-iterative
solution procedures with arclength control are are discussed in detail in Schuler’s thesis [26].

The main shortcoming of the one-dimensional model is that it cannot determine the actual dis-
tribution of EM quantities at the transition point when the partly-superconducting wire suddenly
transitions to being a normal conductor. At such a branching point, the system effectively be-
comes two-dimensional thus transcending the modeling capabilities of the one-dimensional finite
elements. Time constraint on the reported research activity did not allow for the extension of the
one-dimensional elements to include this case. Such an extension is to proceed under separate
(NSF) funding as part of a Grand Challenge Applications project.



S. CONCLUSIONS

The main accomplishment of this research can be summarized as follows.

1. A general variational framework to construct finite elements for a wide range of application
problems (mechanical, thermal, fluid and electromagnetic) was developed.

2. A comprehensive set of electromagnetic finite elements for normal and superconducting media
was developed and validated. This set includes thermal coupling and current-prediction effects.

3. The first detailed simulation of partly superconducting bulk superconductors by finite element
methods. Key physical effects, notably the Meissner effect and the changes in the depth and
distribution of the normal-conducting boundary layer were clearly identified.

These accomplishments open the door to the application of the finite element method to more com-
plex coupled EM problems. In particular: more spatial dimensions, time dependency, frequency-
state-dependent material properties, high-temperature superconductivity, and EM interaction with
mechanical effects.
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PARAMETRIZED MULTIFIELD VARIATIONAL PRINCIPLES IN ELASTICITY:
. MIXED FUNCTIONALS ’

SUMMARY

A one-parameter family of mixed variational principles for linear elasticity is constructed. This family includes
the generalized Hellinger-Reissner and total potential energy principles as special cases. The presence of
the free parameter offers an opportunity for the systematic derivation of energy-balanced finite elements
that combine displacement and stress assumptions. It is shown that Fraeijs de Veubeke’s stress-assumption
limitation principle takes a particularly elegant expression in terms of the parametrized discrete form. Other
possible parametrizations are briefly discussed.

GOVERNING EQUATIONS

Consider a linearly elastic body under static loading that occupies the volume V. The body is
bounded by the surface S, which is decomposed into § : §4 U §;. Displacements are prescribed
on Sz while surface tractions are prescribed on S;. The outward unit normal on S is denoted by
n = n;. The presence of internal natural or artificial interfaces is not treated in this paper.

The three unknown volume fields are displacements u = u;, infinitesimal strains e = ¢;;, and
stresses o = o;;. The problem data include: the body force field b = b; in V, prescribed
displacements d =d; on S4, and prescribed surface tractions t=fonS. .
The relations between the volume fields are the strain-displacement equations

e=3(Vu+Viu)=Du o e =3(ui;+u) inV, ¢))
the constitutive eguations '
oc=Ee or oij = Eijueny inV, 2

and the equilibrium (balance) equations
~divo=D'c=Db or gijj+bi=0 inV, 3)

in which D* = —div denotes the adjoint operator of D = 1(V + V7).

The stress vector with respect to a direction defined by the unit vector v is denoted as &, = .v, or
o = 0;;v;. On § the surface-traction stress vector is defined as

o.=o0.n,  Of On = 0jjn;. @

7



moam T

THEEEED

-
7o,

A }

With this definition the traction boundary conditions may be stated as

on=t o oynj=f " onS, (5)

and the displacement boundary conditions as

u & or - u; = 3,' on Sd. (6)

NOTATION

Field Dependency. In variational methods of approximation we do not work of course with the
exact fields that satisfy the governing equations (1-3,5-6), but with independent (primary) fields,
which are subject to variations, and dependent (secondary, associated, derived) fields, which are
not. The approximation is determined by taking variations with respect to the independent fields.

An independently varied field will be identified by a superposed tilde, for example @i. A dependent
field is identified by writing the independent field symbol as superscript. For example, if the
displacements are independently varied, the derived strain and stress fields are

e = 1(V+VDi=Dg, o* = Ee¢* = EDi. )]
An advantage of this convention is that u, e and o may be reserved for the exact fields.

Integral Abbreviations. Volume and surface integrals will be abbreviated by placing domain-
subscripted parentheses and square brackets, respectively, around the integrand. For example:

v & [v Fav. (fls & fs £ds, 115 & fs £ds, (f1s & [& Fds.  @®

If f and g are vector functions, and p and q tensor functions, their inner product over V is denoted
in the usual manner

€.gy & fv fgdV = fv fgdv, @ qy fv p.qdV = /V pig;dV, )

and similarly for surface integrals, in which case square brackets are used.
Domain Assertions. Finally, the notation

(@=8)y, [la=bls, [a=bls, [a=Dbl, | (10)

is used to assert that the relation a = b is valid at each point of V, §, Sy and S, respectively.



In addition, Oden and Reddy? list an “unnamed” functional whose ¢-generalized version is
I}, (@, 5, 1) = (0*, )y — 3(5. €%y — (&, e*)y — P". (19)
These three functionals are special cases of the following parametrized form
(5, 6,0 = (1 ~ y)(0*, &)y - Ly (&, e%)y + (5. %)y — FF, - (20)

where y is ascalar. If y = 1, 0, —1 we obtain the functionals IT%,, IT%, and I}, respectively. The
first variation of (20) is

8IT, =y (¢* —e7?,85), — (dive? + b, éii)y
y v

- [i- 3.8, ~ [~ o7, 0], ~ [u-a.51]_. @D
in which o7 and o} denote the y-wei;,rhted stresses
o Lyo+U-p*, of & yo,+1-y)d 22)
If y # 0, the Euler equations and natural boundary conditions are
(e* = e")y., dive” +b=0)y, [0 =15, [0 =15, [u=dls,. (23)

The constitutive equations do not appear since they are enforced a priori in I,. If y = 0, the first
Euler equation drops out.

ENERGY BALANCING

Distances. Let U(e) = %(Ee €)v denote the strain energy associated with field €. We may rewrite
(20) as a potential-energy deviator

I, =M% — y Ue* — %), . (29

Y
because
Ity — e =(c,e° —e")— (-*, e )y =
v/2 ’ R (25)
(0‘" - &, e — e")v = (Ee“ - Ee", e — e")y.
If E is positive definite, U (e* — e”) > 0 and consequently
m, <M, if y>0. . (26)

If @ is kinematically admissible, [T}, exceeds the exact potential energy as shown below. It follows
that to improve solutions in energy we expect to take y > 0. Thus principles associated with y < 0
have limited practical interest.
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Let IT(u) denote the exact potential energy

M) = (o, e)y — (b, w)y — [t,ul;, (27

where o and e denotes the exact stress and strain field, respectively. If i is kinematically admissible
and thus satisfies [U = d]s .» then the energy distance from IT% (@) to the exact functional (27) is
(see e.g. §34 of Gurtin?*)

Mp—M=3c" -0, —e)y =Ule* —¢) (28)

Optimal Approximation. To derive an “energy balanced” approximation we impose the condition
IT;, = I, which yields ‘
’ _UE -9 _ (" —0o,e“ —¢e)
Yo = T —e) (ot -5, ¢ —e)
For example, if we assume that the exact stresses and strains lie halfway between the approximate
fields,

(29)

o=1("+5), e=i( +e9), (30)

THREE-FIELD DISCRETIZATION
To construct a 3-field finite element approximation based on IT},, globally assume*
(@=Nq),, (F=Aa), [t=Ss] (31)

Here matrices N, A and S collect generalized displacement shape functions, internal stress modes
and boundary traction modes, respectively, whereas column vectors q, a and s collect generalized
displacementst, stress mode amplitudes, and surface traction amplitudes, respectively. The derived
fields are

(¢‘=DNq=Bq)y, (¢*=EBqy, (¢ =E"'5=E"Aa)y. 32)
Inserting these expressions into IT;, we obtain the algebraic form

I} (a,q,8) = 3(1 ~ ¥)'K.q - jya"Ca+yq"Qa— q'f, —s"Rq —s"f,.  (33)

The matrices K,, C, Q and R that appear in (31) are called displacement-stiffness, compliance,
leverage and boundary-dislocation matrices, respectively, and are given by

K, =@B'EB)y, C=(ATE'A)y, Q= (B"A)y, R=[S"N], (34)

* Following usual practice in finite element work, the components of o and e will be arranged as column
vectors whereas the moduli in E will be arranged as a square symmetric matrix.

t If q are nodal displacements, N contains conventional shape functions. But for the present study we need
not specialize to that level.
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Both K, and C are symmetric. The forcing vectors are

f,= N"b)y +[N"tls, £, = —[STd]s, (35)

Vector f; contains generalized forces (conjugate to q) whereas f; contains generalized displace-
ments. Making (33) stationary yields the linear system

-yC yQT 0 a 0
yQ (-»K, -RT |[{qi=1{f, (36)
0 -R 0 s] |

The first matrix equation is the discrete analog of (¢ = €”)y in (23) and expresses internal compat-
ibility. The second one is the discrete analog of the next three relations, and expresses equilibrium.
The last relation is the discrete analog of [u = ii]s, and enforces boundary compatibility.

Since there is no force term on the first matrix equation, the stress amplitude vector a can be readily
condensed out if C is nonsingular, and we get

[—Iiz —gr]{g}= {f»"] - @37

K=(1-y)K,+yQCQT = (1 - y)K, + vK, (38)

is the effective stiffness matrix. This is a y-weighted combination of the displacement-assumed
stiffness matrix K, and the stress-assumed stiffness matrix K, = QC~!Q’. If the assumed
displacements satisfy [d = &]s,, the contribution from [t, & — a]s, drops out and we are left with
the conventional stiffness equations

where

Kq=f, (39)

LIMITATION PRINCIPLE

The famous limitation principle of Fraeijs de Veubeke® takes on a particularly striking algebraic
representation in terms of the parametrized matrix system (36). This principle applies when the
derived stress field o* is contained in the assumed stress field 5

&30 =EDi (40)
This inclusion can be expressed in matrix form as
&=Aa=EBa, +A,a, = [EB A,]{:q} ~ 41)
X

Here a; contains the same number of entries as q whereas A, contains “excess” stress modes.
Inserting (41) into (36) and calling Q; = (BTA,)y and C;, = (ATE"'A,)y we get

-rK. -vQ.  vK, 0 a, 0

-yQl -vCx QI 0 ar{_10 (42)
rKk  vQ (A-yK. -RT|]q f,
0 0 -R 0 s f;
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The first two matrix equations give a, = q and a, = 0. Dropping the equations associated with
the extra stress modes reduces (42) to

-vKy 127 0 q 0
vyKie (1-v)K, ~RT q: = fq 43)
0 -R 0 S f,

which obviously condenses to (37) with K = K, for any y. The solution (q, a, s) becomes
independent of y. In other words, it is useless to inject additional degrees of freedom in the stresses
beyond o* if the three-field variational principle is used. Furthermore, if o = & there is no point
in using anything else than the potential energy principle y = 0.

In fact the limitation principle expresses nothing more than the algebraic identity, valid for any y,

—-yX —yY yX X 0
—yYT —yzZ YT o}=10 (44)
yX Y (Q-y)X]|x Xx

where X is symmetric and Y, Z arbitrary.

Constant Stress Assumption. If the derived field o* varies over V, assuming a constant stress field
& for & is a safe way to get around the limitation principle. In this case it is convenient to take
a = & and A = I (the identity matrix) in (31) so that (& = &)v. Then the stress-assumed stiffness
matrix is

K,=vBEB 45)
where v denotes the total volume v = (1)v, and B and E are the over-the-volume averages

B=@®w/v, E =@E"Y/v (46)

The effective stiffness matrix (38) is a weighted average of K, and K,. Since K, is typically rank
deficient, y = 1 is excluded.

TWO-FIELD DISCRETIZATION

If the relation [t = oals is imposed a priori as an essential boundary condition, t is no longer
an independently varied field, and IT, becomes a two-field functional. The last finite element
assumption of (31) is replaced by

[’ = 0, = Asa]s,, . (47)

where A, denotes the normal projection of A on Sy, and the finite element equations become
[ ~yC Y(Q+P)T][a}={fa} (48)
yQ+P) (1-v)K, ] |4g L)’ '

P=[N"A,ls, f.=[N"dls,. (49)

with
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A range analysis such as performed in the previous subsection reveals that the limitation principle
does not generally apply if [u # dJs,. The effect of the additional stress modes is to improve the
satisfaction of boundary compatibility. But if the assumed displacements satisfy [u = d] s;» Pand
f, drop out and the limitation principle again holds.

RELATED FINITE ELEMENT MODELS

The parametrized functional IT, may be used to construct finite element models by treating each
element as a body of volume V and the element boundary as S. These elements differ from
conventional ones in the appearance of the parameter y. The element type will depend on the
number of independent fields and the interelement continuity imposed on them. The most useful
combinations are listed in Table 1.

Table 1 Some Finite Element Models Derivable From IT,

No of Interelement Connected Condensed Resulting Limitation
independent  continuity on* freedoms  freedoms FE principle
fields @ & t : model - applies?
2 c d x q a “stress relaxed”
displacement yes
2 d ¢ 1 s q continuous-stress
traction-connected hybrid no
3 d d ¢ s q, a discontinuous-stress

traction-connected hybrid yes

* c=continuous, d=discontinuous, x=not needed, l=linked to & via (47)

NUMERICAL EXAMPLE

The application of the preceding theory to finite element development is illustrated with a simple 2D
element that belongs to the first class listed in Table 1. Consider a rectangular 4-node plane-stress
element referred to the x = x; and y = x, axes located along the rectangle sides. The element
has constant thickness k, x-dimension L, y-dimension H = pL, and is made of isotropic elastic
material with elastic modulus E and Poisson’s ratio v. The internal displacement field (¢ = u;,

= u,) is constructed by the usual bilinear assumption, which satisfies interelement continuity.
The internal stress field (0xx = o1, 0yy = 0%, Ty = 0|2, Others zero) is constant. An independent
surface traction field is not needed. The question investigated here is the value of y that optimizes
the behavior of the element in pure in-plane bending along the x axis.

The element freedom arrangement is

qT=(ul Uz U3 us vV v Vi W), aT=(°'xx Oyy txy)- (50)
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The exactly-integrated conventional displacement stiffness is given by

-k ky ks ks ks k¢ ky kg
ki ki ks ks kq ks ks
ky k2 ki ks ks kg
kv ke ks ks Kk
K, = . 51
i ks ki ku ki Gl
ke ki kn
symm ke kio
5 ko
where
= &1 -v+2p9), = &1 —v-4ph), ky = — m(l v+2p%),
k4=__E_h_(l_v_p2)’ k5=_8(1+v)v kﬁ—- (1—'3‘}),
kbh=-E1+v), kg = —E2(1 + 3v), ky =~ 2+ (1-v)p?),
kio = —5(1 -(1=v)p?, ky=- ,zp(2+ (1-v)p?), kp= —m(Z (1- V)pz)-(sz)
The stress-assumed stiffness K, is given by (45), in which
_ ) -1 1 1 =1 0 0 0 0
B= EZ 0 0 0 0 -1/p =~=1/p 1/p 1/p |,
-1/p —=1/p 1/p 1/p -1 1 1 -1 53)
_ E 1 v O
E=E= ={v 1 0|, v=hHL=phL%
1=v1o 0o L
_ 2

K is the weighted combination (38). The test displacement field is that of pure bending about x:

u=-kxy , v= %sz (54)
where « is the deformed beam curvature under the displacement field. Calculation of the energy
ratio (29) over the element through MACSYMA vyields

1-v
Yopt = ] (55)

-v42p%
For a square element, p = 1 and y,, varies from 1/3 to 2/10 as v changes from O to 1/2. This result
was checked by solving the classical 4:1 cantilever beam problem (see Ref. 6, p. 49) forv = 0
with meshes of square elements. The values listed in Table 2 pertain to the two load cases of pure
bending moment and parabolically-varying end shear, and are reported as the ratio of the computed
to the exact tip displacement.

It is seen that this “stress relaxed” displacement model verifies (55) in that y = 1/3 yields signifi-
cantly better accuracy. However, the fact that the optimal y depends strongly on the element aspect
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Table 2 Computed/Exact Tip-Displacement Ratios for Cantilever Problem (v = 0)

Mesh y  Constant moment End shear
1 x4 0.0 0.6666 0.6631
173 1.0000 0.9794
23 2.0000 1.9291
1.0 oo* oo*
2x8 0.0 0.8889 0.8841
173 1.0000 0.9911
213 1.1142 1.1280
1.0 1.3333 1.3118
* Rank deficient

ratio makes this “weighted stiffness” approach of dubious practical value for elements of arbitrary
shape. The formulation discussed in Part II? attacks the optimal-element problem in a more general
way through field decomposition and energy orthogonality arguments.

OTHER PARAMETRIZATIONS

A one-parameter family of strain-displacement mixed variational principles derived from the Hu-
Washizu functional (11) by eliminating the stress field can be represented as

n‘ﬁ(ﬁv é, ) = %(1 = ﬁ)(au’ eu) - %B(a‘vé)v +ﬂ(0", eu)V - P" (56)

where B is a scalar. For 8 = 0 we recover again I/, whereas if 8 = 1 we obtain the Reissger—type
strain-displacement principle listed in Oden and Reddy® generalized with an independent t:

i@, &t = ....zl;(a", &v + (o°,e")y —- P’. 7

Continuing along this path, a two-parameter, four-field family that embeds both 1‘1;, and I} is easily
constructed as

@& 5,8 =1(1-8=y)a* )y + (1 - Hy{(G, ey - 1(E, %)y} (58)
+ (l - y)ﬂ[(aer eM)V - %(dev é)V} - P"

This functional yields stress-displacement principles for 8 = 0 and strain-displacement principles
for y = 0. Finally, the Hu-Washizu principle itself may be embedded in a three-parameter form

My, = (1 - )Ty +all}, (59)

which obviously reduces to I}, for @ = 1 and to ITj,, for @ = 0.

The superiority of one parametrized form variational principle over another as regards the construc-
tion of energy-balanced finite elements is not clear at this time.
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CONCLUDING REMARKS

The parametrization (20) of the stress-displacement variational principles provide a unifying frame-
work for the development of finite elements. This framework embodies the potential energy
and Hellinger-Reissner principles, and encompasses displacement-assumed elements, conventional
mixed elements and traction-connected hybrid elements. But it does not cover developments such
as displacement-connected hybrid finite elements, incompatible elements and the free formulation.’
To accomplish that one has to continue the process by introducing a d-generalized version of (20),
internal boundaries, internal-field energy-orthogonal splitting, and selective kinematic constraints.
These extensions are covered in a sequel paper.?
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PARAMETRIZED MULTIFIELD VARIATIONAL PRINCIPLES IN ELASTICITY:
Il. HYBRID FUNCTIONALS AND THE FREE FORMULATION

SUMMARY

A one-parameter family of d-generalized hybrid/mixed variational principles for linear elasticity is constructed
following a domain subdivision. The family includes the d-generalized Hellinger-Reissner and potential energy
as special cases. The parametrized principle is discretized by independently varied internal displacements,
stresses, and boundary displacements. The resulting finite element equations are studied following a physically
motivated decomposition of the stress and internal displacement fields. The free formulation of Bergan and
Nygird is shown to be a special case of this element type, and is obtained by assuming a constant internal
stress field. The parameter appears as a scale factor of the higher order stiffness.

INTRODUCTION

This paper continues a study, initiated in Part I!, of parametrized stress-displacement variational
principles in linear elastostatics. The boundary value problem is as follows. We consider an elastic
body of volume V and surface § : S; U S4. Surface tractions t are prescribed on S, whereas
displacements d are prescribed on S;. The internal (volume) fields are displacements u, stresses &,
strains e and given body forces b. The internal field equations are e = Du, ¢ = Eeand D*c = b
inV, where D = %(V + VT), D* = —div, and E is the elastic modulus operator. The boundary
conditions are u = d on Ssand o, = ton S,.

The reader is referred to Part I! for additional notational conventions. Therein the following
parametrized functional was introduced:

(@, 5,1 = (1 — y)(0*, &)y — ;7(5, € )y + (5. ¢)y — P', ¢))
where y is a scalar, and P’ is the forcing potential
P'(@, 1) = (b, @)y + [t, & — ], + [t, s, @

In this functional the volume fields i, €, &, and the surface field t are subject to independent
variations.

This functional “interpolates” the ¢-generalized Hellinger-Reissner and total potential energy func-
tionals IT% and I1%, which are obtained for y = 1 and y = 0, respectively. The qualifier “s-
generalized” means that the surface traction field t is varied independently whereas in the conven-
tional form of those principles, the constraint [t = &,]s is enforced a priori.
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Figure 1. Intemal interface example.

INTERNAL INTERFACES

In the following subsection an alternative version of (1) is constructed, in which boundary displace-
ments d can be varied independently rather than boundary tractions t. These displacement play the
role of Lagrange multipliers that relax internal displacement continuity. Variational principles of
this form will be called d-generalized.

The choice of d as independent field is not variationally admissible on S, or S;,. We must therefore
extend the definition of boundary to include internal interfaces collectively designated as S;. Thus

On §; neither displacements nor tractions are prescribed. A simple case is illustrated in Figure 1,
in which the interface S; divides V into two subvolumes: V* and V-.

An interface such as S; on Figure 1 has two “sides” called S; and S;", which identify S; viewed as
boundary of V* and V=, respectively. At smooth points of S; the unit normals n* and n™ point in
opposite directions.

The integral abbreviations of Part I generalize as follows, using Figure | for definiteness. A volume
integral is the sum of integrals over the subvolumes:

v & Jdv+ | fav. @)

v-

An integral over S; includes two contributions:
le)s < f gtdS+ / g~ ds. (5)
st 5

where g+ and g~ denotes the value of the integrand g on S;" and S}, respectively. These two values
may be different if g is discontinuous or involves a projection on the normals.
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PARAMETRIZED 4-GENERALIZED MIXED PRINCIPLE

Variational Principle. The d-generalized counterpart of IT, is

M@, &, d) = 1(1 - y)(*, €y — 375, &)y +y(G,€)y = P (6)
This agrees with (1) except for the forcing potential, which is
P(@, &, d) = (b, @)y + [5n, @ — dls, + (£, @5, +[5n, 1 —dls. )
Defining the y-weighted stresses

o Eye+(-y)* vV, o Eys.+1-y)a: onS. (8)

the first variation can be written
ST =y (¢* — €7, 85), — (divo” +b,sl)y — [t - o7, 8i]

—[6. - &7, 88, - [u -4, a&,,] )

S4 S
~ [0 - &%, 80 ~ [6-d.65]_— [&m 5d),

Since d is unique on S; whereas @ and & are generally discontinuous on it, the interface integrals
in (9) split as follows:

o[- (10)

Setting the first variation to zero and taking (10) into account, the Euler equations and natural
boundary conditions for y # 0 are found to be

(e =¢)y, (dive* +b=0)y, [of = tls, [oa=0%ls, [u= dls, .,

(1)
(7 +of =0)5, (o) +0; =0l5, [t=u =dls, [0+, =0l
If y = O the first equation, (¢ = €°)y, drops out.
Modified Forcing Potential. Substituting d in lieu of u in the potential (7)
PG, &,d) = (b, ®)v + [5n, d — dls, + (L dls, +[&n, 8 — dls. (12)

is not variationally admissible because incorrect Euler equations result. This form has appeared,
however, in publications dealing with mixed-hybrid methods. A correct potential that resembles
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(12) can be obtained in two stages. First, surface terms [&,, ii — d] s, and [&,, @i — d] s, are added
and subtracted to produce

PY(ii, &,d) = (b, &)y + [5,, d — d]s, + [6, — &, @5, + [L, d)s, + (5, & — d]s. (13)

Second, t is assumed to be in the range of &, and the condition [&, = i], satisfied a priori, reducing
(13) to } | L 3 :
Pi@,5,d) = (b, D)y + [&,,d - dls, + [L. dls, + [5a, i — dIs. (14)

This expression differs from (12) in that the all-important surface dislocation integral is taken over
S rather than §;. Further simplification results if the displacement boundary conditions [d = d]s,
are exactly satisfied:

P4(ii, &,d) = (b, @)y + i, d]s, + [F,, 1 — d]s. (15)

This expression of P? is used in the sequel, as modifications required to account for the case
[d # d]s, are of minor importance.

FINITE ELEMENT APPROXIMATIONS

In this section the finite element discretization of I'If, 1s studied. Assume formally

(@=Ng)y, (F=A4Aa),, [d=VWv]. (16)

Here matrices N, A and V collect generalized-displacement shape functions, internal stress modes
and interface displacement modes, respectively, whereas column vectors q, a and v collect gen-
eralized internal displacements, stress mode amplitudes, and generalized interface displacements,
respectively. The assumed volume fields need not be continuous across S. The derived fields are

(¢ =DNg=Bq)y, (c* =EBq)y, (¢° =E'4=E"'Aa)y. (17

Inserting these expressions into I"I;‘, with the forcing potential (15), we obtain the algebraic form

NZ(a,q,5) = {1 - ¥)q"K.q - 1ya"Ca+ yq"Qa— q"Pa+ v La— q'f, — v7f,. (18)
where

K,=@B"EB)y =K], C=@A'E'A)y=C", Q=(®B"A)y,

. 19)
L=[VTA.s, P=[N"Als, f,=N"b)y, £ =[Nils. (

The matrices K,, C, Q, L and P are called internal-displacement-stiffness, compliance, leverage,
force-lumping, and boundary dislocation matrices, respectively. Making (18) stationary yields the
linear system

—yC yQT—pPT LT a 0
yQ-P (1-yK, 0 q; =11, (20)
L 0 0 v f,
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The first matrix equation is the discrete analog of the first, fifth and eight relations in (11), and
expresses internal and boundary compatibility. The third equation is the discrete analog of the
last relation, and expresses equilibrium across S;. The second one is the discrete analog of the
remaining relations, and expresses internal and boundary equilibrium.

Stress Condensation. If C is nonsingular, the stress amplitude vector a can be statically condensed
from (20), giving
e )= @
va y_lKv v fv

K, = (1-y)K, +yQC'Q7 - (PC'Q7 + QC~'PT) + y~'PC !PT,
Kp=LC'(Q" -y~'PT), K,=LC'L.

The coefficient submatrices will be identified as follows: K, is the internal stiffness matrix, K,

is the boundary stiffness matrix, and K, is a internal-to-boundary coupling stiffness. The in-

ternal stiffness is similar but not identical to the effective stiffness matrix of ¢-generalized mixed
principles'. We now proceed to reinterpret these results in terms of hybrid elements.

HYBRID ELEMENTS

Approach. The preceding treatment is relevant to the construction of displacement-connected hybrid
elements. Hybrid elements based on more restricted assumptions were originally constructed by
Pian and coworkers>~*. The principal features of the hybrid approach are:

in which

(22)

(D The domain is subdivided into elements before the variational principle is established.

(Il Continuity requirements across element boundaries are relaxed by introducing boundary trac-
tions or boundary displacements as Lagrange multiplier fields.

(IIT) All stress and internal-displacement degrees of freedom are eliminated (by either static con-
densation or kinematic constraints) at the element level.

Feature (I) says that hybrid functionals are effectively mesh-dependent, since the domain subdivision
process introduces element boundaries which must be treated as internal interfaces, and therefore
become part of the boundary portion S;. Previous developments remain valid if we reinterpret
“body” as “individual element,” “volume” as “element volume,” and “surface” as “interelement
boundary.”

Continuity and Connectors. The internal fields & and & may be discontinuous across elements.
The boundary displacement field a, however, must be continuous on S;, i.e. it must have the same
value on adjacent elements. This conditions may be satisfied if d on an interface separating two
elements is uniquely interpolated by nodal values on that interface. It is natural to take such nodal
values as entries of v, which automatically becomes the vector of connected node displacements or
connectors.

FIELD DECOMPOSITION

In this and subsequent sections we work with an individual element unless otherwise noted. The
element volume is V and the element surface is S : Sy U S, U S;. The v subvector contains the
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element-connector degrees of freedom, whereas q and a contain internal freedoms. To gain further
insight into the structure of the element equations and to link up eventually with the free formulation,
we proceed to decompose both internal element fields as follows.

Stress Decomposition. The assumed stress field, &, is decomposed into a mean value, &, and a
deviator:
og=0+0, =0+ Apap, (23)

in which
= (g)v/v, (An)v =0, (24)

where v = (1)y denotes the element volume. The second relation in (24) is obtained by integrating
(23) over V and noting that a, is arbitrary.

Internal Displacement Decomposition. Next, the @ assumption is decomposed into rigid body,
constant strain, and higher order displacements:

ii = N,q, + Ncq, + Niqy. (25)
Applying the strain operator D = $(V + V7) to il we get the associated strain field:
¢* = DN,q, + DN.q, + DN,q; = B,q, + B.q, + B.q,. (26)

But B, = DN, vanishes because N, contains only rigid-body modes. We are also free to select
B. = DN_ to be the identity matrix I if the generalized coordinates q, are identified with the mean
(volume-averaged) strain values &. Then (26) simplifies to

e’ =& + e =& +Byq,, (27)

in which
q. =& = (e“)v/v, Bi)v = 0. (28)

Equation Partitioning. Assume that all elastic moduli in E are constant over the element. The
degree of freedom partition

= q,
a=[”}, q=1{&, (29)
ap
4
induces the following partition of the element equations
- —yvE™! 0 —ﬁ,r yvl —-?: -F: frj (&) (0 )
o o B, P QB L |la] |o
_P,_ Py, 0 0 0 0 | (-15 | _ for | (30)
yvl— P, Phc 0 (-ywE 0 0 € foc
Py yQu—=Pw O 0 1-y)Kp O | q, fgh
I ~L 0 0 0 o JUv 1 UE
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where
C,=(ATE'Ay)v, Q.= BIA)v,  Kgu = BiEByv,
E:[NT ]s’ x=rc,h, P;,,:[NZA;,,,]S. x=rch 3D

xn

L=[VTls, Li=[VTAmls, f=Nby, x=rch

Integral transformations. Application of the divergence theorem to the work of the mean stress on
e“ yields

(G, ey = (&, 8 + Brqy)y = v&T& + &7 (By)vq, = v5' & 32
=[G s = [6a N,q, + N8 + Naqy ] = &7 (Prq, + P& + Piy)-
Hence,
P, =0, P. = I, P, =0. (33)

A similar analysis of the stress-deviator work (&, e*)y does not yield simple forms for the Py,
matrices unless o, is divergence-free, in which case

Py, =0, Py =0, Pur = Q. (34)

Assuming (34) to hold, the element equations (30) simplify to

- —yuE"! 0 0 —(1 -yl 0 T'9(51 (o0
0 -yCy 0 0 —(1-)Qf L || a, 0
0 0 0 0 0 0 <¢_.1£}=*fq,}(35)
—(1 —y)vl 0 0 (1-y)uE 0 0 e foc
0 ~(1-y)Q; 0 0 (1-y)Kp 0 || o
R L, 0 0 0 ol UV )

The stress freedoms & and a, may be eliminated by static condensation as before. To eliminate
q,, a kinematic transformation that uniquely determines the rigid body motion from the element
interface motion is constructed:

q, = H,v (36)

where H, is a rectangular matrix derived in Appendix 1. Elimination of &, a, and q, gives

LryE 0 ~LrgLT ] e £,e
0  (-»Ku+rvKen Ky qQ { = ” €%
T T
-—'—;"—LE Kyuh vy K, \/ f, + H, f,

where —
Kon = Q:Cr'Q0, Ko =LiC;'Qf, Ky =K, + K,

— — T (38)
K,=v'LEL , K, =LC;'L]
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Mean Strain Elimination. Subvector & may be eliminated in two ways. Static condensation gives

[(1 - K +vKon KL, } { a } _ { £ ] 39
Kquh Ko+y 'Kl v f, + HTf,, + v™'Lf,,
Onthe other hand, if € is eliminated through the kinematic constraint & = H_.v derived in Appendix
1, ’
[u —VKp+vKen Ky, ]{q,. } =[ fon } (40)
.I(qvh K:; + y—lth v fu + Hz'fqr + Hzch
where .
K, = y~'K, + —L (vHTEH, - HTEL’ - LEH, ) 41)
The two methods furnish identical results if
157
H.=v™'L (42)

As discussed in Appendix 1, this relation may be obtained from the first matrix equation in (35)
if either y = 0, or e* = & = E~'5. The last condition is obtained in the limit of a converged
solution as the patch test analysis of Appendix 2 shows. In practice any difference between (39)
and (40) for y # 0 is not significant, and (39) is preferable on grounds of simplicity.

THE FREE FORMULATION

The free formulation of Bergan and Nygard® was originally constructed as an incompatible dis-
placement model that passes a cancelling-tractions version of the patch test which Bergan and
Hanssen called the individual patch test®. Here the formulation is reinterpreted in the context of a
displacement-connected hybrid variational principle.

First, assume that the internal stress field is constant, so there are no a, parameters. Then (39)

reduces to
A-y)Ku 0 q | _ fon
— = T -5 43)
0 K, A f,+H, for +v quc

The equations for q, uncouple. Consequently static condensation of q, will not change the solution.
We have run into a displacement limitation principle. This leads to the second assumption: the
higher order internal displacement modes are eliminated by kinematic constraints that link g, to
the boundary displacements:

q; = Hyv (44)

Matrix H, is derived in Appendix 1. Application of this constraint to (43) furnishes the final
stiffness equations ’

Kv=[K,+ (1 =-y)Kslv=1 (45)

where
K, =K, Ki=H[KuH, f=f,+Hf, +v 'L, + Hf. (46)
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In the free formulation, K; and K, receive the name basic and higher order stiffness matrices,
respectively. A % scaling of K, derived from energy-balancing studies was recommended by
Bergan and Felippa’ for a plane stress element. This corresponds to taking y = %

CONCLUDING REMARKS

It has been known’ that the basic-stiffness part of the free formulation can be interpreted as a
constant-stress hybrid element. But the interpretation of the higher order stiffness within a varia-
tional framework has been difficuit. A key result of this paper is that this can be accomplished by a
parametrized mixed-hybrid variational principle. Note that the free formulation cannot be obtained
within the conventional Hellinger-Reissner principle (y = 1), since then the higher-order stiffness
vanishes and K = K, is generally rank-deficient. And choosing ¥ = 0 does not account for the
fact that the higher order stiffness can be scaled by a nonzero coefficient.

The variational framework is important because it allows consistent extensions of the free for-
mulation that are not obvious from a physical standpoint. For example: allowing more internal
displacement degrees of freedom than boundary freedoms, i.e. m = dim(q) — dim(v) > 0. A
glance at (39) shows that m additional higher-order divergence-free stress fields have to be retained
so that the coupling stiffness K, does not vanish. The reduction of q, can be then performed by
a combination of static condensation and kinematic constraints.
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APPENDIX 1: KINEMATIC CONSTRAINTS
One of the principal assumptions invoked in the free formulation is that the dimension of q is the same as that
of v and that the latter are physical node displacements. If so, evaluation of the expansion @ = Nq on the
element boundary S establishes the transformation
v=_Gq 47

where matrix G is square. Furthermore, suppose that G is nonsingular and can be inverted:

q=G"'v=Hy, (48)

q, H, :
q=[qc}=[l-lc v. (49)
Q H,x

The first matrix equation (the discrete compatibility equation) in (20) can be presented as

or, in partitioned form

ye —e,A), =LTv-QTq= L™ -Q"Hyv=(1L"6-Qa. (50)
Setting y = O forces the constraint
LT=Q™H o L'G=¢Q (51)

to be satisfied. The same constraint emerges if y # 0 and the finite element solution has converged in the
sense that e* = €° is constant over the element. Now carrying out the freedom partition (29) and assuming
divergence-free higher order stresses so that (34) holds, the constraint (51) partitions as

—T H =T
L |_T0 vI O " L [0 vI O
E]-0% glm] @ [Ble e a-be gl @

from which follow the relations

TG, =0, LG =ul, L =uH, LG =0

53
LG, =0, LIG. =0, Li=uvH, LiG=L 53)

The first four were obtained through other means by Bergan® and Bergan and Nygard®, who called them
the force orthogonality conditions on account of the physical interpretation of L as a “boundary nodal force
lumping” matrix.

APPENDIX 2: THE CANCELLING-TRACTIONS PATCH TEST

It is not apparent whether this element class passes the patch test for an arbitrary y. To investigate this question
we use the sketch of Figure 1 and view the subvolumes V+ and V- as two elements connected along S; with
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an external traction boundary S;. Both elements are in a state of constant stress 09. The prescribed surface
tractions are [t = og,]5, and the body forces b vanish. We take (35) to be the governing equations for the
two-element assembly. The only nonzero forces are f, = [VTt]s, . The key observation is that

L=Vl =[V]]s. (54)

because the integral over S; vanishes because V is identical for both elements on account of interface com-
patibility conditions, and n* = —n~. Similarly for L,. One may verify that for any y the solution of (35)
is

o =0y =0, a; =0, e = v'lfrv, q, =0. . (55)

The connector node displacement vector v satisfies

oLEL v=f, (56)

and consistency with the third of (55) is easily verified from (54). If the rigid body modes are eliminated, '
v = G.&". Since the constant stress solution is recovered, the patch test is passed for any value of .

The physical meaning of this form of the patch test is that the interface virtual work is zero when the element
patch is in a constant stress state®.
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THE EXTENDED FREE FORMULATION OF
FINITE ELEMENTS IN LINEAR ELASTICITY

SUMMARY

The free formulation of Bergan and Nygard (1984) has been successfully used in the construction of
high-performance finite elements for linear and nonlinear structural analysis. In its original form the
formulation combines nonconforming internal displacement assumptions with a specialized version
of the patch test. The original formulation is limited, however, by strict invertibility conditions
linking the assumed displacement field to the nodal displacements. The present paper lifts those
restrictions by recasting the free formulation within the framework of a mixed-hybrid functional that
allows internal stresses, internal displacements and boundary displacements to vary independently.
This functional contains a free parameter and includes the potential energy and the Hellinger-
Reissner principles as special cases. The parameter appears in the higher order stiffness of the free
formulation element equations.
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1 Introduction

Bergan and Nyg#rd (1984) have developed the so-called free formulation (FF) for the construction
of displacement-based, incompatible finite elements. This work consolidated a decade of research
of Bergan and coworkers at Trondheim, milestones of which may be found in Bergan and Hanssen
(1976), Hanssen et.al. (1979) and Bergan (1980). The products of this research have been finite
elements of high performance, especially for plates and shells. Linear applications are reported in
the aforementioned papers as well as in Bergan and Wang (1984), Bergan and Felippa (1985) and
Felippa and Bergan (1987); whereas nonlinear applications are presented in Bergan and Nygérd
(1985) and Nygérd (1986). By “high performance” it is meant that solution of engineering accuracy
can be obtained with coarse meshes of simple elements, and that those elements exhibit low distortion
sensitivity.

The original FF was based on nonconforming displacement assumptions, the principle of virtual
work and a specialized form of Irons’ patch test that Bergan and Hanssen (1976) called the individual
element test. A key ingredient of the FF is the separation of the element stiffness matrix into the
sum of two parts, called basic and higher order stiffness, respectively. The basic part is constructed
for convergence and the higher order part for numerical stability and (in recent work) accuracy.

An intriguing question has been: does the FF fit in a variational framework? This was partly
answered by Bergan and Felippa (1985), who showed that the basic stiffness part was equivalent
to a constant-stress hybrid element. But persistent efforts by the present author to encompass the
higher order stiffness within a hybrid variational principle were unsuccessful until the development
of parametrized mixed-hybrid functionals in Felippa (1989a,1989b). With the help of these more
general functionals it is possible to show that the FF is a very special type of mixed-hybrid element
which does not fit within the classical Hellinger-Reissner principle. In retrospect the classification
of FF elements as hybrids is not surprising. Under mild conditions studied in the Appendix, hybrid
elements satisfy Irons’ patch testa priori, and the FF development has been founded on that premise.

To encompass the FF within the hybrid framework, the following assumptions must be invoked.

@ A specific hybrid functional, identified as H')‘, in the sequel, is constructed. This functional
depends linearly on a parameter y. :

(I Three fields are assumed over each element:
(a) aconstant stress field,

(b) an internal displacement field u defined by n, generalized coordinates collected in
vector q, and

(c) aboundary displacement field d defined by n, nodal displacements collected in vector
Y. '

Both d and u must represent rigid body motions and constant strain states exactly.

() The number of generalized coordinates, n,, equals the number of nodal displacements, n,,
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and the square transformation matrix G relating v = Gq is nonsingular.

In Felippa (1989b) it is shown that substituting the finite element expansions into nf,, rendering the
functional stationary with respect to the degrees of freedom, and eliminating both internal fields by
a combination of static condensation and kinematic constraints, leads to the FF stiffness equations
in terms of the nodal displacements v. The parameter y appears as a coefficient of the higher order
stiffness. These stiffness equations can be readily implemented into any displacement-based finite
element code.

This variational pathway to FF is of interest for two reasons. First, it explains the behavior of FF
elements as regards convergence, stability and accuracy. Second, it opens up the door to extensions
that are not obvious from a physical standpoint. Two such extensions involve: retaining higher
order stress fields, and allowing more internal displacement modes that nodal displacements, that
is, ny > ny. The main purpose of this paper is to study these two extensions, which are shown to
be closely related. The resulting framework for deriving finite elements in elasticity is called the
extended free formulation (EFF).

2 Governing Equations

Consider a linearly elastic body under static loading that occupies the volume V. The body is
bounded by the surface S, which is decomposed into S : S; U S;. Displacements are prescribed
on S; whereas surface tractions are prescribed on ;. The outward unit normal on S is denoted by
n=n;.

The three unknown volume fields are displacements u = u;, infinitesimal strains e = e¢;;,
and stresses o = o;;. The problem data include: the body force field b = b; in V, prescribed

displacements d on S, and prescribed surface tractions t=1onS,.
The relations between the volume fields are the strain-displacement equations

e=L(Vu+V7wy=Du or ;=30 +u,) inV, ¢))
the constitutive equations
o=Ee or oij = Eijuenw iV, 2)
and the equilibrium (balance) equations
—divo=D'c=Db or cijj+bi=0 inV, 3)
in which D* = —div denotes the adjdint operator of D = 1(V + V7).

The stress vector with respect to a direction defined by the unit vector v is denoted as o, = OV,
or gy; = oijvj. On § the surface-traction stress vector is defined as

o, =01, or Opi = Ojjn;. 4)
With this definition the traction boundary conditions may be stated as

On =E or gijn; = f, on S;, (5)
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and the displacement boundary conditions as

u=d or u;, =d; on S,. (6)

3 Notation

Field Dependency. In variational methods of approximation we do not work of course with the
exact fields that satisfy the governing equations (1-3,5-6), but with independent (primary) fields,
which are subject to variations, and dependent (secondary, associated, derived) fields, which are
not. The approximation is determined by taking variations with respect to the independent fields.

An independently varied field will be identified by a superposed tilde, for example 4. A
dependent field is identified by writing the independent field symbol as superscript. For example,
if the displacements are independently varied, the derived strain and stress fields are

e =1(V+VDia=Di, o*=Ee=EDi. @)
An advantage of this convention is that u, e and o may be resérved for the exact fields.

Integral Abbreviations. Volume and surface integrals will be abbreviated by placing domain-
subscripted parentheses and square brackets, respectively, around the integrand. For example:

v & fv Fav, (s & fs £ds, (fls & fs £ds, [fls & fs Fds. @

If f and g are vector functions, and p and q tensor functions, their inner product over V is denoted
in the usual manner

f, &)y ‘fé‘ff.ng=fvf,-g.-dv, (P, Qv "=°ffp.qu=fpijqijdv, )
v v v

and similarly for surface integrals, in which case square brackets are used.

Domain Assertions. The notation
(@=b)v, [a = b]s, la = bls,, la = b]s,, (10)
is used to assert that the relation @ = b is valid at each point of V, S, S; and S,, respectively.

Internal Interfaces. In the following subsections a variational principle is constructed, in which
boundary displacements d can be varied independently from the internal displacements u. These
displacement play the role of Lagrange multipliers that relax internal displacement continuity.
Variational principles of this form will be called displacement-generalized, or d-generalized for
short.

The choice of d as independent field is not variationally admissible on S; or S;. We must
therefore extend the definition of boundary to include internal interfaces collectively designated as
S,'. Thus

S:5USUS;. (11)
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S: U Sy

Figure 1. Internal interface example.

On S; neither displacements nor tractions are prescribed. A simple'case is illustrated in Figure 1,
in which the interface S; divides V into two subvolumes: Vtand V~.

An interface such as S; on Figure 1 has two “sides” called S,.*’ and S, which identify S; viewed as
boundary of V*+ and V~, respectively. At smooth points of §; the unit normals n* and n~ point in
opposite directions.

The integral abbreviations (8)-(9) generalize as follows, using Figure 1 for definiteness. A
volume integral is the sum of integrals over the subvolumes:

(f)v“.—iff fdv+ | fdv. (12)
v+ V-

An integral over S; includes two contributions:
(gls: déf/ g*dS+/ g~ ds, (13)
sy s

where g* and g~ denotes the value of the integrand g on St and S, respectively. These two values
may be different if g is discontinuous or involves a projection on the normals.

4 The Hu-Washizu Principle

There are several essentially equivalent statements of the Hu-Washizu functional of linear elasticity.
The starting form used here is the four-field functional

M4, @&, &,d) = L(o°, &v + (&, ¢ - &y — P4, (14)
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where P is the “forcing” potential

Pl(@, &,d) = (b, D)y + [54, i1 — ds, + [L, iils, + [5a, & — dls;. (15)

The functional I'I‘{,, is called d-generalized in the sense that the volume fields U, &, & and the surface
displacement field d are subject to independent variations, whereas in the conventional form of the
principle the relation [d = 1i]s,us; is enforced a priori. The superscript d is used to distinguish it
from the ¢-generalized variant

W@, 88,0 =3(c" 8y + (5. e -8y - P, (16)

in which the surface tractions t are varied independently from the internal stress field . This is
the starting form in the classical textbook of Washizu (1968). Parametrized versions of (16) are
studied in further detail in Felippa (1989a).

Functionals that are not d- or t-generalized will be called conventional. The three versions
differ only in the forcing potential term.

5 Parametrization

Constraining the Hu-Washizu functional (14) by selectively enforcing field equations and boundary
conditions a priori yields six functionals listed (in their conventional form) in Ch. 4 of the monograph
of Oden and Reddy (1983). Of particular interest for the present study are the d-generalized
Hellinger-Reissner functional

N, &, d) = —1(5, &)y + (5, &)y — P7, (17)
as well as the d-generalized potential energy functional
4@, d) = 1(c*, )y — P2 (18)
These two functionals are special cases of the following parametrized form
(@, &,d) = 1(1 - ¥)(c*, €)v — §7 (5. &)y + ¥ (5. ¢y = P, (19)

where y is ascalar. If y = 1 and O we obtain the functionals 1"[‘,‘e and 14, respectively. Parametrized
forms, such as (19), of the elasticity variational principles were studied by Chien (1983).

First Variation. Defining the y-weighted stresses
def - v - def -
o/ = ya+(l—y)o* inV, ol = yo,+(1-y)o, onS (20)
the first variation of (19) can be written
§TI¢ =y (¢* — ¢, 85), — (divo” + b, sd)y — [t - o, 3]
- -y -~ 5 -
- [a',, -0/, 8u]sd - [u -d, 86"]54 21
— [0 — &7, 5]~ [3-d,85,] — [ o8]
! Si Si
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Since d is unique on S; whereas i1 and & are generally discontinuous on it, the interface integrals
in (22) split as follows:

G, — 5. 88] =[67 —5"" sut]. +[67 —67" 80,
Sl S S‘-

~ 3 -~ = =+ 3 ~ == 3 ~—
[u 4, aa] [u 4,557 ]sr + [u 4, 85; ]S.-' , @)
(5..83]_=[57.0d] , +[57.83] _ =[o7 - 57.4d]
Si S ST ;

Setting the first variation to zero and taking (22) into account, the Euler equations and natural
boundary conditions for y # O are found to be

e =e%)y, (dive’ +b=0)y, [0 =15, lon=0"ls,, [u=d]s,

(23)
o1t + 0o =0]5, [0 +o0, =05, [u'=u" =d], [of +o, =0].

The constitutive equations do not appear since they are enforced a priori in 1'1;‘,. If y = O the first
equation, (e* = e?)y, drops out.

Modified Forcing Potential. Substituting d in lieu of u in the forcing potential (15)
P, &, d) = (b, )y + (G5, d — dlg, + [{, dls, + [5n, & — 5, (24).

is not variationally admissible because incorrect Euler equations result. This form has appeared,
however, in publications dealing with mixed-hybrid methods. A correct potential that resembles
(24) can be obtained in two stages. First, surface terms [g,, 0 — d] s, and [G,, 0 — dls -, are added
and subtracted to produce

Pi@@, &, d) = (b, f)y + (&4, d — dls, — [6, — 1, )5, + [t d]s, + [55, @ — d]s. (25)

Second, t is assumed to be in the range of &, and the condition [&, = t]s, satisfied a priori, reducing
(25)t0 ) o : )
Pi@@,5,d) = (b, 0)y + [Fa,d — dls, + [t, d]s, + [Fa, G — d]s. (26)

This expression differs from (24) in that the all-important surface dislocation integral is taken over
S rather than §;. Further simplification results if the displacement boundary conditions [d d]s,,
are exactly satisfied:

P4(@, &,d) = (b, @)y + [t, dls, + [54, i — ds. 27

This expression of P¢ is used in the sequel, as modifications required to account for the case
[d # d]s, are of minor importance.
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6 Energy Balancing

Distances. Let U(e) = %(Ee, €)y denote the strain energy associated with field e. We may
rewrite (19) as a potential-energy deviator

Mé =M% —yU(e —¢), (28)

because J J
_n_,_—_& =(G,&° —e)y — (0~ )y =
y/2 ’ ’ (29)

(c* —7,¢" —e7)y = (Ee* — Ee?, e* —e%)y.

If E is positive definite, U (e“ — e’) > 0 and consequently
né<mng if y>o0. (30)

If @ is kinematically admissible, [1% exceeds the exact potential energy as shown below. It follows
that to improve solutions in energy we expect to take y > 0. Thus principles associated withy < 0 -
have limited practical interest.

Let I1(u) denote the exact potential energy

() = i(a, e)y — (b, wy — [t uls,, €))

where o and e denotes the exact stress and strain field, respectively If @t is kinematically admissible
and thus satisfies [0 = d] s,» then the energy distance from ¢ % (i) to the exact functional (31) is
[see e.g. §34 of Gurtin (1972)]

M -M=1i(c" -0, -e)y=U(e —e). (32)

Adjusting y. To derive an “energy balanced” approximation we impose the condition I'If, = II,
which yields :
Ue" —e) (" - o, e —e)

U —¢) (0“—G,¢e —e9)

Vo= (33)
For example, if we assume that the exact stresses and strains lie halfway between the approximate
fields,

o=1(c"+5), e=iE+e, (34)

then y, = +. But as the exact stresses and strains for the elasticity problem are not generally known
in advance the practical determination of y, has been based on application of (33) to element

“patches” under simple load systems, as discussed in Bergan and Felippa (1985) and Felippa and
Bergan (1987).
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Error Estimates. The strain difference e — e° may be used as a pointwise measure of solu-
tion accuracy, and the associated “dislocation work™ U(e* — e%) as an energy error measure for
applications such as adaptive mesh refinement.

7 Finite Element Discretization

In this section the finite element discretization of I'Iz is studied. Following usual practice in
finite element work, the components of stresses and strains are arranged as one-dimensional arrays
whereas the elastic moduli in E are arranged as a square symmetric matrix.. The FE assumption is
globally written 3

@=Nq)y, (F=4a),, [d=Wis (35)

Here matrices N, A and V collect generalized-displacement shape functions, internal stress modes
and interface displacement modes, respectively, whereas column vectors q, a and v collect gen-
eralized internal displacements, stress mode amplitudes, and generalized interface displacements,
respectively. The assumed volume fields & and @ need not be continuous across S;. The derived
fields are

(e =DNq=Bq)y, (¢* =EBq)y, (¢° =E'&=E"'Aa)y. (36)

Inserting these expressions into [1¢ with the forcing potential (27), we obtain the algebraic form
g p Y P g

Mé(a, q,8) = 1(1 - y)q'K,q - §¥a’Ca+ yq'Qa— ¢'Pa+ v La - ¢'f, ~vTf, (37
where ) '
K,=®B’EB)y =K/, C=@ATE'A)y=C", Q= BTA),
L=[VTA,ls, P=[NTA,l;, f,=W"b)y, f, =[N,

The matrices K,;, C, Q, L and P are called internal-displacement stiffness, compliance, leverage,
nodal-force lumping, and boundary dislocation matrices, respectively. Making (37) stationary
yields the linear system

(38)

-yC  yQf - pT LT a 0
yQ-P (1-y)K, O q¢ =115 ¢. (39
L 0 0 \ f,

The first matrix equation is the discrete analog of the first, fifth and eighth relations in (24), and
expresses internal and boundary compatibility. The third matrix equation is the discrete analog of
the last relation, and expresses equilibrium across S;. The second matrix equation is the discrete
analog of the remaining relations, and expresses internal and boundary equilibrium.

It is shown later (in Section 9) that if the assumed stress modes in A are divergence free (self-
equilibrating), then P = Q, and (39) simplifies to

—yC —-1-yQ7 LT a 0
-1-y)Q (-py)K. 0 q; =11 (40)
L 0 0 v f,

These results are now re-interpreted in terms of hybrid elements.
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8 Hybrid Elements

Approach. The preceding treatment is relevant to the construction of displacement-connected
hybrid elements. Hybrid elements based on more restricted assumptions were originally constructed
by Pian and coworkers; see Pian (1964), Pian and Tong (1969) and Pian (1973). From a modern
perspective, the principal features of the hybrid formulation are:

(A) The domain is subdivided into elements before the variational principle is established.

(B) Continuity requirements across element boundaries are relaxed by introducing boundary trac-
tions or boundary displacements as Lagrange multiplier fields.

(C) All stress and internal-displacement degrees of freedom are eliminated (by either static con-
densation or kinematic constraints) at the element level.

(A) says that hybrid functionals are effectively mesh-dependent, because the domain subdivision
process introduces element boundaries which must be treated as internal interfaces, and therefore
become part of S;. Previous developments remain valid if one re-interprets “body” as “individual
element,” “volume” as “element volume,” and “surface” as “interelement boundary.”

Continuity and Connectors. The internal fields & and @ may be discontinuous across elements.
The boundary displacement field d, however, must be continuous on S;, i.e. it must have the same
value on adjacent elements. This conditions may be satisfied if d on an interface separating two
elements is uniquely interpolated by nodal values on that interface. It is natural to take such nodal
values as entries of v, which automatically becomes the vector of connected node displacements or
connectors.

9 Kinematic Relations

In this and subsequent sections we work with an individual element unless otherwise noted. The
element volume is V and the element surface is S : S; U §; U S;. The v subvector contains
n, element-connector degrees of freedom, whereas q and a contain n,y and n, internal freedoms,
respectively. We shall assume that n, > n,.

The first matrix equation (the discrete compatibility equation) in (39) can be interpreted as the
dislocation-energy balance statement

lyG.e* —e%), —a"(PTq—LTv)y =0. (41)
Setting ¥ = 0 and observing that a is arbitrary, (41) forces the kinematic constraint
PTq=LTv (42)

to be satisfied. The same relation emerges if ¥ # O but the element displacements are forced to

obey
(0,8 —€e%)y =0 (43)
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as an optimality condition which says that the work of the strain error over the assumed stress
field vanishes for arbitrary element motions. The constraint (42) plays a key role in subsequent
derivations. An immediate consequence is that the first matrix equation in (39) reduces to the
equivalent of (43), namely yal (—Ca + Q7q) = 0, thus, if y #0,

a=C'Qq, or a=CL7v if P=Q. _ (44)
Next, suppose that q and v are connected by the linear algebraic relations

v=Gq, (45)
q = HV, (46) .

where G is a n, x n, transformation matrix and H is a n, x n, transformation matrix. The
determination of these matrices and their connecting relationships is discussed later. Using (45-46)
the constraint (42) may be stated in two ways:

PT =L7G, PTH=LT. 47

Elimination of a and q in (39) through (44)-(46), with account taken of the second of (47), yields
the external stiffness equations
Kv = f, (48)

in which
K=y [LCT'QTH+H'QC™'LT —LC'LT]+ (1 - )H'KH, f=f, + Hf,. (49)
If P = Q, system (40) reduces to (48) but with

K =yLC 'LT + (1 - y)H'K,H. (50)

10 Internal Field Decomposition

To gain further insight into the structure of the element stiffness equations (48) and eventually link
up with the free formulation, we proceed to decompose both internal element fields as follows.

Stress Decomposition. The assumed stress field, &, is decomposed into a mean value, &, and a
deviator:

O=0+0y =0+ Apa, ¢hH

in which
o= (o)v/v, (Ap)v =0, (52)

where v = (1)v denotes the element volume measure. The second relation in (52) is obtained by
integrating (51) over V and noting that aj, is arbitrary.
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Internal Displacement Decomposition. Next, the ii assumption is decomposed into rigid body,
constant strain, and higher order displacements:

i = N,q, + Ncq, + Niqy. (53)
Applying the strain operator D = %(V + VT) to i we get the associated strain field:
e* = DN,q, + DN.q. + DN,q,, = B,q, + B.q, + Bxq,. (54)

But B, = DN, vanishes because N, contains only rigid-body modes. We are also free to select
B. = DN, to be the identity matrix I if the generalized coordinates q, are identified with the mean
(volume-averaged) strain values € &“. Consequently (54) simplifies to

e =& +e; =e" +Brq,, (55)
in which

q = e = (eu)V/vr (Bh)V = 0. (56)

Equation Partitioning. Assume that all elastic moduli in E are constant over the element. The
degree of freedom partition

- q,

a=["}, q=1{ &}, (57
ap

q;

induces the following partition of the general element equations (39)

- —yvE™! 0 ~P yul-F -F, L'q(7) 0 )
0 —yCh —PT —PI. yQl —PT, LI ay, 0
—Pr— . Phr 0 0 0 0 ) (-l;- | ) fqr y (58)
yvl-P, Py 0 (1-y)E 0 0 é foc
~P, YQy =P O 0 1-»Keg 0 q, fan
| T L, 0 0 0 oJlv) Lg |
where

Co=ATE'A)v, Qu=®BlAwy.  Kgu=®BEBuv,
B, =[NL];, x=rch, Pix = [NJAw]s, x =r.c. by (59)
=VTls,  La=[VTAmls, fe=@O[by, x=rch
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Integral Transformations. Application of the divergence theorem to the work of the mean stress
on e* yields

(&, e")y = (&, 8 +Byqy)v = v& & + &7 (By)vyg, = v&Te" 60)
= [6a, 8]5 =[G4, N-q, + N& +Niq,]; = &7 (P.q, + P& + Pyq,).
Hence, _ _ _ |
P,=0, P.=vl, P,=0. (61)

A similar analysis of the stress-deviator work (o, €)y does not yield simple forms for the Py,
matrices unless &y is divergence-free, in which case

P,y =0, Pu=0, Pu=0Q,. | (62)

Hence P = Q as claimed in Section 7. Inserting (61-62) into (58) yields the partitioned form of
(40):

- —yuE~! 0 0 —(1—y)ul 0 T'9(5y (0

0 —yCy 0 0 —1-y)Qf LI || 2 0

0 0 0 0 0 o lJal_lt| g
—(1 =yl 0 0 (1-ywE 0 0 e’ P

0 ~(1-¥Q 0 0 -vKpn 0 ||an| |fa
LT Ly 0 0 0 odlv]) g

Orthogonality Conditions. If the higher order stresses are divergence-free so that P = Q, the
relations (47) partition as

—T ' H =T
0 vI 07 [L 0 vl 0 | L
oo ql=lgle e [0F g o -[g] e
whence the relations
L’G,=0, T'G.=uvl, T'G,=0 L =uvH,
T T (65)
LTG, =0, LIG.=0, LTG,=QI, LI =QlH,.

The first four were obtained through other means by Bergan (1980) and Bergan and Nygard (1984),
who called them the force orthogonality conditions on account of the physical interpretation of L
as a “boundary nodal force lumping” matrix in the free formulation studied below.

If the higher order stresses are not divergence free, the last four of (65) are replaced by

L.G =P, LG =P, LG =P,

66)
L] =P H, + P! H, + P], H,. (
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11 The Free Formulation-

The free formulation of Bergan and Nygérd (1984) was originally conceived as an incompatible
finite-element displacement model that passes a cancelling-tractions version of the patch test which
Bergan and Hanssen (1975) called the individual patch test. Here the formulation is re-interpreted
in the context of the hybrid principle (19). The assumptions that lead to the FF are listed in the
Introduction and studied in further detail below.

Constant Internal Stress. The internal stress field is constant. Consequently there are no a,

" parameters, reducing (58) or (63) to

- —yuvETl 0 —(1-yp)ul 0 T'7¢(6 [ 0 )
0 0 0 0 0l]q f,
—(l—-y)I 0 (1-y)E 0 0 [{& =11 67)
0 0 0 1=K, 0 q fon
L L 0 0 0 oldlv) f)

Invertible G. Matrix G in (45) is constructed by nodal collocation, that is, by evaluating the
expansion @i = Nq at the element boundary nodes. This establishes the transformation

q
v=Gq=[G G G,,]lé"}. (68)
9

According to the assumptions listed in the Introduction, matrix G is square and nonsingular so
inverting (68) we get

o] [H H,
q=G!'=Hv o gq={¢& }=|H [v={v'L |v (69)
9, H, Hf :
The FF Stiffness Equations. Eliminating & and q from (67) yields the FF stiffness equations
Kv =[K, + (1 - y)Ks]v =1, (70)

where
K, = v 'TE-'TL], K, =HIK, H,, f=f,+Hf, +v 'Ll +Hfp (1)

In the free formulatlon K, and K, receive the name basic and higher order stiffness matrices,
respectively. Al 3 scaling of K, derived from energy-balancing studies was recornmended by
Bergan and Fehppa (1985) for a plane stress element. This corresponds to taking y = — . Butin
general the value of y can be expected to be dependent on the type and geometry of the element

As K, is rank-deficient (except for the simplex elements) choosing y = 1, which corresponds
to the d-generalized Hellinger-Reissner functional (17), is not adrnissible.

41



1

SRS

Nure————
'

12 The Extended Free Formulation

In the extended free formulation (EFF) the number of internal displacement freedoms, n, = dim(qQ),
is allowed to exceed the number of nodal displacement connectors n, = dim(¥). We can establish
the relation (68) as before, but matrix G will now be rectangular and cannot be directly inverted.
One way of circumventing this difficulty is to retain n, ~ n, = dim(a,) higher order stress modes;
an alternative procedure is discussed in Section 13. The stress modes are assumed to be divergence
free so (62) holds. The available relations are '

v=Gq, Cian=Llv=0Qfq,, (72)
which can be combined to form the matrix system

v _[G G G 1]% |
NEEESIE

q;

The matrix on the right side is square, and invertible if G, Cx and Q, have full rank. Solving for q
and eliminating a, one obtains

o] [B 07, H, H,
q=41¢ {=|H O [a }= H, v=| H |V (74)
q H J]'™ H, + 1,C;'Qf H,

where H), and J, result from the inversion process. Since Hj, G + Ji C;!QI =1, we can express
H, as :
H, = H, + 1 - H,Gy. (75)

Having H available, replacing into (48-50) we obtain the EFF stiffness equations
Kv = [Kp + Kpn + (1 = »)Kplv =1, (76

where K, K, and f are the same as in (71), and

Koy =Ls C;lL;,. 1))

Is y = 1 now admissible? If K, + Kjn has correct rank, yes! Curiously enough, if the body force
field b vanishes and y = 1, (76) are precisely the stiffness equations for the original equilibrium-
stress-assumed hybrid elements of Pian (1964), which can of course be constructed without any
internal displacement assumptions. -
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13 Hierarchical Connector Augmentation

An alternative approach to building an invertible transformation such as (73) consists of augmenting
v with n, — n, connector degrees of freedom collected in subvector v,. These must be selected to
give a square transformation of the form

v _[G G G| &
s

If this approach is followed, it is important to choose v in hierarchical fashion so that the expanded
G has the structure shown above. In other words, v, must not be “excited” by rigid body or constant
strain motions. Otherwise the interelement compatibility of boundary displacements is generally
violated for such motions, and the patch test discussed in the Appendix fails.

Inversion of (78) provides the H matrix. The FF stiffness equations (70) can be constructed
with the strain-energy contribution from v; flowing to the higher order stiffness Ky. Finally, the v,
freedoms can be statically condensed.

Which EFF approach is better? The decision seems to be element-dependent. The choice
primarily hinges on whether it is easier to choose divergence-free stress modes than hierarchical
connectors while preserving element invariance. If both approaches appear equally feasible, there
is not presently enough experience to decide which one is preferable.

14 Concluding Remarks

The qualifier free in “free formulation” was meant to emphasize “freedom from conformity require-
ments” that are a pervasive part of the conventional displacement formulation, and the possibility
of constructing the basic and higher order stiffness contributions through largely independent as-
sumptions. But when the FF is studied from a variational standpoint, several constraints become
immediately apparent. The extended FF releases the most troublesome one at the cost of buying
more complicated stress assumptions, or additional hierarchical connectors. So it is fair to state
that the admirable goal of absolute freedom has not yet been attained.

The development of the EFF as reported here was motivated by difficulties encountered in the
construction of the following elements:

3-Node Plane Stress Triangle with Nodal Rotations. Similar to the element constructed by Bergan
and Felippa (1985), but with a fully quadratic internal displacement field. Thus n, = 9, ng = 12
and three additional self-equilibrating stress fields are needed.

4-Node Tetrahedron with Nodal Rotations. The extension of the previous elementto 3Dhasn, = 12,
n, = 18 and six additional stress fields are needed.

Assuming fully quadratic internal displacement fields eliminates the higher-order mode selection
difficulties discussed by Bergan and Felippa (1985). Progress in the derivation of these elements
will be reported in subsequent papers.
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Appendix A. The Cancelling-Traction Patch Test

It is instructive to study whether this element class passes the patch test for an arbitrary y. To investigate this
question we use the sketch of Figure 1 and view the subvolumes V* and V= as two elements connected along
S; with an external traction boundary S,. Both elements are in a state of constant stress oo. The prescribed
surface tractions are [t= oa]s, and the body forces b vanish.

. First take (63) to be the governing discrete equations for the two-element assembly. The only nonzero
forces are f, = [V7 tls,. The key observation is that

C=[Vls=[Vils. o (79)
because the integral over S; vanishes as (V4. = V.)s on account of the interface compatibility conditions
stated in Section 8, and n* = —n~. Now forany y itcan be verified that the solution of (63) is that demanded
by the patch test, namely

g=0p=25" a,=0, q, =arbitrary, #=E"'9, q,=0 v= L7 + G.q,. (80)

In checking this assertion one finds that the following relations, listed in (65), must be satisfied:
I'G, =0, L G.=vl, LIG. =0, LG, =0. (81)
If instead we take the more general equations (59), verification of the solution (81) demands that
B, =0, P,=ul, P,=0 P, =LIG, P =LiG. P!, =L Gs. (82)

The first three follow from the divergence theorem as shown in (60). But the last three, listed in (66), are a
consequence of the kinematic constraint (43), which is thus directly correlated to satisfaction of the patch test.

As noted by Fraeijs de Veubeke (1973), the physical meaning of this form of the patch test is that the
interface virtual work is zero when the element patch is in a constant stress state.
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DEVELOPMENTS IN VARIATIONAL METHODS FOR
HIGH PERFORMANCE PLATE AND SHELL ELEMENTS

ABSTRACT

High performance elements are simple finite elements constructed to deliver engineering
accuracy with coarse arbitrary grids. This paper is part of a series on the variational foundations
of high-performance elements, with emphasis on plate and shell elements constructed with the free
formulation (FF) and assumed natural strain (ANS) methods. In this paper, we study parametrized
variational principles that provide a common foundation for the FF and ANS methods, as well as
a combination of both. From this unified formulation a variant of the ANS formulation called the
“‘assumed natural deviatoric strain” (ANDES) formulation, emerges as an important case. The first
ANDES element, a high-performance 9-dof triangular Kirchhoff plate bending element, is briefly
described to illustrate the use of the new formulation.

1. INTRODUCTION

For 25 years researchers have tried to construct “best” finite element models for problems in
structural mechanics. The quest appeared to be nearly over in the late 1960s when high order dis-
placement elements dominated the headlines. But these elements did not dominate the marketplace.
The overwhelming preference of finite element code users has been for simple elements that deliver
engineering accuracy with coarse meshes. These will be collectively called high performance
elements, or HP elements.

1.1 Attributes of HP Elements

Approaching that general goal gives rise to a myriad of more concrete requirements which
are supposed to be addressed in some degree during element development. Such requirements are
listed in Table 1. )

Some of these requirements are obvious. For example, low distortion sensitivity is a conse-
quence of trying to achieve satisfactory accuracy with arbitrary meshes. But other items listed in
Table 1 call for some explanation.
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Table 1 - Target Requirements for High-Performance Elements

e Simple: few freedoms, all physical, preferably at corners only
e Convergent

e Frame invariant

o No locking

e Rank sufficient: no spurious modes

e Balanced stiffness: not too rigid, not too flexible

e Stresses as accurate as displacements

e Low distortion sensitivity

e Mixable with other elements

e Economical to form

e Easily extendible to nonlinear and dynamic analyses

e Effective local error estimator for mesh adaptation

The first and foremost requirement is that the element be as simple as possible. This is in
sharp contrast to the “baroque FE period” of 1965-1975 that lauded luxuriantly ornate elements and
culminated with the development of very complex models, including elements with nonphysical
degrees of freedom. One source of this retrenchment has been feedback from users of general
purpose, finite element programs. As use of these programs expanded to more engineers without
deep knowledge of “what’s inside the black box™ the trend in finite element model construction
veered toward the “simplest elements that will do the job.” Further impetus is provided by the gradual
realization that high accuracy of complex elements in linear elastostatics does not necessarily carry
over to dynamic and nonlinear analyses.

The balanced stiffness requirement also deserves comment. It follows from the goal of
attaining reasonable accuracy with coarse meshes. This is illustrated in Fig. I, which shows a
convergence study of a classical model problem: the bending of a simply supported square plate
under a concentrated central load. The mesh contains 2 x ¥ 'x N triangles over a plate quadrant.
A target “accuracy band” of £1% is taken, somewhat arbitrarily, as representative of engineering
accuracy for this rather simple problem. The convergence characteristics of several triangular-
elements are taken from the extensive study reported in Ref. 2. Although most elements converge,
some are too stiff, while others are too flexible, and generally do not enter the accuracy band until
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Fig. 1. Convergence study of several plate bending triangular elements
as reported in Ref. 2. The FF results are from Ref. 8.

the mesh is fairly refined (N > 8). On the other hand, the results labeled ‘FF’, obtained with a
plate element based on the free formulation (FF) discussed later, lie within the band for all meshes.

The balanced stiffness requirement should not be confused with fast asymptotic convergence
for fine meshes. Simple elements cannot effectively compete with higher order elements in this
regard, and are not effective in applications demanding very high accuracy. What is important is
how good are the results for coarse meshes.

1.2 Constructing HP Elements

The search for HP elements began seriously in the mid-1970s and now represents an important
area of finite element research in solid and structural mechanics. Many ingenious schemes have
been tried: reduced and selective integration, incompatible modes, mixed and hybrid formulations,
stress and strain projections, the (FF) formulation, and the (ANS) formulation. Many researchers
are developing such elements. The common theme of the investigations is:
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Abandon the conventional displacement formulation

Several techniques researchers use in their quest to build better elements are itemized in Table
2. Many of these were introduced over 20 years ago, but only recently a concerted effort has been
made to combine several tools to produce HP elements. For example, the present work draws on
items 1, 2, 3, 8, 10, 11, and 12 of Table 2.

Table 2 - Tools of the Trade

Technique Year Introduced
1. Incompatible shape functions early 1960s
2. Patchtest 1965
3. Mixed and hybrid variational principles 1965
4. Projectors 1967
5. Selective reduced integration 1969
6. Uniform reduced integration 1970
7. Assumed strains 1970
8. Energy balancing 1974
9. Directional integration 1978
10.  Limit differential equations 1982
11.  Free formulation 1984
12. Assumed natural strains 1984

1.3 Objective of Present Work

This paper is part of a series (Refs. 9-12, 15-16) describing how several HP element con-
struction methods can be embedded within an extended variational framework using parametrized
hybrid functionals. Particular attention is focused on merging the last two items in Table 2.

The general plan of attack for this unification is flowcharted in Fig. 2. Box connections
indicated with dashed lines are not dealt with in this paper. The variational extensions, shown on
the left of Fig. 2, involve parametrization of the conventional elasticity functionals and treatment
of element interfaces through generalizations of the hybrid approach of Refs. 20-23.
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The effective construction of HP elements relies on devices, sometimes derisively called
“tricks” or “variational crimes,” that do not fit a priori in the classical variational framework.
The range of tricks spans innocuous collocation and finite difference constraints to more drastic
remedies such as selective integration. Despite their unconventional nature, tricks are an essential
part of the construction of high-performance elements. Collectively, they represent a fun-and-games
ingredient that keeps the derivation of HP finite elements a surprisingly enjoyable task.

The present treatment “decriminalizes” kinematic constraint tricks by adjoining Lagrange
multipliers, hence setting out the ensemble on proper variational foundations. Placing formulations
within a variational framework has the great advantage of supplying the general structure of the
stiffness matrices and forcing vectors of high performance elements, and providing theoretical
coherence for the systematic derivation of element classes by a combination of techniques.
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2. THE ELASTICITY PROBLEM

Consider a linearly elastic body under static loading that occupies the volume V. The body
is bounded by the surface S, which is decomposed into § : S4 U S;. Displacements are prescribed
on S,, whereas surface tractions are prescribed on S,. The outward unit normal on S is denoted by
n=n;.

The three unknown volume fields are displacements u = u;, infinitesimal strains e = ¢;;,
and stresses o = 0;;. The problem data include: the body force field b = b; in V, prescribed
displacements d= c?,- on Sy, and prescribed surface tractions t=1o0nS,.

The relations between the volume fields are the strain-displacement equations:

e=iVu+Viuy=Du or ;=30 +u) iV, )
the constitutive equations:
oc=Ee or 0ij = Eijueua 1n vV, )
which will be assumed to be invertible, and the equilibrium (balance) equations:
—divoe=D*c =D or gijj+bi=0 inV, 3)

in which D* = —div denotes the adjoint operator of D = %(V +v7).
The stress vector with respect to a direction defined by the unit vector vis denoted as o, = oV,
or 0y = 0;vj. On S the surface-traction stress vector is defined as

o, = 0.0, or On = OyjNj. @)
With this definition the traction boundary conditions may be stated as:
o.=t or oynj=% onS, (5)
and the displacement boundary conditions as

~

u=4d or u; =d; on Sy. (6)

3. NOTATION

3.1 Field Dependency

In variational methods of approximation we do not, of course, work with the exact fields that
satisfy the governing Egs. 1-3 and 5-6, but with independent (primary) fields, which are subject to
variations, and dependent (secondary, associated, derived) fields, which are not. The approximation
is determined by taking variations with respect to the independent fields.

Following the notation introduced in Refs. 9 and 10, an independently varied field will be
identified by a superposed tilde, for example . A dependent field is identified by writing the
independent field symbol as superscript. For example, if the displacements are independently
varied, the derived strain and stress fields are:

e =1i(V+VDi=Dii, o =Ee=EDi Q)

An advantage of this convention is that u, e and o may be reserved for the exact fields.
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Fig. 3. Internal interface example.

3.2 Integral Abbreviations

Volume and surface integrals will be abbreviated by placing domain-subscripted parentheses
and square brackets, respectively, around the integrand. For example:

def def

e o et et
(Frv & fv Fav, [fls © fs £dS, [fls & fsdde, (fls, & fs‘de- @®

If f and g are vector functions, and p and q are tensor functions, their inner product over V is
denoted in the usual manner:

€ v < /V fgdV = /V fgdV, @y E f p.qdV = f pig;dV,  ©)
14 14

and similarly for surface integrals, in which case square brackets are used.

3.3 Domain Assertions

The notation:

(a =b)v, [a = bls, [a = bls,, [a = bls,, (10)

is used to assert that the relation a = b is valid at each pointof V, §, S; and S;, respectively.

3.4 Internal Interfaces

In sections 4-5 we construct kybrid variational principles in which boundary displacements d
can be varied independently from the internal displacements u. These displacements play the role of
Lagrange multipliers that relax internal displacement continuity. Variational principles containing ’
d will be called displacement-generalized, or “d-generalized” for short.

The choice of d as independent field is not variationally admissible on Sy or S;. We must,
therefore, extend the definition of boundary to include internal interfaces collectively designated as
S;. Thus:

S:5,USUS;. (11)
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On S; neither displacements nor tractions are prescribed. A simple case is illustrated in Fig. 3,
in which the interface S; divides V into two subvolumes: V* and V~. An interface such as §; on
Fig. 3 has two “sides” called S} and S;”, which identify S; viewed as boundary of V* and V-,
respectively. At smooth points of S; the unit normals n* and n™~ point in opposite directions.

The integral abbreviations of Egs. 8-9 generalize as follows, using Fig. 3 for definiteness. A
volume integral is the sum of integrals over the subvolumes:

v [ rave| sav. (12)

V-

An integral over S; includes two contributions:
def + — '
g1y & [ gras+ [ gas, (13)

where g* and g~ denote the value of the integrand g on S} and S;, respectively. These two values
may be different if g is discontinuous or involves a projection on the normals.

The appearance of S; is aconsequence of allowing elements with discontinuous displacements.
Following a finite element discretization, the union of interelement boundaries becomes S;. This
boundary is generally nonphysical because it depends on the discretization.!

4. THE ELASTICITY FUNCTIONALS

The variational principles of linear elasticity are based on functionals of the form:
MN=U-P, (14)

where U characterizes the internal energy stored in the body volume and P includes other contri-
butions such as the work of applied loads and energy stored on internal interfaces. We shall call U
the generalized strain energy and P the forcing potential.

The functionals in this section include independently varied displacements. The class of
“equilibrium” functionals without independent displacements, such as the complementary energy,
are briefly covered in section 5.5 for completeness, but are not required in the finite element
developments of sections 6-11.

4.1 Generalized Strain Energy

The generalized strain energy has the following structure:
U =116, €)v+j12(6, Ov+j13(G, €)v+3j2(0°, Oy +j3(0*, )y +3 j33(0”, e)y (15)

where j; through js3 are numerical coefficients. For example, the Hu-Washizu principle is obtained
by setting ji2 = —1, jiz = 1, joz = 1, all others being zero. The matrix representation of the
general functional Eq. 15 and the relations that must exist between the coefficients are studied in
section 5.1.

! If there are physical internal interfaces — for example, a sudden thickness or material change — itis
common practice to select the mesh so that these natural interfaces are also interelement boundaries.
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4.2 Hybrid Forcing Potentials

Variational principles of linear elasticity are constructed by combining the volume integral
of Eq. 15 with the forcing potential P. Two forms of the forcing potential, called P¢ and P! in
the sequel, are of interest in the hybrid treatment of interface discontinuities. The d-generalized
forcing potential introduces, as described in section 3.4, an independent boundary displacement
field d over S;: '

Pi@, &,d) = (b, B)v + [, 0l — ds, + (£, @5, + [5n, @ — dls,. (16)

The r-generalized (traction generalized) forcing potential introduces an independently varied
traction displacement field t over §;:

P'(§,&,0) = (b, i)y + [, 0 — d]s, + (L i, + [£, dls,. (17)

The conventional form P¢ of the forcing potential is obtained if the interface integral vanishes
and one sets [t = o,]s. If so P’ and P9 coalesce into P€, which retains only two independent
fields:

PE(ii, &) = (b, i)y + [&, @ — d]s, + (1, ii]s,. (18)

4.3 Modified Forcing Potentials

Through various manipulations and assumptions detailed in Ref. 10 the forcing potential P¢
may be transformed to

P4(@, 5,d) = (b, @)y + [, dls, + [&s, TG — d]s. (19)

where the all important surface dislocation integral is taken over § rather than S;. One of the
assumptions is that displacement boundary conditions, Eq. 6, are exactly satisfied on S;. This
expression of P¢ is used in the sequel. A similar technique can be used to adjust P’, but that
modified formula will not be required in what follows.

4.4 Complete Functionals

Complete elasticity functionals are obtained by combining the generalized strain energy with
one of the forcing potentials. For example, the d and ¢ generalized versions of the Hu-Washizu
functional are:

n¢, = Uy — P2, =Uy — P’ (20)
where Uy is obtained by setting j,» = ji3 = |, ji2 = —1, others zero, in Eq. 15.
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5. MATRIX REPRESENTATION OF ELASTICITY FUNCTIONALS

The generalized strain energy of Eq. 15 can be presented in the matrix form:

Ju iz Ji e?

U=%/(& ot o) ju é { dv. 2N
v symm j33 e
The symmetric matrix?
jn iz i3
J=\|jn j2 Js (22)
s s Jn

characterizes the volume portion of the variational principle. Using the relations o = Ee, o =
EDii, ¢ = E~!o, and e = Dij, the above integral may be rewritten in terms of the independent
fields as:

JuE™ il juD o
U=1i[ (6 & a)| jul jnE  jsED & ¢ dv. (23)
Y juDT  juD'E jsD'ED | | d
5.1 First Variation of Generalized Strain Energy
The first variation of Eq. 15 may be presented as:
sU = (Ae, 85)y + (Ao, 88)y — (divo’, si)y + [o,, 8i]s, (24)

where .
Ae = j;1€° + ji2€ + jiz€",

AT = j126 + jnot + jno’, (25)
o' = juo + jno’ + jno’.
The last two terms combine with contributions from the forcing potential variation. For
example, if P = P¢, the complete variation of [1° = U — P€ is: '

STIC = (Ae, 88)y + (A, 88)y — (diva’ + b, 8y + [0, — 1, 8ills, — [0 — d, 85,)5,-  (26)

Using P or P' does not change the volume terms. The first variations of ¢ and IT* are
studied in Refs. 9—11 for a more restrictive class of functionals, namely IT,. The Euler equations
associated with the volume terms

Ae =0, Ao =0, dive'+b =0, 2N

are independent of the forcing potential. A “weighted residual” interpretation of Egs. 27 in terms
of the field equations is given in section 5.4. For consistency of the Euler equations with the field

% To justify the symmetry of J note, for example, that Jis(o, &)y = %jlg(&, e‘)v + %ju(e". o*)v, and
O on. '
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equations of section 2 we must have Ae = 0, Ao = 0 and ¢’ = o if the assumed stress and strain
fields reduce to the exact ones. Consequently,

ju+jz+ji3=0,
Ju+jn+j3=0, (28)
Jst+jn+ja=1

Because of these constraints, the maximum number of independent parameters defining the
entries of J is three.

5.2 Specific Functionals

Expressions of J for some classical and parametrized variational principles of elasticity are
tabulated below. The subscript of J is used to identify the functionals, which are listed roughly in
order of ascending complexity. The fields in parentheses after the functional name are those subject
to independent variations in V.

Potential energy (u):

0 0O
Jp=]0 0 0. (29)
0 0 1
Stress-displacement Reissner, also called Hellinger-Reissner, (&, u):
-1 0 1
Jr= 0 0 O 30)
1 00
Unnamed stress-displacement functional listed on p. 116 of Ref. 18 (&, u):
1 0 -1
Ju = 0 0 31
-1 0 2
Strain-displacement Reissner-type as listed on p. 116 of Ref. 18 (€, u):
0 00
Js=]10 -1 1[. (32)
0 10
Hu-Washizu® (6, &, ):
0 -1 1
Jw=1-1 1 0]. (33)
1 00

3 There are several functionals that carry this name, transformable from one to another through integration
by parts. That corresponding to Jy is the third form listed in section 2.3 of Ref. 24.
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B Reissner Y

Fig. 4. Graphical representation of the Jos, functionals

One-parameter stress-displacement family (&, @) that includes Up, Ug and Uy as special
cases (Refs. 8-10)

-y 0 vy
J,=|o0o o o |. (34)
y 0 l-vy

One-parameter strain-displacement family (¢, i) that includes Up and Us as special cases
(Ref. 9):

o 0 0
Jb=|0 -8 B | (35)
0O B 1-8

Two-parameter family (&, €, @) that includes Ug and U, as special cases (Ref. 9):

—y(1-8) 0 y(1-8) (36)
= 0 -1 =y) Bl —vy)
y(1-8) B(-y) 1-B-y+28y

Three-parameter («, 8, y) family (o, €, @) that includes Uy and Uy, as special cases (Ref. 9):

Joupy = aJw + (1 —a)Jpy

-y(1 -1 —-a) -« a+y(l-8)(1-a) (37
= -a a—-B(l-y)1-a) Bl —y)(1 —a) .
a+y(1-fl-a) Bl-y)1-a) 1-B-y+28y)(1—a)

The last form, which contains three independent parameters, supplies all matrices J that
satisfy the constraints of Eq. 28. It yields stress-displacement functionals for ¢ = 8 = 0, strain-
displacement functionals for @ = y = 0, and three-field (stress-strain-displacement) functionals
otherwise. A graphic representation of this functional in (@, 8, y) space is given in Fig. 4.
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The specialization y = 1, 8 = 0 of Jg, is of particular interest:

a—-1 —a 1
Jo = - a O0]. (38)
1 0 0

The associated functional T1, might be called the generalized Hu-Washizu functional because
it reduces to Jw for @ = 1. But because of its special relation with the ANDES formulation covered
in section 8-11, T1, will be herein referred to as the ANDES functional.

5.3 Energy Balancing

A prime motivation for introducing the j coefficients as free parameters is optimization
of finite element performance in the balanced stiffness sense of Table 1. The determination of
“best” parameters for specific elements relies on the concept of energy balance. Let U(e) =
-ZI-(Ee, €)v denote the strain energy associated with the strain field €. If E is positive definite, U/ (¢)
is nonnegative. We may decompose the generalized strain energy into the following sum of strain
energies:

U =U(e*) + wild(e® — &) + wld(€ — e*) + wild(e* — €%), (39)

where Up (e*) = Up is the usual strain energy, and*
wy = L0n+jn—jn+l), w=i(-jintintin-1, w= 100 —Jn+ja—1). (40)

Eq. 39 is equivalent to decomposing J into the sum of four rank-one matrices:

0.0 O 1 -1 0 0 0 0 1 0 -1
J=10 0 O0|+w | -1 1 0]l4+wy| O 1 =1 |4+ws 00 0}. 41
0 0 1 0 0 0 0 -1 1 -1 0 1

Decompositions of this nature can be used to derive energy-balanced finite elements by con-
sidering element “patches” under simple load systems. This technique is discussed for the one-
parameter functionals generated by J, in Refs. 6 and 8-11. It is important to note that the j
coefficients may vary from element to element.

5.4 Interpretation of Euler Equations

Egs. 27 gain physical meaning if they are rewritten as

Ae = w;(e” — &) + ws(e* —e?) =0,
Ao = w (6 — %) + wy(of - o) =0, (42)
divo’ = div [a"‘ + wa(of — %) + w3(o* — &)] = —b,

4 As shown in section 5.4, these coefficients may be interpreted as field equation residual weights, hence
the notation. It is conjectured that for stability the j coefficients should be confined so that w; > 0, but
this remains to be proven.
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where the w; are given by Eqs. 40. But ¢’ —é =E " '6-é=0aswellas §—0* =5 —Ee =0
are representations of the constitutive equations, Eqgs. 2. Likewise, ot —c*=E@E-Du)=0is
. arepresentation of the strain-displacement equations, Eqs. 1. Finally, e* —e° = Di-E~'5=0,
as well as o* — & = 0, are combinations of Egs. 1-2. Thus, we conclude that the Euler equations
Ae = 0 and Ao = 0 are weighted forms of the kinematic and constitutive field equations. On the
other hand, div &’ + b = 0 is a weighted combination of the equilibrium equations, Egs. 3, and the
other two.

If the j coefficients are such that a weight vanishes (see also Footnote 4), that particular field
equation drops out from the Euler equations and must be viewed as being satisfied a priori. For
example, in the potential energy functional, w; = w; = w3 = 0, and only the equilibrium condition
in terms of ¢* remains in the Euler equations. This interpretation points the way for constructing
U of Eq. 15 by the method of weighted residuals.

5.5 Functionals without Independent Displacements

The foregoing theory applies to functionals where the displacements u are independently
varied. Although this case includes the more practically important functionals for our purposes, for
completeness we present the general parametrization of stress-strain functionals. Decompose U of
Eq. 15 as U, + U,, where U, contains the strain energy due to displacement-derived strains:

U, = (j3& + jno® + 3jno”, &)y = (diva',u)y — [0, uls. (43)

If we now assume that the equilibrium equations div o + b = 0 and traction boundary condi-
tions o, = t hold a priori, U, may be dropped and we are left with the generalized complementary
energy functional

U — U, =1ju(8,€)y + jnn(G, 8y + 3 j2(0", &v. (44)
Taking account of the a priori conditions, the first variation becomes:
8U. = (jue® + jié + €, 88)y + (juo + jno’, &)y, (45)
and for consistency we must have u+tijin=-Ljn+ja = 0. It follows that U, may be
represented as in the matrix form of Eq. 21 with a J that depends on a single parameter:
p—1 —p O
0 0 O

Here p = O gives the classical principle of total complementary energy whereas p = 1 gives
the functional N (&, &) listed on p. 117 of Ref. 18.

'6. FINITE ELEMENT DISCRETIZATION

In this section assumptions invoked in the finite element discretization of the functional 14 for
arbitrary J are stated. Following usual practice in finite element work, the components of stresses
and strains are arranged as one-dimensional arrays while the elastic moduli in E are arranged as
a square symmetric matrix. In the sequel, and unless otherwise noted, we consider an individual
element of volume V and surface S : S, U Sy U S;, where S; is the portion of the boundary in
common with other elements.
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6.1 Boundary Displacement Assumption

The boundary displacement assumption is:
[d =Ny v;. (47)

Here matrix Ny collects boundary shape functions for the boundary displacements d while
vector v collects the “visible” degrees of freedom of the element, also called the connectors. These
displacements must be unique on common element boundaries. This continuity condition is met
if the displacement of a common boundary portion is uniquely specified by degrees of freedom
located on that boundary. There are no derived fields associated with d.

6.2 Internal Displacement Assumption

The displacement assumption in the interior of the element is

@=N.q)y, (48)

where matrix N, collects the internal displacement shape functions and vector q collects gener-
alized coordinates for the internal displacements. The assumed 4 need not be continuous across
interelement boundaries. The displacement derived fields are

(¢ =DNq =Bq)y, (c“=EBq)y. (49)

To link up with the FF and ANS formulations, we break up the internal displacement field
as follows. The assumed a is decomposed into rigid body, constant strain, and higher order
displacements:

u = N,q, + N.q, + N»,q,. (50)

Applying the strain operator D = %(V + VT) to & we get the associated strain field: |
e =DN,q, + DN.q. + DN.q, = B,q, + B.q. + B:xq,. (51)

But B, = DN, vanishes because N, contains only rigid body modes. We are also free to
select B, = DN, to be the identity matrix I if the generalized coordinates q, are identified with the
mean (volume-averaged) strain values €. Consequently Eq. 51 simplifies to

e’ =& + e =€ +Byugq,, (52)

in which
q. =€ = (e“)v/v, Br)v =0, (53)

where v = (1)v is the element volume measure. The second relation is obtained by integrating
both sides of Eq. 52 over V and noting that q,, is arbitrary. It says that the mean value of the higher
order displacement-derived strains (also called the deviatoric displacement-derived strains) is zero
over the element.
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6.3 Stress Assumption

The stress field will be assumed to be constant over the element:

(& =3)v. ' (54)

This assumption is sufficient to construct high performance elements based on the free for- .
mulation developed in Refs. 4-8. As discussed in Ref. 11, the inclusion of higher order stress.

modes (deviatoric stresses) in Eq. 56 is computationally effective if these modes are divergence
free, but such a requirerent makes extension to geometrically nonlinear problems difficult. The
only derived field is

» (€ =& =E"'5)y. (55)

6.4 Strain Assumptions

The assumed strain field & is split into a mean constant strain € and a higher order variation
(the deviatoric strains):
(=¢€¢+e; =€+ Aza)y, (56)

where € = (€)y /v, matrix Ay collects deviatoric strain modes with mean zero value over the
element:
(Agv =0, (57

and a collects the corresponding strain mode amplitudes. The only derived field is:

(o = Ee = E€ + EAja)y. (58)

7. UNCONSTRAINED FINITE ELEMENT EQUATIONS

We shall assume that all elastic moduli in E are constant over the element. Inserting the above
assumptions into I1¢ with the modified forcing potential of Eq. 19, we obtain a quadratic algebraic
form which is block-sparse because of the conditions stated in Egs. 53 and 57. Rendering this form
stationary yields the finite element equations.

m juwwET' vl 0 —PT jsul-PI —Pf LTW () (0]
Jizvl JjVE 0 0 Jaavl 0 0 € 0
0 0 K O 0 juRT 0 a 0
-P, 0 0 0 0 0 0 [{qt=1{f1t (59
j13vl - Pu j23vI 0 0 j33UE 0 0 [y fqu
—~Py 0 ji3R 0 0 jnKg 0 q fon
L 0 0 0 0 0 o llv) L|f]

K, = BJEBy)y =KI,, Ku=(AJEA)v =K[;, R=(B;EAsy,
L=[NLls, Pr=MNLls, Pc=[NLls, Pua=INLIs, (60)
f,=Nb)y, f,=NIby, fi=@Nby, f =Nils,
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in which Ny, denotes the projection of shape functions N, on the exterior normal n, and similarly
for N,, N. and N,,. Those coefficient matrix entries that do not depend on the j coefficients come
from the last boundary term in Eq. 19.

7.1 The P Matrices

Application of the divergence theorem to the work of the mean stress on e* yields:

@, e)v = (G, & + Byq,)v = v5 & + T (By)vg, = v &

— - __ — _ — 61
=[G, ] = [Gn N-q, + N& + Niq, ] =7 (P,q, + P + Piqy). (1)
Hence P, = 0, P, = vI, P, = 0, and the element equations simplify to:
C jnuvETY jpul 0 0 (s—-DuI 0 LI7(7F)] (0 )
j12UI jzzUE 0 0 j23UI 0 0 e 0
0 0 j2Kaa 0 0 juRT 0 a 0
0 0 0 0 0 0 0 |5a, t=1¢"f:¢ (62)
iz = DHul  jasul 0 0 Ji3VE 0 0 e fou
0 0 jsR 0 0 JnKgr 0 q £
L 0 0 0 0 o ojlv) L& ]

The simplicity of the P matrices is essentially due to the mean-plus-deviator splitting of Eq. 52
for e“. If this decomposition is not enforced, P, = 0 but P, = (B.)v = vB; and P, = (By)v.

8. KINEMATIC CONSTRAINTS

The “tricks” we shall consider here are kinematic constraints that play a key role in the
development of high-performance FF and ANS elements. These are matrix relations between
kinematic quantities that are established independently of the variational equations. Two types of
relations will be considered.

8.1 Constraints Between Internal and Boundary Displacements

Relations linking the generalized coordinates q of Eq. 48 and the connectors v were introduced

by Bergan and coworkers in conjunction with the free formulation (FF) of finite elements (Ref. 5).
For simplicity, we shall assume that the number of freedoms in v and q is the same; removal of
this restriction is studied in Ref. 11. By collocation of u at the element node points one easily
establishes the relation: .
v = G,q, + G.q, + Gxq, = Gq, (63)

where G is a square transformation matrix that will be assumed to be nonsingular. On inverting
this relation we obtain

qr H’
q= G_I = HV, or q= -e-u = HC V. (64)
qy Hy
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The following relations between L (defined in Eq. 60) and the above submatrices hold as a
consequence of the individual element test described in section 9.3:

L’G, =0, L7G.=vl, vH.=LT. (65)
If the splitting of Eq. 52 is not enforced, however, the last two become:
LG, =vB,, PH +PH,=L" or P.=L7G.. (66)

Since P. = uB, these relations coalesce (see Ref. 5).

8.2 Constraints Between Assumed Deviatoric Strains and Boundary Displacements

Constraints linking & to v are fundamentally important in the ANS formulation. The effect of
these constraints in a variational framework is analyzed in Refs. 15 and 16. In the present study we
depart from previous work in that only the deviatoric strains, e4, are assumed linked to v, whereas
the mean strains € are obtained variationally. Consequently, we shall postulate the following
relation between assumed deviatoric strain amplitudes and nodal displacement connectors:

a= Qy, (67)

where Q is generally a rectangular matrix determined by collocation, least squares or other fitting
methods. An example of the construction of Q is given in section 11.4. The individual element test
described in section 9.3 requires that Q be orthogonal to G, and G¢:

QG, =0, QG =0. (68)

8.3 Limitation Principles

Strain assumptions made concurrently with displacement assumptions are confined by limita-
tion principles similar to those stated by Fraeijs de Veubeke for stress-displacement mixed elements
(Ref. 13). This issue was discussed in Ref. 15 for a more restricted strain displacement hybrid for-
mulation. Limitation principles for the general formulation presented here remain to be studied.

9. VISIBLE STIFFNESS EQUATIONS

On enforcing the constraints a = Qv, q, = H,v, q. = H,v = v-ILTv, and q;, = Hyyv,
through Lagrange multiplier vectors Aa, Ar, A, and A, respectively, we get the augmented finite
element equations

- juuE! vl 0 0 G-DvI 0 0 0 0 0 LT - fal 0 1
jizvl  jpuvE 0 0 jpul o 00 0 O O 3 0
0 0 jnKu 0 0 jusRT -1 0 0 0 O a 0
0 0 0 0 0 6 0-I 0 0 O q £,

(ju-l)vl jz3UI 0 0 j331)E 0 0 0 -1 0 0 e fqu
0 0 j»sR 0 0 K 0 0 0 —-I 0 Gt =1t
0 0 -1 0 0 0 00 0 0 Q g 0
0 0 0 -I 0 0 00 0 0 H X 0
0 0 0 0 . 0 00 0 0 v'LT Ac 0
0 0 0 0 0 -1 00 0 0 H, bW 0

L L 0o 0 0 0 o o' vLE o JUv) Llg |

(69)
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Condensation of all degrees of freedom except v yields the visible’ element stiffness equations:

- Kv= (K +Kpv=Hf, (70)
where
K, = v'LELT, (71)
K, = jiHKsHy + j(HRQ + Q"RTH,) + j»Q  KaQ, (72)
f=f,+Hf, +v LTt + Hf fon. (73)

Following the nomenclature of the free formulation, we shall call K, the basic stiffness matrix
and K, the higher order stiffness matrix.

9.1 Relation to Previous HP Element Formulations

IfJ =1J, of Eq. 33, j3a3 = 1 — y, jn2 = j3 = 0, and we recover the scaled free formulation
stiffness equations considered in Refs. 6, 8 and 10:

Ko =(1-y)H KpH;, 1—y >0 (74)

On the other hand, if we take J = J, as given in Eq. 38, ju = @, js3 = j3 = 0 and we
obtain:
Ky =2Q'KuQ >0, (75)

which is similar to the stiffness produced by the ANS hybrid variational formulation studied in
Refs. 15-16, in which the forcing potential P' was used instead of P¢. The variant of ANS
considered herein will be called the assumed natural deviatoric strain (ANDES) formulation in
the sequel. The name is apt in the sense that what is being assumed are deviatoric rather than total
strains, and that this assumption only affects the higher order stiffness.

But the term with coefficient j3 in Eq. 72 is new. It may be viewed as coupling the FF and
ANDES formulations. It is not known whether Eqs. 70~73 represent the most general structure of
the visible stiffness equations of HP elements.

9.2 Recovery of Element Fields

For simplicity suppose that the body forces vanish and so do f,;, f,c and f;4 because of Eqs. 60.
If v is known following a finite element solution of the assembled system, solving Egs. 69 for the
internal degrees of freedom yields:

e=v LTy, &=Fe, a=Qv, q =Hv, €=8¢ gq,=Hy,

. . ) . (76)
Ao = (oKaaQ + jRTHRV, A =0, A=0, A= (nRQ+ JuKgrHp)v.

5 The qualifier “visible” emphasizes that these are the stiffness equations other elements “see”, and,
consequently, are the only ones that matter insofar as computer implementation on a displacement-
based finite element program.

65



Eq. 76 show that the mean strains €, € and €° = E~!'F coincide, and, of course, so do the
mean stresses. But if the body forces do not vanish, the mean stresses and mean strains recovered
from different fields will not generally agree.

We also note that a nonzero Lagrange multiplier vector flags a deviation of the associated fields
from the variationally consistent fields that would result when using the unconstrained Egs. 62
without “tricks”.

9.3 The Individual Element Test

To conclude the general formulation, we investigate the conditions under which HP elements
based on the foregoing setting pass the individual element test of Bergan and Hanssen described in
Refs. 3-6. To carry out the test, assume that the “free floating” element® under zero body forces is
in a constant stress state o, which, of course, is also the mean stress. Insert the following data in
the left-hand side vector of Eq. 69:

, e8=E'gy, a,=0, q, =arbitrary, & =¢ =E"'5), q,=0,
=0, A =0, A=0, \N=0, v=G,q, +G& =G,q, + G.E ! oy.
77
Premultiply by the coefficient matrix and demand that all terms on the right-hand side vanish
except for f, = Lop. Then the orthogonality conditions in Egs. 65 and 68 emerge. This form of the
patch test is very strong, and it may well be that relaxing circumstances can be found for specific
problems such as shells.

10. DISCUSSION

At this point it is useful to recapitulate key points and connect this material with some of
the techniques of Table 2. The chief property of HP elements constructed with present methods is
the decomposition of the element stiffness equations displayed in Eq. 70; a property that of course
subsists at the assembly level.

The basic stiffness matrix has a universal character: as no j coefficients appear in Eq. 71,
clearly K, is independent of specific variational principles. Given the constant stress state intro-
duced in Eq. 54, K, depends only on the assumed boundary motions. It can be constructed (and
programmed) once and for all for each element type. As emphasized in Ref. 5, the main function
of K, is to provide convergence.

The higher order stiffness in Eq. 72 serves two other functions: stability and accuracy. The
basic stiffness is generally rank-deficient’ because its rank cannot exceed that of E; thus a key
function of K, is to stabilize K by raising its rank to the correct one. The second function, which
has gained importance in recent work, is to increase solution accuracy for coarse grids. Here is
where the j coefficients play the important role noted in section 5.3. These coefficients may vary
from element to element, despite the fact that this variation implies that the variational principle
changes from one element to another. Thus, the “element mixability” requirement of Table 1 is
fulfilled without tears.

6 Mathematically, the entire element boundary is traction-specified, i.e., § = S,.
7 Except in simplex elements, for which K = K,.
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10.1 The Free Formulation

The present methodology was initially pursued to justify variationally the original FF (y = 0)
of Ref. 5, as well as the scaled FF (y # 0) of Refs. 6-8. Thus, it is not surprising that those element
construction techniques fit naturally in the present variational framework by simply taking J = J,.
The extended FF described in Ref. 11 aims to remove the restriction that the dimension of vectors q
and v be the same. One of the techniques advocated to allow dim(q) > dim(v) involves extending
Eq. 54 with deviatoric stress assumptions, and thus requires a generalization of Egs. 59 and 62.
Whether such a generalization is practically worthwhile is unclear.

10.2 The ANS Formulation

The conventional ANS formulation as presented in Refs. 1 and 19 constructs total strain fields
€ (not necessarily integrable into displacements u®) gaged through generalized strain coordinates
a as e = Aa. These coordinates are eventually linked to the connectors v via matrix expressions
of the form a = Qv, leading to an element stiffness of the form K = Q7 K,Q, where K, is the
generalized stiffness in terms of a. The restriction to deviatoric strains in section 6.4 is motivated
by two interrelated factors: (a) the strain assumed stiffness “flows” to the higher order stiffness,
where it can be naturally scaled by using J = J,, and even intermixed with FF contributions as
Eq. 72 shows; and (b) the basic stiffness of the element, derived separately, can be used to insure
convergence.

10.3 Projectors and S/R Integration

The so-called “B-bar” approach is based on expressing the element strains as®

e = By (78)

where B, which cuts off the “harmful” portion of B¥, is constructed by various ad-hoc devices such
as strain projection, selective, and/or uniform reduced integration. These time-honored schemes are

well covered in Ref. 14. They are easily included in the present setting if B admits the decomposition

B =B+ A,Q, (79)

where Q is not position dependent and € = Bv provides the mean strains, which are discarded in
favor of Eq. 76. This decomposition can be usually carried out in several ways.

11. EXAMPLE: A 9-DOF ANDES PLATE BENDING TRIANGLE

The first element constructed with the ANDES formulation is a three-node Kirchhoff plate-
bending flat triangle with the usual nine degrees of freedom. The derivation is briefly covered to
illustrate the essential steps in forming the higher order stiffness of such elements. These steps
are outlined in “recipe” form in Table 3, which restates the arguments of section 6.4 in a more
physically oriented sense closely aligned with the terminology of Ref. 19.

§ This is a slight variation from the usual notation, necessitated by the use of the single overbar to denote
average or mean values.

67



Table 3- Construction of K, by the ANDES Formulation

Step 1. Select reference lines (in 2D elements) or reference planes (in 3D elements)
where “natural straingage” locations are to be chosen. By appropriate interpolation
express the element natural strains € in terms of the “straingage readings” g at those
locations:

€=Acg, (80)

where € is a strain field in natural coordinates that must include all constant strain states.
(For bending elements the term “strains” is to be interpreted in a generalized sense, viz.
curvatures.)

Step 2.  Relate the Cartesian strains € to the natural strains:
e=Te=TA.g=Ag 81)

at each point in the element. (If e = ¢, or if it is possible to work throughout in natural
coordinates, this step is skipped.)

Step 3. Split the Cartesian strain field into mean (volume-averaged) and deviatoric
strains: _
E=8+ey=(A+Ay8, : (82)

where A = (TA¢)v /v, and e; = A,g has mean zero value over V. (This step may also
be carried out on the natural strains if T is constant, as is the case for the element derived
here.)

Step 4. Relate the natural straingage readings g to the visible degrees of freedom

- g=Qv (83)

where Q is a straingage-to-node displacement transformation matrix. Techniques by
which this is accomplished vary from element to element and it is difficult to state rules
that apply to every situation. In the element derived here Q is constructed by direct
interpolation over the reference lines. (In general there is no internal displacement field
u’ such that & = Du?, so this step cannot be done by simply integrating the field of Eq. 81
over the element and collocating u‘ at the nodes.)

Step 5. The higher-order stiffness matrix is given by

K, =aQ'K,.Q,  where Ku= f ATEA,dV, (84)
14

where a > 0 is the scaling coefficient supplied by the functional of Eq. 38.
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11.1 Geometric Relations

The triangle has straight sides. Its geometry is completely defined by the location of its three
corners, which are labeled 1,2,3, moving counterclockwise. The triangle is referred to a local
Cartesian system (x, y) which is taken with origin at the centroid 0, whence the corner coordinates
x;, yi satisfy the relations x; + x2 + x3 = O and y; + y2 + y3 = 0. Coordinate differences are
abbreviated by writing x;; = x; — x;, etc. The signed triangle area A is given by the formulas:

2A = x71y31 — X31Y21 = X32Y12 — X12Y32 = X13Y23 — X23Y13, (85)

and we require that A > 0. We shall also make use of dimensionless triangular coordinates £y, {2,
z3 linked by the constraint {; + {2 + ¢{3 = 1. The following well known relation between the area
and centroid-originated Cartesian coordinates of a straight-sided triangle is noted:

1
L= 2—A(x,~yk — XpYj + XYjk + YXij), (86)

where i, j and k denote positive cyclic permutations of 1, 2 and 3; for example, i = 2, j = 3,
k = 1. Therefore 3¢;/3x = yjx/2A and 8¢;/8y = xi;/2A. Other intrinsic dimensions and ratios
used below are

L= x5 +y3 ey =24/8; by = (xjxuc+yyyud/lij,  bji = bij = bij, &7
Nij = bij /8 = (xijxie + yiiye) /(5 + ¥5), Nji = bjifti; = 1= Ay,

where ¢;; denote the triangle side lengths, a;; are triangle heights, b;; and bj; are projections of sides
ik and jk onto side ij, respectively, and the As are ratios of these projections to the side lengths.

11.2 Displacements, Rotations, Side Coordinates

Because we are dealing with a Kirchhoff element, its displacement field is completely defined
by the transverse displacement w(x, y) = w(¢), {2, {3), positive upwards. The midplane rotations
about x and y are §, = dw/dy and 8, = —3w/3x. The visible degrees of freedom of the element
collected in v are:

vi=(w 6a 61 wy O 6 ws 63 O3] (88)

Over the three sides 1-2, 2-3 and 3-1, traversed counterclockwise, we define the dimensionless
side coordinates 2, (23 and u3; as follows: over side 1-2, 2 varies from py2 = O atcomer 1 to
ui2 = 1 atcorner 2. Thus, pj2 = {2 when {3 = 0. Relations for the other sides follow from cyclic
permutation of subscripts. Then:

0x — ox —x ox —

aulz = A21,» au23 32 3[1.31 13, (89)
ay ay y ay y

— = y21, — =Yy32, — = )13

A1z Y2 OpL23 GITEY
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11.3 Natural Curvatures

The second derivatives of w with respect to the dimensionless side directions will be called
the natural curvatures and denoted by x;; = 9%w/ au,?,.. Note that they have dimensions of dis-
placement. The natural curvatures can be related to the Cartesian plate curvatures «; = %w/ax?,
K,y = 8%w/dy? and k., = 20%w/8x3dy, by chain-rule application of Egs. 89:

@
[
g
=Y
54

YRR ey
K]
X12 a’;n Xy Y xuyau g;
X=1{ X3 =) # = | x3, ¥} xaym a—yuf =T 'x. (90
X31 2 x2 y2 x
32w 13 13 13Y13 2 62w
L 3#321 0x0y
The inverse of this relation is:
2
3w ( ‘w )
2 aul
gf { Y2313 Y31y Y12Y32 a’:‘z
a—ywz‘ =1 X3X13 X31X7 - X[2X32 1 5;%‘" . (91
23
5 3w Y23X31 + X32Y13  YuXpz + X3y Yi2X23 + X21¥32 3w
axo a..2
xoy ‘- duy,
or, in matrix form
k= Tx. (92)

11.4 Curvature Sampling

The reference lines referred to in Table 3 are the three triangle sides. The natural curvatures
are assumed to vary linearly over each reference line, an assumption which is obviously consistent
with cubic beam-like variations of w over the sides. A linear variation on each side is determined
by two straingage sample points, which we chose to be at the corners.

On each triangle side chose the isoparametric coordinates &;; that vary from —1 at corner i
to +1 at coner j. These are related to the u;; coordinates as &; = 2u;; — 1. Then the natural
curvature over side {j is given by the beam formula

w;

3w 6&;; —6E;; Bni

e = ¢ - 2 .. n
Xij = aﬂ?j = eu [’E}L 3§u 1 e‘,j 3611 + 1] ” ’ (93)

O,

where 6, denotes the rotation about the external normal direction n on side ij. Evaluating these
relations at the nodes by setting &, = =£1 and converting normal rotations to x-y rotations, we
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build the transformation

wy
’ X12|1 ] - —6 —4}’21 4xy; 6 —2}’21 2x21 0 0 0] zﬂ
Xi2l2 6 2yy —2xa1 —6 4y —4x5 O 0 0 yi

‘ X2l2 _ 0 0 0 —6 —4y;; 4x;3 6 =2y . 2x3p ) g) 2 |
X233 0 0 0 6 2y —-2x33 -6 4yn —4x3 ze
otls 6 —2y53 2x3 O 0 0 -6 —4y3  4xi3 uﬁ

- 4 -4 _
il -6 yi3 x3 O 0 0 6 2y13 —2x43 ] 0,3
[ 6y3 )
" (94)

The left hand side is the natural strain-gage reading vector called g in Table 3 and so we can
express this as the matrix relation

g =Qv. (95)

11.5 Curvature Interpolation

The six gage readings collected in g provide curvatures along the three triangle side directions
at two corners. But nine values are needed to recover the complete curvature field over the element.
The three additional values are the natural curvatures at the missing corner. We obtain these values
by adopting the following rule: Cylindrical bending with linearly varying curvature along a side
direction is to be exactly represented. Another way of stating this is: the side curvature x;; isto be
constant along lines normal to side ij. This makes the element insensitive to bad aspect ratios on
“strip bending” if each element has a side oriented in the direction of the strip.

To apply this rule consider side 1-2. The natural curvature x;» = 3%w/du?, along this side
is defined at nodes 1 and 2 by the first two rows of Eq. 94. For node 3 take

3%w
X2l = —5| = xizh + 22 xazl2 (96)
Kz |y

where A2 and A5, are defined in Eq. 87. As we now know the values of xj2 = 82w/ a,ifz at the
three corners, we can use the standard linear interpolation over the entire triangle:

xi2 = xi2li &+ xi2h &2+ xi23 83 = xizh Q1+ 22183) + X2l2 (B2 + A1283). CH)

Proceeding analogously for the other two sides, we construct the matrix relation:

X12 O+ Al L+ A 0 0 0 0
X3 (= 0 0 L2+ Al &+ 2Aah 0 0 g,
X3l 0 0 0 0 G4z O +Aad
(98)
or
X =A,g x=TA,g. (99)
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Because T is constant we can do Step 3 of Table 3 directly on the natural curvatures. Now
A, (81,82, &3) is a linear function of the triangular coordinates. Consequently, the mean natural
curvatures can be simply obtained by evaluating A, at the centroid {; = ¢, = {3 = 1/3. Let the
corresponding matrix be A ThenX = A 1 g, and the natural deviatoric curvatures are given by:

=(Ay—A)s (100)
which transformed to deviatoric Cartesian curvatures k4 = kK — K gives finally:

ke =TAy —A)g=Asg (101)

11.6 The Element Stiffness Matrix

The basic stiffness matrix K, is the same derived in Ref. 8 using the conventional FF and
need not be rederived here. The higher order stiffness matrix is given by Egs. 84, which for a plate
bending element specializes to

K, = aQ'K,,Q = aQ’ U AIDA, dA] Q, (102)
.\ .

where D is the Cartesian moment-curvature constitutive matrix resulting from the integration of E
through the plate thickness:

Myx Dy Dp Dp Kxx
m= 43 Mmyy = Dlz Dzz D23 Kyy = Dk. (103)
Mgy D3 Dy Dss Kxy

Because A, varies linearly, if D is constant we could numerically integrate K4 in Eq. 102
exactly with a three point Gauss rule, for example the three midpoint formula. The formation of
the element stiffness is dominated by these calculations and it is of interest to derive K4 in closed
form. Such a derivation is found in Ref. 17.

11.7 Preliminary Evaluation

As of this writing, only a sketchy evaluation of the first ANDES element is available. We
have found that for triangles with good aspect ratio their behavior is similar to that of the scaled FF
element of Ref. 8, which is known to be an excellent performer. But the ANDES element shows
less distortion sensitivity for high aspect ratio elements, as can be expected from its construction.
Additional evaluation details will be reported in Ref. 17.

These preliminary results are encouraging in that we now have two good stand-alone compo-
nents (FF and ANDES) of K,. Thus, it is plausible that a weighted mix of these formulations as
per Eq. 72 can be used to squeeze the ultimate in performance for this very simple element.
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12.

CONCLUSIONS

The results presented in this paper may be summarized as follows:

The classical variational principles of linear elasticity may be embedded in a parametrized
matrix form.

The elasticity principles with independently varied displacements are members of a three-
parameter family. Those principles without independent displacements are members of a
one-parameter family.

Finite element assumptions for constructing high performance elements may be conveniently
investigated in this family using hybrid forcing potentials.

Kinematic constraints established outside the realm of the vananonal principle may be incor-
porated through Lagrange multiplier adJuncnon

The FF and ANS methods for constructing HP finite elements may be presented within this
augmented variational setting. A variant of ANS, called ANDES, fits naturally in the decom-
position of the stiffness equations into basic and higher order parts. In addition, combined
FF/ANDES forms emerge from the general parametrized principle.

The satisfaction of the individual element test yields various orthogonality conditions that the
kinematic constraints should satisfy a priori.

The first ANDES element based on this formulation displays an encouraging stand-alone
performance regarding distortion sensitivity. The weighted combination of this element with
its FF counterpart remains a topic for further investigation.
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A VARIATIONAL JUSTIFICATION OF THE ASSUMED
NATURAL STRAIN FORMULATION OF FINITE ELEMENTS.
1. VARIATIONAL PRINCIPLES |

SUMMARY

The assumed natural strain (ANS) formulation of finite elements has undergone rapid development
over the past five years. The key formulation step is the replacement, in the potential energy
principle, of selected displacement-related strains by independently assumed strain fields in element
natural coordinates. These strains are not generally derivable from displacements. This procedure
was conceived as one of several competing methods to solve the element locking problem. Its
most noteworthy feature is that, unlike many forms of reduced integration, it produces no rank
deficiency; furthermore, it is easily extendible to geometrically nonlinear problems. Many original
formulations were not based on a variational principle. The objective of Part I is to study the
ANS formulation from a variational standpoint. This study is based on two hybrid extensions
of the Reissner-type functional that uses strains and displacements as independent fiélds. One of
the forms is a genuine variational principle that contains an independent boundary traction field,
whereas the other one represents a restricted variational principle. Two procedures for element-level
elimination of the strain field are discussed, and one of them shown to be equivalent to the inclusion
of incompatible displacement modes. In Part II, the 4-node C? plate bending quadrilateral element
is used to illustrate applications of this theory.
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1. INTRODUCTION

The assumed natural strain (ANS) formulation of finite elements is a relatively new development.
A restricted form of the method was introduced in 1969 by Willam [1], who constructed a 4-node
plane-stress element by assuming a constant shear strain independently of the direct strains and
using a strain-displacement mixed variational principle. A different approach advocated by Ashwell
[2] and coworkers regarded “strain elements™ as a way to obtain appropriate displacefnent fields by
integration of assumed compatible strain fields. These and other forms of assumed-strain techniques
were overshadowed in the 1970s by developments in reduced and selective integration methods, but
have recently begun to attract attention [3-7]. The primary motivation behind recent work has been
the construction of simple and efficient finite elements for plates and shells that are locking-free,
rank sufficient and distortion insensitive, yield accurate answers for coarse meshes, fit naturally
into displacement-based programs, and can be easily extended to nonlinear and dynamic problems.
Elements that attain these attributes are collectively known as high performance elements.

Over the past 20 years investigators have resorted to many ingenious devices to construct high-
performance elements. Among the most successful ones we can mention patch-test-verified in-
compatible displacement models, reduced and selective integration, mixed and hybrid formulations,
stress projectors, the free formulation, and assumed natural strains. The underlying theme is that
although the final product may look like a standard displacement model so as to fit naturally into
existing finite element programs, the conventional displacement formulation is abandoned. (By
“conventional” we mean the use of conforming displacement assumptions into the total potential
energy principle.)

Another common historic trend is that certain deviations from the conventional formulation were
initially made without variational justification and in fact labelled as “variational crimes” by applied
mathematicians. In some cases such as reduced numerical integration, reconciliation was achieved
later after surprisingly good results prompted explanation. In other cases, notably non-conforming
elements and the patch test, a comprehensive mathematical theory is still in the making.

The present paper seeks to interpret the assumed natural strain (ANS) formulation from a variational
standpoint. The justification is based on hybrid extensions of the Reissner-type functional that uses
the strains and dispiacements as independent fields. We restrict our considerations to linear elasticity
although the straightforward extension to geometric nonlinearities is one of the strengths of the ANS
formulation. In Part II, the 4-node C? plate-bending quadrilateral is used as a specific example to
illustrate the application of the present variational interpretation.
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2. PROBLEM DESCRIPTION

2.1 Governing Equations

Consider a linearly elastic body under static loading that occupies the volume V. The body is
bounded by the surface S, which is decomposed into S : S, U S;. Displacements are prescribed
on S, whereas surface tractions are prescribed on S;. The outward unit normal on S is denoted by
n=n;.

The three unknown volume fields are displacements u = u;, infinitesimal strains € = €;j, and
stresses o = g;;. The problem data include: the body force field f = f; in V, prescribed displace-
ments @ = i; on S,, and prescribed surface tractions t = #; on S;.

The relations between the volume fields are the strain-displacement equations
€= %(Vu+ V7u) = Du or €j = %(u,;j +u;;) inV, (D
(where superscript T denotes transposition), the constitutive equations
oc=Ee or oij = Ejjiey in'V, 2)
and the equilibrium (balance) equations
—dive=Dc=f or g;;+fi=0 inV, 3)
in which D* = —div (divergence) denotes the adjoint operator of the symmetric gradient D =
LV + VD).
On § the surface stress vector is defined as
o, =o0.0, Of  Op = Ojjn;. C))
With this definition the traction boundary conditions may be stated as
on=1t or oijn; =1; on S, )
and the displacement boundary conditions as

u=1 or u; = U; on S,. (6)

2.2 Notational Conventions

An independently varied field will be identified by a letter without superscript, for example u, €, o.
A dependent field is identified by writing the independent field symbol as superscript. For example,
if the displacements are independently varied, the derived strain and stress fields are denoted by

e =1(V+Vu=Duy, o = E€¢' = EDu. ™

Given a finite element subdivision of V, quantities pertaining to the ¢ element will be identified
by superscript (e), for example u‘®), wherever appropriate. At an interface between two elements e
and f, superscripts (ef) and (fe) will identify interface quantities considered as part of e and f,
respectively.
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3. THE HU-WASHIZU AND REISSNER FUNCTIONALS

In the conventional Hu-Washizu functional the displacements u, stresses o and strains € are inde-
pendently varied. Arranging the strain and stress components as vectors, and the elastic moduli in
E as a matrix, the functional may be expressed asf

L(u,e,0) = f [{TEe+ o7 (¢" — €) —fTu]dV - f @) @w—d)dS— [ ' udS. (8
1% S, S
From L one obtains the conventional stress-displacement Hellinger-Reissner functional by elim-
inating € through the inverse of (2), namely € = €° = E-!o. Another Reissner-type, strain-
displacement functional is obtained by eliminating & through the constitutive relation (2), namely
o = o = Ee, which yields

R(u, €) = f [-1€"Ee + ' Ee” — fTu] dv —f
v

(%) (w—ayds —f tuds. (9
S,, t

Setting ¢ = €* reduces R to the potential energy functional

P(u)=f [1(e)TEe —fTu]dV—/ (aj‘,)r w—8)dS - | ' uds, (10)
v : S

generalized with a S, term over its usual expression.

4. HYBRID FUNCTIONALS

4.1 Independent Boundary Tractions

If the functional (9) is used to construct finite elements, the displacement field u should be continuous
in V because of the presence of €“, whereas the assumed strain field may be discontinuous. To
account rigorously for displacement discontinuities it is necessary to add the interelement surface
tractions t as new independent field which plays the role of Lagrange multiplier. Let S; denote the
union of interelement boundaries traversed twice (one for each adjacent element); on S; neither
displacements nor tractions are prescribed. Then R expands to the hybrid functional

H(u, e t) = R(u, €) — f tTuds. (11)
s.

For later reference we note the specialiiation e = € of (11) to the generalized potential energy

functional of Jones [9]

P(u,t) = P(u)—f tTuds, (12)
S v

+ There are several equivalent statements of this functional, differing from one another in transformations
based on the divergence theorem. For example in Gurtin (8, p. 122] the stress divergence appears. Some
authors attribute this specific functional to B. Fraeijs de Veubeke, who indeed published a version of it
in 1951, four years before Hu and Washizu. '
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Figure 1. Sample finite element mesh to ilustrate
computation of integrals in A

where P (u) is given by (10).

The meaning of the integrals in H may be illustrated on the two-dimensional mesh of Figure 1:

L= Lo Lo
\'4 e v v 7ged] 740
Jo= X lo= Lo Lot
s, s Jsih Jsh o Js?
(13)
[y RYAY
s, — Js© s 5@ 5@
[ A T RINY
s; e f S‘.‘”’ s s s SB.D

where element identification conventions stated in Section 2.2 have been followed. It is seen that in
the integrals over V, S, and S, each element appears once, whereas in S; adjacent elements appear
twice.

4.2 First Variation

The first variation of H:
SH =6,H+8H+8H, (14)

yields the Euler equations and interelement linking conditions, which are underlined in the expres-
sions below. The three components of § H are

8, H = / (Vo =T sudV + | (o — ) su ds +[ (o —t)7 Su ds, (15)
v S, 5;

SH = / E(e* — ) 8ecdV —f (u—1)78(Ee), dS, (16)
v S.
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8H = | u’stds. (17
Si

Note that there are two contributions to the element interface integrals, one from §, 4 and another
from &, H. Putting the parts together and decomposing into element-pair contributions we get

f [(a.i _ t)T5u+ uT 6t] ds = Z/ [az(e)rau(e) — Uf;(f)Tau(f)
Si e.f Stefy

_teNT 5@ _ (ol su(n 4 q@T splen 4 yNT 5t(fe)] ds.

(18)

In the absence of applied internal tractions, interelement equilibrium requires t” = —t{/¢), which
substituted into (16) reduces the right-hand side to

)3 /S y [azmr 5u® — o£ DT sy _ T 5@ _ u) 4 @ — u(f))Tat(ef)] ds. (19

" If we assume a compatible displacement field, u® = u‘, the above equation reduces to
> fs . (@5@ — ot T5u® 45, (20)

which means that the interelement equilibrium condition appeafs as the Euler equation correspond-
ing to the variation of the interface displacements.

.4.3 A Restricted Variational Principle

If the displacement field is incompatible we should in principle retain t as an independent boundary-
traction field satisfying t/) = —t{/#) over interelement boundaries. One way to achieve this is to
assume a continuous stress field o* over element boundaries, so that

te = o* n'®@ = O':(e), t/9 — g* n = a.*.(_n(e)) = __o.:(e)_ (21)

The presence of an independent boundary traction field is computationally disadvantageous because
additional degrees of freedom must be retained on elements sides. This contradicts one of the tenets
of high-performance element construction noted in the Introduction. It would be more convenient if
o* could be identified with the strain-derived stress field, that is, o* = o¢ = Ee on §;, because we
would have only two independent fields, u and €, as in (9). The strain freedoms can be eliminated at
the element level as explained in Section 6, and we are left with standard displacement connectors.
The corresponding functional is

Hu,e)=R- f (%) uds. (22)
Si

But in general o€ is not continuous between elements. One can argue, however, that continuity
is achieved in the limit of a converged solution. A variational statement such as §H = 0 is
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called a restricted variational principle [10, Ch. 11] because the governing field equations of §2.1
are satisfied only at the exact solution. Away from it, H = 0 generally violates interelement-
equilibrium field equations although it may provide satisfactory numerical approximations.

Stress-displacement (rather than strain-displacement) functionals of this form have been used by
Pian and Chen [11,12], who transform the interface integral into an element volume integral and in
doing so introduce a stress divergence term.

4.4 Finite Element Classification

Finite element models derivable from R, H and H may be classified into several types according
to the number of independent fields and the continuity conditions on those fields. Following are
some general comments on the most interesting combinations, which are summarized in Table 1.

1.  Continuous displacements. The independent boundary field t is not needed, and we can work
with the mixed functional R. If the strain field is discontinuous, strain freedoms may be
eliminated at the element level as explained in Section 6. Continuous strains are in principle
possible but impractical in general structural applications where material interfaces, plasticity,
and sudden thickness or area changes may occur.

2. Discontinuous displacements. The displacement field contains conforming and non-
conforming portions. Assumed strains are discontinuous and may be eliminated at the element
level. Displacement degrees of freedom associated with non-conforming modes may be also
eliminated if separable. The governing functionals are H or H. With the latter an indepen-
dent traction field t is required; degrees of freedom associated with t must be retained at the
assembly level.

In practice elements are often constructed as a combination of these types with conventional dis-
placement models. Thus part of the strain field may be considered as completely derivable from
displacements and part as independently assumed, as discussed in Section 8. This was in fact the
scheme originally used by Willam [1]. The C? plate bending quadrilaterals studied in Part II provide
another important example.
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Table 1. Assumed-Strain Finite Element Models Derivable From R, H and H

Element Governing Independent Interelement Element Element
Type Sfunctional =~ fields continuity on* connected condensable
u € t fields fields
O R u, € c d u €
b(II) R u, € c ¢ n, e
(O) H u, e d d u’ e
) H u, et d d ¢ utt €
* c=continuous, d=discontinuous. conforming part only if separable as per (33)

5. DISCRETIZATION

5.1 Assumptions

In this section the finite element discretization of the hybrid functionals H and H is studied. That

is, we focus attention on element iypes labelled (IIT) and (IV) in Table 1. In the sequel it will’

be assumed that the displacement boundary conditions are identically satisfied by u, whence the
strain-displacement hybrid functionals reduce to

H(u,et)= f [eTE(e* — 1) —fTu] aV - f tuds— [ tTuds. (23)
14 t Si

H(u, e)=[ [€TE(e" — &) — fTu] dV—/ tuds— [ (o5)Tuds. (24)
14 ;

1 i

The framework used here accomodates both continuous and discontinuous displacements. The FE
assumption may be written

u=Ny inV, e=Aa inV, t=Ts onS,. (25)

Here matrices N, A and T collect displacement shape functions, assumed natural strain functions
and interface traction functions, respectively, whereas column vectors v, a and s collect nodal
displacements, strain amplitudes, and interface tractions amplitudes, respectively. The derived
fields in V are

€“ = DNv = By, “*=EBv, o =FEe=EAa. (26)
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5.2 Discrete Equations

On inserting the assumptions (23-24) into (21-22) we obtain the bilinear algebraic forms
H(v,a,s) = —1a’Ca+a’Pv— v Ls— v7p, (27)

H(v,a) = —4a’Ca+a’(P-Ryv—vp=-ia"Ca+ aT’Pv — v7p. (28)

where

C=/ATEAdV=CT, P=fATEBdV, L=/ NTTdS,
| \'4 Si

(29)
R= f (EA)INdS, P=P-R, p= f NTfdv +/ NTtds.
Si v t
Observe that (28) results on substituting Ls by R7a in (27). Making these forms stationary yields
the linear systems

-C P 0 a

PT 0 -L
0 -LT o s

EgINEN e

for (27) and (28), respectively. In both cases the first matrix equation is the discrete analog of (16),
and expresses internal compatibility. The second matrix equation is the analog of (15) and expresses
internal and boundary equilibrium, and, in the case of (31), approximate boundary compatibility.
The third matrix equation in (30) is the analog of (17) and expresses boundary compatibility.

(30)

i
ow o

5.3 Displacement Field Decomposition

With view to further developments the assumed displacement field is decomposed as
u=u, + uy. (32)

where u. is continuous (compatible, conforming) in V and u, discontinuous (incompatible, non-
conforming) on S;. It will be further assumed that this decomposition can be effected in terms of
the shape functions, i.e.,

u=N.v.+Nyvgy, (33)

where the v, freedoms are defined element-by-element and may in principle be condensed out.
This assumption holds for elements in which non-conforming shape functions are “injected” over
a compatible set. For the H functional, as shown in Section 4.2 the S; integral exactly vanishes for
the conforming displacements:

/ tfu. = 0. (34)
S
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On the other hand, for H the corresponding S; integral also vanishes at the converged solution.
Taking this into account, equations (30-31) expand to '

-C P, Py 0 a 0
PP 0 0 0 \ P.
P; 0 0 —Ld V4 = P4 ’ (35)
0 0 -LI o s 0
~C P. Piq(a 0
PP 0 o |{vi={p¢. (36)
f‘: 0 0 Vd P4

in which P, = P4 — Ry, and where c- and d-subscripted matrices and vectors are given by integrals
similar to (29) in which N is replaced by N, and Ny, respectively.

6. STRAIN ELIMINATION

The strain degrées of freedom may be eliminated at the element level by static condensation or by
enforcing kinematic constraints. These two techniques are studied below.

6.1 Static Condensation

This is a well known variationally consistent procedure which will be illustrated for the system
(30). From the first matrix equation get a at the element level:

a=C 'Pv=Q,v. 37

Substitution into the second equation gives

K -=-Lijjv|l_]|p
5 316
where K =P'C7'P = PTQ = QST CQ;, is a stiffness matrix. Similarly, (31) condenses to

Kv = p, (39)

where K = PC'P = QSTCQ and (1 = C~'P. The separable non-conforming degrees of
freedom vy, if present, may be condensed out following a similar procedure.

6.2 Kinematic Constraints

A second elimination procedure has been used recently in the construction of AN S C9 plate and shell
elements. It will be described by considering the system (35) that displays separable conforming
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and non-conforming displacement shape functions. A kinematic constraint that links strain to
displacement degrees of freedom is established:

a= chc + Q,va. (40)

This relation may be constructed by collocation, least-square fitting or some other means. Often
Q, = 0. For example, in the Bathe-Dvorkin element [2] studied in Part II collocation of natural
shear strains is done at the quadrilateral midpoints.

If the following conditions hold:
(a) the dimension of v, and a are the same so that P, is square;
(b) matrix P; — CQy is nonsingular;

then the relation (40) may be interpreted as a variationally-consistent constraint on non-conforming
displacements. In effect, the first equation of (35) becomes

(Pc - CQc) Ve + (Pd - CQd)vd = 0, (41)

whence
Ve =—(Ps— CQy) ' (P. — CQ v, = Wv,,

(42)
a=(Q. +Q/W)ve = Qv..

If (as often happens) Q; = 0, Q = Q.. Replacing the constraints (42) into the discrete form
H(a, v, vq4, t) and setting its first variation to zero yieldst

K* L*|[]v]| _|p*
[(L‘)’ 0]{s]‘[0}’ (*3)

K*=Q'CQ, L'=W'L,, p'=p +Wp, (44)

where

Similarly, for (34) we get the stiffness equations

K'v. =p" (45)
where K~ = Q' CQ, in which Q results on replacing P, by P, in (41-42).

Note that condition (a) above may be relaxed if the dimension of v, exceeds that of a by selecting
a subset of v4 that satisfies (b), and statically condensing out the remainder.

+ One obtains K* = Q7 (2P, + 2P, W — CQ) which simplifies to (44) because P,W = CQ — P..
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6.3 Relation to the Strain Projection Approach

If the dimension of a exceeds that of v4 (in particular, if the assumed displacement field is conform-
ing) the constraint (40) is in general inconsistent with a strain-displacement variational principle. In
such a case a connection with other techniques for improving element performance can sometimes
be established. For example, suppose that the assumed strains € are constant and equal to € over
each element, and that the displacements are continuous. We can choose a = €, and A = I so that
(40) may be written

€ =Bv. (46)

This is the strain-projection approach, also called averaged-B or the B approach. If B is determined
by collocation at the element center, (46) is equivalent to one-point reduced/selective integration
on the potential energy functional, see e.g. Hughes’s textbook [13, Ch. 4].

7. LIMITATION PRINCIPLE

The famous limitation principle of Fraeijs de Veubeke [14] was originally stated for stress-
displacement mixed finite elements, but holds for many strain-displacement elements as well. The
principle is applicable when the displacement-derived strain field €“ is contained in the assumed
strain field e:

€3 ¢ =Du=Bv. 47

This inclusion can be expressed in matrix form as

¢=Aa=Ba, +A.a, =[B A,][:"]. (48)

Here a, contains the same number of entries as v whereas A,, which may be empty, contains
“excess” strain modes. Consider elements of type (II) based on the functional H. Inserting (48)
into (30) we get
_Cuv _Cux Cvu 0 ay 0
-cl —C,, CI. 0 a, 0
Cuw Crv 0 -L v pl’
0 0o -LT o s 0

(49)

where
Cpo = f B"EBdV, C, = f B'EA,dV, C, = / ATEAdV. (50)
\4 14 \'4

The first two matrix equations give a, = v and a, = 0. Hence the system is equivalent to (38)
in which K = C,, is simply the potential energy stiffness matrix. Consequently the stiffness
equations may be directly constructed from the generalized potential energy functional (12) and
the independent strain assumption has no effect. Of course the conclusion only applies if the strain
degrees of freedom are solved for in a manner consistent with the variational equations (49); for
example by static condensation. If the derived field €* varies over V, assuming a constant strain
field & for € is a safe way to guard against the limitation principle.
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A similar analysis of type (IV) elements on the H -derived system (31) shows that the limitation
principle does not generally hold unless Rv = 0. For arbitrary v this implies that the interface
integral vanishes, in which case H reduces to the mixed functional R.

8. PARTIAL STRAIN ASSUMPTIONS

It is common practice to assume only part of the strains as independent fields. For example, in
the C? plate bending element studied in Part II independent assumptions are only made for the
transverse shear strains whereas the bending strains are entirely derived from displacements. The
partial strain assumption may be expressed as

€q
e={€b}, 1)

where independent strain assumptions are made only for €, = Aa. For €, one has €, = €;. The R
and H functionals require obvious modification in the volume term,; for example,

u __ 1
R(u, &) = f [(eg e} l:g“ E""] {6“ 2¢a } - fTu] dV + surface terms (52)
v ba  Ebb

while for H an additional adjustment in the S; integral is required. The resulting principles take a
particularly simple form if the constitutive coupling term E,, and E, vanish, in which case

R = R,(u, €3) + Pp(u) (53)

where R, is a mixed strain-displacement principle involving €,, and P, is a potential-energy prin-
ciple involving the €}, strain energy.

9. CONCLUSIONS

The key results of the present study may be summarized as follows.

1. The mixed strain-displacement functional of Reissner type, R, can be expanded to two hybrid
functionals, H and H, to account for incompatible displacements. Whereas SR = 0 and
8 H = 0 are genuine variational principles, §H = Orepresents arestricted variational principle.

2. Several types of assumed-strain finite elements may be constructed using R, H or H. The
most practical elements for inclusion into existing displacement codes are those in which (1)
strain and non-conforming-displacement degrees of freedom can be eliminated at the element
level and (2) avoid surface traction connectors.

3.  Strain degrees of freedom may be eliminated by static condensation or through kinematic
constraints. The latter technique can be presented in a variationally consistent form if the
conditions stated in Section 6.2 hold, in which case it can be interpreted as a constraint on
non-conforming displacements. Special versions of this technique are closely related to the
strain-projection approach.
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DeVeubeke’s limitation principle applies to finite element models derivable from functionals
R and H if the strain elimination procedure is variationally consistent. '

The present variational formulations may be readily modified to account for partial assumptions
on the strain field.
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Appendix A. THE PATCH TEST

In this Section the conditions for this element to pass the constant-traction patch test are investigated. As
discussed by Taylor et al. this is the most stringent form. The test is applied analytically to a single element
in the form of the individual element test of Bergan and Hanssen closely following the procedures used in the
standard and extended free formulation. No numerical studies are required. .

Before undertaking the actual test some mathematical preliminaries are worked out below. Throughout the
following derivations we work with an individual element; consequently V denotes the element volume, S its

boundary, and so on.
A.l Strain Decomposition

The assumed element strain field, ¢, is decomposed into a constant value, €, and a deviator:

e=?:+e;,=é+A;,a,,, (54)

1
E=—-[edV, fA,,dV:O, (55)
VJy v

where v = fv dV measures the element volume. The second relation in (55) is obtained by integrating (54)
over V and noting that a, is arbitrary.

in which

A.2 Internal Displacement Decomposition

Borrowing from the standard techniques of the free formulation the element displacement field decomposition
(33) is continued as follows

u=u+u; =0 +u, +u, +uy =Ng,q, + Ngq, +Ngnq, + Ngsq,, (56)

where u,, u, and u;, denote the decomposition of u. into rigid-body, uniform-strain and higher-order-compatible
displacements, respectively. Corresponding displacement modes are collected in arrays N, N, and Ngy, and
their amplitudes (generalized coordinates) are q,, q, and q,,. (Implicit in this decomposition is the assumption
that the rigid-body and uniform state states are part of the compatible field.) As for uy, Ny, collects non-
conforming modes and g, the corresponding generalized coordinates. If the separation (31) holds, we may
obviously select Ny = Ng4 and vy = q,.

To illustrate the structure of (56), consider a 4-node plane stress rectangular element with 2 incompatible
pure-bending modes, referred to a cartesian system x, y with origin at the rectangle center and parallel to the
sides. Let the x, y displacement components be u, and «,. Then an admissible expansion is

_ q1 94 _ 1.2
PR ER I Y R I 1 3 B e | 4 S Bt b
uy 01 «x 7 0 y x q 0 xylJlgs 3X xy ] lqo
3 6
rigid-body uniform strain higher order nonconforming (57
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Applying the strain operator D = %(V + V7) to u and noting that B, = DN, vanishes because N, contains
only rigid-body modes we express the displacement derived strains as

€ = DN, q, +DNg.q, + DNg4q,, + DNgyq, = B.q, + B.q, + Bsq,, (58)

where matrix B, is constant over the element.

The generalized coordinates q and displacement degrees of freedom v are linked by collocation of (56):

V= Grq, + Guqu + thh + qud = Gq (59)

where matrix G is square and assumed nonsingular. The construction of G is illustrated for the sample
expansion (57):

[ Ux1 ) 10 =y x 0 y oxayn 0 —xy 3y 7
Uyl 0 1 Xy 0 Y1 x 0 X1yt %xlz —X1Y1
sz 10 =y2 2 0 y2 x2 0 —xiyi 3y
Uy 01 x 0 y; 22 0 xy 3x —xy q
v = U3 | _ 1 0 =y3 x3 0 y3 xy 0 XN %ylz KL (60)
— - 1.2 . ]
Uy 01 x3 0 y3 x3 0 xy3 3x3 —X3)3 :
Usa 1 0 —ys x4 0 ys xays O —xiy1  3¥ 210
1.2
Uya 0 1 x¢ 0 ys xa& O xaya 3X; —Xa¥a
vay 00 0 0 0 0 0 0 1 0
lve) Lo O 0 0 0 0O 0 O 0 1

in which we have chosen vy, = g9 and vsz = gyp, as are are nodeless variables.

Inversion of (59) gives

q, H,

— qu - -l — _ Hu
q= a, =G 'v=Hv= H, v. 61

9 H,

A.3 Equation Partitioning

Consider an element of type (III) with variational equations (30). For simplicity we assume that the elastic
moduli in E are constant over the element and that there are no body forces. The element boundary is

S§:5U§

where S; is the interface with other elements, and on §; the traction t is prescribed. The degree of freedom
partition
) q,
€ q
a= , = , (62)
[ ] 114
9




in conjunction with (61) induces the following partition of the element equations

——vE 0 0 P, P, P, 0 0 0 0 0 0 7. ; ‘0
0 -Cy 0 Py, Py, Py O 0 0 6 0 o0 a 0
6 o o0 o6 0 0 I 0 o0 0 0 -L
B PL 0 0 0 0 0 I 0 0 0 -L & Per
M : “ % Pou
P, P, 0 0 0 0 0 o0 I 0 0 -L, q, Pos
B, P, 0 0 0 0 0 0 0 I 0 -L [J%|_JPul (3
0o 06 I o0 0 0 o0 0 o0 o0 -H 0 Ar 0
0o 0 o0 I 0 0 0 0 0 O -H, 0 Au 0
0 0 0 0 I 0 0 0 0 0 -H, 0 Ak 0
0o 0 0 0 0 I 06 0 0 0 -Hy 0 Ad 0
0 0 o0 o0 o o0 -H -H -H -HT 0 0 v 0

L 0 o0 -LT-LT-LT-LT 0 o o o o o Jts) LO

where A, ... A4 are Lagrange multipliers that enforce the constraints (61), and
Cin = f ATEA,dV, P, = vEB,, P, = / EB,dV P, = f EB,dV
v v v
= f ATEB,dV, Py = / ATEB,dV, Py = f ATEB,;dV,
\4 v 12

(64)
L,=/N,TTdS, L.,=/NITdS. L, /N TdS, Ld=/ NZTdS,
S; S5; S; Si
P, =

p, = f N7tds / NTtds, P, = / NItds, p, = / NTtds,
S( S Sr Sf

Note that
/.A,,EB dVv = (f A,dVYEB, =0, 65)

on account of the second of (55), and
p, +Lv= / N'tds =0 (66)
S

on account of the theorem of work expended on rigid motions.
A.4 Integral Transformations

Suppose that the element is in a state of constant stress & = Ee. Application of the divergence theorem to the
work of o on the displacement-derived strains €%, where x = r, 4, h, d, yields

f&Te:dv+f(diva)Tu,dv = f(ez)T&dv = fuf&,,ds. 67
v 14 \4 S

Using (56) and (58):

qf/BIEdv E:qf/Nf&ndS, or /BfEdVé:/Nf&ndv. (68)
14 N 14 N
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Comparing with (64) and noting that g, = tonS ande=t="TsonS;:

_PIE-*-[NI&,,dS:l_’xE—L,s:pX - (69)
SA

A.5 The Rigid Body Motions Test

The first part of the individual element tesi requires that no forces be produced in a rigid body motion. On the
left-hand side vector of (63) prescribe q, = any, v, = G.q, others zero. The only nonzero force on the right
is

P, = f N, tds=0 (70)
S
because of (66).

A.6 The Uniform Stress Test

The second part of the test requires that node forces among adjacent element pairs vanish when both elements
are in a state of constant stress &. On the left-hand side vector of (63) prescribe the solution g, = €, v= Gye,
s = o,, others zero. By virtue of (69) all forces on the right vanishes except for the S; terms. These cancel
identically with the forces of neighboring element. Hence the individual patch test is passed.

Elements of type (IV) also pass the constant stress patch test, as the interface integrals become identical to
those for type (III). The patch test is trivial for types (I) and .

A.7 Effect of Strain Elimination

If the strain freedoms are not eliminated in a variational consistent manner the patch test is not generally
passed. This happens if the constraint (40) is not verified by the constant stress state condition.
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A VARIATIONAL JUSTIFICATION OF THE ASSUMED
NATURAL STRAIN FORMULATION OF FINITE ELEMENTS.
Il. THE ¢° FOUR NODE PLATE ELEMENT

SUMMARY

In Part I we use the four-node C° plate bending element to explore some of the possibilities
opened by the theory presented in Part I. This element is chosen because the version presented by
Bathe and Dvorkin [1], MITC4, can be considered the simplest assumed natural strain element that
allows several possibilities to be studied in a straightforward manner. We focus our attention on
the governing functionals R and H presented in Part I, assuming independent strain fields only for
the transverse shear strains. Besides MITC4 we consider three formulations (two mixed and one
hybrid) that collectively represent a variational justification for the assumed strain technique. In
addition, we examine reduced and selective-integration elements to compare their behavior with
that of the present strain-assumed elements.
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1. INTRODUCTION

1.1 4-Node C° Bending Plate Element Formulation

We start with the formulation of the four-node Reissner-Mindlin plate element whose degrees of
freedom (d.o.f) are the transverse displacement w and the two rotations 6, and 8, about the x and
y axes, respectively, as shown in Figure 1. We expand the displacement field in the usual way:

w = N;(r, s) w;

6y = N;i(r,s) i . n
6y = Ni(r, 5)6yi
where
Ni(r,s) =10 +rnN+ss), i=1234 )

are bilinear shape functions. The strain field derived from the displacement field is

€xx = 20y

s;y ==z Or.y

&2y = 32(6y.y = 6x.2) (3)
Vyr =Wy —bx

Yar =W +6y

We take advantage of the decoupling between bending and shear energies by using different as-
sumptions for each one. We assume that the bending strains coincide with the bending strains

computed from the displacement field:

Exx = 8:,

— plt
Eyy = syy (4)
e-')’ = €;y

The shear strains components in the Cartesian basis x, y, z derived from the displacement field are

y;‘z =Wy + G.V
)

v _
yyz - w.y - ox

After some manipulations we can obtain the covariant components of the shear strains in terms of
the natural coordinates r and s as

Yo =W, + B (6)
Yoo = W+ Bs )]
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Figure 1. Element coordinate system and notational conventions

where

Br=—=6:y,+ ey X r (8)
Bs = —6: ys +6y X s 9)

1.2 The Assumed Covariant Shear Strain

We consider two different assumptions for the covariant shear strains,

(1-1s) (I+3)

Yo = 1 2y (10)
(1=-r) 14+r)
R . (11)
and
Yrz = a4 (12)
VYsz = Q2 (13)

The bilinear assumption (10)~(11) is of the same form as that proposed in [1]. The constant
strain assumption (12)—(13) is studied to see whether there are connections to the selective reduced
integration (SRJ) technique discussed by Hughes [2].
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2. MIXED ELEMENT BASED ON THE FUNCTIONAL R(u, ¢€)

Up to now we are working with a compatible displacement field and a discontinuous strain field.
Hence we use the functional R(u, €) presented in §3 of Part I. No boundary field is necessary and
the constants a; can be obtained at the element level.

The element displacement field is

w
u= 4 6; ¢, (14)
6y
which can be expressed as
u = N.v, (15)
where
N 0O O ... Ny O O
Ne=| 0 N 0 ... 0O Ny O (16)
0O 0 N ... 0 0 N
VZ=(w1 le 9),1 .. Wa 9;4 9y4). (17)

The strain fields derived from the displacements are

a) bending strains:

Exx
€& =1 &, { =B,V (18)
23,
b) shear strains:
u
o= [yruz } —Bv.. (19)
Ysz

The independently varied strains are:
a) bending strains: the same as obtained from the displacement field, i.e., (18).

b) shear strains:

v={7 ] =Ba @0
Ysz

Replacing (18), (19) and (20) into the functional R and carrying out the integrations at the element
level we obtain

R(v., ) = IvIK{v, - 1aTC*%a+ vIL®a —vIp°, (21)
where
F=| B)TEB{AV, (22)
V:
ce = BH'EB! 4V, (23)
Ve
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Figure 2. Bending test
L = ; (BHTEB? dV, (24)
p¢ = f NTEdV + / NTids 25)

ye St ~

Here vector f collects applied distributed forces conjugate to w, 6; and 8,. On performing the
variations we obtain the matrix equation

K;* L ve| _|p°
[(Lca)T _Caa:| { a ] - { 0 ] (26)

From the second equation we obtain the shear strain coefficients
a=(C*)7' LD v = Q¥ 7
which replaced into (26) gives the statically condensed system
(K5 + Q[ C**Qo)ve = p° | (28)

Here K is the bending stiffness matrix, which is also obtainable from the potential energy principle,
and QCT C??Q, stands for the new shear stiffness matrix; cf. §8 of Part L

Equation (27) can also be obtained by minimizing the following shear energy error norm:

o, = %fvp—vﬂ)TEm—wdv

where vector « collects the independent shear strains (10)-(11) or (12)-(13), and collects the
shear strains evaluated from the displacement field, equation (19). The minimization of this norm
using an independent stress field instead of a strain field was proposed by Barlow [4] as a way of
deriving stress-assumed hybrid elements.
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Figure 3. Shear test

We have implemented two elements based in the form (21) and the assumptions (10)—(11) and
(12)—(13), which will be identified as P4 and P, respectively, in the sequel. The results obtained
for the simple shear and bending tests illustrated in Figures 2 and 3 are summarized in Tables 1 and
2. We have compared these results to those obtained using SR/ and MITC4 elements. The results
indicate that P/ and P4 behave poorly when elements are distorted and that P/ is not equivalent to
SRI.

An interesting result is that if we use one point reduced integration to compute L, both elements
PI and P4 yield the same results obtained using SRI.

We can obtain another expression for Q,, called Q in the sequel, from the field proposed by Bathe
and Dvorkin [1] for the covariant shear strains. This expression relates four strain coefficients a
to the nodal degrees of freedom v.. The elements of Q; are given in Appendix A. It is important
to realize that Q, obtained for element P4 matches the matrix Q only for rectangular shapes.
Consequently, the variational principle based on the functional R justifies the assumed natural
strain technique for rectangular shapes. However, what can we say about distorted shapes? We
need Q. = Q for all possible configurations to generalize that justification.

3. INCOMPATIBLE DISPLACEMENTS. THE FUNCTIONAL H(u, ¢, t)

Following the general procedure outlined in §6.2 of Part I, we add to the transverse displacement
w the four midside incompatible shape functions of an eight node element. In this way the bend-
ing behavior is unchanged. We denote by v, the nodal values associated with these “injected”
incompatible shape functions. The new displacement field can be written as

u=[N, Nd][:;} (29)
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Table 1. Bending Test (FEM/Theory-Figure 2)

a Node MITC4 SRI Pl P4
w 0, w O, w 6, w 6,
0. 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 100 100 100 1.00 1.00 1.00
1 5 1.00 100 090 100 088 1.00 044 044
6 1.00 1.00 1.10 1.00 1.07 1.00 047 047
2. 5 1.00 100 08 100 074 1.00 023 0.23
6 1.00 1.00 120 100 1.06 1.00 028 0.29

Table 2. Shear Test (FEM/Theory-Figure 3)

a Node MITC4 SRI Pl P4

w w w w

1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00

1.00 1.00 140 1.00
1.00 1.00 0.85 1.00

1.00 1.00 3.06 1.00
1.00 1.00 0.99 1.00

[« , Q0¥ [« QN V1 N Wa

where

La+na-=s» a-nl-=s) 0+ -r) 30-5(1-r?)
Ny = 0 0 0 0 . (30)
0 0 0 0

The bending strains do not change, and for the displacement derived shear strains we have

¢=[$}=K%+MW- 31)
52

If we introduce the new strains into the variational principle, we must use the functional H (u, €, t)
because the displacement field will be discontinuous. Then, we have to introduce a traction field t
over the boundary . This traction field is a (line) shear resultant, and for simplicity we shall assume
that it is constant on each element side. On performing the variations, the following expression at
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the element level is obtained:

K& 0 P LY (v p°
0 0 P L¥ | Jval| _]p? 32)
@ @*T -c* o0 ||a| |O
(LCI)T (Ldl)T 0 0 t 0
where |
Pl = | B)EBIAV (33)
Ve
P = f BHTE,B*dV (34)
Ve
L = / NI ds (35)
Sef
LY = f NTds (36)
Sef
p = | NItdsS + / NPtds (37)
s ve
Now imposing the relation
a=Qlv, (38)
we obtain
va = (BT (CQ - ()T v = Weve. (39)

Replacing both relations in the variational principle and taking variations with respect to v, and t,
the following expression at the element level is obtained:

K +Q7C?Q; LY+ WL [ve] _ [p°+Wp? (40)

(L% + W,.L™T 0 t 0

The stiffness matrix proposed in [1] for the plate element, namely, Ki° + Q:7C*Qz, can be clearly
identified in the preceding expression. It is not necessary to compute the contribution L because
it comes from the compatible displacement and will cancel with the contribution of the neighboring
element. On the other hand, the contribution L% from the incompatible mode does not vanish. If
t vanishes the stiffness matrix reduces to that of [2] but the nodal force vector will generally be

different. Thus it is worth emphasizing that the variational principle gives a consistent treatment
for the distributed loads.

The matrix P42 is singular for rectangular elements, but we know that in this case Q. is equal to Q
and there is no need to introduce the incompatible displacement field.
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Figure 4. Cantilever beam discretization

Table 3. Normalized displacements (FEM/Theory) for bending,r = 1.E — 12

Node MITC4 ANSH
w o, w 6,
5 1.000 1.000 1.000 1.000
6 1.000 1.000 1.000 1.000

Table 4. Normalized displacements (FEM/Theory) for shear, r = —2.227

Node MITC4 ANSH
w 8y w 8y
5 0.930 1.077 0.892 1.003
6 0912 0920 0.891 1.002

4. NUMERICAL EXAMPLE

To check the behavior of the functional H (u, €, t) we analyze a cantilever beam with two distorted
elements, as depicted in Figure 4. The assumed independent shear strain corresponds to equations
(10) and (11). We are interested in two load cases: a uniform bending moment at the tip (Figure
2); and a uniform transverse load at the tip (Figure 3). In both cases Poisson’s ratio is set to zero to
compare the results to those obtained through the Euler-Bernoulli beam theory.

Uniform Bending Moment. The theoretical solution for this problem requires a linear variation for
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8, and a quadratic variation for the transverse displacement w. The results obtained with MITC4
coincide with the theoretical results. So do those obtained with the present formulation labeled
ANSH (for Assumed Natural Shear Hybrid).

The value obtained for t is of roundoff error order (1. 10~'2). Then, in this case, both formulations
are equivalent and the work of the incompatibility can be disregarded.

The external load vector is the same for both formulations because the external bending moment
does not interact with the transverse displacement.

Uniform Transverse Load. The theoretical solution requires a quadratic variation in 6, and a cubic
one in w. In this case we must expect the computed solution to be approximate. The results obtained
are shown in Table 4. Clearly the ANSH formulation is less sensitive to element distortion. The
lack of symmetry can be observed at the third decimal position. The convergence and symmetry
for the rotation is excellent. The value obtained for t is not negligible. Note that in this case the
external load vector is not the same for the MITC4 and ANSH formulations.

5. CONCLUSIONS -

We have illustrated the theory presented in Part I [3] through the study of several 4-node C? plate
elements with independently assumed shear strains. The following conclusions emerge from this
study.

1. Elements Pl and P4 based on the mixed functional R(u, €) are variationally impeccable.
P behaves well in the bending test and P4 passes the shear patch test. Their performance
deteriorates markedly, however, if the element geometry departs from the rectangular one.

2. The MITC4 element imposes a shear strain- displacement relation (38) obtained by midpoint
strain collocation. This kinematic relation is not a priori derivable from a mixed variational
principle suchas § R = 0.

3. A variationally consistent modification of MITC4, named ANSH, is obtained by introducing
incompatible displacement modes and an independent surface traction t (in this case a shear
line force), and using the hybrid functional H (u, €, t) for the shear energy portion. The results
are similar to those of MITC4. Although this element is more expensive to form, it does
provide a consistent treatment of applied distributed loads.

4. The MITC4 element stiffness matrix is recovered by setting the boundary traction field t of
ANSH to zero. However, the nodal load vector for distributed applied forces will generally be
different.

The techniques illustrated here are obviously applicable to the construction of other types of strain-
assumed elements based on the various functionals presented in Part I [3]. In particular, the use of
the restricted hybrid principle H, in which the boundary tractions are not retained as independent
degrees of freedom, remain unexplored.

A key result of this investigation is that any change in the strain-displacement interpolation from the
variationally consistent interpolation must be associated in some way to the addition of incompatible
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displacement modes. This property is closely linked to the limitation principle stated in §7 of Part
I
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Appendix A

Bathe and Dvorkin (1] proposed the same kind of shear strain interpolation we have used in equations (10)y(11).
To determine the coefficients a; they imposed the following midpoint-collocation relations:

g Yatve L v 4y
2 2

2 3 1 4

ay = Y T Ve g, = Y TV

2 2 7

where superscripts 1, 2, 3, 4 indicate the node where expressions (6) and (7) must be evaluated; see Figure 1.
Through the application of the relations of Section 1 and after some algebra we obtain

a—_-Q:vc
where
a' =(ay @& a3 a)
Vf:(w 9“ 9)-1 9),4)
05 BTN AZEh s RZNAUZR 0 0 0o o0 0 0
- Y3 — V4 Xg =X Y3 — Y4 Xa — X3
Q:=o 0 0o o0 0 0 —05B X XD o5 B 7
osXZNAZTX o 0 o 0 0 0 —o0s5% N A
0 0 0 o5 BZRRZH _osHZRRZA 0 0 0
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MIXED VARIATIONAL FORMULATION OF FINITE ELEMENT ANALYSIS
OF ACOUSTOELASTIC/SLOSH FLUID-STRUCTURE INTERACTION

ABSTRACT

A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed
in a rigid or flexible container by the method of canonical decomposition applied to a modified form
of the wave equation in the displacement potential. The general principle is specialized to a mixed
two-field principle that contains the fluid displacement potential and pressure as independent fields.
This principle contains a free parameter a. Semidiscrete finite-element equations of motion based on
this principle are displayed and applied to the transient response and free-vibrations of the coupled
fluid-structure problem. It is shown that a particular setting of « yields a rich set of formulations
that can be customized to fit physical and computational requirements. The variational principle is
then extended to handle slosh motions in a uniform gravity field, and used to derived semidiscrete
equations of motion that account for such effects.
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1. INTRODUCTION

An elastic container (the structure) is totally or partly filled with a compressible liquid or gas (the
fluid). The fluid structure system is initially in static equilibrium in a steady body force field such as
gravity or centrifugal forces. We consider small departures from equilibrium that result in forced or
free vibratory motions. To analyze these motions the fluid is treated as a linear acoustic fluid, i.e.,
compressible but irrotational and inviscid. The purpose of the present work is

1. To derive variational equations of motion based on a mixed variational principle for the fluid
subsystem.

2. Toobtain semidiscrete equations of motion following spatial discretization of the coupled problem
by the finite element method.

The derivation of the mixed variational principle for the fluid is based on the method of canonical
equations advocated by Oden and Reddy [13] for mechanical applications. The most general dy-
namical principle derived in this paper contains three primary variables: pressure-momentum vector,
dilatation-velocity vector, and displacement potential.

The general principle is specialized to a two-field functional of Reissner type that has pressure
and displacement potential as primary variables, as well as a free coefficient « that parametrizes
the application of the divergence theorem. The coupled variational equations are then discretized
by the finite element method, and semidiscrete equations for a rigid container established. Linkage
with the structure is then made to establish coupled semidiscrete equations of motion for a flexible
container. By appropriate selection of the coefficient & a continuum of finite element formulations
results. One particular setting yields a rich set of symmetric and unsymmetric formulations for the
transient and free-vibrations elastoacoustic problems. From this set selections can be made to satisfy
various physical and computational criteria. The implications of these selections as regards efficiency
and numerical stability are discussed. '

The variational formulation is then extented to cover slosh motions in a uniform gravity field. It
is shown that the surface slosh equations may be incorporated as Galerkin terms in several forms, and
that one of these forms merges naturally with the mixed variational principle to form an augmented
functional. Semidiscretization of this functional produces finite element equations of motions that
may be used for a rigid or flexible container.

2. GOVERNING EQUATIONS

The three-dimensional volume domain occupied by the fluid is denoted by V. This volume is assumed
to be simply connected. The fluid boundary S consists generally of two portions

S, is the interface with the container at which the normal displacement d,, is prescribed (or found as
part of the coupled fluid-structure problem) whereas S, is the “free surface” at which the pressure
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Table1 Notation for Fluid States

Quantities Domain Original Reference Current Transient
Displacements 1% 0 d° d’ d=d’-d°
Velocities 1% 0 & d’ d=4'-4°
Boundary displacements* N 0 d? d! d,=d;-d?
Displacement potential 1% 0 v ¥ v =y —y°
Pressures (+ if compressive) 14 0 p° p! p=p'—p°
Body forces 1% 0 b=VS b=V§g

Density | %4 P p p

* Positive along outward normal

p is prescribed (or found as part of the “fluid slosh” problem). If the fluid is fully enclosed by the
container, as is necessarily the case for a gas, then S, is missing and S = §;. The domain is referred
to a Cartesian coordinate system (x;, x2, x3) grouped in vector X.

The fluid is under a body force field b which is assumed to be the gradient of a time independent
potential 8(x), i.e. b = V8. All displacements are taken to be infinitesimal and thus the fluid density
p may be taken as invariant. '

We consider three states or configurations: original, from which displacements, pressures and
forces are measured, current, where the fluid is in dynamic equilibrium at time ¢, and reference, which
is obtained in the static equilibrium limit of slow motions. Transient motions are the difference between
current and reference states. It should be noted that in many situations the original configuration is
not physically attainable. Table 1 summarizes the notation used in relation to these states.

2.1 FIELD EQUATIONS

The governing equations of the acoustic fluid are the momentum, state and continuity equations. They
are stated below for the current configuration, and specialized to the reference configuration later. The
momentum (balance) equation expresses Newton’s second law for a fluid particle:

pd' = —Vp'+b=—Vp' + V8. 2)

The continuity equation may be combined with the linearized equation of state to produce the consti-
tutive equation that expresses the small compressibility of a liquid:

p’ = —KVd’ = —pC2Vd‘, 3)

where K is the bulk modulus and ¢ = /K/p the fluid sound speed. If the fluid is incompressible,
K,c — oco. This relation is also applicable to nonlinear elastic fluids such as gases undergoing
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small excursions from the reference state, if the constitutive equation is linearized there so that
K = po(dp/dp)o-
The boundary conditions are

d'=d! on Sd, p'=p" on Sp, 4)

where d’ is either prescribed or comes from the solution of an auxiliary problem as in fluid-structure

interaction, and p may be either prescribed or a function of d, and b, as in the surface-wave (“slosh™) -

problem.
2.2 INTEGRAL ABBREVIATIONS

In the sequel the following abbreviations for the volume and surface integrals are used:

v [rav. s ¥ [eas. e, ¥ [eds we "~ ©

That is, domain-subscripted parentheses (square brackets) are used to abbreviate volume (surface)
integrals. Abbreviations for function innerproducts are illustrated by

Fow e fv fedv,  (fig)va & f f fedvds, U glsa & / [S fedSds, et
41} d

(6)
3. THE DISPLACEMENT POTENTIAL
3.1 THE REFERENCE STATE
Taking the curl of both sides of (2) yields
curld’ = 0. (7
The general integral of this equation for a simply connected domain is
d'=Vy¢'+a+by, ®)

where ¥! = ¥f(x,t) is the displacement potential, a = a(x) and b = b(x) are time-independent
vector functions, and ¢ denotes the time. If accelerationless motions (for example rigid body motions)
are precluded by the boundary conditions, a and b vanish. Replacing d' = V! into the momentum
equation (2) we get

Vp'=—pVy' + V5, &)
which spatially integrated gives
pl=—p¥'+B+CO, (10)
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where the scalar C(¢) is not spatially dependent. Next integrate the constitutive equation (3) over V
and apply the divergence theorem to Vd:

(") + (ptVdY)y = (p")y + [pcdf]s = 0. (11)

Inserting p’ from (10) into the above equation furnishes a condition on C(¢), which gives

2 . 1 2 _ _
ct) =215+ L@y — —~ By = -2 (@5 + o9 - B, (12)
v v v v

where v = (1), is the fluid volume and f = (f)v/v denotes the volume average of a function f
defined over V. Substituting C(z) into (10) we get -

t Tt a pC2 t
p=—pW —y¥H+(B—-8)- T[dn]s- (13)

In the static limit of very slow motions, the inertia terms may be neglected and we recover the reference
solution

_ pc
P’ =(8-PB) ~—Idls. (14)
For an incompressible fluid [d,]s = O but ¢ — o0; thus it would be incorrect to conclude that
p® = B — B. A counterexample to this effect is provided in [14].
3.2 TRANSIENT MOTIONS

Subtracting the constitutive relations at the current and reference states we get
p= —pCZVZ\lr = pczs, (15)
where s = ~V?2y is called, following Lamb [ 10}, the condensation. Subtracting (14) from (13) yields

J— c2
p=-p( —¥) - ”T[d,,]s. (16)

On equating (15) and (16) we get modified forms of the wave equation that account for mean boundary
surface motions: )

i-7

s=Viy = =

Folds, o AV -V =T a7

The second form follows from —vs = [d,]s, which is a consequence of the divergence theorem. For
an incompressible fluid, ¢ — oo and [d,]s = 0, and from the first of (17) we recover the Laplace
equation V2 = 0.
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3.3 ADJUSTING THE DISPLACEMENT POTENTIAL

If the transient displacement potential is modified by a function of time:

¥ =y +PQ), (18)
where ¥ is the potential of (8)-(17), we may chose P(t) so that Cz',; = V2y = -5 for any t. Then
we obtain the classical wave equation

; 8?
Vi =, or ol Vi y =0. (19)

In the sequel it is assumed that this adjustment has been made. If so, C(¢) vanishes and (16) reduces
to

4. MIXED VARIATIONAL PRINCIPLES

4.1 CANONICAL DECOMPOSITION

In this section we derive multifield variational principles for the fluid domain following the canonical
decomposition method advocated by Oden and Reddy [13]. This method is applicable to self-adjoint
boundary value problems (BVP) of the form

Au=f inD @

where « is the unknown function, f the data, A a symmetric linear operator, and D the domain of
existence of the solution. For time-dependent problems D is the tensor product of the time domain
(typically O to t) and the volume V. To apply this method, the operator A is factored as

Au=W'EWu = f, 22)

where W and E are linear operators in V and W* is the adjoint of W. This is called a canonical
decomposition. This decomposition may be represented as the operator composition sequence

Wu =e, Ee =g, W*o = f, 23)

where ¢ and o _denote intermediate field variables in D. The three equations (23) are called the
kinematic, constitutive and balance equations, respectively, in mechanical applications. The canonical
representation of boundary conditions on the surface S = S, U Sy is

Bsug=g on S, Bsog=h on S,. 24)

where Bs and B} are surface operators, g and h denote boundary data, and us = ysu and g5 = ['so
are extensions of u and ¢ to the boundary S. The extension operators ys and 8s often involve normal
derivatives.
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4.2 THE WAVE EQUATION

The classical wave equation (19) is not a good basis for the canonical decomposition (22). Its principal
drawback is that the pressure field does not appear naturally as an intermediate variable in (23). A
better form for our purposes is obtained by taking the Laplacian of both sides of (19), and multiplying
through by the density p:

2
pVi(§ —*V2Y) =0,  whence A= pV? (53—2 - szz) ., f=0 (25)
t
A suitable canonical decomposition is A = W*EW, where
_[Va] o[l 0 W= [—ivE V2= W 26
V2 =p 0 6‘2 ’ _['—l ﬁ ]—_ ' ( )

in which i = +/—1. Boldface symbols are used for W and E because these are 4 x 1 and 4 x 4
matrices, respectively. The operator product sequence (23) becomes

V . - V' . .
e=Wy = [' v }_[‘:] a=Ee=[_;i2$w:|=[l;1], W*o = pV2i—pc?Viy = 0.
(27)

The intermediate fields e and o are 4 x 1 column vectors. These vectors are partitioned into their
temporal and spatial derivative subvectors for convenience in subsequent manipulations. Note that
the transient pressure p appears naturally as the spatial component of o. The temporal components
of e and o are the complex velocity i v and complex specific momentum im, respectively.

The boundary portions S, and S, of (24) are relabeled Sy and S, respectively, to match the
notation (1). Boundary and initial conditions may be stated as

By (x,t) = g(x,t) on Sy, B*o(x,t) = h(x,t) on S,,

(28)
d(x, tp) = do(x) or m(x, 1) = mp(x), dix, ) =d;(x) or m(x, ) =m(x).
Here B and B* are time-independent 4 x 1 and 1 x 4 vectors, respectively, related to the canonical
Bs and B} operators of (24) by B = Bsys and B* = BI's, where ys (a scalar) andT's (a4 x4
matrix) are boundary extension operators for ¥ and o, respectively. Comparison with (4) and the use
of Green’s function reveals that

- ) .
Bl=—-B;=[0 0 0 1], g =[0 0 0 d.], vs=7-, I's=1 h=-p5. (29)
n
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4.3 THREE FIELD PRINCIPLE

The most general variational principle for the canonical decomposition (26) allows the three fields:
¥, e, and o, to be varied independently. The principle may be stated as L(y, e, o) = 0, where the
functional L is [13] .

L(us €, d) = LV+LS = %(Eev e)VXI+(a’ WV’"")Vx:’(f, w)VXI'*-(aS’ B‘/f-g)sdxt"(}'h WS)SPXI’
(30)

where Ly and L collect volume and surface terms, respectively. On inserting (27-29) into (30) we
get

Ly = ;(Ee, &)y, + (0, WY — €y = f

f
f [3p(=VTV+c?sh) - m’ (V§ —v) = p(V2y +5)]dV dt,
n YV .

“ ] ~ ;]
Ls = (05, BY — st — (M, ¥s)s, i = / [/ P('(:;'#' - dn)d5+/ Pa—w dS] dr.
% Sa n s, on

(31)

The term (f, ¥) v, vanishes and does not contribute to Ly.
4.4 TWO FIELD PRINCIPLES

A two field principle of Reissner type can be derived from the functional L by enforcing the inverse
constitutive equations e = E~'a a priori. The resulting principle, which allows ¥ and o to be varied
simultaneously, is  R(¥, o) = 0, where

R(Y,0) = Rv+Rs = —%(E-la’ Dy xi+ (@, W)y —(f, ¥Ivet+ (05, BY—8)s,xe— (1, ¥5)s, %

(32)

where Rg = Ls and

Ry(#,0) = —1(E"s, a)vX,+(a,W¢)vX,=/ f( m———-mTV¢ vy dVdt.
(33)

The specific momentum disappears as an independent field if we enforce m = pVY a priori,
whereupon the functional R becomes a function of ¥ and p only and the volume term contracts to

2

Ry(¥, p) = / fv (- 4oV~ 32 - pViY)dV dr. (34)
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To check R = Ry (¥, p) + Rs we form its first variation*

[P 4 53_1#]5 w [% - d,, 5P]det - (pw}, avw) >

on on Vi
Setting 8 R = O provides the field equations, boundary and initial conditions.
4.5 PARAMETRIZATION.

A one parameter family of variational principles can be obtained by transforming all or part of the last
term in (34), viz. pV>y, by the divergence theorem (Green’s first formula for the Laplace operator)

/pV2WdV+/(V1/f)TVpdV= pldS pa—wds+f a—wds (36)
% v on s, on 8

LetO < o < 1 be the portion of that term to be transformed. Insert pV2y = apV3y¥ + (1 —a) pV2y
in (35) and apply (36) to ap V3¢ to get

Rav=f /( Lo(vyn)Tv ap-- +a(vw)Tvp (l—a)pvzv,[/)dV—af p%ds—af p?lds dr.
) \ 4 an SP a

Sq n
(37
Finally, replace the Laplacian V2 left over in (37) by ¢~ 2y to arrive at the parametrized two-field
functional ¥

Ra(w,p>=Rav+Rs—/ [f( Lp(ViTY w—-p"—+a(vw)’w (1—a>ﬂ)

o] ool -aass [ G- Y as|a
S, an
(38)

* The variation of the kinetic energy integral term may be expressed in two different ways,

n

(o997, ), = (pv009)  -[osv] +(owiswy) |\

’0

n

on

depending on whether integration by parts is performed first in time or space, respectively. The first form,
which provides physically significant initial conditions, is used in constructing (35).

(o947, VY),,, = (o720 8%)  + [piﬁ,w]m (pv28v)

’0

t If e # 1, 8R, = O is a restricted variational pnncxple because the substitution V2y = ¢~y holds only at
the exact solution.
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The highest spatial derivative index for both primary variables ¥ and p is 1, except if & = 0, in which
case it is only O for p . The two interesting limit cases are of course « = 0 and @ = 1, for which

_ [ Loyt 2P W _; _3y
Ro(¥, p)—/ Lﬁ/(—zp(W) vy -1 c2>dv+f5 p(an —dn)dS+Lpp3;dS]dt,

Iy ;EE— d
] - | (39)
_ ] 1 T . _l_p_i_ r _ . _ . ﬁb‘_ .
Ry(¢¥, p) —/;0 _‘/;’( so(VY)' Vi 2pc2+(V1,{f) Vp) dv -/;4 pd,dS /;p(p P) ™ del dr.
| (40)

5. FINITE ELEMENT DISCRETIZATION

5.1 DISCRETIZATION OF R,

In the following we derive semidiscrete finite-element equations of motion based on the R, functional
(38). The volume V is subdivided into fluid finite elements. Over each fluid element the state is
represented by the primary variables ¥ and p, which are defined as functions of position in the usual
shape-function interpolation procedure. The finite element interpolation in V may be expressed as

Y (x, ) = Ny (x) ¥(@), p(x,t) = Np(x) p(2), (41)

where ¥ and p are computational column vectors that contain npsi and n, nodal values of ¥ and p,
respectively, and Ny, and N, are corresponding row-vector arrays of dimensionless shape functions.
The specified displacement over Sg is interpolated by

d.(x, 1) = nTd(x, t) = n”TNs(x)d, = NI (x)d, (42)

where n is the external-normal unit vector on Sz, Ny contains the displacement shape functions of
the enclosing container, Ny, are these shape functions projected on the outward normal n on Sy, and
d contains nodal displacement values. For now the container displacements will be assumed to be
prescribed, hence the superposed tilde.

In the following three Sections (5-8) we shall assume that the prescribed-pressure boundary
conditions are exactly satisfied by the finite element interpolation, i.e. p = p on S,. If so the S,
integral of R, simplifies to

d
(a —a)ﬁ%ds, (43)

Sp

which vanishes for @ = 1. Inserting (41)-(42) into the functional (38) with the simplified S, integral
(43) yields the semidiscrete quadratic form

. . 1 .. ~T =
R.(¥,p) = —1 p\IlTH\I’—EZpTGp—{fa\IlTFp+(l—-a)[‘I’TVp—\I'TDp+‘IITf¢,]—pTTTd, (44)
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where
H=/V\7N£VN¢,dV=HT, F=/VVN;VN.¢,dV, G=/VC-ZN;N,,dV=GT,

D=/Vc-2N5div, V= (V.Ny,)'N,dS, TT=/S NTNa» dS, f¢,=fs p V.Ny dS.
. d

(45)
The integration with respect to time is dropped as it has no effect on the variation process described
below.

5.2 CONTINUITY REQUIREMENTS

S¢

The interelement continuity requirements of the shape functions of ¥ and p depend on the index of
the highest spatial derivatives that appears in R,. If & # 0, this index is 1 for both ¥ and p and
consequently C° continuity is required. It is then natural to take the same shape functions for both

variables:
Ny =N, (46)

with both vectors ¥ and p of equal dimension and evaluated at the same nodes. Then some of the

matrices in (45) coalesce as
H=F, G=D=D". (47)

The case @ = 0 is exceptional in that no spatial derivatives of p appear. One can then chose C~!
(discontinuous) pressure shape functions; for example, constant over each fluid element. If this is

done, obviously
Ny #N, (48)

because ¥ must be C° continuous. Furthermore the dimensions of p and ¥ will not be generally the
same.

5.3 SINGULARITY OF H

For later use, we note that matrix H (as well as F if different from H) before the application of any
essential boundary conditions at fluid nodes, is singular because

He=10 4 (49)

where e denotes the vector of all ones. This follows from (45) and expresses the fact that a constant
potential generates no pressures or displacements.
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6. TRANSIENT RESPONSE EQUATIONS

6.1 THE RIGID-CONTAINER EQUATIONS OF MOTION

Since R, contains time derivatives of of order up to 2 in ¥, the appropriate Euler-Lagrange variational
equation is
dRy 3 dR, | d° aR,,)w N

8 L 9R,
v 9t a¥  art o

ap

SRy = ( 5p =0, (50)

which applied to (44) yields

[pH‘i’ +aFp—(—a)Dp+(1—a)Vp+(l - a)f,ﬁ] 5% =0,
. T (1)
[— p71Gp+aFT ¥ — (1 —a)DT ¥ + (1 — ) VT — TTd] 5p =0.

These equations can be presented in partitioned matrix form as

pH ~(1-a)D] [ ¥ + 0 J N
-1 —a)DT 0 p JI. —p7'G || p

where J = (1 — o)V +aF.
6.2 THE FLEXIBLE-CONTAINER EQUATIONS OF MOTION

—(1 - o)fy

If the fluid is enclosed in a flexible container, the boundary displacements d are no longer prescribed
on S, but must be incorporated in the problem by including them on the left hand side of the equations
of motion. In the sequel, vector d collects all structural node displacements, of which d is a subset
on §;. Matnx T, suitably expanded with zeros to make it conform to d, becomes T. We shall only
consider here the case in which the container is modelled as a linear undamped structure for which
the standard mass/stiffness semidiscrete equation of motion is

Md + Kd = f; + Tp, (53)

where M is the mass matrix, K the tangent stiffness matrix at the reference state, Tp is the pressure
force on the structure, and f; is the externally applied force on the structure. Note that K in general
must account for container prestress effects through the geometric stiffness. Combining (52) and (53)
we get the coupled system

M 0 0 d K 0 -T d £,
0 oH ~(1-a)D|{Tt+|] 0 0O J i={--uf
0 —(1-a)D” 0 b -7 T —»p7'G]||p 0
(54)
fa=0,

M 0 0 d K 0 ~T d £y

0 pH D|[{T}t+| 0 0 \% [q, = —t‘w} (55)

0 DT 0 p -7 VI —p7'G |l p 0
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There is little than can be done beyond this point, as the shape functions for p and y will be generally
different. Although the pressure may be constant over each element, no condensation of p is possible
in the dynamic case.

M 0 0](d K o0 -T d fs
0 pH 0|({¥:+| 0 0 F Ti=1{0;. (56)
0 0 o0][p =TT F* —p7'GJ | p 0

Note that all these systems, (54) through (56), are symmetric.
6.3 IDENTICAL SHAPE FUNCTIONS

Further progress in the case @ = 1 can be made if we assume, as discussed in §5.2, that the shape
functions for p and ¥ coincide. Taking then (47) into account, (54) simplifies to

M 0 0 § K 0 -T d £,
0 pH 0! ¥ }+] 0 0 H svl=101}. (57)
0 0 oflp -TT H -p7'G||p 0

The second matrix equation gives pHY¥ + Hp = 0. Since H is nonnegative definite we must have

This is the discrete analog of the continuous relation (20) for the dynamic overpressure. For future
use let us note that if the container is rigid, (57) reduces to

-0 'Gp+H¥ =G¥ +H¥ =T7d. (59)

6.4 UNSYMMETRIC ELIMINATION

If (58) is used to eliminate the pressure vector from (57) we obtain

M pT][d K 0][d]_J[t
5 e llel [ alte]= {5} <6°>
Conversely, eliminating the displacement potential vector gives
M o0]fd K -T]fd]_ £
L e]ts)+ [ 7 ])=16) o
Unlike previous systems, both (60) and (61) are unsymmetric. Thus the straightforward elimination

of a field variable, be it p or ¥, causes symmetry to be lost. These forms will be called unsymmetric
two-field forms, or U2 for short. System (60) reduces to (59) if the container is rigid.
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7. REFORMULATIONS OF THE TRANSIENT RESPONSE EQUATIONS

7.1 S3 FORMS

Starting from (57) and (58) it is possible to derive three more symmetric forms that are formally
equivalent. One is obtained by differentiating the last matrix equation twice in time, transforming the
first equation via (57), and finally including (57) premultiplied by p~!G as third matrix equation:

M oT 07(d K0 0 d fs
pTT —pH G| ¥t +|0 0 O vi=10 (62)
0 G o]lp 0 0 p7'GJ(p 0

Another one is obtained by integrating the first matrix equation of (57) twice in time, using (58) to
eliminate the pressure, and including Kd — Kd = 0 as trivial equation:

o 0 07 (d -M_ —pT -K7|(d t
0 G 0|{¥}t+|-pTT pH 0 Ti=10 (63)
0 0 K||d -K 0 0 d 0

where superposed stars denote integration with respect to . Finally, differentiating the first matrix
equation of (63) twice in time, moving pT7d to the left, and including Md — Md = 0 as trivial

equation, we get
o o -M7(d M 0 o](d 0
0 oG —pTT |{¥Y+i0 pH 0[{¥ =10 (64)

xk

-M -pT -K d 0 o o0l|4d —f;

The four symmetric forms, (57), (62), (63) and (64), will be called symmetric three field forms, or S3
forms for short. It should be noted that there is no symmetric S3 form with a state vector consisting

of d, p and :i‘
7.2 S2 FORMS

Each of the S3 forms has a statically condensable matrix equation that allows one field to be eliminated.
For example, the last matrix equation of (57) is —~TTd + H¥ — p~'Gp = 0 which can be solved
for the pressure vector p if G is nonsingular. Assuming that all matrix inverses indicated below exist
(more will be said about this later), the condensation process yields four two-field symmetric forms:

M 07[d] [K+pTG"'T" pTG H][d] _[fi 65)
0 pH||¥ pHG™'TT  pHG'H || ¥ [ |0 )"
M+ pTH™!'TT  TH™'G d L[X 0 d) _ [f 66)
GH™'T17 o~ 'GH™'G | | p 0 oG llp] 1O
oG 0] [¥® pH+p?TITM™'T pTTM™'K] [P _ [T g1 &
[o K]{d}+[ PKM~'T vk |15 Lk M= ©D
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Table 2 Limit Conditions

Limit condition Matrix Recommended
expression form(s)

Incompressible fluid (¢ — ©0) G—> 0 (60),(61),(62), (66)

Cavitating fluid (¢ — 0) G- o0 (57),(65)
Stiff container K— oo (64),(68)
Hyperlight container M—=0 (64),(68)

MK~'M pMK™!T d M 0 d M.,
[pTTK-’M pG+p2TTK-‘T] { ¥ } + [ 0 pH] [ o } T l:pTT] K7 ©8)
These will be called symmetric two-field forms, or S2 forms for brevity. The condensation process
reduces the number of degrees of freedom but is detrimental to matrix sparsity. The last property may

be recovered to some extent by taking advantage of factored forms of the matrices affected by the
inverses; for example

- [K+pTG™'TT pTG'H] _[I T][K 0 I 0 69)
oHG™'TT  pHG™'H| [0 H||0 oG '||TT H}
Expressions for the matrices in (66)-(68) are given in [3].

7.3 ADVANTAGES AND RESTRICTIONS

The eight symmetric forms (S3 and S2), plus the two unsymmetric forms (U2), represent ten for-
mulations of the R-based fluid-structure interaction problem for the identical-shape-function case.
Although formally equivalent, they may have different behavior in terms of numerical stability and
computational efficiency. The following items may affect the choice among the various forms.

Matrix sparseness retention. Matrices G and M are often diagonal. The S2 forms that involve G™!
and K~!, whether in direct or factored form, are (other things being equal) preferable to the others.

Existence of inverses. If the fluid does not have a free surface, H is singular on account of (49), and
consequently (65) does not exist. If the container has some unsuppressed rigid body modes, K is
singular and consequently (68) does not exist.

Applied force processing. Forms (63) and (67) require that the applied structural forces, fs, be
integrated twice in time before being used. Both S2 forms (67) and (68) require additional matrix-
vector operations on the force vectors. These disadvantages, however, disappear in the free-vibrations
case discussed in §8.

Explicit versus implicit time integration. If M and G are diagonal, both unsymmetric forms (60) and
(61) are attractive for explicit time integration because the leftmost coefficient matrices are upper and
lower triangular, respectively. Therefore equations may be solved directly in a forward or backward
direction without prior factorization. No symmetric form exhibits a similar property.
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Physical limit conditions. Those collected in Table 2 are of interest in the applications. Recommended
forms, if applicable (restrictions are analyzed in §7.3), are preferable because of numerical stability
or suitability for perturbation analysis. Of all conditions listed in Table 2 the incompressible fluid
case is of central importance. There must be a free surface S, else the contained fluid would behave
as a rigid body. Consequently H is nonsingular. Setting G = 0 in (66) we obtain the so-called added
mass equations '

M,d + Kd =1y, (70)

where M, is the added mass of the coupled system:
M, =M+ pTH!T?. (71)

Preservation of structural rigid body motions. This is discussed in more detail in §8.5 in conjunction
with the free-vibration eigenproblem. Suffices to say that forms (63)-(64) and (67)-(68) do not
generally preserve such motions and are inappropiate for treating unsupported structures (for example,
liquid tanks in orbit).

Presence of constant potential mode (CPM). This is covered in detail in §8.6. If the fluid is totally
~ enclosed by the container so that there is no free surface, forms (57) and (65) should not be used.

8. FREE VIBRATIONS

To obtain the elastoacoustic free-vibrations problem, we make the standard substitutions
d=ue/”, ¥=q/¥ p=re¥, f;=0, (72)

where j = +/—1 and w is the circular frequency, into the transient response equations. Thus we
obtain ten algebraic eigenproblems, eight symmetric and two unsymmetric, which are displayed
below. General properties of these eigensystems are summarized in the Appendix. In the following
eigenproblem statements, subscript m is a mode index. The following eigenvector relations should
be noted:

I'm = —PWLq, W= 0 Uy (Wm #0). (73)

For the unsymmetric forms given in §8.3 one must distinguish between left and right eigenvectors.
Supercript L is applied to left eigenvectors wherever necessary; otherwise right eigenvectors are
assumed.

8.1 S3 FORMS
M 0 O u, | T K 0 -T 7 {un]
wi| 0 pH 0|3q,¢=| 0 O H q, | (74)
0 0 0|l L|-T7 H —07'G] | 1n
M oT 07 {un) K0 0 7(un]
Wil pTT —pH G |1qup=1{0 0 0 |7Qn¢, (75)
0 G 0] |rm] 0 0 p7'Gj {rm
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3

T

3

m

0 0 07 (un -M  —pT -K7 [ Un
@t|0 G 0 |{9np=|-pT"T pH 0 qr
0 0 K] |u, -K 0 o 0,
0o 0 -M U, M 0 0] (un
] 0 pG —pTT |{Qn}{=]|0 pH 0|{ qm
-M -pT -K 0, 0 0f|u,
8.2 S2 FORMS
o2 M 0 7fu.]_ [K+poTG'TT pTG™'H m
m 0 pH|laq,|] | oHG'TT pHG'H]|]|q,
W2 M+ pTH™'TT  TH™'G v, | _[K © u
w1 GH'TT  p7'GH™'G]|r.] [0 »'G
L[PG 0[] _ pH+ p*TTM™'T pT'TM'K7 [ 4
Lo K]lu,] | PKMT'T KM™'K | |3
o MK~'M pMK™'T u,| _[M 0 ]fu
m pTTK™'M oG+ p?T'K™'T | |q, ] |0 »H]|q

8.3 U2 FORMS
M pT}{|u
2 m
“m [ 0 G ] [qm

Up

[ K 0]fun
| -17 H]||qn

szO
mi pTT G

8.4 COMPUTATIONAL CONSIDERATIONS

[

I'm

I 3

}
|

1]

b

(76)

7

(78)

(79)

(80)

8D

(82)

(83)

The considerations of §7.3 apply for the most part to these ten eigensystems. However, matrix
symmetry is more important in free vibrations than in the transient response problem. This is because
eigensolution extraction methods that take advantage of sparsity are more highly developed for the
symmetric eigenproblem than for its unsymmetric counterpart. For an up-to-date exposition of those

methods see Parlett [17].

The presence of zero eigenfrequencies (w, = 0 roots) may cause serious numerical difficulties
in some eigensystem formulations. Two sources of such roots may be distinguished: rigid body

structural modes, and the constant-potential mode.
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8.5 RIGID-BODY STRUCTURAL MODES

If the container is not fully supported, Ku, = O for structural rigid body eigenmodes u,. If H
is nonsingular eigensystems (74)-(75), their condensed versions (78)-(79), as well as the two U2
eigensystems, preserve such modes. To verify this assertion, substitute

U, =y, q,=-H'T"y, r.=0, (84)

into the Rayleigh quotients (A.12) or (A.15) of the eigensystems. If H is singular, form (79), which
contains H™!, does not exist, whereas (74) preserves the modes if there exist q, modes such that
Hq, + Tu, = 0. Eigensystems (76)-(77) and (80) do not generally preserve rigid-body modes,
whereas (81), which contains K~!, does not exist.

8.6 CONSTANT POTENTIAL MODE AND SPECTRUM CONTAMINATION

Suppose the container is supported so K is nonsingular but the enclosed fluid has no pressure-specified
surface S,. If so H is singular because of (49). Both U2 eigensystems then possess an w = 0 root
which conventionally will be assigned modal index 0. This root is associated with the following
left/right eigenvectors

Eigensystem (82): uw=0 gqgy=e, u(',‘ =K 'Te, q(’; =e, (85)
Eigensystem (83): u=K'Te, rp=e, ut =0, rf=e, (86)

This statement is readily verified by taking the Rayleigh quotients (A.12). The eigenpairs (85-86) are
collectively called constant potential mode or CPM. The existence and computational implications
of this mode have been discussed by Geradin et. al. [7]. The mathematical interpretation of (85)
is “dual” to that of a structural rigid-body mode. Under a rigid-body motion the displacements are
nonzero but the strains vanish. Under the CPM the potential is nonzero but all fluid displacements
and dynamic pressures vanish. But unlike rigid-body modes, the CPM has no physical significance:
it is spurious.

According to the eigenfunction theory summarized in the Appendix, all non-CPM modes (W, q,,»
r,) of (82) and (83) for m # 0, wm # O satisfy the bi-orthogonality conditions

(0 eT) [:;T g] {':”: } =el (pTTu, + Grpy) =0, (87)

(eTTTK™' ¢T) [1:[ "g] [:"' } = ¢ (TTK~'Mu,, + pT'K"'Tq,, + Gg,,) =0.  (88)
m

As regards the symmetric forms, eigensystems (74) and (78) are adversely affected by the singularity
of H and should not be used. This is because substituting the CPM left eigenvector (85) into either
one, with r,, = 0 for (74), produces a Rayleigh quotient for @ of the form 0/0. This means that
both coefficient matrices have a common null space (the CPM) and every w is an eigenvalue. Such
an eigenproblem is called defective (see Appendix). If one attempts to numerically solve “untreated”
defective eigenproblems, nonsensical results can be expected because the whole spectrum is likely to
be contaminated.

122



9. SLOSH MOTIONS IN A GRAVITY FIELD

A liquid with a free surface in equilibrium in a time-independent acceleration field may exhibit
surface waves, informally called “slosh” motions. From an applications standpoint the most important
acceleration fields are gravity and rotational motion, the latter being of interest in rotating tanks. In
this section we shall be content with formulating slosh effects in a uniform gravity field. More general
fields, including time-dependent body forces, may be variationally treated by the method of canonical
decomposition of the non-homogeneous wave equation, but that general method will not be followed
here as it is not necessary for the gravity case.

The fluid volume V is in equilibrium in the reference state discussed in §3.1 under the time-
invariant body force per unit of volume b = Vg, where B is a potential field. As noted above we
restrict developments here to a gravity field of strength g uniform in space and time. The boundary
S, is then the equilibrium free surface normal to the gravity field. The axes (x|, x3, x3) are selected
so that g acts along the —x3 = —z axis. Hence 8 = —pgz + B, where B is an arbitrary constant. If
we chose B so that 8 vanishes at the free surface z = zg, then

= —pg(z — 20)- (89)

In the so-called hydrostatic approximation for small-amplitude gravity waves [9] sloshing is considered
equivalent to a free surface pressure
oy

p=p+pgd=p+pgn,  where n=d,=—= on S, (90)

Here p as before denotes the prescribed part of the pressure (for example, atmospheric pressure) and
n is called the elevation of the liquid with respect to the equilibrium free surface. This approximation
assumes that the displacements are infinitesimal and that the z-acceleration of the slosh motion is
negligible.

9.1 VARIATIONAL PRINCIPLE

For the variational derivation of “slosh equations” it is advantageous to chose the elevation n as an
independently varied field. This choice simplifies the reduction to surface unknowns as well as the
treatment of more complex interface conditions such as capillary effects.

To incorporate slosh effects into the mixed variational principles based on the functionals studied in
§4, it is convenient to follow a Galerkin technique by adding weighted forms of (88) to their first
variation. The following combinations may be considered:

£ £ - oy A4
i( a——) :t(——— ,a) , i( - - ,a-—-) :i:(——— ,a) .
p—DP—pgn, 3n ), a1 on 5 p—p—pgn i 3, 7P S
- 3 oy -
(p-5-pantp) (5 -ns32) ﬂ:(p—p—pgn,sp) (——n,an) N
Sp on on /s, a
i 3 . v aw
i(p—p—pgn,én) i(-if-—n,ép) , i(p-p—pgn.5n> (—--— )
Sp an Sp 0
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Of these the first expression, with signs — and +, offers two advantages: (1) it is derivable from
a functional, and (2) it combines naturally with the S, integral in the first variation (35). Of the
“base” parametrized functional R, the most computationally advantageous choice is again ¢ = 1.
The expanded functional (40), denoted as R,, in the sequel, is

Ri,(p,¥,m) =Ry —/

n - _ a
[/ pdndS +/ (p—p-— pgn)—w + %pgnzdS]dt- (92)
™ S4 gp an .

where R,y is the volume integral of (40). Note that setting = 0 restores R;.
9.2 FINITE ELEMENT DISCRETIZATION

In addition to the assumptions (41), (42) and (46) we interpolate n as
n=Nm on S, (93)

where column vector 1 contains n, fluid elevations at nodes on Sp, and row vector N, contains the
corresponding elevation shape functions. The semidiscrete quadratic form for (92), again excluding
the time integral, is

- - T . 1 ~T ~
Ry (¥, p.m) = —3p¥ HW—ZpTGp+pT(H-Q,,+>\II—pTT d+pgn” (Que ¥ —3SM—FTHy,

%94)
where

T T T -
Q. = f NTVNydS, Qp. =f NTVN,dsS, S =/ NIN,dS =87, f, = / VNJ, b.
SP SP SP SP
(95)
The + subscripts in Q,, and Q,, convey that the nonzero, “surface” portion of these matrices is
augmented with zeros to conform to vectors ¥ and p. To display this structure, ¥, p and related
matrices are partitioned as

¥, , 0 H, H,
i B B BSOSk S B
| 96)

where ¥, contains potentials at n,y, nodes of elements connected to S, and p, contains 7, pressures
on S,. The dimensions of Q, and Q, are ny X ngy. In general n, < nny (in fact, about one half).
Also typically n, << ny = n, as the latter pertain to a volume mesh. If n is interpolated by the same
surface functions as p, i.e. N, = N, on S, then

Q,=0Q,=0Q Q.=[Q 0l Q,,+=[3 g] O
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9.3 THE RIGID CONTAINER

The following equations of motion for the rigid but mobile container are obtained on rendering (94)
stationary:

pH 0 0 ¥ 0 H-Q], QI T fy
0 0 0|{ p (+|H-Q,, —p7'G 0 p t={Td;. (98)
0 0 0] [prg79 Q.+ 0 =S pgM 0

Assuming G and S to be nonsingular and identical p and n shape functions so that (97) hols, the nodal

pressures and elevations may be statically condensed from (98) thus producing the single matrix

equation ,

pH¥ + (P+RT =1f, + p(H - Q,,)G~'T 4, (99)

where

TQ-!

R.=aLsa. =[ V57 0]=[} o]=RE P=sm-qlic@-gu ="
(100)

The rank of R, and R is the same as that of S, that is, n,,. For most real liquids, acoustic and slosh

motions take place in very different time scales. This is the basis for the common assumption in slosh

analysis that the fluid is incompressible, i.e. ¢ - 00, G — 0 and R — co. If G — 0 the response

of the above system tends is forced to occur in the displacement-potential subspace defined by the

second matrix equation of (98):
(H-Q,)¥ =Td. (101)

For simplicity let us assume that the container is not only rigid but motionless, that is, d = 0. The
incompressible-fluid equations become

H,, H,][¥, R 0], f,
- = 102
"[H,T,, H, ||%. [ o oo, 0]’ (102)
subject to the constraint (H — Q,,)¥ = 0. Subvector ¥, may be statically condensed from these
two relations, which may be combined as the system

pH, 07 ¥, R  H-Q'][T ] _[f
R o R P o) R TR
where Ay are Lagrangian multipliers (in fact, the pressures at nodes of ¥;), and
_ -1 _1Q
Hs - Hss - Hsva Hv.n Q; - 0l (104)

If d 5 0 the force term in (103) must be appropriately modified.
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9.4 THE FLEXIBLE CONTAINER

For a flexible container the equations of motion accounting for fluid compressibility are

M 0 0 0 (d K 0 -T 0 d fs

0 pH 0 0 ¥l |0 0 H-Ql, QI v |_]%

0 0 00 p ~-TT H-Q,y -p7'G 0 P 0

0 0 0 0J\Upgn 0 Q.+ 0 -S P8M 0
(105)

Eliminating 77 and p by static condensation yields
M 07({d] _[XK« =Y ][d]_[fa
O (e =[5 ols)- e

K, =K+ pTG™'T7,  Y=pTG™'(H-Q,.). (107)

where

System (106) is the counterpart of (65). If the fluid is treated as incompressible, a subspace reduction
procedure similar to that used in §9.3 can be invoked.

9.5 SLOSH VIBRATIONS

Algebraic eigenproblems to investigate slosh vibrations may be constructed following essentially
the same techniques as in §8, and reduced to S, node elevations and pressures. We illustrate the
reduction technique for the incompressible fluid held in amotionless rigid container. The eigenproblem
associated with (103), suppressing the modal index m for simplicity, may be written as

2| pPHs O q, | _ R H; — QT q;
¢ [ 0 O]Lw}—[H”Q 0 ry (109
where q, and ry are the modal amplitudes of ¥ and Ay, respectively. The last matrix equation in (98)

provides Q¥, = Sm, or Qq, = Sz, where z is the vector of modal amplitudes of 7, i.e. 7 = zel®.
Using these relations we can transform the eigenproblem (108) to

cgS 0 z| C QT—-C z
"’2[0 O:Hrs}—[Q_c 0 ][n} (109)

C=QH;'Q7 (110)

in which

and r, are Lagrange-multiplier modal amplitudes at nodes of 7. This generalized symmetric eigen-
system of order 2n, provides n, solutions to the slosh eigenproblem. A similar technique may be
followed for the flexible container case. This finite element reduction-to-surface technique provides
an alternative to boundary integral methods [1,8].
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10. CONCLUDING REMARKS

Displacement-potential formulations are of practical interest in fluid-structure transient-response and
vibration analysis as they provide the basis for effective numerical computations. For some recent
applications see [2,6,7,9,12,14] and references therein. The preceding treatment unifies a number of
previous continuum-based and algebraic statements [3,4,5,9,11,12,14-16] of the coupled problem. It
may be further extended in the following directions:

(1) The inhomogeneous wave equation c2V2yr — ¥ = f, f # 0, when the body force field b(x, )
is time-dependent and V2b # 0. Additional forcing terms appear in the equations of motion.
These are of interest for slosh of fluids in rotating containers.

(2) Retaining the specific momentum m as independent field in functional (33).
(3) Inclusion of additional physical effects: capillarity, cavitation and viscosity.
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Appendix A: THE GENERALIZED ALGEBRAIC EIGENPROBLEM

Some facts about the algebraic eigenproblem are collected here for convenient reference. These facts are relevant
to the study of the free vibrations of the coupled fluid-structure system.

A.1 THE STANDARD UNSYMMETRIC EIGENPROBLEM

The standard eigenproblem for a real unsymmetric square matrix A may be stated as
Ax; = Aixi, (A.1)

where A; the eigenvalues (which may be complex), and x; the corresponding right eigenvectors normalized to
unit length. The eigenproblem for the transposed matrix is

ATy, =}y, : (A.2)

This problem has the same eigenvalues but in general the eigenvectors y; will be different. The y; are called left
eigenvectors of A because they satisfy the problem yT A = A;y;; this in turn explains the qualifier ‘right’ applied
to x;. The system of left and right eigenvectors of A satisfies bi-orthogonality relations:

0 ifi# ],

wi ifi=j. (A-3)

ﬂw={

This u; is called the condition number of A; with respect to the eigenproblem (A.1); it is always less or equal
than 1 in absolute value, and may be zero in pathological cases. (The closer to 1, the better conditioned A; is.)

Premultiplying (A.1) by y; and assuming that ; # 0 yields
M=yl Axi/ui = x ATy, /i, (A4)

which is the Rayleigh quotient for unsymmetric matrices. If u; = O and y,TAx; = 0, (A.5) takes the undetermined
form 0/0 so every A; is an eigenvalue. In such a case the eigenproblem (A.1) is said to be defective.
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A.2 THE STANDARD SYMMETRIC PROBLEM
If A is symmetric then x; = y;, u; = 1 and (A.3) reduce to the usual orthogonality conditions
0 ifis#j
Ty — ’
X% = {1 ifi = j. (A-3)
whereas (A.4) becomes the usual Rayleigh quotient for a unit length vector:

A = x7 Ax;. (A.6)

i
A.3 THE GENERALIZED UNSYMMETRIC EIGENPROBLEM
The generalized unsymmetric eigenproblem is
Ax; = A.,'BX,’, (A.7)

where A and B are unsymmetric real matrices. Assuming that B! exists, this problem can be reduced to the
standard problem

Cxi = Aix;, : (A.8)
in which C = B~'A. The transposed problem is
» C’z; = ATBf'Tz,- = A;Z;. (A.9)
Defining BTy,- = z;, (A.9) can be transformed to .
ATy, = \B7y,. (A.10)
The bi-orthogonality conditions (A.3) become
0 ifi#j,
Tx; =y'Bx; =x'B’y, = .
z;x; =y; Bx; =x; By, wi ifi=J. (A.11)
The Rayleigh quotient (A.4) generalizes to
TAx.  vTAx:
a o= TA% VA% (A.12)

"TBx T

Asin §A.1,if (A.12) takes on the form 0/0 for some i, every A; is an eigenvalue and the eigenproblem (A.7) is said
to be defective; mathematically, A and B share a common null space. A defective eigenproblem cannot be solved
numerically by conventional root-extraction methods because the 0/0 roots contaminate the entire spectrum.

A.4 THE GENERALIZED SYMMETRIC EIGENPROBLEM

If both A and B are symmetric,
x =y, 1z=Bly,. (A.13)
and we recover the usual orthonormality conditions
0 ifi#j, ,
x'Bx; = [ Cinh » (A.14)

In mechanical vibration problems for which B is the mass matrix, u; is called the generalized mass. Finally,
(A.12) reduces to the usual Rayleigh quotient

x! Ax;
A== . A.15
x! Bx; A.19)
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VARIATIONAL FORMULATION OF HIGH PERFORMANCE FINITE
ELEMENTS: PARAMETRIZED VARIATIONAL PRINCIPLES

SUMMARY

High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse
arbitrary grids. This paper is part of a series on the variational basis of high-performance elemeats, with
emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods.
The present paper studies parametrized variational principles that provide a foundation for the FF and ANS
methods, as well as for a combination of both,

1. INTRODUCTION

For 25 years researchers have tried to construct “best” finite element models for problems in
structural mechanics. The quest appeared to be nearly over in the late 1960s when higher order dis-
placement elements dominated the headlines. But these elements did not dominate the marketplace.
The overwhelming preference of finite element code users has been for simple elements that deliver
engineering accuracy with coarse meshes. The search for these “high-performance” (HP) elements
began in the early 1970s and by now it represents an important area of finite element research in
solid and structural mechanics. Many ingenious schemes have been tried: reduced and selective
integration, incompatible modes, mixed and hybrid formulations, stress and strain projections, the
free formulation (FF), and the assumed natural strain (ANS) method.

The present paper is part of a series [8-12) that studies how several high performance ele-
ment construction methods can be embedded within an extended variational framework that uses
parametrized hybrid functionals. The general plan of attack is sketched in Figure 1. Heavy

130



line boxes are those emphasized in the present paper. The extensions, shown on the left, in-
volve parametrization of the conventional elasticity functionals and treatment of elernent interfaces
through generalizations of the hybrid approach of Pian [14-16].

The effective construction of HP elements relies on devices, sometimes derisively called “tricks™
or “variational crimes,” that do not fita priori in the classical variational framework. The range of
tricks range from innocuous collocation and finite difference constraints to more drastic remedies
such as selective integration. Despite their unconventional nature, tricks are an essential part of the
construction of high-performance elements. They collectively represent a fun-and-games ingredient
that keeps the derivation of HP finite elements as a surprisingly enjoyable task.

The present treatment “decriminalizes™ kinematic constraint tricks by adjoining Lagrange mul-
tipliers, hence placing the ensemble in a proper variational setting. Placing formulations within a
variational framework has the great advantage of supplying the general structure of the matrices and
forcing vectors of high performance elements, and of allowing a systematic denvatxon of classes
of elements by an array of powerful techniques.

Note the reliance of the program of Figure | on hybrid functionals. The original 1964 vmon of
Pian [14] is thus seen to acquire a momentous significance. It is perhaps appropriate to quote here
the prediction of another great contributor to finite elements:

T. H. H. Pian responded to the problem of plate bending by inventing 'the
“hybrid formulation”, which avoids the problem of slope continuity. He
‘assumed that the element responds not according to shape functions but
according to element stress fields. These communicate with the outside
world via the boundaries .... Hybrid elements can be the most competitive
and we belleve that the future lie in that direction. However, the formula-
tion is more complicated. Therefore we advocate that researchers should
try to cajole their formulation into shape function form, so that users do
not have to struggle. In the form, hybrid elements are no more difficult
to use than the iso-P elements ... Unfortunately at the time of writing we
have no uniforrn technique to achieve this.

B. Irons and S. Ahmad, Techniques of Finite Elements (1980), p. 15§

Fulfiliment of the prophecy appears to be near.

2. THE ELASTICITY PROBLEM

Consider a linearly elastic body under static loading that oécupies the volume V. The body is
bounded by the surface S, which is decomposed into S : §; U S,. Displacements are prescribed
on §4 whereas surface tractions are prescribed on §,. The outward unit normal on § is denoted by
n=n;.

The three unknown volume fields are displacements u = y;, infinitesimal strains e = &ij,
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Figure 1. Program of attack on the variational formulation of HP elements

and stresses o = o;;. The problem data include: the body force field b = b; in V, prescribed

displacements don S4, and prescribed surface tractions t=1onS,.
The relations between the volume fields are the strain-displacement equations

e=L{(Vu+VTuy=Du or
thé constitutive equations

o=Ee or o ='E.-,-k1ek, inV,

and the equilibrium (balance) equations
. —dive=D*c=Db or gijj+bi=0 inV,
in which D* = —div denotes the adjoint operator of D = 3(V + V7).
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The stress vector with respect to a direction defined by the unit vector v is denoted as o, = oV,
or oy; = o;;vj. On § the surface-traction stress vector is defined as

o, =o0o.0, Of On; = OjjN;. 4

With this definition the traction boundary conditions may be stated as

On E or agijnj = f, on S,, (5)

and the displacement boundary conditions as

u=d or u; = d; on Sy. ' (6)

3. NOTATION

3.1 Field Dependency

In variational methods of approximation we do not work of course with the exact fields that satisfy
the governing equations (1-3,5-6), but with independent (primary) fields, which are subject to
variations, and dependent (secondary, associated, derived) fields, which are not. The approximation
is determined by taking variations with respect to the independent fields.

An independently varied field will be identified by a superposed tilde, for example 4. A
dependent field is identified by writing the independent field symbol as superscript. For example,
if the displacements are independently varied, the derived strain and stress fields are

eu

1(V+ V)i = Dq, o* = Ee* = EDi. )
An advantage of this convention is that u, e and o may be reserved for the exact fields.
3.2 Integral Abbreviations

Volume and surface integrals will be abbreviated by placing domain-subscripted parentheses and
square brackets, respectively, around the integrand. For example:

v & fv fav, [f1s & fs ras. s € [ ras. 11 ¥ fs Fds. @

If f and g are vector functions, and p and q tensor functions, their inner product over V is denoted
in the usual manner

def

. ev = / fgdV = f fimdvV,  @ovE f pqdV = / pijgijdv, (9
v v v 14
and similarly for surface integrals, in which case square brackets are used.
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Figure 2. Internal interface example.

3.3 Domain Assertions

The notation
(a = b)V’ [a = b]Sv [a = b]SJ! [a = b]S,v (10)

is used to assert that the relation @ = b is valid at each point of V, S, Sy and S;, respectively.
3.4 Internal Interfaces

In the following subsections we construct hybrid variational principlés in which boundary displace-
ments d can be varied independently from the internal displacements u. These displacements play
the role of Lagrange multipliers that relax internal displacement continuity. Variational principles
containing P¢ will be called displacement-generalized, or d-generalized for short.

The choice of d as independent field is not variationally admissible on Sz or S;. We must
therefore extend the definition of boundary to include internal interfaces collectively designated as
S,‘. Thus

S:S5US US;. (11)

On S; neither displacements nor tractions are prescribed. A simple case is illustrated in Figure 2,
in which the interface S; divides V into two subvolumes: V+ and V~. An interface such as S; on
Figure 2 has two “sides” called St and S, which identify S; viewed as boundary of Vtand V-,
respectively. At smooth points of S; the unit normals n* and n~ point in opposite directions.

The integral abbreviations (8)-(9) generalize as follows, using Figure 2 for definiteness. A
volume integral is the sum of integrals over the subvolumes:

def

(fiv= fwfdv-l- v_de. (12)

An integral over §; includes two contributions:

gl < / g*dS + / g ds, (13)
st s

i i
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where g* and g~ denotes the value of the integrand g on S;" and S, respectively. These two values
may be different if g is discontinuous or involves a projection on the normals.

Following a finite element discretization, the union of interelement boundaries becomes S;.

4. THE ELASTICITY FUNCTIONALS

The variational principles of linear elasticity are based on functionals of the form
N=U-P, | (14)

where U characterizes the internal energy stored in the body volume and P includes other contri-
butions such as work of applied loads and energy stored on internal interfaces. We shall call U the
generalized strain energy and P the forcing potential.

It must be pointed out that all functionals considered here include independently varied dis-
placements. Thus, the class of dual functionals such as the complementary energy are not included
in the following study.

4.1 Volume Integrals

The generalized strain energy has the following structure:

= $7u(&, €+ j12(G, &)y +j13(3, €*)v + 1m0, Oy +jn(c®, )y +1 1 (c*, ey (15)

where jj) through j33 are numerical coefficients. For example, the Hu-Washizu principle is obtained
by setting jiz = -1, ji3 = 1, jzz = 1, all others being zero. The matrix representation of the
general functional (15) and the relations that must exist between the coefficients are studied in §5.1.

4.2 Hybrid Forcing Potentials

Variational principles of linear elasticity are constructed by combining the volume integral (15)
with the forcing potential P. Two forms of the forcing potential, called P2 and P* in the sequel, are
of interest in the hybrid treatment of interface discontinuities. The d-generalized (displacement-
generalized) forcing potential introduces an independent boundary displacement field d over S;:

PU@, &, d) = (b, G)y + [5y, & — dls, + [E, @5, + (G, & — d]s;. (16)

The t-generalized (traction generalized) forcing potential introduces an independently varied trac-
tion displacement field t over S;:

P'(d,&,%) = (b, i)y + [T, & — d]s, + [, 8], + [, dils,. a7n

The “conventional” form P¢ of the forcing potential is obtained if the interface integral vanishes
and one sets [t = o,]s. If so P’ and P9 coalesce into P€, which retains only two independent
fields: A

Pe(, &) = (b, B)y + [Ga, T — d]s, + [L, T]s,. (18)
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4.3 Modified Forcing Potentials

Through various manipulations and assumptions detailed in [10] the forcing potential P4 may be
transformed to

P, 5, 8) = (b, i)y + (1, dls, + (5, 1 — dls. (19)

where the all-important surface dislocation integral is taken over S rather than S;. One of the
assumptions is that displacement boundary conditions (6) are exactly satisfied. This expression of
P4 is used in the sequel. A similar technique can be used to modify P*, but that expression will
not be required in what follows.

4.4 Complete Functionals

Complete elasticity functionals are obtained by combining the generalized strain energy with one of
the forcing potentials. For example, the d and ¢ generalized versions of the Hu-Washizu functional
are

md, =Uwy—P4, T =Uw-P. (20)

where Uy is obtained by setting jz = jiz = 1, jz=—1, others zero, in (15).
-5. MATRIX REPRESENTATION OF ELASTICITY FUNCTIONALS
The generalized strain energy (15) can be presented in matrix form as*
m gz ju ) |€
U=§/(& ot o*) jn  Jjn é t dv. [?3))
v symm jmlle

The symmetric matrix

ju 2 Ji
I= jn s (22)
symm J3

characterizes the volume portion of the variational principle. Using the relations o° = Ee, 0" =
EDi, e = E~le, and ¢* = Di, the above integral may be rewritten in terms of the independent

fields as
J.llE_l Jial jisD o
U=3i[ (¢ & @) jal jnE j»nED et av. (23)
Y juD7  j»D'E juDTED | | @

* To justify the symmetry of J note, for example, that ji3(5, €)v = % jin(o. e )y + % j13(e°, o*)v, and so
on.
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5.1 First Variation of Generalized Strain Energy

The first variation of the volume term (15) may be presented as

8U = (Ae, §8)v + (Ao, 88)y — (div o', i)y + [0, 5i]s. (24)
where
Ae = jiie? + jiz€ + jize",
AT = j126 + jro’ + jno”, (25)
o' = j13¢ + jno© + jnot.
The last two terms combine with contributions from the variation of P. For example, if P = P¢
the complete variation of [1° = U — P¢ is

STIC = (Ae, 85)v + (Aa, 88)y — (diva’ + b, 8li)y + [0, — 1, 8iils, + —[ii — d, 854)s,. (26)

Using P4 or P* does not change the volume terms. The Euler equations corresponding to P4 and
P! are studied in [10,11] for a more restrictive form of functionals U.

Since the Euler equations associated with the first two terms are Ao = 0 and Ae = 0, these
quantities may be regarded as deviations from stress-balance and strain-compatibility, respectively.
For consistency of the Euler equations with the field equations of §2 we musthave Ae =0, A =0
and o’ = o if the assumed stress and strain fields reduce to the exact ones. Consequently

Cin+je+ =0,
Ju+jn+jn =0, - 27
jun+in+jm=1

Because of these constraints, the maximum number of independent parameters that define the entries
of J is three.

5.2 Specific Functionals

Expressions of J for some classical and parametrized variational principles of elasticity are tabulated
below. The subscript of J is used the identify the functionals, which are listed roughly in order
of ascending complexity. The fields included in parentheses after the functional name are those

subject to independent variations.
0 0O
Jp=|0 0 0. (28)
0 01

Stress-displacement Reissner, also called Hellinger-Reissner, (&, @):

-1 0 1
Jr = 0 0}{. (29)
1 00
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Unnamed stress-displacement functional listed in Oden and Reddy [13] (&, 0):

I 0 -l
Jy=|0 0 o0 |. (30)
-1 0 2

Strain-displacement Reissner-type [13] (€, i):

0 00 |
Js=|0 -1 1}. 31
0 10 , '

0 -1 1
Jw=1]-1 1 0]. (32)
1 00

One-parameter stress-displacement family (&, @) that includes Up, Uk and Uy as special cases

Hu-Washizu (&, &, i):

[9,10,11]:
-y 0 v ] |
J, =0 0 0 |[. (33)
y 0 1-v1
One-parameter strain-displacement family (&, ) that includes Up and Uy as special cases [9]:
0 O 0
Jg={0 -8 B |- (34)
0 g 1-58]

Two-parameter strain-displacement family (&, &, @) that includes Ug and Uy as special cases [9]:

Jpy=(1=-B, +(1 =) Jg—(1—-F~y)r

ya-p 0 yi-B (35)
= 0 —B(1 =) B —-7) :
y(l-8) Bl—y) 1-B—vy+2y

Three-parameter (o, 8, y) family (5, €, ) that includes Uw and Uy, as special cases [9]:

Jaﬁy = aJW + (]. - a)Jﬂa

-y(1-B81—-0a) | - a+y(1-p)(1—-0) (36)
= -a a—B(l-y)(1-a) Bl—-y)(1-a) .
a+y(l-Bl-a) Bl-p)(1-a) (A=-B-y+2fy)1-a)

The last form, which contains three independent parameters, supplies all matrices J that satisfy
the constraints (21). It yields stress-displacement functionals for @ = B = O, strain displacement
functionals for @ = y = 0, and 3-field functionals otherwise. A graphic representation of Jagy in
(a, B, y) space is given in Figure 3.
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1T Hu-Washizu

Stress-Displacement

Strain-Displacement Reissner

B Reissner Y

Figure 3.  Graphical representation of the Jop, functionals

5.3 Energy Balancing

A prime motivation for introducing the j coefficients as free parameters is optimization of finite
element performance. The determination of “best” parameters for specific elements relies on the
concept of energy balance. Let U(¢) = %(Ee, €)y denote the strain energy associated with the
strain field €. If E is positive definite, U(€) is nonnegative. We may decompose the generalized
strain energy into the following sum of strain energies:

U = jsl(e*) + c\U(€® — &) + cold (€ — e*) + ¢l (e* — ), 37

where Up(e*) = Up is the usual strain energy, ¢; = %(ju +jiz—-jn+.ca= %(—ju + jo +
J3—1,andc; = %( J11 — jn + jaz — 1). Equation (37) is equivalent to decomposing J into the
sum of four rank-one matrices: ’

0 01 0 00 0 -1 1 -1 0 1

Decompositions of this nature can be used to derive energy balanced finite elements by considering
element “patches” under simple load systems. This technique is discussed for the one-parameter
functionals generated by (34) in [5,7,8].

0 0 0 1 -1 0 0O 0 O 1 0 -1
=j3}0 0 0|+c| -1 1 O0l+c2|0 1 —=1]|4ac 0 0 O0]. (38

6. FINITE ELEMENT DISCRETIZATION

In this section assumptions invoked in the finite element discretization of the functional IT¢ for
arbitrary J are stated. Following usual practice in finite element work, the components of stresses
and strains are arranged as one-dimensional arrays whereas the elastic moduli in E are arranged as
a square symmetric matrix. In the sequel we shall consider an individual element of volume V and
surface § : §; U Sq U §;, where §; is the portion of the boundary in common with other elements.

139

r

et ™
W

ra—p
G0

r——r—
L _ -

—
i.



i
.
:
i

r

ERy

e
B

6.1 Boundary Displacement Assumption

The boundary displacement assumption is
[d = Ngvls. (39)

Here matrix Ny collects the boundary shape functions for the boundary displacement d whereas
vector v collects the degrees of freedom of the element, also called the connectors. These boundary
displacements must be unique on common element boundaries. This condition is verified if the
displacement of the common boundary portion is uniquely specified by degrees of freedom located
on that boundary. There are no derived fields associated with d - ’

6.2 Internal Displacement Assumption

The displacement assumption in the interior of the element is
(@=N.q)y, (40)

where matrix N, collects the internal displacement shape functions and vector q collects gener-
alized coordinates for the internal displacements. The assumed @ need not be continuous across
interelement boundaries. '

The displacement derived fields are
(¢* =DNq = Bg)y, (¢* =EBq)y. | (41)

To link up with the FF and ANS formulations, we proceed to break up the internal displacement
field as follows. The assumed i is decomposed into rigid body, constant strain, and higher order
displacements:

4 = N,q, + Ncq. + Nzq,. (42)

Applying the strain operator D = %(V + V7)) to @ we get the associated strain field:

¢* = DN,q, + DN.q. + DN,q, = B,q, + B.q, +B,q,. (43)

But B, = DN, vanishes because N, contains only rigid-body modes. We are also free to select
B. = DN. to be the identity matrix I if the generalized coordinates q,. are identified with the mean
(volume-averaged) strain values €. Consequently (44) simplifies to

e =& +¢ =& +Bug, (44)

in which
q =& =(e)Wv/v, Bi)y =0. (45)
where v = (1)y is the element volume measure. The second relation is obtained by integrating (44)

over V and noting that q, is arbitrary. It says that the mean value of the higher-order displacement-
derived strains is zero over the element.
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6.3 Stress Assumption
The stress field will be assumed to be constant over the element:
(o =0o)y. (46)
This assumption is sufficient to construct high-performance elements based on the free formulation
[1-10]. Higher order stress variations are computationally effective if they are divergence free [10]
but such a requirement makes extension to geometrically nonlinear problems difficult. The only
derived field is
@& =Elg)y (47)
‘6.4 Strain Assumptions
The assumed strain field & is decomposed into a mean constant strain € and a higher order variation:
(e =€+ Aa)y. (48)
where & = (&)v /v, A collects higher order strain modes with mean zero value over the element:
(A =0, (49)

and a collects the corresponding strain parameters. The only derived field is

(0 = Eé = Eé 4 EAa)y. (50)

7. UNCONSTRAINED FINITE ELEMENT EQUATIONS

For simplicity we shall assume that all elastic moduli in E are constant over the element. Inserting
the above assumptions into [1¢ with the forcing potential (19), we obtain a quadratic algebraic
form, which is fairly sparse on account of the conditions (45) and (49). Making this form stationary
yields the finite element equations

- juvETl! vl 0 —PT juI-PT —PT LT7(&) (0)
j;zvl ]nUE 0 0 mvl 0 0 € 0
0 0 juC:i 0 0 nRT 0 a 0
-P, 0 0 0 0 0 0 g {={f-¢.- (5D
juvl=P, 0 0 0 Jj33vE 0 0 & fou
Py 0 R O 0 inKp 0 q fon
T 7 0 0 0 0 0 odlv) LUf

where T T T T T
Kin = BLEBy)y =K, Cy=(A"EA)y =C', R=(B,EA)y,

L=[NLls. P, =[NLls, Pc=[NLls, Pu=[N.Is (52)
f,=Nby, f,=NIby, fi=Nib)y, £ =Nils.

in which Ny, denotes the projection of shape functions N4 on the exterior normal n, and similarly
for N;, N; and N,. Coefficient matrix entries that do not depend on the j’s come from the last
boundary term in (19).
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\, 7.1 The P matrices
‘- : Application of the divergence theorem to the work of the mean stress on e* yields
&, ¢y = (&, & + Byauy = v3T& + &7 Buva, = v € 53
= [&n, 85 =[G, Nrq, + N&* + Nugy]s = &7 (Prq, +Pc&* +Prqs).
Hence P, = 0, P, = vl, P, = 0, and the clement equations simplify to
' - LuE" gl 0 0 (-l 0 LTyre) (0]
il jauE 0 0 jnul o 0 é 0
: 0 0 jxCi © 0 jsRT 0 a 0
" 0 0 0 0 0 0 o0 i{la}=1f¢- (54)
L \ Ga—=1ul jaul 0 0 jiuuE 0 0 & fou
0 0 jnR 0 0 jnKa 0 || a £
- L L o o0 o0 0 o oflv) L&)

The simplicity of the P matrices comes from the mean-plus-deviator expression (44) for e, If this
decomposition is riot enforced, P, =0butP. = (B)v and P = Br)v-

8. KINEMATIC CONSTRAINTS

The “tricks” we shall consider here are kinematic constraints that play a key role in the development
of high-performance FF and ANS elements. These are matrix relations between kinematic quantities
that are established independently of the variational equations. Twotypes of relations will be studied.

8.1 Constraints Between Internal and Boundary Displacements

Relations linking the generalized coordinates q and the nodal connectors v were introduced by
Bergan and coworkers in conjunction with the free formulation (FF) of finite elements [2-3]. For
simplicity we shall assume that the number of freedoms in v and q is the same; removal of this
restriction is discussed in [10]. By collocation of u at the element node points one easily establishes
the relation

~
f:.;s
i
e
g

A

v=G,q, +G.q. + Gnqy = Gq, (55)

— where G is a square transformation matrix that will be assumed to be nonsingular. On inverting
{ ‘ this relation we obtain

) [H |
{ : q=G'=Hv, o Q= [ & } = [Hc] v. (56)
laq H,

The following relations between L and the above submatrices hold as aconsequence of the individual
element test performed in §9.3:

L7G, =0, LTG. =1l vH, =LT. (57)

If the decomposition (44) is not enforced, the last two should read L7G. = vB,, a relation first
stated in [3], and P.H, + P, H;, =LT. : ’

L)
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8.2 Constraints Between Assumed Higher Order Strains and Boundary Displacements

Constraints linking &, to v are of fundamental importance in the assumed natural strain (ANS)
formulation. The effect of these constraints in a variational framework is analyzed in some detail
in [11-12]. Here we shall simply postulate the following relation between higher order strains and
nodal displacements:

a=Qv. (58)

where Q is generally a rectangular matrix determined by collocation and/or interpolation. The
individual element test in §9.3 requires that Q be orthogonal to G, and G:

QG, =0, QG. =0. (59)
The constraint (58) still leaves the independently varied mean strain & to be determined variationally.
9. VISIBLE STIFFNESS EQUATIONS

Enforcing the constraints a = Qv,q, = H,v,q, = Hev = v='LTv, q, = H,v, through Lagrange
multiplier vectors Ag, Ar, Ac, and As, respectively, we get the augmented finite element equations

- juvE™! vl 0 0 G—1u 0 0 0 0 0 LT ¢ &1 (0 )
juvl  jovE 0 0 jmul o 00 0 O O é 0
0 0 jnC, 0 0 jsRT -1 0 0 0 O a 0
0 o 0 O 0 o 0-I 0 0 O q £,
Ga—=1wl javI 0 0 juuE 0O 00 -I 0 O & fou
0 0 jaR 0 0 juKsa 0 0 0 -1 0 lq, t=1{fnt. 60
0 o -1 0 0 0o 00 0 0 Q Aa 0
0 o o0 -I 0 6 0 0 0 0 H A 0
0 0 0 0 -1 0 0 0 0 0 v'L7 A 0
0 o o0 O 0 T 00 O O H, Ax (]
L L o o0 0 0 0 Q"HTvLH o Jlv]) Uf ]

Condensation of all degrees of freedom except v yields the visible * element stiffness equations

Kv=(Ks +Kpv="f (61)
where _
K, = v_'LELT, (62)
Ky = juHIK,Hy + j(HLRQ + Q'RTH,) + Q7 Q. (63)
f=f, +Hf, +v LT + H L (64)

Adopting the nomenclature of the free formulation [3], we shall call K, the basic stiffness matrix
and K, the higher order stiffness matrix.

* The qualifier visible emphasizes that these dre the stiffness equations other elements “see”, and conse-
quently are the only ones that matter insofar as computer implementation on a displacement-based finite
element program. :
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9.1 Relation to Previous HP Element Formulations

fJ=J,0of(33) ja=1~y, ju=jn= 0, and we recover the scaled free formilation stiffness
equations studied in {5,7,9,10]:

Ky = (1 - y) B K Ha. (65)
If we take J = Jw of (32), j22 = 1, jas = j3 = 0 and we obtain
- Ky =Q'C,Q. (66)

This is similar to the stiffness produced by the ANS hybrid variational formulation studied in
[11-12], in which the potential P* was used instead of P4,

But the term with coefficient j»3 in (63) is new. It may be viewed as coupling the FF and ANS
formulations. It is not known at this time whether (61-64) represents the most general structure of
the visible stiffness equations of HP elements.

9.2 Recovery of Element Fields

For simplicity suppose that the body forces vanish and so do for, f5c and 4. If visknown following
a finite element solution of the assembled system, solving the equations (60) for the internal degrees
of freedom yields '

e=uv-'LTv, 6=E& a=Qv, ¢ =Hv, &=8§ q,=Hy,
A = (juCrQ + jRTHDV, A =0, A =0, X = (juRQ+ juKpuHa)v.

It is seen that the mean strains &, & and & = E~!G agree, and so would the mean stresses. This
is not the case, however, if the body forces are not zero. It is also worthwhile to mention that a
nonzero Lagrange multiplier vector flags a deviation of the associated fields from the variationally
consistent fields that would result on using the unconstrained FE equations (54) without “tricks”.

9.3 The Individual Element Test

(67)

To conclude the paper, we investigate the conditions under which HP elements based on the fore-
going general formulation pass the individual element test of Bergan and Hanssen [1-3]. To carry
out the test, assume that the “free floating” element* under zero body forces is in a constant stress
state o, which of course is also the mean stress. Insert the following data in the left-hand side
vector of (60):

>

G=0o=05" e=E"loy, a,=0, q,=arbitrary, e ==E"5, q,=0,
, =0, Ac=0, N=0, V=G,q,+G¢§"=G,q,+G¢E*la'o.

>

(68)
Premutltiply by the coefficient matrix, and demand that all terms on the right-hand side vanish but
for f, = Log. Then the orthogonality conditions in (57) and (59) emerge. This form of the patch
test is very strong, and it may well be that relaxing circumstances can be found for specific problems
such as shells.

* Mathematically, the entire element boundary is traction-specified, Le., S=§.
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10. CONCLUSIONS

The results of the present paper may be summarized as follows.

1.

The classical variational principles of linear elasticity may be embedded in a parametrized
matrix form.

The elasticity principles with assumed displacements are members of a three-parameter family.
Finite element assumptions for constructing high-performance elements may be conveniently
investigated on this family.

Kinematic constraints established outside the realm of the variational principle may be incor-
porated through Lagrange multiplier adjunction.

The FF and ANS methods for constructing HP finite elements may be presented within this vari-
ational setting. In addition, combined forms emerge naturally from the general parametrized
principle. ‘

The satisfaction of the individual element test yields various orthogonahty conditions that the
kinematic constraints should satisfy a priori.

The construction of high performance elements based on a weighted mix of FF and ANS “ingre-
dients” will be examined in sequel papers, and specific examples given to convey the power and
flexibility of the present methods. .
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THE ANDES FORMULATION OF FINITE ELEMENTS

SUMMARY. — ANDES is an acronym for Assumed Natural DEviatoric Strains. This is a brand new variant of the Assumed
Natural Strain (ANS) formulation of finite elements, which has recently attracted attention as an effective method for constructing
high-performance plate and shell elements for linear and nonlinear analysis. The ANDES formulation is based on an extended
parametrized variational principle developed in recent publications. The key concept is that only the deviatoric part of the
strains is assumed over the element whereas the mean strain part is discarded in favor of a constant stress assumption. Unlike
conventional ANS elements, ANDES elements satisfy the individual element test (a stringent form of the patch test) a priori
while retaining the favorable distortion-insensitivity properties of ANS elements. The first application of this new formulation
has been the development of several Kirchhoff plate bending triangular elements with the standard nine degrees of freedom.
Numerical experiments indicate that one of the ANDES element is relatively insensitive to distortion compared to previously
derived high-performance plate-bending elements, while retaining accuracy for nondistorted elements. -

INTRODUCTION doned. (By “conventional” we mean the use of conforming

displ t tions into the total potential gy prin-
Despite almost three decades of work, plates and shells re- c;;fe-a)cemen assumptions {nfo the total potential energy prin

main a important area of research in finite element methods.
Challenging topics include:

1. The construction of high performance elements. Table 1. Tools for Constructing HP Elements

2. The modeling of composite and stiffened wall construc-
tions. Technique Year
. . . introduced
3. The treatment of prestress, imperfections, nonlinear, dis- _
sipative and dynamic effects. l.  Incompatible shape functions 1961
4. The development of practical error estimators and adap- 2. Patch test 1965
tive discretization methods.
3. Mixed and hybrid principles 1965
5. The interaction with nonstructural components, for ex-
ample external and internal fluids. 4.  Projectors 1967
This paper reports progress in the first challenge, although it 5.  Selective reduced integration 1969
must be recognized that advances in this direction are shaped
to a large extent by thinking of the others. 6.  Uniform reduced integration - 1970
The main motivation behind our recent finite element work has .
been the construction of simple and efficient finite elements for 7. Partial strain assumptions 1970
plates and shells that are lock-free, rank sufficient and distor- .
tion insensitive, yield accurate answers for coarse meshes, fit 8. Energy balancing 1974
naturally into displacement-based programs, and can be easily L . .
extended to nonlinear and dynamic problems. Elements that 9 Directional integration 1978
possess these attributes to some noticeable degree are collec- 10.  Limit differential equations 1982
tively known as high performance or HP elements. _
Over the past three decades investigators have resorted to many 11.  Free formulation 1984
ingenious devices.to construct HP elements. The most impor- .
tant ones are listed in Table 1. The underlying theme is that 12. Assumed natural strains 1984

although the final product may look like a standard displace-
ment model so as to fit naturally into existing finite element
programs, the conventional displacement formulation is aban-
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Box1 Decomposition of the Element Stiffness Equations

Let K be the element stiffness matrix, v the visible element degrees of freedom (those degrees of freedom in common
with other elements, also called the connectors) and f the corresponding element node forces. Then the element stiffness
equations decompose as : :

Kv=(K,+Kp)v="f Q)]

K, and K, are called the basic and higher order stiffness matrices, respectively. The basic stiffness matrix, which is
usually rank deficient, is constructed for convergence. The higher order stiffness matrix is constructed for stability
and (in more recent work) accuracy. A decomposition of this nature, which also holds at the assembly level, was first
obtained by Bergan and Nygard (1984) in the derivation of the free formulation. .

In the unified formulation presented by Felippa and Militello (1989, 1990a, 1990b) the following key properties of the
decomposition (1) are derived.

1. K, is formulation independent and is defined entirely by an assumed constant stress state working on element

boundary displacements. No knowledge of the interior displacements is necessary (Box 2). The extension of this
statement to C° plate and shell elements is not straightforward, however, and special considerations are necessary

in order to obtain K, for those elements.

2. K, has the general form

a combination remains unexplored.

Ky = j1Ka + j2Kiz + juKaz. )

The three parameters jz, jz3 and j33 characterize the source variational principle in the following sense:

(2) The FFisrecoveredif jn = js =0and jz =1-v, where y is a K, scaling coefficient studied in Bergan
and Felippa (1985) and Felippa and Bergan (1987). The original FF of Bergan and Nygard (1984) is obtained
if y = 0. The source variational principle is a one-parameter form that includes the potential energy and
stress-displacement Reissner functionals as special cases; see Felippa (1989, 1989b, 1989¢).

(b) The ANDES variantof ANS isrecovered if j = j3 = 0 whereas j» = a is a scaling parameter. The source

. variational principle is a one-parameter form that includes Reissner’s stress-displacement and Hu-Washizu’s
functionals as special cases; see Felippa and Militello (1989, 1990a, 1990b).

(c) If jz is nonzero, the last term in (2) may be viewed as being produced by a FF/ANDES combination. Such

A Unified Variational Framework

Table 1 conveys the feeling of a bewildering array of tools. The
question arises as to whether some of them are just facets of
the same thing. Limited progress has been made in this regard.
One notable advance in the 1970s has been the equivalence of
reduced/selective integration and mixed methods achieved by
Malkus and Hughes (1978).

The present work has benefited from the unplanned conflu-
ence of two unification efforts. An initial attempt to place
the free formulation developed in Bergan and Hanssen (1976),
Bergan (1980), Bergan and Nygird (1984), within the frame-
work of parametrized hybrid variational principles was suc-
cessful, as reported in Felippa (1989a, 1989b, 1989c¢). The free
formulation in turn “dragged” incompatible shape functions,
the patch test, and energy balancing into the scene. Concur-
rently a separate effort was carried out to set out the assumed
natural strain (ANS) (as well as related techniques such as pro-
jection methods) in a mixed/hybrid variational framework as
described in Militello and Felippa (1990a, 1990b). Compari-
son of the results led to the rather unexpected conclusion that
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a parametrized variational framework was able to encompass
ANS and the free formulation as well as some hitherto untried
methods; see Felippa and Militello (1989, 19902, 1990b).

The common theme emerging from this unification is that a
wide class of HP elements can be constructed using two ingre-
dients:

(1) A parametrized functional that contains all variational
principles of elasticity as special cases.

(2) Additional assumptions (which are sometimes called
“variational crimes” or “tricks™) that can be placed on
a variational setting through Lagrange multipliers.

As of this writing it is not known whether the “wide class™
referred to above encompasses all HP elements or at least the
most interesting ones. Some surprising coalescences, such as
DKT and ANS bending elements, however, have emerged from
this study.



Step B.1.
Step B.2.

displacements v (also called the connectors) as

motions exactly.

Step B.3.

Step B.4.

and v = [, dV is the element volume measure.

Computation’ section.

Box 2 Construction of the Basic Stiffness Matrix K,

Assume a constant stress field, 7, inside the element. (This should be the element stress field that holds
in the convergence limit; for structural elements the assumption would be on independent stress resultants. ) The
associated boundary tractions are &, = @.n, where n denotes the unit external normal on the element boundary §.

Assume boundary displacements, d, over S. This field is described in terms of the visible element node

d= Nd v, (3)

where Ny is an array of boundary shape functions. The boundary motions (3) must satisfy interelement continuity
(or at least, zero mean discontinuity so that no energy is lost at interfaces) and contain rigid-body and constant-strain

Construct the “lumping matrix” L that consistently “lumps” the boundary tractions &, into element node
forces, f, conjugate to v in the virtual work sense. That is,

= j; NunGndS = L7. @
In the above, Ny, are boundary-system projections of Ny conjugate to the surface tractions .
The basic stiffness matrix for a 3D element is
K, = v~'LELT, (5)
where E is the stress-strain constitutive matrix of elastic moduli, which are assumed to be constant over the element,

For a Kirchhoff plate bending element, stresses, strains and stress-strain moduli become bending moments, curvatures
and moment-curvature moduli, respectively, and the integration is performed over the element area A:

K, = A~'LDLT, ©

where D is the matrix of moment-curvature moduli. Specific examples for L are provided in the *Stiffness Matrix

The Assumed Natural Strain Formulation

The assumed natural strain (ANS) formulation of finite el-
ements is a relatively new development. A restricted form
of the assumed strain method (not involving natural strains)
was introduced by Willam (1969), who constructed a 4-node
plane-stress element by assuming a constant shear strain inde-
pendently of the direct strains and using a strain-displacement
mixed variational principle. (The resulting element is iden-
tical to that derivable by selective one-point integration.) A
different approach advocated by Ashwell (1974) and cowork-
ers viewed “strain elements” as a convenient way to generate
‘good’ displacement fields by integration of appropriately as-
sumed compatible strain fields. [In fact, this was the tech-
nique originally used by Turner er al. (1956) for deriving the
constant-strain membrane triangle in their celebrated paper. ]

These and other forms of assumed-strain techniques were over-
shadowed in the 1970s by developments in reduced and se-
lective integration methods. The assumed strain approach in
natural coordinates, however, has recently attracted substantial

attention; particularly in view of its effectiveness in geomet-
rically nonlinear analysis. Important contributions have been
made by Bathe and Dvorkin (1985), Huang and Hinton (1986),
Jang and Pinsky (1986), MacNeal (1978), Park (1986), Park
and Stanley (1986), and Simo and Hughes (1986).

As noted above, the unification achieved by Felippa and
Militello (1989, 1990a, 1990b) merges two HP element con-
struction schemes: the free formulation (FF) of Bergan and
Nygérd (1984), and a variant of ANS called ANDES (acronym
for Assumed Natural Deviatoric Strains) described in further
detail below. The stiffness equations produced by the uni-
fied formulation enjoy the fundamental decomposition prop-
erty surnmarized in Box 1.

In the ANDES variant of ANS, assumptions are made only on
the deviatoric portion of the element strains, namely that por-
tion that integrates to zero over each element. This assumption
produces the higher order stiffness labeled K22 inBox 1. The

_mean strains are left to be determined variationally and have

no effect on the stiffness equations.
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Box 3 Construction of K, by the ANDES Formulation

Step H.1.  Select reference lines (in 2D elements) or reference planes (in 3D elements) where “natural straingage”
locations are to be chosen. By appropriate interpolation express the element natural strains € in terms of the “straingage
readings” g at those locations:

e=Acg N

where € is a strain field in natural coordinates that must include all constant strain states. (For structural elements the
term “strain” is to be interpreted in a generalized sense.)

Step H.2. Relate the Cartesian strains e to the natural strains:
e=Te=TA.g=Ag I
at each point in the element. (If e = e, or if it is possible to work throughout in natural coordinates, this step is skipped.)

Step H.3. Relate the natural straingage readings g to the visible degrees of freedom

g= Qv, 2]

where Q is a straingage-to-node displacement transformation matrix. Techniques for doing this vary from element to
element and it is difficult to state rules that apply to every situation. In the elements derived here Q is constructed
by direct interpolation over the reference lines. (In general there is no unique internal displacement field u whose
symmetric gradient is e or €, so this step cannot be done by simply integrating the strain field over the element and
collocating u at the nodes.)

Step H.4.  Split the Cartesian strain field into mean (volume-averaged) and deviatoric strains:

=C+e;=(A+Ae (10)

where A = fy TAcdV/v, and e = A4 g has mean zero value over V. This step may also be carried out on the natural
strains if T is constant, as is the case for the elements here.

Step H.5. The higher-order stiffness matrix is given by

K, =aQ'KsQ,  with Kd=/AZEA4dV, (1n
\4

where a = j»z > 0 is a scaling coefficient (see Box 1).

It is often convenient to combine the product of A and Q into a single strain-displacement matrix called (as usual) B,
which splits into B and By: _ _
e=AQv=(A+A)Qv=(B+B,;)v=By, (12)

in which case
K, = / BTEB,dV. (13)
v

The notation B, = AQ is also used in the sequel.
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Box4 Construction of K by the Conventional ANS Formulation

Steps S.1 10 §.3.  Identical to the first three steps H.] through H.3, in Box 3. The fourth step: strain splitting, is

omitted.
Step S.4.  The element stiffness matrix is given by
K=Q'K,Q, with K, =f ATEAdV. (14)
v
or, if B = AQ is readily available
K=f B’EBdV. (15)
v .

In general this stiffness matrix does not pass the individual element test of Bergan and Hanssen (1976), which is a
strong form of the patch test that demands pairwise cancellation of node forces between adjacent elements subjected
to constant stress states. For this to happen, K must admit the decomposition

K =K, + K, = v"!LELT + K,, (16)

where L is a force-lumping matrix derivable as per Box 2 and K, is orthogonal to the rigid body and constant strain test
motions. In other words, the ANS element must coalesce with the ANDES formulation with « = 1, The equivalence
may be checked by requiring that

B=AQ=v"'L7, (17

where A is the mean part of A (see Box 3). At the present there are no known general techniques for explicitly
constructing strain fields that satisfy these conditions a priori.

If the patch test is not satisfied, one should switch to the ANDES formulation by replacing the basic stiffness constructed

. =T = . .
from constant strain, namely vB' EB, with one constructed from constant stress as in Box 2.

The basic steps in the construction of K, and K, for a general
three-dimensional element are summarized in Boxes 2 and 3,
respectively. For justification of these “recipes” the reader is
referred to Felippa and Militello (1989, 1990a, 1990b).

The derivation of the element stiffness matrix for conventional
ANS elements is summarized in Box 4. In this case there is no
splitting into basic and higher order parts.

This paper reports briefly (because of space constraints) on the
construction and testing of the first ANDES elements. These
are Kirchhoff plate-bending triangular elements with the stan-
dard 9 degrees of freedom (one displacement and two rotations
at each corner). This choice is made because of the following
reasons:

1. High-performance three-node triangular plate bending el-
ements, whether based on Kirchhoff or Reissner-Mindlin
mathematical models, have not been previously obtained
through the ANS formulation. [ Although the DKT ele-
ment presented by Batoz, Bathe and Ho (1980) and Ba-
toz (1982) qualifies as high-performance and is in fact
an ANS element as shown later, it has not been derived
as such. ] The situation is in sharp contrast to four-node
quadrilateral bending elements, for which HP elements
have been constructed through a greater variety of tools;

see e.g. Bathe and Dvorkin (1985), Crisfield (1983),
Hughes and Tezduyar (1981), Kang (1986), MacNeal
{1978) and Park and Stanley (1986).

2. High performance elements of this type have been ob-
tained through the FF and ancestors of the FF as described
in Bergan and Hanssen (1976), Bergan (1980), Bergan
and Nygérd (1984) and Felippa and Bergan (1987). These
elements are considered among the best performers avail-
able. It is therefore intriguing whether elements based on
the ANDES variant can match or exceed this performance.

" THE TRIANGULAR PLATE ELEMENT

Geometric Relations

We consider here an individual triangle with straight sides.
Its geometry is completely defined by the location of its three
comers, which are labeled 1,2,3, traversed counterclockwise.
The element is referred to a local Cartesian system (x, y) which
is usually taken with origin at the centroid 0, whence the corner
coordinates x;, y; satisfy the relations

y+ty+ys=0

x;+x2+x3=0, (18)
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Coordinate differences are abbreviated by writing x;; = x; —x;,
‘and y;; = y; — y;- The signed triangle area A is given by

1 1 1
2A=|x; X2 X3|=X1yn —Xuya
n oy2 x (19)

= X32¥12 — X12Y32 = X13y23 — X313,

and we require that A > 0. We shall make use of dimensionless
triangular coordinates £}, {2 and 3, linked by {1 + 52+ 483 = 1.
The following well known relations between the triangular and
Cartesian coordinates of a straight-sided triangle are noted for
further use:

x=x0 + x5+ 38,y =i +y82+y383, (20)

2A

in which i, j and k denote positive cyclic permutations of 1, 2
and 3; forexample, i = 2, j = 3, k = 1. (If the origin is taken
at the centroid, xo = yo = 0.) It follows that

1
5= —'[xi)’k = xpyj + (x = xo)yj +(y — )’o)xkj]. @20

%

d d
24380 g 242 oy 242 oy,
ax dx

ax

a3 3 ]
2428 = ry 2422 2 xy 2422 =gy
dy ay dy
Other intrinsic dimensions and ratios of use in future deriva-
tions are

Gj =8 = xk+yh o =X/l sij = Yjilbij

ar = 2A/8;j, bij = (xyxie + yjiya)/i; = bij = bji,

Nij = bij/8j = (xijxie + Yjiya)/ (55 + Y5,

A.j,' =1 —A.,'j = bj,-/e,-j.

(23)

Here ¢;; = ¢;; is the length of side i—j and c;; and s;; the cosine
and sine, respectively, of angle (i — j.x). Furthermore b;;
and bj; are the projections of sides i—k and k- j, respectively,
onto i—j; A;; and Aj; being the corresponding projection ratios.
On each side i~ j, define the dimensionless natural coordinates
wij as varying from O ati to 1 at j. The coordinate u;; of a
point not on the side is that of its projection on i—j. Obviously

dx dy
Lo L=y 24)
duij dpij Vi

Displacements, Rotations, Curvatures

As we are dealing with a Kirchhoff element, its displace-
ment field is completely defined by the transverse displacement
w(x, ¥} = w(i, {2, {3), positive upwards. In the present sec-
tion we assume that w is unique and known inside the element;
this assumption is relaxed later. The midplane (covariant) ro-
tations about x and y are §; = dw/dy and §, = —3w/dx,
respectively. Along side i~j with tangential direction t and

152

external-normal n the tangential and normal rotations are de-
fined as

a2
b = "a'?' = UzSij —e_vcijo

ow 25
6, = ——37!- = 9;(.‘,',' + 9y5,'j.

The visible degrees of freedom of the element collected in v
(see Boxes 2-3) are

vl = [w; 651 )1 wy 6z2 62 w3 B3 6y3].  (26)
The Cartesian second derivatives are given by

way 1 Fw

wdy 1 Fw

Pw _ w9ty
ax? ~ 949y dx 8x
3w Fw 3¢ 3z

dx3y | a5,0y, ox By | 3% axdy | AA% g8y

Pw _ dw a5idy dwdn 1w

3y?  9Ldy 9y dy | AL dy*  4A% 3Ly kjXiks
27

since 82¢2/9x?, 3%;2/9xdy and 327 /3y* vanish on astraight-
sided triangle, cf. Eq. (21).

Natural Curvatures

The second derivatives of w with respect to the dimension-
less side directions defined above will be called the natu-
ral curvatures and denoted by x;; = d2w/3u}. Note that
these curvatures have dimensions of displacement. The natu-
ral curvatures can be related to the Cartesian plate curvatures
Kex = 02w /3x2, K,y = 3*w/dy? and k., = 28%w/dx3y, by
chain-rule application of Egs. (24):

Pw 2

‘w
N2 —
X12 Z’;u X Ya raym ::
X3 ¢ = -'Ta F b= X%z )’-fz X32Y32 S_u_’z_ ,
X3 Hz 2 2 Y
_a_ﬁzu_ X3 Yi3 X13)13 Zfzgw—
il * y(28)
or x = T~'x. The inverse of this relation is
3w
ax?
32 1 y3yi3 Y3ty
—t% =Taz X23X13 X31X21
3y 4A?
2 y3x3 + X2y13 yaxiz + X3y
2 wa
Y 3w
rYW il
Y12y Z‘:“
w
x x ’
12X32 gﬁg
Yizx23 + X21¥32 32w
du3,

(29)




or, in compact matrix notation

k=Tx. (30
At this point we relax the requirement that the curvatures be
derivable from a displacement field w; consequently the par-
tial derivative notation will be discontinued. However, the
foregoing transformations will be assumed to hold even if the
curvature fields £ and x are not derivable from w.

DIRECT CURVATURE INTERPOLATION

The Straingage Readings

ANS and ANDES plate bending elements are based on direct
interpolation of natural curvatures. All elements discussed
here adopt the three triangle sides as the reference lines defined
in Box 3. The natural curvatures are assumed to vary linearly
over each reference line, an assumption which is obviously
consistent with cubic beam-like variations of w over the sides.
A linear variation on each side is determined by two straingage
sample points, which we chose to be at the corners.

Over each triangle side chose the isoparametric coordinates
&; that vary from —1 at corner i to +1 at corner j. These are
related to the natural y,; coordinates by &; = 2u;; — 1. The
Hermite interpolation of w over i—; is

LA =g+ &) 3600 -8) +&)
A+&YQ~&) —34(0+EY0 - E)] v
(3D
wherev;j = {w; 6, w; 6,; )7 and6, denotes the rotation
about the external normal n on side i{j. The natural curvature
over side i is given by

w =

3w
Xij = EpER = [6&;; 3¢;;(&;; ~ 1) —6&; 3¢;;(5;; + 1) ] vy,
i
(32)
Evaluating these relations at the nodes by setting §;; = %1 and
converting normal rotations to x-y rotations through (25), we
build the transformation

Xials ~6 —4yy 4xy 6 -2yy
xizlz 6 2yn -2x3 —6 4yy
X23|2 _ 0 0 0 -6 ~4y3;
x2ls Y 0 0 6 2yp»
6 -2y 2x3 0 0
Xails ~6 4y;3 —4x;3 0 0
X3l |
Cwy )
2x1 O 0 0 3“
-4z O 0 0 uf‘
4x2 6 -2yn  2x3 | ] 6 2
—2x33 —6 4y —dxxn 912
0 —6 =—dy3 4xg; uf
0 6 2y3 -2x;3 ?
9:3
L 9y3

(33)

The left hand side is the natural straingage reading vector called
g in Box 3 and thus we can express (33) as

g=Qv. (34)

This relation holds for all elements discussed here.

The six gage readings collected in g provide curvatures along
the three triangle side directions at two corners. But nine values
are needed to recover the complete curvature field over the
element. The three additional values are the natural curvatures
X2, X31 and ) at corners 1, 2 and 3, respectively. Three
possibilities for the missing values are discussed below.

The Average-Curvature Rule

To each corner & assign the average natural curvature x;; of
the opposite side. This average is given by (34) evaluated at
&;; = 0. For example

xi2ls = 3(xazh + xi2l2) = Y2 (62 — 6:1) + x12(62 — 6,1).

(3%
The natural curvature now can be interpolated linearly over the
triangle:

xi2= xizh &+ xizla 2+ x1213 83

1 Ly @9
= X2l (€1 + 383) + Xa2l2 (§2 + 363)-

It is readily verified that under this rule the natural curvature
Xi2 is constant over lines parallel to the triangle median that
passes through node 3. Formulas for the other curvatures fol-
low by cyclic permutation, from which we construct the matrix
relation

X12 O+3h L+ in 0
XB ¢ = 0 0 L+ 1in
X31 0 0 0]
0 0 0
&+ 38 0 0 g
0 +ih O+ih
6021 (321 — Dyn (3%1z + Daxy
= 0 0 0
603 (BLis+ Dyis (B&s1 — Dyis

6512 Géu+ Dyn Bliz—Dyxn

6832 (32— Dyn (Bfzm+ Dx32
0 0 0 37
0 0 0

603 (B + Dy (Bl — Dy |V,

6013 (Bliz—Dyis (Bfn + Das

in which ¢ = g} — {2, etc.
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In the notation of Box 3,
X=AxwB=A,QVv= Byav. (38)

where subscript a identifies the “averaging” rule (35). Since
the natural curvatures vary linearly over the triangle, their mean
values are obtained by evaluating (37) atthecentroid §; = {3 =

I3 =1/3:

X12 0 —=yn x3 0 yn -—xa
X={Xs¢{=10 O 0 0 -yn xn
X3 0 y3 -x3 0 0 O
o 0 0 _
0 yn —xn |v=Byv.
0 -y»3 X3
(39)
Finally, the Cartesian curvatures are given by
Kk =TB,,v = Byv, (40)

An explicit expression of these relations is easily obtained,
but not required in what follows; however, that of the mean
Cartesian curvatures € = TB,,v = B,v (a relation valid
because T is constant over the triangle) is enlightening:

Rxx ) 0 0 y2 0 0 y3
k= fy_v =—10 X32 0 0 X13 0
2K xy 2410 yo *3 0 ya xn
(C3V)]
0 0 yn _
0 X2 0 v=Bav.
0 yz x12
The Projection Rule

To each comner k assign the natural curvature x;; of its projec-
tion onto the opposite side. This results in x;; being constant
along lines normal to side ij. For equilateral triangles this
agrees with the averaging rule, but not otherwise. The un-
derlying motivation is to make the element insensitive to bad
aspect ratios in cylindrical bending along side directions.

To illustrate the application of this rule consider side 1-2. For
node 3 take

3*w
xeh=—3
Hya 3

= A2 Xzl + Az Xizl2s 42)

where A2 and Ay, are defined in Eqgs. (23). Proceeding in the
same manner along the other sides we construct the matrix
relation

X12 OG+And L+ Aul 0
X3 = 0 0 {2+ Al
bl 0 0 0
0 0 0
{3+ A28 0 0 g
0 nt+ins H+iak
' 43)
or
X=Ap8 k=TAg 8, (44)

where subscript p identifies the “projection” rule. As in the
preceding rule, since T is constant we can do the strain-splitting
step of Box 3 directly on the natural curvatures by evaluating
at the centroid:

1A +x2) 3 +40)

Ay = (Xxp +Axdp) = 0 0
0 0
0 0 0 0
F1423) 3(1+A) 0 0
0 0 11+21) 31 +A)
Lo+ A12830 20 + Audso 0
= 0 0 20 + A23d10
0 0 0
0 0 0
$30 + A32810 0 0
0 T30+ A31820 S0 + A3l

inwhich gio = — % Then

B, =TA,Q=T@A,, +A;,)Q =B, +Bsp.  (46)

The explicit expression of these matrices is not revealing. For
the construction of the stiffness matrix it is better to leave (46)
in product form and to carry out the operations with a symbolic
algebra package such as MACSYMA. The explicit expression
of Ky, obtained in this manner is presented in Appendix B
of Militello and Felippa (1989). Observe that if all A coef-
ficients are % which happens for the equilateral triangle, the
expressions reduce to those of the averaging rule.

The ‘Sliding Beam’ Rule

This is a refinement of the average-curvature rule. Consider a
fictitious beam parallel to side i — j sliding towards corner k.
The end displacements and rotation of this beam are obtained
by interpolating w cubically, 8, quadratically, and &; linearly,
along sides i—k and j—k. Compute the mean natural curvature
of this beam and assign to node  the limit as the beam reaches
that corner.

The calculations can be simplified if we observe that the mean
curvature of the sliding beam varies linearly as it moves from
i-j, where it coincides with (35), to corner k. At 1/3 of the way
this mean is the natural centroidal curvature, which can then
be readily extrapolated to k. These centroidal curvatures are
givenby X = B, v, where subscript s identifies the ‘sliding’
rule. A symbolic calculation yields the explicit form

[~ 2A13 =2(A21 + A31) 2012 ]
az¢y3 ascy +axc3 ascy
azs(3 azsy; + axsia azsai
—r 2An 2i2 —2(Ma2 + A32)
B, = aics ascay aicz +aca |
a;si aszs2i a;s32 + azsa
~2(ki3 + A23) 23y 23
axc;3 +aicn axci3 ac3
L @283 + 21532 azs13 a3 _

(47)
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where a;, ¢;; and s;; are defined in Egs. (23).
Extrapolating this equation to the opposite corners and linearly

T 6(=51 + &2+ Aiads)

2y (1 = 381) + 3aaci3ls

2x31(38) — 1) + 3azs1383
6(51 = 52+ Aasla)

s 2yn (3% = 1) + 3aic283
2x21(1 = 382) + 3a153283
—6(X23 + A13)03
(Bazci3 + 3aic3)t3

L (Bazsiz + 3a15312)83

It should be noted that A x and Q are inextricably enmeshed in
the above formula and cannot be easily separated. Premuitipli-
cation by T yields x = B,v. Evaluation of B, at the centroid
yields B, = LZ /A, where LZ = ATB,; is the force lumping
matrix given in Eq. (54).

A variation on the sliding-beam theme would consist of in-
terpolating the normal rotation 8, along i— and j—k linearly
rather than quadratically. This scheme turns out to be identi-
cal, however, to the average curvature rule and thus it provides
nothing new.

The ANS Elements

Three ANS elements based on the preceding interpolation rules
may be constructed by following the prescription of Box 4.
Their stiffnesses are identified as K,, K,, and K, for averag-
ing, projection, and sliding-beam, respectively. The following
properties hold for these elements.

Patch Test. Assuming that the element has constant thickness
and material properties, K, and K, pass the individual element
test, but K, does not. This claim can be analytically confirmed
by applying the criterion of Egs. (16)-(17), and noting that
B. = L,T/A and B, = L;/A, where L, and L, are the force
lumping matrices (51) and (54).

Equivalence with DKT. K, turns out to be identical to the stiff-
ness matrix of the Discrete Kirchhoff Triangle (DKT) element,
which was originally constructed in a completely different way
that involves assumed rotation fields; see Batoz, Bathe and Ho
(1980). Thus DKT is an ANS element, and also (because of
the equivalence noted below) an ANDES element. This equiv-
alence provides the first variational justification of DKT, as
well as the proof that DKT passes the patch test without any
numerical verification.

ANS/ANDES Egquivalence. If the basic stiffness matrices Ky,
and K, derived in the next section are used in conjunction
with the averaging and sliding-beam rules, and « = 1, the
ANDES formulation yields the same results as ANS if the
element has constant thickness and material properties. (If the
element has variable thickness, or the material properties vary,
the equivalence does not hold.) The ANDES formulation used
with the projection rule yields two elements, called ALR and
AQR in the sequel, which differ in their basic stiffnesses. Both
of these elements pass the patch test and are not equivalent to

—6(A21 + A31)4
(Bascar + 3azci3)dy
(Bazsa + 3ass13)8)
6(—%2+ &3+ Audn)

2y32(1 = 352) + 3asca g
2x3,(382 — 1) + 3a3s218y
6(52 =&+ Aidn)
2y32(383 — 1) + 3azci38,
2x32(1 = 383) + 3az25138

interpolating over the triangle we construct the relation x =
B, v, with

653 — &1+ A2d2)
213351 = 1) + 3azca &z
2x13(1 = 381) + 3azsa182

—6(X12 + A32)52
(3a;c3; + 3a3c)2 . (48)
(3a; 532 + 3a3521)82
6(=83 + 51 + A3282)
2y13(1 = 383) + 3aic2d2
23385 -1 + 3a1ssz§'2.j

the ANS formulation.

STIFFNESS MATRIX COMPUTATION

The Basic Stiffness

As explained on Box 2, the basic stiffness is obtained by con-
structing the lumping matrix L. In our case this is a9 x 3 matrix
that “lumps” an internal constant bending-moment field (i,,,
7y, Mxy) to node forces f conjugate to v.

On each element side, the constant moment field produces
boundary moments m,, and m,, referred to a local edge coor-
dinate system n, t are

— 2 1 [ P
{"’rm } = [ S o T2syc ] m (49)

m - 2 yy

My i SijCij —S8ijCij S-z' - C

i i ﬁxy

The boundary motions d conjugate to m,, and m,, are
dw/dn = —6, and dw/dt = 6,. Given the degree of free-
dom configuration (26), the normal slope dw/3n = —6; along
side i—j can at most vary linearly (it could be also taken as
constant and equal to 3 (6:; + 6;;) but the results are the same
as for a linear variation). ‘

For the tangential slope (the rotation about the normal)
dw/dt = 6, there are three options: constant, linear and
quadratic variation. But a constant 8, = (w; — w;)/¢;; tumns
out to be equivalent to the quadratic variation and a constant
6, = %(0,,,- + 6,;) equivalent to the linear variation. Conse-
quently only the linear and quadratic cases need to be exam-
ined.

Linear Normal Rotation. The variation of 6, and 6, along each
side is linear:

61 _,[0 1-¢ 0 o0 145 0 1)6u
6f, 20 0 1-£80 0 1+&]]uw

where § = §;;.
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Under this assumption Felippa and Bergan (1987) obtained the
lumping matrix

0 0 yn O 0.)‘130 0 yn
LT=1{0 x 0 0 x3 0 0 xx 0O},

0 yn X3 0 ysu xu 0 y2 X2
(51

where superscript ¢ stands for ‘linear 6,.’ The corresponding
basic stiffness is

Ky = A”'LDL], (52)

where D is the Cartesian moment-curvature constitutive matrix
resulting from the integration of E through the plate thickness.
This matrix been used as component of the free formulation
(FF) element presented in that reference.

—Cy2812 + C31531
Lshxa + sjixs)
-1y + 55y
—C23523 + Cr2812
%(Slzlez + S%;Xu)
—1(hyn + shyin)
—C31531 + €353
%(S%XB + S%lX3|)
[ —1GEyn + shns)

The corresponding basic stiffness matrix is denoted by
Ksg = A~'L,DL]. (55)

The Higher Order Stiffness

The higher order stiffness for the ANDES elements described
previously is

x = O‘QTdeQ

=aQ’ [ fA AE,DAddi] Q=« fA BT DB, dA.

(56)
where x = a, p, s for the average, projection and sliding-beam
rules, respectively. (The last expression is appropriate when
By, is not easily factored into Ag,Q, as in the sliding-beam
rule.) Since Ay, varies linearly, if D is constant we could
numerically integrate K4 in (56) exactly with a three point
Gauss rule; for example the three-midpoint formula. But as
the element stiffness formation time is dominated by these
calculations it is of interest to derive K, in closed form. This
is done in Appendix B of Militello and Felippa (1989) for
Kip. which from the numerical experiments discussed below
appears to be the best performer.

NUMERICAL EXPERIMENTS

An extensive set of numerical experiments has been run to
assess the performance of the new ANDES elements based on

—C3831 + C12512
Hehxia + chixsn)
—1(chyn + 3 y3)
—C12512 + €23523
%(C%lez + C?2'3x23)
—1(chyn + cyn)
—C€23523 + €31531
3(chxn + c31x31)
—3(chyn + Gyyn)

Quadratic Normal Rotation. A quadratic variation of 6, can
be accommodated in conjunction with the cubic variation of w
along the side:

HR PR
o], L3 -n/e 0 IGE+DE-D
0 1+¢& 0 ] Bni

3¢:-1/e 0 JGE-DE+D

Ons

. (53)
where & = &;; and £ = ¢;;. Then the resulting lumping matrix
¢an be presented as

5 - G - 3, — szﬂ
Ay + Chyn
—shxiz = 353

(st = ) = (535 — c3)
chyn + ¢y : (54)
—SlZZX|2 - SéXz;

(533 = ¢3) — (53, — 3
C;B)’n + C%ms

2 2

the projection rule (ALR and AQR) and to compare them with
other existing high-performance elements. These experiments
are reported in Militello and Felippa (1989). Four elements
were considered in this study:

ALR Stiffness defined as K = Ky + 1.5K4,. This combines
the linear-rotation basic stiffness (52) with the higher
order stiffness given by the projection rule. The value
« = 1.5 was established through simple energy balance
techniques similar to those discussed in Felippa and
Bergan (1987) for the free formulation elements.

AQR Stiffnessdefined as K = Kpq+Ky,. This combines the

quadratic-rotation basic stiffness (55) with the higher

order stiffness given by the projection rule. The coef-
ficient « is unity.

DKT Stiffness defined as K = Kpg + Kus. As previously
noted, this combination is identical to the well known
Discrete Kirchhoff Triangle (DKT) element.

FE  The free formulation triangle described in Felippa and
Bergan (1987), with multiparameter scaling of the
higher order stiffness matrix. The basic stiffness matrix
is Kbg.

All of them qualify as high performance elements in the stan-
dard plate bending “obstacle” problems.
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Traditionally tests for new finite elements are reported in the
following sequence:

O Patch tests, usually carried out numerically on arbitrar-
ily chosen mesh configurations.

(I Regular-mesh tests such as circular, square, skew and
cantilever plates under concentrated and distributed
loads.

(OI) High-aspect ratio and geometric distortion tests.

For the present investigation (I) was unnecessary because all
elements pass the patch test (in fact, a strong form of it) a priori
by construction.

As for (ID-(I), the traditional order was reversed. First all
four elements were subject to highly demanding distortion
tests. This decision was taken to “weed” consistently weak
performers and thus reduce the number of test runs on batch
(II). The approach paid off in that AQR and DKT (the two
elements that use the quadratic-rotation basic stiffness) con-
sistently outperformed ALR and FF on distorted meshes, with
AQR exhibiting an edge in extreme distortion cases.

Then a “run off™ contest between AQR and DKT was carried
out on the regular-mesh tests (II). On these the performance
was similar with an advantage to AQR in problems involv-
ing concentrated loads. These results are reported in detail in
Militello and Felippa (1989).

CONCLUSIONS

The main conclusions of the present study can be summarized
as follows.

1. The ANDES formulation represents a variant of the ANS
formulation that merits serious study. The key advantages
of ANDES over ANS are:

(a) a priori satisfaction of the patch test. Although this
advantage is less clear for elements where ANS and
ANDES coalesce for constant thickness and material
properties, it reappears for more general cases.

(b) The separation of the higher order stiffness allows
the application of a scaling parameter. Further-
more it opens the possibility for the energy-balanced
combination with other formulations as per Eq. (2),
although this possibility presently remains unex-
plored.

2. Thestudy of plate bending elements shows that the widely
used DKT element is both an ANS and ANDES element.
This discovery provides a variational foundation hereto
lacking and analytically proves (because of the ANDES
connection) that DKT passes the patch test.

3. The numerical results clearly demonstrate that the choice
of basic stiffness is of paramount importance in the behav-
ior of elements based on the ANDES formulation. Of the
two elements sharing the quadratic-rotation basic stiff-
ness, namely AQR and DKT, the former has excelled in

geometric distortion tests and in convergence studies that
involve concentrated forces. For other cases the perfor-
mance of AQR and DKT is similar, and superior to those
elements that use the linear-rotation basic stiffness.

The numerical experiments have not addressed questions of
material sensitivity such as element performance for highly
anisotropic and composite plates. This behavior, as well as the
possibility of applying this technology to C° bending elements,
is currently under investigation.
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ELECTROMAGNETIC FINITE ELEMENTS BASED ON
A FOUR-POTENTIAL VARIATIONAL PRINCIPLE

SUMMARY

We derive electromagnetic finite elements based on a variational principle that uses the electromagnetic four-
potential as primary variable. This choice is used to construct elements suitable for downstream coupling
with mechanical and thermal finite elements for the analysis of electromagnetic/mechanical systems that
involve superconductors. The key advantages of the four-potential are: the number of degrees of freedom per
node remain modest as the problem dimensionality increases, Jump discontinuities on interfaces are naturally
accomodated, and static as well as dynamics are included without any a priori approximations. The new
elements are tested on an axisymmetric problem under steady-state forcing conditions. The results are in
excellent agreement with analytical solutions. '

159



1. INTRODUCTION

The present work is part of a research program for the numerical simulation of electromag-
netic/mechanical systems that involve superconductors. The simulation involves the interaction
of the following four components:

(1) Mechanical Fields: displacemivnts, stresses, strains and mechanical forces.

(2) Thermal Fields: temperature and heat fluxes.

(3) Electromagnetic (EM) Fields: electric and magnetic field strengths and fluxes, currents and
charges.

(4) Coupling Fields: the foundamental coupling effect is the constitutive behavior of the materials
involved. Particularly important are the metallurgical phase change phenomena triggered by
thermal, mechanical and EM fields.

1.1 Finite Element Treatment

The first three fields (mechanical, thermal and electromagnetic) are treated by the finite element
method. This treatment produces the spatial discretization of the continuum into mechanical,
thermal and electromagnetic meshes of finite number of degrees of freedom. The finite element
discretization may be developed in two ways:

(1) Simultaneous Treatment. The whole problem is treated as an indivisible whole. The three
meshes noted above become tightly coupled, with common nodes and elements.

(2) Staged Treatment. The mechanical, thermal and electromagnetic components of the problem
are treated separately. Finite element meshes for these components may be developed sepa-
rately. Coupling effects are viewed as information that has to be transferred between these

three meshes.

The present research follows the staged treatment. More specifically, we develop finite element
models for the fields in isolation, and then treat coupling effects as interaction forces between these
models. This “divide and conquer” strategy is ingrained in the partitioned treatment of coupled
problems [4,16], which offers significant advantages in terms of computational efficiency and
software modularity. Another advantage relates to the way research into complex problems can be
made more productive. It centers on the observation that some aspects of the problem are either
better understood or less physically relevant than others. These aspects may be then temporarily
left alone while efforts are concentrated on the less developed and/or more physically important
aspects. The staged treatment is better suited to this approach.

1.2 Mechanical Elements

Mechanical elements for this research have been derived using general variational principles that
decouple the element boundary from the interior thus providing efficient ways to work out coupling
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with non-mechanical fields. The point of departure was previous research into the free-formulation
variational principles reported in Ref. [5]. A more general formulation for the mechanical ele-
ments, which includes the assumed natural strain formulation, was established and reported in
Refs. [5,6,14,15]. New representations of thermal fields have not been addressed as standard
formulations are considered adequate for the coupled-field phases of this research.

2. ELECTROMAGNETIC ELEMENTS

The development of electromagnetic (EM) finite elements has not received to date the same degree
of attention given to mechanical and thermal elements. Part of the reason is the widespread use
of analytical and semianalytical methods in electrical engineering. These methods have been
highly refined for specialized but important problems such as circuits and waveguides. Thus
the advantages of finite elements in terms of generality have not been enough to counterweight
established techniques. Much of the EM finite element work to date has been done in England
and is well described in the surveys by Davies [1] and Trowbridge [21]. The general impression
conveyed by these surveys is one of an unsettled subject, reminiscent of the early period (1960-
1970) of finite elements in structural mechanics. A great number of formulations that combine flux,
intensity, and scalar potentials are described with the recommended choice varying according to
the application, medium involved (polarizable, dielectric, semiconductors, etc.) number of space
dimensions, time-dependent characteristics (static, quasi-static, harmonic or transient) as well as
other factors of lesser importance. The possibility of a general variational formulation has not
apparently been recognized.

In the present work, the derivation of electromagnetic (EM) elements is based on a variational
formulation that uses the four-potential as primary variable. The electric field is represented by a
scalar potential and the magnetic field by a vector potential. The formulation of these variational
principle proceeds along lines previously developed for the acoustic fluid problem [7,8].

The main advantages of using potentials as primary variables as opposed to the more conventional
EM finite elements based on intensity and/or flux fields are, in order or importance:

1. Interface discontinuities are automatically taken care of without any special intervention.
2. No approximations are invoked a priori since the general Maxwell equations are used.

3. The number of degrees of freedom per finite element node is kept modest as the problem
dimensionality increases.

4.  Coupling with the mechanical and thermal fields, which involves derived fields, can be naturaily
evaluated at the Gauss points at which derivatives of the potentials are evaluated.

Following a recapitulation of the basic field equations, the variational principle is stated. The
discretization of these principle into finite element equations produces semidiscrete dynamical
equations, which are specialized to the axisymmetric case. These equations are validated in a
simulation of a cylindrical conductor wire.
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Table 1 Electric and Magnetic Quantities

Quantities Symbol MKS-Weber Units

Electric charge density p  coulomb/m®

Electric field intensity E newton/coulomb

Electric flux density D coulomb/m?

Electric resistance R ohm

Electric conductivity g mho

Displacement current density D coulomb/(sec.m?)
Susceptibility* € coulomb/(joule.m)

Current j  coulomb/sec

Magnetic field intensity H newton/weber or amperes/m
Magnetic flux density B  weber/m?

Magnetic permeability ¥ i weber/(joule.m) or henry/m
* Also called capacitivity and permittivity

t Also called inductivity

3. ELECTROMAGNETIC FIELD EQUATIONS

3.1 The Maxwell Equations

The original Maxwell equations (1873) involve four spatial fields: B, D, E and H. Vectors E and H
represents the electric and magnetic field strengths (also called intensities), respectively, whereas D
and B represent the electric and magnetic flux densities, respectively. All of these are three-vector
quantities, that is, vector fields in three-dimensional space (x; = x, x2 = y, X3 = 2.

El D] El Hl
E={E}, D={D}, E={E}, H= H; ;. (1)
E3 D3 E3 H3

Other quantities are the electric current 3-vector j and the electric charge density p (a scalar). Units
for these and other quantities of interest in this work are summarized in Tables 1-2.

With this notation, and using superposed dots to denote differentiation with respect to time ¢, we
can state Maxwell equations as*

B+VxE=0, VxH-D=j,

2
V-D=p, vV-B=0. @

The first and second equation are also known as Faraday’s and Ampere-Maxwell laws, respectively.

The system (2) supplies a total of eight partial differential equations, which as stated are independent
of the properties of the underlying medium.

* Some authors, for example Eyges (2], include 47 factors and the speed of light ¢ in the Maxwell equation.
Other textbooks [19,20], follow Heaviside’s advice in using technical units that eliminate such confusing
factors.
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Table 2 Equivalences Between Various MKS-Giorgi Units

1 newton = 1 kg.m/sec?
1 joule = 1 newton.m
1 watt = 1 joule/sec
1 coulomb = 1 ampere.sec
1 ohm = | volt/ampere
1 farad = 1 coulomb/volt
1 henry = 1 (volt.sec)/ampere
1 weber = 1 volt.sec
1 mho = 1 ohm™!

3.2 Constitutive Equations

The field intensities E and H and the corresponding flux densities D and B are not independent but
are connected by the EM constitutive equations. For an electromagnetically isotropic, non-polarized
material the equations are

B = uH, D = ¢E, (3)

where 4 and ¢ are the permeability and susceptibility, respectively, of the material{. These coef-
ficients are functions of position but (for static or harmonic fields) do not depend on time. In the
general case of a non-isotropic material both 1 and € become tensors. Even in isotropic media u
in general is a complicated function of H; in ferromagnetic materials it depends on the previous
history (hysteresis effect).

In free space 4 = pg and € = €p, which are connected by

2 _ 1
2=— )
Ho€o

where cq is the speed of light in a free vacuum. In MKS-A units, ¢y = 3.10° m/sec and
po = 4m x 1077 henry/m, € = pg'cy? = (36m)™! x 107! sec/(henry.m) )

The condition u & ug holds well for most practical purposes in such media as air and copper; in
fact IJaair = 1-0000004u0 aﬂd ucopper = -99999#0.

The electrical field strength E is further related to the current density j by Ohm’s law:
j=gE (6)

where g is the conductivity of the material. Again for an non-isotropic material g is generally a
tensor which may also contain real and imaginary components; in which case the above relation
becomes the generalized Ohm’s law. For good conductors g >> ¢; for bad conductors g << €.
In free space, g = 0.

+ Other names are often used, see Table 1.
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3.3 Maxwell Equations in Terms of E and B

To pass to the four-potential considered in Section 4 it is convenient to express Maxwell’s equations
in terms of the electrical field strength E and the magnetic flux B. In fact this is the pair most
frequently used in electromagnetic work that involve arbitrary media. On eliminating D and H
through the constitutive equations (3) we obtain

B+VxE=0, VxB—ueE:uj,

V-E=p/e, V-B=0. &

The second equation assumes that € is independent of time; otherwise €E = ¢ dE/d! should be
replaced by d(¢E)/dr. In charge-free vacuum the equations reduce to

. 1.
B+VxXxE=0, VxB-=sE=0,
o (8)
V-E=Q, vV-B=0.
3.4 The Electromagnetic Potentials

The electric scalar potential ¢ and the magnetic vector potential A are introduced by the definitions

E=-Vd—A, B=V xA. 9)

This definition satisfies the two homogeneous Maxwell equations in (7). The definition of A leaves
its divergence V - A arbitrary. We shall use the Lorentz gauge

V-A+ped=0. (10)

With this choice the two non-homogeneous Maxwell equations in terms of & and A separate into
the wave equations )
Vi — ped = —p/e, VZA — ueA = —puj. (11)

4. THE ELECTROMAGNETIC FOUR-POTENTIAL

Maxwell’s equations can be presented in a compact manner* in the four-dimensional spacetime
defined by the coordinates

X1=Xx, Xx=Yy, X3=7, x4=ict (12)
where x1, x5, x3 are spatial Cartesian coordinates, i = —1 is the imaginary unit, and ¢ = 1/.,/ué€

is the speed of EM waves in the medium under consideration. In the sequel Roman subscripts will
consistently go from 1 to 4 and the summation convention over repeated indices will be used unless
otherwise stated.

* A form compatible with special relativity.
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4.1 The Field Strength Tensor

The unification can be expressed most conveniently in terms of the field-strength tensor F, which is
a four-dimensional antisymmetric tensor constructed from the components of E and B as follows:

0 Flz F13 F|4 0 CB3 —CBz -—iEl

F — —Flz 0 F23 F24 déf —CB3 0 CB] —iEz (13)
—-F13 —F23 0 F34 CBz —CBl 0 —iE3
—Fl4 —Fy3 —Fy4 O iE\, iE, iEs 0

Here B is an adjustment factor to be determined later. Similarly, introduce the four-current vector
Jas

J1 CUj1 Hj1
) S| e cujr | _ Kj2
J= J3 = CclLj3 = fc 73] ’ (14)
Js ip/e iJujep

Then, for arbitrary 8, the non-homogeneous Maxwell equations, namely V x B — ueE = pj and
V - E = p/¢, may be presented in the compact “continuity” formf
oF;
= (15)
Bxk

The other two Maxwell equations, V - B =0and V x E + B = 0, can be presented as

0F 0Fn  0Fim
=0, 16
0Xm + Oxy + ax; (16)

where ihe index triplet (i, j, k) takes on the values (1,2,3), (4,2,3), (4,3,1) and (4,1,2).

4.2 The Four-Potential

The EM “four-potential” ¢ is a four-vector whose components are constructed with the electric and
magnetic potential components of A and ®:

) cA;

_l | e |ea
P=Blgl = 1eal (17

&4 i

It may then be verified that F can be expressed as the four-curl of ¢, that is
O 0¢;

Ffpy = — — —, 18
ik axi axk ( )

or in more detail and using commas to abbreviate partial derivatives:

0 P — P12 31— P13 Pa1— Pra
®1.2 — P2, 0 $32— P23 Pa2— P24 (19)
$13—¢31 23— 32 0 43— D1a |
14 —Pa1 P24 —Pa2 D34 — Pa3 0

F=

+ The covariant form of these two equations.

165



4.3 The Lagrangian

With these definitions, the basic Lagrangian of electromagnetism can be stated ast

d¢x _ 9¢i\’
L= LFuFu— Jiti = ;P (a‘f‘ - —x(i—) - Ji¢i

B* . . .
1p*(c*B* - E?) - —e"(JxA1 + j2A2 + j3A3 — p®),

in which
B*=B'B=B2+B}+B}, E'=E'E=E!+El+E;

Comparing the first term with the magnetic and electric energy densities [2,19,20]

Um=3B"H=—B?  u =3iD'E=jeE’,

1
2u
we must have B2c? = B2?/(ue) = 1/u, from which

=

Consequently the required Lagrangian is

1 ) . )
= 532 — LeE? - (jiA1 + A2 + j3A3 — p®).

The associated variational form is

1}
R=/ deth
o \'4

(20)

(21)

(22)

(23)

(24)

(25)

where V is the integration volume considered in the analysis. In theory V extends over the whole
space, but in the numerical simulation the integration is truncated at a distant boundary or special

devices are used to treat the decay behavior at infinity.

4.4 The Four-Field Equations

On setting the variation of the functional (24) to zero we recover the field equations (15-16).
Taking the divergence of both sides of (15) and observing that F is an antisymmetric tensor so that

its divergence vanishes we get
g—i =cu(V-j+p) =0,
Xi

(26)

+ Lanczos [12] presents this Lagrangian for free space, but the expression (24) for an arbitrary material

was found in none of the textbooks on electromagnetism listed in the References.
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The vanishing term in parenthesis is the equation of continuity, which expresses the law of con-
servation of charge. The Lorentz gauge condition (10) may be stated as V - ¢ = 0. Finally, the
potential wave equations (11) may be expressed in compact form as

O¢i =-J; X))
where [] denotes the “four-wave-operator”, also called the D’ Alembertian:

R A 4
Bxeome  0x  oxk o 2art.

Ie

(28)

Hence each component of the four-potential ¢ satisfies an inhomogeneous wave equation. In free
space, J; =0 and each component satisfies the homogeneous wave equation. ’

5. THE AXISYMMETRIC TEST EXAMPLE

The simplest example for testing the finite element formulation based on the four-potential vari-
ational principle is provided by the axisymmetric magnetic field generated by a uniform, steady
current flowing through a straight, infinitely long conducting wire of circular cross section. In the
present Section we derive expressions for the magnetostatic fields outside and within the conductor.
These analytical solutions will be later compared with the finite element numerical solutions.

5.1 The Free-Space Magnetic Field

To take advantage of the axisymmetric geometry we choose a cylindrical coordinate system with
the wire centerline as the longitudinal z-axis. The vector components in the cylindrical coordinate
directions r, 6 and z are denoted by

A1, By, E, inthe r direction
Az, B3, E; inthe @ direction
A3, B3, E; inthe z direction

The electromagnetic fields will then vary in the radial direction () but not in the angular () and axial
(z) directions. Similarly, the current density that flows in the wire has only one nonzero component
acting in the positive or negative z direction; conventionally we select the positive direction.

In Cartesian coordinates the radial component of the electrostatic potential in free space can be
calculated from the expression (see, e.g., [2,10,18,19,20])

Ho [ Js
A, =A3=— | =dV, 29
p=ty=t2 [ B @9
where |r| is the distance between the elemental charge j3 dV and the point in space at which we wish
to find the field potential. The integral extends over the volume containing charges. This expression
serves equally well in cylindrical coordinates. In fact, the transformatlon of z components will be
one to one if the center of the systems coincide.
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As noted above the only non-vanishing component of the current vector is j3 dS where dS is the
elemental cross sectional area of the conductor and js is the current density in the 2 direction. If
d¢ represents the differential length of the wire, then [g j3dV = [sj3dSdt =1dt = Idzand

Ir] = +/rZ + z2. Substittion into Eq. (29) yields

I [® dz
As(ry = 22

an | It G0

This integral diverges, but this difficulty can be overcome by taking the wire to have a finite length
2L symmetric with respect to the field point, that is large with respect to its diameter. Integrating
between —L and +L we get

Kol L dz wol +L
= = | 2422 . 1
o=t [ =B () G

Expanding this equation in powers of r/L and retaining only first-order terms gives

A3=_(%¥)mr+c. ' (32)

where C is an arbitrary constant. For subsequent developments it is convenient to select C =
(ol /27) InR7, where Rr isthe “truncation radius” of the finite element mesh in the radial direction.

Then I
_(mol, (1
A= (u)“‘(kr)‘ (33)

With this normalization A; = O at r = Ry. Taking the curl of A gives the B field in cylindrical
coordinates: ‘

]04A; 0JA
B, B, T 0
B=VxA={&‘=[&}= 4 1= S )
By B, 19(rA;) 194 0
18620 150
It is seen that the only non-vanishing component of the magnetic flux density is
3A3 ﬂOI
=B =uH,=———=——. 35
Bg = By = o 2 3 = 2mr (35)

This expression is called the law of Biot-Savart in the EM literature.
5.2 Magnetic Field Within the Conductor

Again restricting our consideration to the static case, we have from Maxwell’s equations in their

integral flux form
fH-ds:fu‘T-ds:fj-dS, (36)
c c s
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where C is a contour around the field point traversed counterclockwise with an oriented differential
arclength ds and dS is the oriented surface element inside the contour. The term for the electric
field disappears in this analysis because E = 0. From before we know that the right hand side
of Eq. (35) is equal to the normal component of the current that flows through the cross sectional
area evaluated by the integral. In the free space case, this is the total current that flows through
the conductor. But in the conductor the amount of current is a function of the distance r from the
center. Again using / to represent the total current carried by the conductor, and R the radius of
the conductor, and assuming an uniform current density jz = I/ (7r R?), the right hand side of (35)

become_ A I
r
j - = 2 =— [ dS =1—. : 37
j;J as fsjgds ﬂRz[s S e 37

Evaluating the left hand side of the integral and solving for B, gives:

r? ulr

, B, = .
R? T 21R?
Comparing with (34) we see that if & = pg then By is continuous at the wire surface r = R and
has the value uol/ (2 R). Butif i # po there is a jump (u — po)l /(2 R) in B,.

The magnetic potential A3 within the conductor is easily computed by integrating — B, with respect

wru~'By =1 (38)

“tor:

pl r?
4m R?
The value of C is determined by matching (33) t r = R, since the potential must be continuous.

The result can be written
I, r? R
wege [ (1- ) (35 0

The preceding expressions (33)-(40) for A; could also be derived in a somewhat more direct fashion
by integrating the ordinary differential equation V24, = r-1(8(rd A3 /9r)ar) = ujs to which the
second of (11) reduces.

Ay = +C. (39

6. FINITE ELEMENT DISCRETIZATION

6.1 The Lagrangian in Cylindrical Coordinates
To construct finite element approximations we need to express the Lagrangian (24)

1
L= 5;32 — 1eE? - (iTA - p®), (41)

in terms of the potentials written in cylindrical coordinates. For B? we can use the expression of
the curl (33)

194; 8A2\* (aA, 3A;\*  [13(rAz) 13,41)2
B=(-—2-=2 o= l - - , 42
(r a6 az) + 0z ar + r or r 96 “42)
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For E? we need the cylindrical-coordinate gradient formulas

od ;
El Er W-*-Al
E= E2]= Ea]=— l%%-i--‘iz 43)
E; E, od
-3—+A
so that ,
od 3A; 19® 0dA; 0P 0A;
Br=({—4+ 2L =42 — 4+ 222
Gy + (a3 (B 3) @

In the axisymmetric case, A; = A, = 0; furthermore A, = A; is only a function of the radial
distance from the wire. Therefore dA3/38 = dA3/3z = 0. From symmetry considerations we also
know that the electric field cannot vary in the & and z directions, which gives 8$/3z = 3P/38 = 0.
Finally, the only nonvanishing current density component is j3. Consequently the Lagrangian (41)

simplifies to
I (3A:\* | [rae\® [a4as\*| .
L= 5; (—5;') - 56 [(b—r.) + ar - (j3A3.— p<D) . (45)

6.2 Constructing EM Finite Elements

To deal with this particular axisymmetric problem a two-node “line” finite element extending in
the radial » direction is sufficient. In the following we deal with an individual element identified
by superscript e. The two element end nodes are denoted by i and j. The electric potential ¢ and
the magnetic potential A; = A, are interpolated over each element as

O =NG&, A5 =N,AS (46)

Here row vectors Ng, and N4 contain the finite element shape functions for ¢ and A$, respectively,
which are only functions of the radial coordinate r:

NG = (NGi(r) N§;()),  N=(NL() N(), 47)
and column vectors $¢ and A§ contain the nodal values of & and A3, respectively, which are only
functions of time ¢: &) A (D)

i (¢ 3: (¢
P = ! . AS = } . 48
[ &) ; { A3(®) 49

Substitution of these finite element assumptions into the Lagrangian (45) and then into Eq. (25)
yields the variational integral as sum of element contributions R = )", R¢, where

—/ fv 2 (GN‘ ) ~ i€ [(a;°§e)2+(aaNe As)] @

(13N Af — pr,,Q‘) dveds.
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where V¢ denotes the volume of the element. Taking the variation with respect to the element node
values gives

g 1 /aNS\T aNe .
sre= [ [ (oag)T| 2 (F2) B As+e (M) NGES - ;)’]
) - - (50)

fn " e\ 7T (4
al | _ dNg ONg . e\T P)
+'[‘o f'(acp) _ ‘(ar) —ar<I>+p( %) | dvedr.

On applying fixed-end initial conditions at ¢ = fp and t = #; and the lemma of the calculus
of variations, we proceed to equate each of the expressions in brackets to zero. From the first
bracket we obtain for each element the following second-order dynamic equations for the magnetic
potential at the nodes, which are purposedly written in a notation resembling the mass-stiffness-force
equations of mechanics:

M A; + KoAS =15, | (51)
where r
1 /9N oN,
e e\T nye e e — A A e
A_/;‘E(NA) NLdV°®, A ,/;eu(ar) F. dave, (52)
fé = f saNeTdve, (53)

From the second bracket we obtain for the electric potential a simpler relation which does not
involve time derivatives, i.e, is static in nature:

2P =13, (54)

eNT e ’
K;:fv € (a;‘r") %dV', f;:fv p (N5)T ave. (55)

Assembling these equations in the usual way we obtain the semidiscrete master finite element
equations:

where

M4A3 + K A3 =1,

56
Ko® = fo. (56)

6.3 The Static Case

In time-independent (static, steady state) problems, the term A3 disappears and the master finite
element equations of electromagnetostatics become

KiA3 =1y, Ko® =fo. 57

If the current density and charge distributions are known a priori then these two equations may
be solved separately. If only the charge distribution is known then the second equation should
be solved first to obtain the electric field E as gradient of the computed electric potential; then
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the current density j obtained from Ohm’s law (6) and used to computed the force vector of the
first equation. Conversely if only the current density distribution is known a priori the process is
reversed.

In the present study the current distribution is assumed to be known and we will be content with
solving the first equation for the magnetic flux.

6.4 An Alternative Semidiscretization

If upon setting the brackets of the variation (50) to zero we multiply them through by x and 1/e,
respectively, the expressions for the mass, stiffness and force matrices become

1 T aNS \ 7 aNe, T
i=[atwrmav = [ (FR) Fravigi= [ uanTave

aN%\ T aN¢ 1
e $ ® e _ ol e\T
? _/ve ( ar ) ar 4 e /v ;P (No)" av.

The matrices M and K above are quite similar to the capacitance and reactance matrices, respectively,
obtained in the potential analysis of acoustic fluids [7,8]. Another attractive feature of (58) is that
K4 = Ko if the shape functions of both potentials coalesce, as is natural to assume. These
advantages are, however, more than counterbalanced by the fact that “jump forces” contributions
to f4 and fy arise on material interfaces where u and e change abruptly, and the proper handling of
such forces substantially complicates the programming logic. Note that this issue does not arise in
the treatment of homogeneous acoustic fluids.

(58)

6.5 Applying Boundary Conditions

The finite element mesh is necessarily terminated at a finite size, which for the test problem is
defined as the truncation radius Rz alluded to in Section 5.1. In static calculations the material
outside the FE mesh may be viewed as having zero permeability u, or, equivalently, infinite stiffness
or zero potential. It follows that the potential value at the node located on the truncation radius may
be prescribed to be zero. This is the only essential boundary condition necessary for this particular
problem.

7. NUMERICAL VALIDATION

7.1 Finite Element Model

The test problem consists of a wire conductor of radius R transporting a unit current density. For
this problem the finite element mesh is completely defined if we specify the radial node coordinates
r{ =r;andr; =r;,, foreach element e. If the mesh contains N, elements inside the conductor,
those elements are numbered ¢ = 1,2, ... N and nodes n = 1,2, ... N, + | starting from
the conductor center outwards. The first node (n = 1) is at the conductor center r = 0 and node
n = N, + 1 is placed at the conductor boundary r = R. The mesh is then continued with N,¢
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Figure 1. Magnetic potential A3 vs. distance from center r, pyire = 10.0:
finite element values (triangles) and analytical values (squares).

0.400

0.320

0.160

¢.080

Magnetic Potential
g

A

0.000 L ! : ! : ; ) - 8

0.000 1.000 2.000 3.000 4.000 5.000

Radial Distance r
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finite element values (triangles) and analytical values (squares).

172

e
P



Magnetic Field

1.700°
1.360 | j‘
/ a FINITE ELEMENT
1.020 b g o ANALYTICAL
B, | /
0.680 [ J
0.340 -{'
M'ﬂ'—ﬁ--o—o—o—o—o.—o—o
0.000 : ' : : : 1 : ' To—a
0.000 1.000 2.000 3.000 4.000 $.000

Radial Distance r

Figure 3. Magnetic flux density B vs. distance from center 7, pyire = 10.0: finite element

Magnetic Field

values (triangles) and analytical values (squares). Values shown on the interface r =1
with dark symbols have been extrapolated from element center values to display the
jump more accurately; this extrapolation scheme has not been used elsewhere.
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Figure 4. Magnetic flux density B; vs. distance from center r, pwire = 1.0:
finite element values (triangles) and analytical values (squares).
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elements into free space, with a double node at the counductor boundary. The last node is placed
atr = Ry at which point the free space mesh is truncated; usually Ry = 4R to 5R. Although the
mesh appears to be one-dimensional, a typical element actually forms a “tube” of longitudinal axis
z, internal radius r{ and external radius rj , extending a unit distance along z.

For the present study the magnetic potential was linearly interpolated in r, using the linear shape
functions

e =(1-8 10+8), (59)

where £ is the dimensionless isoparametric coordinate that varies from —1 at node i to +1 at node
j. This interpolation provides for C° continuity of the potential inside the conductor and in free
space.

For the calculation of the element stiffnesses and force vectors, it was assumed that the permeability
1 and the current density j; were uniform over the element. Then analytical integration over the
element geometry gives

pura [ 1 =1 i@+
K = — , £ =jag{ 8¢ %, 60
A 7 [_1 l] A= D {%(r;-;-zr;) (60)
wherern = 3(rf +rf)is the mean radius and £ = rf—r{ the radial length. For the test problem, u is
constant inside the conductor whereas outside it 4 = po was assumed to be unity. The longitudinal
current density is j; = I/(w R?) inside the conductor whereas outside it j; vanishes.

The master stiffness matrix and force vector were assembled following standard finite element
techniques. The only essential boundary condition was the setting of the nodal potential on the
truncation boundary to zero, as explained in Section 6.5. The modified master equations were
processed by a conventional symmetric skyline solver, which provided the value of the magnetic
potential at the mesh nodes. The magnetic flux density B, which is constant over each element,
was recovered in element by element fashion through the simple finite difference scheme

[ 4 e
9A; Ay — 435

£ = — ~ 61
B or £ e

This value is assigned to the center of element e.
7.2 Numerical Results

The numerical results shown in Figures 1 through 6 pertain to 2 unit radius conductor (R=1),
with the external (free space) mesh truncated at Ry = 5. The element radial lengths r; — rf were
kept constant and equal to 0.25, which corresponds to 4 internal and 16 external elements.

The computed values of the potential A3 are compared with the analytical solution given by Eqs. (33)
and (40). As can be seen the agreement is excellent. The comparison between computed and
analytical values of the magnetic flux density B, shows excellent agreement except for the last
element near the wire center, at which point the difference scheme (61) loses accuracy. The
permeability of free space is conventionally selected to be unity. Figures 1, 3, and § illustrate
the case where the wire permeability fLuire is set to 10.0, whereas Figures 2, 4, and 6 are for the
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case.in which fyire is 1.0, that is, same as in free space. (The value of the susceptibility € does
not appear in these magnetostatic computations.) Figures 1 and 2 show computed and analytical
magnetic potentials. The slope discontinuity at r = 1 in Figure 1 is a consequence of the change
in permeability u from the wire material to free space. Figures 3 and 4 show the computed and
analytical magnetic flux densities. As discussed in Section 5.2, the jump at = 1 in Figure 3 isdue
to the change in permeability 4 from the material to free space. Figures 5 and 6 show the computed
and analytical magnetic flux densities in free space with more detail. Note that Figures 5 and 6
for r > 1 are identical; this is the expected result because, as shown in Section 5.1, the free-space
magnetic flux field depends only upon the current enclosed by a surface integral around the wire
and not on the details of the interior field distribution.

In summary, the finite element model performed very accurately in the test problem and converged,
as expected, to the analytical solution as the size of the elements decreased.

8. CONCLUSIONS

The results obtained in the one-dimensional steady-state case are encouraging, and appear to be

extensible to two- and three-dimensional problems without major difficulties. The electric field
remains effectively decoupled from the magnetic field except through Ohm’s law. Care must be

_ taken, however, in modeling the forcing function terms so as to avoid the appearance of discontinuity-

induced forces at physical interfaces.

The next step in achieving the goal of a finite element model for a superconductor field is to study
the time-dependent case, starting with harmonic currents and proceeding eventually to general
transients. The code for this is currently written, but a suitable analytical solution for comparison
with computed responses is still being developed.

If encouraging results are obtained in the dynamic case, thermocoupling effects will be added to
the code. References [3,17,22] discuss several different approaches applicable to various contexts
(e.g. eddy currents) and these will have to be investigated for suitability for capturing the couplings
effects that are relevant to the superconducting problem.

After modeling the coupling effects, the next step will be to model the superconducting fields. The
feasibility of using the current model for superconductor applications is great, as the current density
of a superconductor can be approximated by the standard current density multiplied by a constant
squared. This constant is called the London penetration depth. Other analytical models that possess
similar characteristics have been developed and are presented in Ref. [11].
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AN UNCONDITIONALLY STABLE STAGGERED ALGORITHM
FOR TRANSIENT FINITE ELEMENT ANALYSIS
OF COUPLED THERMOELASTIC PROBLEMS

Abstract — An unconditionally stable second order accurate implicit-implicit staggered procedure
for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The
procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis
reveals the superiority of the proposed computational strategy to other conventional staggered
procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems
demonstrate the accuracy of the proposed numerical solution algorithm.

I. INTRODUCTION

Transient response prediction of thermally loaded structures is of considerable importance in many
aerospace engineering problems, and it has been the subject of intense research. Finite element
formulations of the classical heat conduction problem without mechanical coupling have been pre-
sented by Wilson and Nickell [1]. Ritz type methods for the solution of linear dynamic problems in
coupled thermoelasticity were given by Nickell and Sackman [2]. Oden [3] has formulated finite
element models for the analysis of a class of nonlinear problems in dynamic coupled thermoelas-
ticity, and Oden and Armstrong [4] have developed explicit quadratic numerical schemes for the
integration of nonlinear unpartitioned systems of difference equations arising from the analysis
of dynamic coupled thermoviscoelastic problems. Rccently,' Ting and Chen [5] have introduced
a unified numerical approach for the analysis of thermal stress waves. They have derived their
algorithm from the concept of heat displacement and a variational formulation in Lagrangian form.
They have proposed to integrate the resulting semi-discrete equations with conditionally stable
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explicit schemes. Liu and Zhang [6] have described an implicit-explicit procedure for the predic-
tion of thermal stress waves in coupled thermoelasticity problems. They have adopted the explicit
rational Runge-Kutta method [7, 8] for approximately solving the heat conduction equation and
have claimed that their solution procedure is unconditionally stable. However, their computational
strategy requires the manipulation of a full matrix. In a sequel note, Liu and Chang [9] have slightly
modified the original procedure of Liu and Zhang to involve a banded rather than full matrix, and
have numerically verified the unconditional stability on one dimensional problems.

However, several practical issues must be resolved before unconditionally stable explicit ratio-
nal Runge-Kutta schemes can become suitable for the analysis of real thermomechanical coupled
problems. First, when unconditional stability is achieved for explicit time integration algorithms,
typically consistency becomes conditional (see for example Hughes and Belytschko [10]). Second,
most rational Runge-Kutta algorithms involve some divide operations by the difference between in-
termediate solution quantities, which can significantly damage accuracy. Finally, these algorithms
do not appear to accomodate staggered solution procedures for thermal/structure interaction prob-
lems, as they are not implemented in many existing production-level thermal computer programs.

The semi-discrete equations governing soil-pore fluid interaction dynamic problems and those
resulting from a mixed pressure-velocity formulation for fluid/structure problems are similar to
those governing thermoelastic coupled transient problems. In this sense, the work of Liu and
Chang [11] and the very recent work of Zienkiewicz, Paul and Chan [12] could be extended to the

response analysis of thermally loaded structures.

In the present work, we present an unconditionally stable and robust implicit-implicit parti-
tioned procedure for the solution of transient thermoelastic coupled problems. In Section I, we
briefly review the basic equations for the linearized coupled thermoelasticity theory. A conventional
implicit-implicit staggered solution procedure is summarized in Section III. The thermal coupling
term in the structural dynamics equation is treated as an applied force. However, while being very
simple to implement, the resulting time integration algorithm suffers from conditional stability. In
Section IV, we introduce an augmented implicit-implicit staggered solution procedure for the parti-
tioned problem. We establish the unconditional stability and second order accuracy of the resulting
numerical algorithm in Section V. In Section VI, we discuss the computer implementation aspects of
the proposed computauonal strategy; we conduct a comparative cost analysis which demonstrates
the superiority o the proposed solution procedure to other conventional staggered schemes. Finally
in Section VII, we apply our partitioned algorithm to the solution of the one-dimensional Second
Danilovskaya [13] and two-dimensional Youngdahl-Sternberg [14] problems. For both problems,
the results generated by the proposed stabilized procedure are shown to be in excellent agreement
with the analytical “exact” solutions.
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II. FINITE ELEMENT FORMULATION
Let B denote the body of the structure to be analyzed, and B = 9B, UdB;UdByUd B, the surface
enclosing it. The basic equations for the linearized isotropic coupled thermoelasticity theory are:
pu = dive+b inB
0 = ~div(—kV) — a(3X + 2u)60tr(é) +r in B
o = 2ue+ A(tre)l —a(3x +2u)(0 — 6p)I

1
€ = 5(Vu+VuT)

and (D
u =14 ondB,

on = § ondB;
6 =6 ondB,

where u, €, 7, 0, 6, b, and r are the displacement, strain, stress, temperature, reference temperature
chosen such that (8 — 6p)/6p << 1, body force, and heat supply fields, respectively, while u, A, c,
a, p, k and n are the Lame’ moduli, the shear modulus, the specific heat, the coefficient of thermal
expansion, the mass per unit volume, the thermal diffusivity, and the normal to the surface at a given
point, respectively. I is the identity tensor. The dot and T superscripts denote a time derivative and
a transpose operation, and ¢r denotes the trace of a given tensor.

If now we express the dependent variables u and 8 by suitable shape functions as:

u=Na and 8 = N@

then a standard Galerkin procedure transforms (1) in the following algebraic coupled system of
differential equations:

Mi+Diu+Ku-Co = f

: . (2
Q0+HO+6,CTa =r

where M, D and K are the usual mass, damping and stiffness matrices, f is the prescribed structural
loading vector, and Q, H, and r are respectively the capacity and conductivity matrices and the
nodal source vector. If L denotes the differential operator corresponding to strain, the coupling
matrix is expressed as C = f,(LN)"[1, 1, 1,0, 0, 0]Nd B.
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III. CONVENTIONAL IMPLICIT-IMPLICIT PROCEDURE

In many applications, the coupling term CT u that appears in the heat equation and which is induced
by the effect of the strain rate is negligible. Therefore, one expects the second of equations
(2) to remain parabolic and the temperature response to remain close to the uncoupled solution.

Consequently, the dependent variable 0 is easier to predict than the displacement u, so that the most

natural way of solving (2) would be:

Mi**! + D! + Kttt = £+ 4+ ot

n 3)
Qb +1 +HEH! = - GocTﬁ"+l

where 9""’1P is the predicted temperature. Unfortunately, the above numerical procedure is only
conditionally stable, even when each field is integrated with an unconditionally stable algorithm.
Proofs of this result are given by Dubois-Pelerin [15] for various consistent predictors. Next, we
introduce an augmentation technique that stabilizes the staggered solution of (2).

IV. AN AUGMENTED IMPLICIT-IMPLICIT PARTITIONED PROCEDURE

Park, Felippa and DeRuntz [16] have introduced a differential augmentation concept that was suc-
cessfully used in the stabilization of staggered solution procedures for fluid-structure interaction
problems. Basically, one of the coupled equations is injected into the other in order to “soften”
the system, either by reducing the large eigenvalues of the uncoupled stiff equation, or by intro-
ducing some damping into it. Here, we adopt a different strategy. We perform a semi-algebraic
augmentation — that is, we augment one of the two coupled equations while integrating both fields.

First, the structural equation is integrated with the trapezoidal rule:

‘:ln-i-l un+_Az_t(un+l+un)

At
= "+ i + M-+ — Datt! — Kut! 4+ CoHY)]

4)
un+l = un+_éi(l'ln+l+l'ln)
2
n -n Atz =n -1 +1 ~nt1 n+l +1
= u" + Aru +—4—[u +M- Y — D"t — Ku"t + CO'T)]
and the velocity vector is extracted as:

At Loyt n, Do, —1 gn+1 n+l +1

(I+—2—M D"t = u +—2—-[u + M (! - Kt 4+ COM)] 3)

Next, the heat equation is also integrated with the trapezoidal rule:
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gt =g + —A‘,—;(é"+l +8"

At .
=0+ 7[e" + Q7! — HO! — gy CTu" )
Finally, the system is augmented by recasting (5) in (6) to obtain:

e = 0 + %{4’9" + Q7! —HO! —9,CT (A + %{M”‘D)“

" + %(ﬁ" +MH(* - K™t + cotth)]

Substituting (5) into the second of equations (4) and re-arranging (7) leads to:

At? Ar?
(I+-—4—B(A1)M“K) wtl - TB(A:)M“C gt = prt!

At? At Ar?
(—TGOAK) vt + I+ —2—Q'1H+ TGOAC) gt = Rt

where
A=Q'CTM™!

Bar) = (I+ %fM-lD)-1
+1 n At -n Atz .11 -1 +1
F'*V' = u" + T(I + B(A)H)n" + -4—(B(At)u +M™'BAHf™)
R*™! = ¢ + 525[9” + Q1 (rt! — 9,CTB(A) )]

2
- 2 QT B(ani” + BANMTIFH)

Now, a displacement predicted staggered procedure for the solution of (8) is:

1. Predict the displacement field:

2. Solve for the temperature field:

At At Ar?
I+ >Q7'H+ =-6AC) "' = R™! + Z_gaKuw*”
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3. Correct the displacement field:

Ar? -1 n+l1 n+1 A -1 +1
I+ TB(A!)M K)u = F + —4-B(AI)M ceg (12)

4. Compute velocity, acceleration and flux fields:

At
ot = Ban{n” + 7[ii" + MY — Ku™t! + Comth])
ﬁn-{-l — M—l(fl-i—l + CB’R+1 - Dﬁﬂ‘bl . Kun+l) . (13)
0"'” = Q—l(rrl+l _ GocTﬁn+l _ H9n+l)

Remarks: '

1. The predictor u™*! Pis simply the previous step solution. It has been found (see, for example,
[17)) that this is the most stable predictor when used in conjunction with the trapezoidal rule,
while still maintaining a second-order accuracy.

2. The injection of (5) into (6) is not arbitrary. It will be shown in Section VI that this is more
economical than injecting (6) into (3).

3. Equa-tions (13) define the computational path of the staggered procedure.

V. STABILITY AND ACCURACY ANALYSES

In this section, we establish that equations (10)-(13) resultin a unconditionally stable second order
accurate transient algorithm for the time integration of the coupled system (2). To avoid lengthy
expressions, we consider the undamped (D = 0) and unforced (f =r = 0) case. Note however that
even when D = 0, the quantity C8 still transmits a rate dependent damping effect to the structural
equation.

Stability. The stability of the proposed staggered procedure can be examined by seeking a nontrivial
solution in the form:

un-i-—l u”
ﬁ’”‘l u”
1
ﬁn+l = +2 i” (14)
g+ I-z | g
én+l Gn

and determining under what condition the real part of z is positive. Substitution of (10) into (11)
and (14) into (11)-(13) yields, after some algebraic manipulations:

[ 21+ 22M'K —a2Mm-IC ] [u] _ [o] 1s)
-Q —zz)%ieoAK z21+z%Q"H+%’390AC ) Lo
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Therefore, the characteristic equation associated with (15) is:

Ar? AL

Ar?
GOCQ“CTM“K) z+VK—| 0 (16)

At .
| Mz® + VMTzz + (K+6,CQICT +

where

V = CUCY, U =Q'H(CTC)™!

and | | denotes the matrix determinant. If the matrices M, K, Q and H are positive definite, and the
~ coupling matrix C has full column rank, then U, V and each matrix coefficient of the determinant
expression (16) is positive definite. If C is column rank deficient, U and V are positive semi-
definite. In any case, all coefficients of the stability polynomial are non-negative. Consequently,
the first part of the Routh-Hurwitz criterion [18] for unconditional stability is satisfied. In order to
check the second component of this criterion, we consider a 2-d.o.f. model problem for (2). The
corresponding scalar form of (16) is:

a3z3 +a2z2 +az2+a9y =0 amn
where
Ath A Boc? At? Arh
=1, ag=—— a=—[+(1+—0?], a=—0a?
2q 4 qm 4 8q

Since At, h, q, w?, 6p,c%, and m > 0, then all the coefficients of the polynomial (17) in z are
positive. Morevoer, the quantity

Gohc? AL a4+ Ar? o)
8mg? 4

a|a; — Qoaz =
is also positive, which demonstrates that the staggered solution procedure is unconditionally stable
for the 2-d.o.f. model problem.

For the general multi-dimensional case, it turns out that the limiting case K = 0 which states
that the structural system will grow quadratically in time, provides a sufficient test. For this case,
(16) reduces to:

At?
| Mz? + —2—VMz + TGOCQ“‘CT | =0
Since M is positive definite and VM and CQ ™' C7 are at least positive semi-definite, the procedure is
unconditionally stable for the limiting case K = 0, as discussed in Bellman [19]. This argument has
been extensively utilized in [17] during the analysis of several partitioned procedures. Therefore,
we conclude that the procedure given by (10)-(13) is unconditionally stable.
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Remarks:

1. Thecharacteristic equation (16) reveals that the proposed procedure (10)-(13) is algorithmically
identical to the one obtained by first differentiating the second of equations (2):

QO+HO+6CTia =t
then substituting ii from the first of equations (2) into the above equation:
Q8 +HI +6,C™™M1CO == - 6C"M~'(f — Ku)-

However, differentiating the nodal source vector may be not practical, for example, if r is a
discontinuous function of time. In our present derivation (1 1)-(13) we avoid this problem.

2. The first-order thermal equation is algorithmically modified to behave as a damped second-
order system. It should be emphasized that the described stabilization technique has not
introduced any artificial damping. The only augmentation that is used is part of the governing
equation of motion itself.

Accuracy. After differentiation, the third of equations (13) in the unforced case reads:

an+1

gt — —gQ-'cTi — Q~'HE™ (18)

Expanding the various terms in (8) around the time nA¢ and injecting (13) and (18) when needed
leads to:

Mii” + Ku" = C8" + 0(At?)

. 19
Qd" +HE" = —6,CTu" + O(Ar?) (19)

Comparing (2) and (19) demonstrates that the staggered procedure is second order accurate. The
same result can be proved for the damped (D # 0) and forced (f # 0, r # 0) case.

V1. COMPUTATIONAL ASPECTS

In the remainder of this paper, we consider the case where the structure is undamped (D = 0)
and the mass and capacity matrices are lumped (M, Q are diagonal). The unconditionally stable
staggered procedure (10)-(13) can be implemented as:

1. Form:
. Ar At 2
R = Sl QLo + S - 6CTi) - S CTlr + MO ~ K] 20)
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2.  Solve:

(Q+ %H + —AZtEQOCTM"C)O"‘” = R*+17 T2
3. Form:
F " = Mu" + Ar@” + %—t-ﬁ")] + AT’z(f“l +'ce"+‘) (22)
4. Solve:
M + %t—ZK)u"“ = (23)
5. Update:

ﬁn-H — M—l(fn-H + C9n+l _ Kun+l)
At
ﬁn+l = " + _2_(un +ﬁn+l) (24)

9""’1 — Q—l(rn+l _eocTﬁn+l _ H9n+l)

Equations (20) to (24) involve algebraic computations that are common to most implicit algorithms,
when applied to the uncoupled problem. Only the quantity CTM™!C deserves special attention. In
particular, it is important to note that:

e C"M~!Cis not a full matrix. It is a symmetric banded operator. Let n,, n4, b; and b;, denote
the sizes and the semi-bandwidths of the structural and heat matrices, respectively. Typically,
n, and b, are two to six times larger than n, and b,. The matrix product C™™™!C s n, by
n, and has a semi-bandwidth close to 2b,. Therefore, equation (21) entails the solution of
an n, by n;, symmetric banded system. On the other hand, if equation (6) had been injected
into equation (5) — that is, if the temperature field had been eliminated from the structural
equation — the resulting augmentation term would have been CQ~!'C” which is n; by n, and
has a semi-bandwidth close to 2bs. The latter would have entailed the solution of a symmetric
system that is several times larger and denser than (21). For a rectilinear mesh composed of
two-dimensional truss elements, the patterns of matrices C, CT, CTM~'C and CQ~'CT are
depicted in Figure 1.

e the additional cost incurred by the augmentation term is restricted to the factorization and
subsequent solutions of equation (21). The precise value of this additional cost (with respect
to the conventional procedure (3)) depends on the cleverness of the implementation.

At this point we also note that the quantity C' M~!C is common to several coupled field
problems. Its pattern, storage and computational properties have also been recognized and analyzed
by previous investigators in different areas (see for example Liu and Chang [12]).
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SYMMETRIC

SYMMETRIC

CQ—lQT 7«",:_.':
CT M~ 1 C %

Figure 1. Patterns of the coupling matrices for a
rectilinear mesh with 2D truss elements

In order to illustrate the computational costs of the proposed numerical procedure, we consider
the problem of a clamped square plate where the edges are exposed to a sudden heating. The finite
element mesh is composed of N by N 4-node regular elements. The stiffness and conductivity
matrices K and Q are assumed to be stored in banded form so that operation counting is facilitated.
In practice, these matrices are ‘compacted in skyline data structures. We denote by 4 and p,
respectively the number of structural degrees of freedom per node (d < 6) and the number of
integration steps.

The assumption of an N by N regular mesh with a number of fixed degrees of freedom at each
node is unlikely in practice. However, it is the worst case as far as the computational effort required
for the evaluation of the product cTMm-Ic.

For the above problem, the formation and factorization of equations (21) and (23) require
respectively (2+d)N “_ and d° N*/2 multiplications. The resolution of equations (20)-(24) requires
(7d? + 6d + 3)N? multiplications for each time step. Therefore, the total computational effort
needed for the transient coupled solution using the proposed stabilized procedure is:

d3
ES ~ (5 + d +2)N* + p*(7d* + 6d + 3)N°? (25)
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For the same problem, the computational cost associated with a conventional second-order
accurate conditionally stable procedure (3) is:
d®+1
2

E¢ ~ ( YN* + p°(7d® + 64 + 3)N? (26)

Clearly, unconditional stability is obtained at the cost of (d + 3/2) N* additional floating point
operations. For linear problems, this computational effort is needed once. In the following, we
show that this overhead is compensated by a much larger time step.

The natural frequencies of the clamped square plate are given by:

5 E3 (m2 +n?
12(1 —vd)p ™ a?

) (27)

Wmp =TT

where E, v, /, and a are respectively Young modulus, Poisson’s coefficient, the plate thickness and
its edge size [20]. Therefore, the lowest frequency is:

2m? EP
min = 28
“ a2 \ 12(1 = v)p (28)
and a good approximation of the highest element frequency is:
W — 2m? N2 EP 29
max T g2 12(1 —v¥)p

An adequate time step for the stabilized procedure is given by wmin At* = m/10. For the con-
ventional conditionally stable staggered procedure where both u and 8 are integrated with the
trapezoidal rule, the stable time step is expressed as a multiple of the time step based on the Courant
condition associated with the hyperbolic structural equation. Hence, At¢ = m x 2/w(¢) , where
m > 1. Using (28) and (29) we have:

a® [12(1 —v¥))p ma? [12(1 =v¥)p
A =N Er . A= o ED G0

2 N?
p’ = 40, pf = id 3D
m

so that

are the number of steps which would cover twice the largest period of the prdblem. The computa-
tional costs for both procedures become:

s d3 4 c 27 2 5 32
E ~(—2-—+d+2)N, E¢ ~ ;(7(1 +6d +3)N (32)
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which demonstrates the superiority of the proposed stabilized staggered procedure for N sufficiently
large (N > m/14).

VII. NUMERICAL EXAMPLES

First, we consider the Second Danilovskaya problem [13]. An elastic half-space (x > 0) with the
surface plane x = 0 assumed free of tractions for all time is exposed to a sudden high ambient
temperature 6. The continuum is assumed to be mechanically constrained and thermally insulated
so that the displacement and temperature fields are given by:

uy = ug(x,t), uy = 0, u, = 0, 6 = 0(x,1) (33)
The boundary and initial conditions for this problem are:

0::(0,1) = 0, kZ—i—(O, t) = h(6(0,1) —0x)

and (34)

ux(x' 0) = Oa ﬁx(xvo) = 0: e(xa 0) = 60

where 4 is the boundary-layer conductance. The following dimensionless variables are introduced:

2 —

s 2 o= 5028 4o a@ + 2 (35
K K B6o 6o xB6o
where
k , A+2u a

= -, — , —1 36
o pc a p ﬁ 3 +2u (36)

The thermomechanical coupling parameter is defined by:

2 2
g% B 7

- pc(A+2u) ~ p2aic

The exact solution for this problem can be obtained using the Laplace transform (see Nickell and
Sackman [21]). The finite element solution is carried out using 2-node linear elements. The ratio
«xh/ak is fixed to 0.5 and the thermomechanical coupling parameter § is set to 1. We report on
the generated results for two time integration steps, At™) = 7/5wmin and AtD = A2 =
77/ 10@min. These correspond to sampling the largest period of the mechanical problem into 10 and
20 steps, respectively. Figure 2 depicts the dimensionless temperature 6 at ¥ = 1.0 as a function of
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the dimensionless time 7, for At = At(. Figure 3 reports the dimensionless displacement &(?) at
% = 1.0, for Ar = Ar®. As expected, the results for At = Ar® are more accurate than those for
At = Ar(). However in both cases, the generated solutions are in good agreement with the exact
ones.

Figure 4. Problem geometry and finite element discretization

Next, we consider the case of an infinitely long elastic circular shaft of radius R, where the surface
temperature undergoes a sudden uniform change over a finite band of length Z, and is steadily
maintained thereafter (Fig. 4). Youngdahl and Sternberg have presented in [14] an exact solution
for the transient temperature and thermal stresses distributions in the shaft, when thermomechanical
coupling is neglected, in the form of definite integrals and infinite series. In cylindrical co-ordinates
(r, ¢, z), the axisymmetric torsionless displacement and temperature fields are given as:

up = u(r,z,t), up =0, u =ulrz,n), 0 =06(rzn (38)
The boundary and initial conditions for this problem are:
G'n-(R,Z,t)=0, Urz(R,Z,t)‘:Oy

o, — 0as|z] = 00, 0gs —> Oas|z| = o0, o, — Oas|z| = oo, oy, — Oas|z| = o0,

Z Z
O(R,z,1) =6 |2l < 7 B(R,z,) =0 |z| > 0}

and

u,(r, 2,00 =0, uy(r,z2,00=0, u(rz, 0)=0, u,(r,z,00=0, 06(r,z,0)= 0
(39
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The following new dimensionless variables (there should be no confusion over the present definition
of these variables and their earlier use) are introduced:

[\

kt

§= = (40)

r ~ 6 -
p= E, —I':, 6 = a, =
For all computations, we set L = 2R and v = 1/4. The finite element solution is carried out using
4-node axisymmetric linear elements, and a time step At = 7/10wmix. Figure 5 compares the
predicted temperatures at the center of the shaft (o = 0) with the exact ones for § = 0, and reports
on the effect of thermocoupling (5 = 0.5) on temperature distribution. Clearly, the stabilized
procedure provides accurate solutions. The variations of the radial stress at § = 0.1 for § = 0 and
8 = 0.5 are depicted in Figure 6. All numerical results are reported at 7 = 0.2. It is interesting to
note that when the thermocoupling effect is neglected the temperature field is overestimated, but

the radial stress distribution is underestimated.

VIII. CONCLUSION

An implicit-implicit staggered procedure for the solution of thermoelastic problems is presented.
It is stabilized with a cost-effective semi-algebraic augmentation scheme. The resulting transient
algorithm is unconditionally stable and second-order accurate.
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ELECTROMAGNETIC AXISYMMETRIC FINITE ELEMENTS
BASED ON A GAUGED
FOUR-POTENTIAL VARIATIONAL PRINCIPLE

ABSTRACT

We derive electromagnetic finite elements based on a variational principle that uses the electro-
magnetic four-potential as primary variable. The Lorentz gauge normalization is incorporated as a
constraint condition through a Lagrange multiplier field A. This “gauged principle” is used to con-
struct elements suitable for downstream coupling with mechanical and thermal finite elements for
the analysis of high-temperature superconductor devices of potential use in aerospace applications.
The main advantages of the four-potential formulation are: jump discontinuities on interfaces are
naturally handled, no a priori approximations are invoked, and the number of degrees of freedom
per node remain modest as the problem dimensionality increases. The new elements are tested on
two magnetostatic axisymmetric problems. The results are in excellent agreement with analytical
solutions and previous “ungauged” finite element solutions for the one-dimensional problem of a
conducting infinite wire, in which case the multiplier field has no effect. For the two-dimensional
problem of a hollow cylinder connected to an infinite cylindrical feed wire, the results make physical
sense although there is no known analytical solution. In this case, the multiplier field A couples the
potentials in the radial and axial directions. The effect of full and selective integration on A, as well
as that of leaving A out of the problem, are assessed. For materials of widely different permeability,
jump conditions are found to be natrally accommodated by the present formulation.
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NOMENCLATURE

Symbol

Meaning

)

)
~HeMBUS e OW
~
4

GA) GSlGA

E3 WZASMN e e

t
z1,22,23,%4
Z
Um U

B
6

Magnetic potential vector; also computational vector
of finite element node values of magnetic potentials
Magnetic flux density vector

Damping matrix of finite element discretization
Speed of light in arbitrary material

Speed of light in vacuum

Electric flux density vector

Displacement current density vector

Electric field intensity vector

Element identifier (as superscript)

Field strength tensor

Force vector of finite element discretization
Matrices relating element magnetic, electric and
multiplier fields, respectively, to node values
Electric conductivity

Magnetic field intensity

Total current intensity carried by a conductor
When not used as suscript, imaginary unit
Four-current vector

Current density vector

Stiffness matrix of finite element discretization
Lagrangian

Gauged Lagrangian

Mass matrix of finite element discretization

Finite element shape function vector

Governing functional

Radial coordinate in cylindrical coordinate system
Finite element node value computational vector containing
magnetic potentials, electric potential and A

Time )

Four-space coordinates

Longitudinal coordinate in cylindrical coordinate system
Magnetic and electric energy density, respectively
Normalization factor in Lagrangian

Variation symbol
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NOMENCLATURE (Cont’d)

Symbol

Meaning

o8 o

qu)[]§1§l<]e»e'oob§t > >

Susceptibility (also called capacitivity and permittivity)
Susceptibility of vacuum

Circumferential (longitude) coordinate in cylindrical
coordinate system '

Lagrangian multiplier field for Lorentz gauge constraint
Finite element vector of Lagrange multipliers

Magnetic permeability (also called inductivity)
Magnetic permeability of vacuum

Electric charge density

Electric potential

Finite element node value vector of electric potentials
Four-potential vector

Gradient operator

Divergence operator

Curl operator )

D’ Alambertian (four-wave) operator

Abbreviation for temporal derivative

Matrix transposition

1. MOTIVATION AND APPROACH

The present work is part of a research program for the numerical simulation of electromag-
netic/mechanical systems that involve high-temperature superconductors (HTS). These are com-
posite materials whose structural and environmental properties are presently the subject of intensive
experimental research. Devices fabricated with these materials are expected to have major impact
in space propulsion, power, digital computing and communication systems in the next century.
Some potential applications! of this rapidly evolving technology to aerospace systems are listed in

The computer simulation of HTS devices involves the interaction of the following four com-

(1) Mechanical Fields: displacements, stresses, strains and mechanical forces.
(2) Thermal Fields: temperature and heat fluxes.
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Table1 Potential Aerospace Applications of HTS Devices!

Magnetic Thrusters

Microwave Power Transmission
Superconducting Magnetic Energy Storage
Electromagnetic Launch and Braking
Aircraft Power Systems

(3) Electromagnetic (EM) Fields: electric and magnetic field strengths and fluxes, currents and
charges.

(4) Coupling Fields: the fundamental coupling effect is the constitutive behavior of the materials
involved. Particularly important are the metallurgical and superconducting phase change
phenomena triggered by thermal, mechanical and EM fields.

1.1 Finite Element Treatment

The first three fields (mechanical, thermal and electromagnetic) are treated by the finite element
method. This treatment produces the spatial discretization of the continuum into mechanical,
thermal and electromagnetic meshes of a finite number of degrees of freedom. The finite element
discretization may be developed in two ways:

(1) Simultaneous Treatment. The whole problem is treated as an indivisible whole. The three
meshes noted above become tightly coupled, with common nodes and elements.

(2) Staged Treatment. The mechanical, thermal and electromagnetic components of the problem
are treated separately. Finite element meshes for these components may be developed sepa-
rately. Coupling effects are viewed as information that has to be transferred between these
three meshes.

The present research follows the staged treatment. More specifically, we develop finite element
models for the fields in isolation, and then treat coupling effects as interaction forces between these
models. This “divide and conquer” strategy is ingrained in the partitioned treatment of coupled
problems?+, which offers significant advantages in terms of computational efficiency and software
modularity. Another advantage relates to the way research into complex problems can be made
more productive. It centers on the observation that some aspects of the problem are either better
understood or less physically relevant than others. These aspects may be then temporarily left alone
while efforts are concentrated on the less developed and/or more physically important aspects. The
staged treatment is hetter suited to this approach.
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1.2 Mechanical Elements

Mechanical elements for this research have been derived using general variational princi-
ples that decouple the element boundary from the interior thus providing efficient ways to work
out coupling with non-mechanical fields. The point of departure was previous research into the
free-formulation variational principles presented in Felippa®. A more general formulation for
the mechanical elements, which includes the assumed natural strain formulation, was established
and presented by Felippa and Militello®~®. New representations of thermal fields have not been
addressed as standard formulations are considered adequate for the coupled-field phases of this re-
search. However, research in thermomechanical interaction supported by this program has resulted
in the construction of robust and efficient staggered solution procedures®.

1.3 Electromagnetic Elements

The development of electromagnetic (EM) finite elements has not received to date the same
degree of attention given to mechanical and thermal elements. Part of the reason is the widespread
use of analytical and semianalytical methods in electrical engineering. These methods have been
highly refined for specialized but important problems such as circuits and waveguides. Thus
the advantages of finite elements in terms of generality have not been enough to counterweight
established techniques. Much of the EM finite element work to date has been done in England and
is well described in the surveys by Davies'® and Trowbridge''. The general impression conveyed
by these surveys is one of an unsettled subject, reminiscent of the early period (1960-1970) of finite
elements in structural mechanics. A great number of formulations that combine flux, intensity, and
scalar potentials are described with the recommended choice varying according to the application,
medium involved (polarizable, dielectric, semiconductors, etc.) number of space dimensions, time-
dependent characteristics (static, quasi-static, harmonic or transient) as well as other factors of
lesser importance. The possibility of a general variational formulation has not apparently been
recognized.

In the present work, the derivation of electromagnetic (EM) elements is based on a variational
formulation that uses the four-potential as primary variable. The electric field is represented by a
scalar potential and the magnetic field by a vector potential. The formulation of this variational
principle proceeds along lines previously developed for the acoustic fluid problem!%13. The Lorentz
gauge normalization is incorporated in the variational (weak) form through the adjunction of a
Lagrange multiplier field.

The main advantages of using potentials as primary variables in contrast to existing EM finite
elements based on intensity and/or flux fields are, in order of importance:

1. Interface discontinuities are automatically taken care of without any special intervention.
2. No approximations are invoked a priori since the general Maxwell equations are used.

3. The number of degrees of freedom per finite element node is kept modest as the problem
dimensionality increases.
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4. Coupling with the mechanical and thermal fields, which involves derived fields, can be naturally
evaluated at the Gauss points where derivatives of the potentials are evaluated.

Following a recapitulation of the basic field equations, the variational principle is stated and
specialized to an axisymmetric geometry. The discretization of this principle into finite element
equations produces semidiscrete dynamical equations, which reduce to the electromagnetostatic
equations in the time-independent case. These equations are tested in the simulation of a cylindrical
conductor wire and of a hollow conducting “can” connected to an infinite feed wire.

2. ELECTROMAGNETIC FIELD EQUATIONS

2.1 The Maxwell Equations

The original Maxwell equations (1873) involve four spatial fields: B, D, E and H. Vectors
E and H represents the electric and magnetic field strengths (also called intensities), respectively,
whereas D and B represent the electric and magnetic flux densities, respectively. All of these are
three-vector quantities, that is, vector fields in three-dimensional space (z) = z, 22 = ¥, T3 = 2):

B| Dl E[ Hl
BD{Bz}, DD{Dz}, E'D{Ez}, HD{Hg} >la
B; D; E; H;

Other quantities are the electric current three-vector j and the electric charge density p (a scalar).

Using superposed dots to denote differentiation with respect to time ¢, we can state Maxwell
equations ast

BcvxEDO, VxH-BD]
V.-DDp, V-BDO.

>24

The first and second equation are also known as Faraday’s and Ampere-Maxwell laws, respectively.

The system (2) supplies a total of eight partial differential equations, which as stated are
independent of the properties of the underlying medium.

2.2 Constitutive Equations

The field intensities E and H and the corresponding flux densities D and B are not indepen-
dent but are connected by the electromagnetic constitutive equations. For an electromagnetically
isotropic, non-polarized material the equations are

B D uH, DD e¢E >3«

t Some authors, for example Eyges'4, include 47 factors and the speed of light ¢ in the Maxwell equations.

Other textbooks, e.g. Rojanski's and Shadowitz'®, follow Heaviside’s advice in using technical units

that eliminate such confusing factors.
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where p and € are the permeability and susceptibility, respectively, of the material (other names are
often used, cf. Nomenclature Section). These coefficients are functions of position but (for static or
harmonic fields) do not depend on time. In the general case of a non-isotropic material both x and
¢ become tensors. Even in isotropic media u may be a complicated function of H; in ferromagnetic
materials exhibiting hysteretic effects u depends on the previous history.

In free space u D pq and € D o, which are connected by
D L b4
Hoto’
where ¢ is the speed of light in free-space vacuum.
The electrical field strength E is further related to the current density j by Ohm’s law:

iDgE, ~ p5q

where g is the conductivity of the material. Again for a non-isotropic material g is generally a
tensor which may also contain real and imaginary components; in which case the above relation
becomes the generalized Ohm’s law. For good conductors g >> €; for bad conductors g << €. In
free space, g D 0. '

2.3 Maxwell Equations in Terms of E and B

To pass to the four-potential formulation it is convenient to express Maxwell’s equations in
terms of the electrical field strength E and the magnetic flux B. In fact this is the pair most frequently
used in electromagnetic work that involve arbitrary media. On eliminating D and H through the
constitutive equations (3) we obtain

BCYXEDO, VxB-ukD yj
V.-EDple, V-BDO.

>6d4

The second equation assumes that € is independent of time; otherwise & D edE/dt should be
replaced by d>e¢E</dt. In charge-free vacuum the equations (6) reduce to

1
=EDo,
Ctz) 74

V-EDJ, V-BDO.

BCVXEDO, VxB-

2.4 The Electrom@tic Potentials

The electric scalar potential 8 and the magnetic vector potential A are introduced by the
definitions

ED-V8-X, BDVxA. 584
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This definition satisfies the two homogeneous Maxwell equations in (7). The definition of A leaves
its divergence V - A arbitrary. We shall use the Lorentz gauge!’

V-ACué&Do. " 59q

With this choice the two non-homogeneous Maxwell equations written in terms of 8 and A separate
into the wave equations

V28 — uBD —p/e, VA — ueR D —pj, " bl0a
which are only coupled on the right-hand side through Ohm’s law (5).

3. THE ELECTROMAGNETIC FOUR-POTENTIAL

Maxwell’s equations can be presented in 2 compact manner (a form coimpatible with special
relativity) in the four-dimensional spacetime defined by the coordinates

)=, =Y, T3=2 I4 Dict >lla

where ), 7,, 73 are spatial Cartesian coordinates, i* D —1 is the imaginary unit, and ¢ D 1/ N3
is the speed of EM waves in the medium under consideration. In the sequel Roman subscripts will
consistently go from 1 to 4 and the summation convention over repeated indices will be used unless
otherwise stated.

3.1 The Field Strength Tensor

The unification can be expressed most conveniently in terms of the field-strength tensor F,
which is a four-dimensional antisymmetric tensor constructed from the components of E and B as
follows!4:16

0 Fip Fi3 Fiu 0 ¢cB; -cB; —-iE,
—Flz 0 F23 F24 dg ﬁ —CB3 0 CB[ —iEz
—F13 —F23 0 F34 ch —CBl 0 —‘iE_;
-Fy —-F» -F4 0 1B i iEy 0
Here 3 is an adjustment factor to be determined later. Similarly, introduce the four-current vector
Jas

FD o124

Ji Cidy B -
Jo | f Clja K2
. 134
JD A ] it D Bc 1
Js ip/e i ifep

Then, for arbitrary S, the non;homogeneous Maxwell equations, namely V x B — ueE D pj and
V - E D p/e, may be presented in the compact “continuity” form (the covariant form of these two
equations):
?—Fi‘ D J;. o144«
a:l:k
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The other two Maxwell equations, V - B D 0 and VxECBD 0, can be presented as

aFik aFmi aka
OTm ¢ 0z ¢ Oz;

where the index triplet (i, k, m) takes on the values (1,2,3), (4,2,3), 4,3,1) and (4,1,2).

DO, >15«

3.2 The Four-Potential

The electromagnetic four-potential ¢ is a four-vector whose components are constructed with
the electric and magnetic potential components of A and ®:

] cA;
b2 | % ] cA,p
¢Dg b5 D chs [ >16<
N 8
It may then be verified that F can be expressed as the four-curl of ¢, that is
Odr 0

FikDa—zi—a—%,

or in more detail and using commas to abbreviate partial derivatives:

0 $h1—h2 Pi—h3 a1 —Pie
12— P21 0 $12— P23 Pa2— P24
br3—d1 $23— 32 0 Pa3— P34
16— Pa1 Dra— a2 D34 a3 0

>17«

FD >18«

3.3 The Ungauged Lagrangian

With these definitions, the basic Lagrangian of electromagnetismt can be stated as'?

ok 0¢:\’
LD {FyFuy - Ji¢:i D 15’ (-5? - 5:—1,) — Jigs o
i 194

2 .
D1 (2B - E?) - -B;Dlel C j2A2 C j3 A3 — p84,
in which
B*DBTBD B:CB:C B}, E'DETEDE!CE;CE]. 5204

Comparing the first term with the magnetic and electric energy densities!4!5:16

Uy DIBTHD 51;32, Ug D iDTE D e, p21a

t Lis an extension of the free-space Lagrangian given by Lanczos'® to a material obeying the more general
constitutive equations (3).
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we must have 5%c? D (2 /bpea D 1/ p, from which

B D e >224
Consequently the required Lagrangian is
LD %‘_32 - %GEZ - l>j1A1 CjzAz Cj3A3 - p8<. >234
The associated variational form is
t
RD / / Ldvdt , >244
to JV '

where V is the integration volume considered in the analysis. In theory V' extends over the whole
space, but in the numerical simulation the integration is truncated at a distant boundary or special
devices are used to treat the decay behavior at infinity.

3.4 The Gauged Lagrangian

If the fields A and 8 to be inserted into L do not satisfy the Lorentz gauge relation (9) a priori,
this condition has to be imposed as a constraint using a Lagrange multiplier field A>z;<, leading to
the modified or “gauged” Lagrangian:

LyDLC XAV -AC ueBa. 5254

3.5 The Four-Field Equations

On setting the variation of the functional (25) to zero we recover the field equations (14-15)
as well as the gauge constraint (9) as Euler-Lagrange equations. -Taking the divergence of both
sides of (14) and observing that F is an antisymmetric tensor so that its divergence vanishes we get

aJ;

EchuDV-jCRDO, 5264

The vanishing term in parenthesis is the equation of continuity, which expresses the law of con-
servation of charge. The Lorentz gauge condition (9) may be stated as V - ¢ D 0. Finally, the
potential wave equations (10) may be expressed in compact form as

O¢: D -J; >274
where [J denotes the “four-wave-operator”, also called the D’ Alembertian:

def 2 2 5
aoD & D 9 c 622 c & _ 3
Oz 0zy =~ Oz} 0z 823 Ot
Hence each component of the four-potential ¢ satisfies an inhomogeneous wave equation. In free
space, J D 0 and each component satisfies the homogeneous wave equation.
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4. FINITE ELEMENT DISCRETIZATION

In a previous paper19 the ungauged Lagrangian (23) was used to construct one-dimensional
axisymmetric finite elements. These elements were successfully tested on a magnetostatic problem.
In the present investigation we extend the technique to two-dimensional axisymmetric problems.

" In doing so we find that the finite element discretization does not necessarily satisfies the gauge

condition (9) a priori and consequently the gauged Lagrangian (25) must be used.

4.1 The Lagrangian in Cylindrical Coordinates

To take advantage of the axisymmetric geometry we choose a cylindrical coordinate system
with the rotational axis as z-axis. The vector components in the cylindrical coordinate directions
7, 6 and z are denoted by

A, B, Ey = A, B, Er in the r (radial) direction,
A,, By, E Ag, By, Ep inthed (circumferential) direction,
As, B3, E» A,, B;, E. inthe z (longitudinal) direction.

The electromagnetic fields will then vary in the radial (r) and axial (z) directions but not in the
circumferential (6) direction.

To construct finite element approximations we need to express the gauged Lagrangian

LyD ﬁBz —1eB? —pjTA - p8aC WV -AC peBa, 5294
in terms of the potentials written in cylindrical coordinates. For B? we use the expression of the
curl (see e.g., p. 54 of Shadowitz!®)

(104 _ 0y, (04 943\ (10brdze 1041’
BD(rae =2elm-%) e —rm) P

For E? we use the cylindrical-coordinate gradient formulas

o8 .
B, B, -a;cﬁ’,
ED{E;}'D{Eg}D— 18cR o, b31d
Es E. 98
Hzc&
so that : ) ) )
08 A 0A 188 , 8A 08 A6 O0A
2 pET Lt 2822 el R 2
EDEED(arcat)c(raecat)c<3zc at)" 324

For the Lorentz gauge we use the gradient formula again to get

V-ACueD C >334

r or a2
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In the axisymmetric case the partials of any potential with respect to 6 should vanish. Consequently
the gauged Lagrangian (30) simplifies to

1 %_%)zc ?_AZ zc 19prasa *
2u 0z or Oz r Or

‘ 88  8A\ , (04,\% . [08 h 8As\?
-1 bl Rl =2 2B
2‘[(arcat)c(at)c(az )

1dprA1q , 0A L. , .
CA(— il C 3C'/.l.e’g)—-(][AlC.jz.‘lzC']_';A;;—p8).

L, D

344

r Or Oz

Note that this Lagrangian involves all componehts of the four-potential although the independence
from 8 has introduced some simplifications with respect to the full three-dimensional case.

4.2 Constructing EM Finite Elements

For the finite element discretization of the two-dimensional case we have constructed quadri-
lateral and triangular axisymmetric elements defined by their geometry on the r-2z plane. We have
used isoparametric elements with comer node points only. Additional construction details are
provided in Section 5.

In the following we consider an individual element identified by superscript e. The element
nodes are locally numbered: D 1,... n, where n is the number of comer nodes (n D 3 for triangles
and n D 4 for quadrilaterals). The electric potential 8 and the magnetic potential components,
A = A, Ay = Ay, and A3 = A,, are interpolated over each element as

8° D N3 &°¢, Af DNG AL, >354
Here row vectors N§ and N7, contain the (isoparametric) finite element shape functions for 8° and
A¢, respectively, which are only functions of the radial and longitudinal coordinates r and z:

N§ D [ N§pr,za N§ or,24], N4, D [N§, b, 24 N§,.br,24], p364
and column vectors ¢ and A® contain the nodal values of 8 and A;, respectively, which are only

functions of time ¢:

Sﬂth)T ,
Ainpta  Aypta

¢ D ( 8pta

A*D (Athd AgnDtQ)T.
>374

The Lagrangian multiplier field A>r, za will be assumed to be constant over each element since

the variational principle associated with (34) allows interelement discontinuities in this field. This

value, denoted by A°, may therefore be associated with an internal node.

Apbta  Ajpta

207

L

N
e
.1
N
v

&l .

o e



To facilitate a more compact formulation, we introduce the following matrix and vector
notations:

0 NG )
- ]
e p L |oNS & AN . Nao 0
63D | G 0 ), NgDVE| 0 Ny O, o3k
o [(Zcl)n, o 0 v N
T ) A g ~1 .
d (Fet)m it
G;D\/z{age‘}, G: D 8133 , j"D{j{}. >394
e 55 3 |

Substitution of the finite element assumptions and our new notation into (35) and (25) yields the
variational integral as a sum of element contributions R D 3, R°, where

R® D RS — R - R§ C R, b40<

in which

t

RD / / IATGF GYA® AV dt,
to JVe
t

RED / f %{ (<I>°TG§T cRNT) (G§q>° cNeK) pdveat,
tg JVe
ty .

Hyg D/ / (AGTNeATje - pQGTNgT) dve dt,
o Jve

| e b e eT el (eT e
R4D/ / A (A G, C ueB" Ng )dv dt,
to €

pdla

where V¢ denotes the volume of the element. On taking the variation with respect to the element
node values we get R® D 6R; — 6R5 — 6R§ C 6R; D 0, with

6y
SR D / SATGTGE A dV  dt,
ty JVe
LT
SRS D /t., / {s276g (csaecNiK') - RINT (GB° CNyE) avear

c/. 6N (Gge°cC NyR") ave

&
t " o424
§RS D /t., / (5ATNT S~ p 83 TNT) aveat,

t) 1}
§RS D f / A (6A‘TGA) dvedtC / / 1% (G,\A°CpeN§8e) dve dt
to JVe to JVe
t) ¢
- f RepeNT 682 dvedtC |  AueNgT 58° dv=|'.
tg JVe Ve to
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On applying fixed-end initial conditions at ¢t D ty and t D t; and the lemma of the calculus of
variations, we proceed to equate each of the volume integrals to zero. We thus obtain for each
element the following second-order dynamic equations for the magnetic and electric potentials at
the nodes, which are purposedly written in a notation resembling the mass-damping-stiffness-force
equations of mechanics:

M°E° C C*®* C K®u® D f°, 5434
where
NINS 0 O
M*D [ 0 0 0] dve, 444
ve 0 00
0 NJG; o
Cc°D [GgTN; 0 yeNgT] dve, >454
ve 0 peNg 0
G¥Gy 0 G
K¢ D 0 GTGg; 0 |dve, b464
vel G 0 0
NiTje Ac
D/ —pNET & dve, ut D ¢ 5. o474
Ve 0 G

' Considering (43) as a set of three matrix differential equations, we observe that the first two are the
discrete analog of the wave equations (10). These equations are coupled, however, in the damping
and stiffness terms as a consequence of the discretization of the gauge condition (9). We can find
an expression for & in terms of A, but the reverse is not generally possible.

4.3 The Static Case

For the numerical experiments reported here, we are primarily concerned with static solutions
for the magnetic fields. If the time dependence disappears, the magnetic and electric fields uncouple
and the element equations reduce to

euwDfy, KgugDIig, p484
where
GCTGC GC NeT.e Ac
K$, D w[ giTA 0"] dve, fﬁ,D/e{ AL} ave, ufu'D{,\,}, b494
KeD | (6TGE1dve, 15D | —pNg'dVe, ugD{®°}. 050«
Ve Ve
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Assembling these element equations in the usual manner we obtain the discrete finite element
equations of electromagnetostatics:

Kyup D, Kgug D fe. 514

If both the current density and charge distribution are known a priori then these two equations
may be solved separately. If only the charge distribution p is known then the electrostatic equation
should be solved first to obtain the electric field E as gradient of the computed electric potential
8; then the current density j can be obtained from Ohm’s law (5) and used to computed the force
vector £ of the magnetic equation, which is then solved for the magnetic potential. Conversely, if
only the current density distribution is known a priori the preceding steps are reversed.

For the two test problems presented here the current density distribution is assumed to be
known, and we shall be content with solving the equations for the magnetic flux.

5. NUMERICAL EXPERIMENTS

5.1 The Finite Element Model

The finite element formulation described in the previous Section has been applied to the solu-
tion of two test problems described below. Both problems are treated with quadrilateral elements.
Each quadrilateral element has four corner points and one interior node. These nodes are defined
by their radial and axial positions r; and 25 At each comer j we have four degrees of freedom,
namely Ayj, Az;, As; and 8;. From these values the potential components are interpolated with
the standard bilinear shape functions, which provide the C° continuity required by the variational
formulation. The centroidal node carries no physical significance and is solely used to provide the
extra degree of freedom assigned to the Lagrangian multiplier A°. Thus each quadrilateral element
has 4 x 4C 1 D 17 degrees of freedom.

For the calculation of the element stiffnesses and force vectors, it is assumed that the perme-
ability 4 and the current densities are uniform over the element. The desired stiffness matrix and
force vector are calculated by numerical quadrature using Gauss formulas. The portion associated
with potentials is always evaluated with 2 x 2 rule. Three different schemes, on the other hand,
were tried on the entries associated with A:

Full Integration. The same 2 x 2 rule as for the potentials is used.
Selective Integration. A one-point rule is used for Gs.

Zero Integration. The effect of )\ is ignored by omitting the integration of the associated terms and
placing ones on the diagonal. This numerical device effectively forces A D 0, and thus “releases”
the gauge constraint.

52 Applying Boundary Conditions

The finite element mesh is necessarily terminated at a finite size. For the two test problems,
the outer radial end of the mesh is defined as the truncation radius 7 D Rr. In static calculations the
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material outside the FE mesh may be viewed as having zero permeability 4, or, equivalently, infinite
stiffness or zero potential. It follows that the 2 component of the potential at the nodes located on
the truncation radius may be prescribed to be zero. We do this because, no matter what the shape
of an axisymmetric conductor, it will appear to be straight to the far field potential. Because of
the coupling provided by the Lorentz gauge, the gradient of the 7 component of the potential must
be a constant in the axial direction. For this reason, we constrain A, at the top and the bottom of
the mesh. A, must also be constrained to zero on the axis if the field is to decay to zero since the
gradient of A, in the radial direction should also be zero.

5.3 Assembly, Solution and Field Recovery

The master stiffness matrix and force vector are assembled following standard finite element
techniques. The boundary conditions are set as explained previously. The modified master equations
modified for B.C. are processed by a standard symmetric skyline solver, which provides the value
of the potentials at the mesh nodes.

The physical quantities of interest are not the potentials but the magnetic flux and electric
strength densities B; and E;, and most especially the circumferential magnetic flux density By =

By. This is calculated by discretizing the curl of A as follows. Since %‘%1 D 0, the magnetic fields
become after discretization:

ON%,
—a—‘

Br e
{Be } D QI;_LAe ONZ, A3 . 524
B 2z c
3:1;4 AS

The nodal values for B are obtained by evaluatxon at the Gauss point followed by extrapolation
to node locations. The average of these quantities is also reported as the centroidal value. As
discussed below this value was found to be more accurate than interelement-averaged node values.
Consequently the centroidal value was used to report results.

For both test problems, the magnetic permeability 4 D p,ir is constant inside the conductor
whereas outside it the free-space permeability pfree D Lo Was assumed to be unity. The current
densities are assumed to be uniformly distributed and consequently are calculated by dividing
the assumed total current flowing through the conductor by the total cross-sectional areas of the
conductors.

5.4 Problem 1: A Conducting Infinite Wire

The first test problem is identical to that reported in Schuler and Felippa!® with a one-
dimensional axisymmetric discretization. As shown in Figure 1, it consists of a wire conductor
of radius a transporting a total current I D 1 in the z direction. This current is assumed to be
uniformly distributed over the wire cross section. For this problem one layer of quadrilateral ele-
ments in the 2z direction, extending from z D 0 through z D d, is sufficient; here the distance d is
chosen arbitrarily. The radial direction is discretized with Ny, elements inside the wire and N¢,..
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radius a

Fig. 1. Diagram of the first test problem: infinite cylindrical wire conducting
total current /, assumed to be uniformly distributed over the cross section.

elements outside the wire in free space. The mesh is terminated at a “truncation radius” r >> a
where the potential component A; = A, is arbitrarily set to zero. Other boundary conditions are

: AzEA,.DOOnthenodcsatzDOandz‘Dd.

The results obtained with 77 D Sa, Nyire D 4 and Nfree D 10 for the potentials were.
identical to those reported prt:viouslyl9 thus providing a check on the element calculations. The
same results were obtained with the three integration schemes noted above for the A term, which
verifies that the Lorentz gauge constraint (9) is automatically satisfied by the finite element shape
function for one-dimensional magnetostatic fields. ;

The computed magnetic flux density Bz at node points was not as accurate as it could be
expected, especially at r D 0. The centroidal values, on the other hand, were considerably more
accurate as regards matching analytical results. Thus for the second problem we decided to report
field values at the element centroids.

5.5 Problem2: A Conducting Hollow Can

The second test problem, shown in Figure 2, brings two-dimensional features. It is 2 hollow
conducting cylindrical “can” with infinite feed wires connected to the center of its top and bottom
faces. These wires carry a total current I D 1 going in the Cz direction; this current is assumed to
be uniformly distributed over the varying cross sections it traverses. The wire radius a and the can
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radius a
thickness a

thickness a .

Fig. 2. Diagram of second test problem: a cylindrical “can” connected to an infinite feed wire o
conducting total current /, which is assumed to be uniformly distributed over the varying R
cross sections. The feed wire radius and can wall thicknesses are identical.

wall thicknesses are assumed to be identical.

Because of the symmetry of the problem it is sufficient to model only the upper half z > 0.
The results presented here were obtained using a 25 x 25 element mesh of square elements. Within
this mesh the wire as well as the can walls are modeled with only one element across the radius or
thickness, respectively. '

The uniform mesh indeed represents an “overkill” for the free space while it is insufficiently
refined to capture field distribution details inside and near the conducting material. It was actually '
chosen to expedite the preparation of inputs to three-dimensional plotting software given the limited
time available for obtaining displays. !

The problem was run using full, selective and zero integration schemes for the A freedoms.
The magnetic permeability usree D o in the free space outside the conducting material is chosenas
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Fig. 3. Magnetic field B, = Bp vs. radial and axial coordinates
r and z for fyire = 1. Full integration scheme for
1. Intersections of mesh represent element centroids.

Fig. 4. Magrnetic field Bz = By vs. radial and axial coordinates r and z for
fwire = 1. Zero integration scheme for A (= gauge constraint not enforced).
Intersections of mesh represent element centroids.
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Fig. 5. Contour plot of magnetic field B; = By, puire = 1.0. Full integration scheme
for A. Numbers on axes represent the number of element centroids traversed
from the center of the “can”. Each element is .02 x .02 square. All contours are
equally spaced and range from minimum to maximum values of the field.
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Fig. 6. Contour plot of magnetic field Bz = Bg, iyire = 1.0. Zero integration scheme for A (= gauge
constraint not enforced). Numbers on axes represent the number of element centroids traversed
from the center of the “can”. Each element is .02 x .02 square. All contours are
equally spaced and range from minimum to maximum values of the field.
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Fig. 7. Magnetic field By = By vs. radial and axial coordinates r and z for
Lwire = 10. Full integration scheme for A. Intersections of mesh represent
element centroids. Note sharp field jump on conductor surfaces

Fig. 8. The same case as Figure 7 shown from a different viewing point
to emphasize how magnetic field in feed wire fails to go to 2ero as
r approaches zero because of the coarse conductor discretization.
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unity. For the conducting material two different values for the permeability 1 D piyire wWere tried:
1.0 and 10.0; the latter to check whether flux jump conditions are automatically accommodated by
the potential formulation.

Selective results are reported graphically in Figures 3 through 8. Figures 3 and 4 show the

magnitude of B, = By for ftyire D lfree D Ko D 1 obtained for the full and zero order integration .
schemes, respectively. Figures 5 and 6 show these results in contour plot form. Figures 7 and 8-

correspond to fyire D 10 and show the magnitude of By from different viewing points. A general
discussion of the results follow. : :

The full integration scheme for A performed well outside the conductor. Results were com-
pared with those of the analytical solution for the infinite straight wire (the first test problem) to
determine whether they were physically reasonable. As r becomes large compared to the can cross
dimension (towards the outer radial edge of the mesh), the answers agreed. This is the expected
behavior, because as T — oo the general axisymmetric problem should appear as an infinite straight
conductor. As one moves towards the top of the mesh, the solution again approaches that for an
infinite wire as can be observed in Figures 3 through 8. This behavior was expected because as we
move parallel to the wire in the z direction, the effects of the current in the can ends should tend
to zero-and the only far-field effects should be from the total current. The results for the magnetic
field within the feed wire are not accurate as it did not vanish for 7 D 0; this behavior is due to the
use of only one element across the radius and the fact that we report only centroidal values as noted
above.

The selective integration scheme gave answers of the same general shape as the full integration
scheme, but they only agreed to one or two significant digits; these results are not shown here as
they are hard to distinguish in plots. The zero integration scheme (which in fact releases the
Lorentz gauge coupling), gave solutions for the field that were larger than expected at the conductor
boundary and a physically unrealizable field inside of the “can”. This field grows sharply as the
can axis is approached, as shown in Figures 4 and 6.

The finite element model also provided results for the electric potential 8 and associated
electric field strength E, but such results have not been analyzed as of the time of this writing.

6. CONCLUSIONS AND FUTURE WORK

The results obtained from our two dimensional axisymmetric model for magnetostatic fields
are particularly encouraging. They show that our variational approach can provide good models
of electromagnetic fields outside of the conductor and appear to be extensible to three-dimensional
static problems without major difficulties. :

The results obtained for fields inside of the conductor in the second test problem can be
improved by using a finer (graded) mesh, higher order finite elements, or elements based on a
Hellinger-Reissner principle in which both potentials and fields are primary variables. In our
experiments with one-dimensional elements, the finer mesh gave excellent results, and it is expected
that the two-dimensional element being based upon the same variational principle will converge
upon the exact solution in the same manner. '
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One unsettled aspect of our results is the damping type matrix C that appears in the dynamic
equations (43) for the multidimensional case. It appears than in time-dependent problems we will
either be forced to work with a set of equations that are coupled on the left-hand side or find a gauge
transformation that will provide for the desired uncoupling. The treatment of time-dependent
effects, however, represents an important stp in the construction of a finite element model for
superconductors. We plan to concentrate on harmonic currents rather than general transients as the
former are more important in envisioned applications such as communication systems.

If encouraging results are obtained in the dynamic case, thermocoupling effects will be added
to the code. Recent textbooks and surveys?2!:% discuss several different approaches applicable
to various contexts (e.g. eddy currents) and these will have to be investigated for suitability for
capturing the couplings effects that are relevant to the superconducting problem. Fano, Chu and
Adler?® present an interesting discussion on the coupling of electric and magnetic forces to me-
chanical effects through the Lorentz force and it is expected that this will be the next addition to
our code. '

After accounting for coupling effects, the following step will be to model the superconducting
fields. The feasibility of using the current model for superconductor applications is high, as the
current density of a supercbnductor can be approximated by the standard current density multiplied
by a constant squared. - This constant is called the London penetration depth. Other analytical
models that possess similar characteristics have been developed and are described, for example, in
the books of Kittel3 and Tinkham?*.
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THE FIRST ANDES ELEMENTS:
9-DOF PLATE BENDING TRIANGLES

SUMMARY

New elements are derived to validate and assess the assumed natural deviatoric strain (ANDES) formulation. This is
a brand new variant of the assumed natural strain (ANS) formulation of finite elements, which has recently attracted
attention as an effective method for constructing high-performance elements for linear and nonlinear analysis. The
ANDES formulation is based on an extended parametrized variational principle developed in recent publications. The
key concept is that only the deviatoric part of the strains is assumed over the element whereas the mean strain part is
discarded in favor of a constant stress assumption. Unlike conventional ANS elements, ANDES elements satisfy the
individual element test (a stringent form of the patch test) a priori while rctaininé the favorable distortion-insensitivity
properties of ANS elements. The first application of this new formulation is the development of several Kirchhoff plate
bending triangular elements with the standard nine degrees of freedom. Linear curvature variations are sampled along
the three sides with the corners as “gage reading” points. These sample values are interpolated over the triangle using
three schemes. Two schemes merge back to conventional ANS elements, one being identical to the Discrete Kirchhoff
Triangle (DKT), whereas the third one produces two new ANDES elements. Numerical experiments indicate that
one of the ANDES element is relatively insensitive to distortion compared to previously derived high-performance

plate-bending elements, while retaining accuracy for nondistorted elements.
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1. INTRODUCTION

Despite almost three decades of work, plates and shells remain a important area of research in finite element methods.
Challenging topics include:

- 1. The construction of high performance elements.

The modeling of composite and stiffened wall constructions.

2

3. The treatment of prestress, imperfections, nonlinear, dissipative and dynamic effects.
4. The development of practical error estimators and adaptive discretization methods.

5

The interaction with nonstructural components, for example external and internal fluids.

This paper addresses primarily the firstchallenge, although it must be recognized that progress in this direction is shaped
to some extent by thinking of the others. The main motivation here is the construction of simple and efficient finite
elements for plates and shells that are lock-free, rank sufficient and distortion insensitive, yield accurate answers for
coarse meshes, fit into displacement-based programs, and can be easily extended to nonlinear and dynamic problems.
Elements that possess these attributes to some noticeable degree are collectively known as high performance ot HP
elements.

Over the past three decades investigators have resorted to many ingenious devices to construct HP elements. The most
important ones are listed in Table 1. The underlying theme is that although the final product may look like a standard
displacemént model so as to fit easily into existing finite element programs, the conventional displacement formulation
is abandoned. (By “conventional” we mean the use of conforming displacement assumptions into the total potential

energy principle.)
1.1 A Unified Variational Framework

Table 1 conveys the feeling of a bewildering array of tools. The question arises as to whether some of them are just
facets of the same thing. Limited progress has been made in this regard. One notable advance in the 1970s has been
the unification of reduced/selective integration and mixed methods achieved by Malkus and Hughes [1).

The present work has benefited from the unplanned confluence of two unification efforts. An initial attempt to place the
free formulation [2-5] within the framework of parametrized hybrid variational principles was successful (6-8}). The
free formulation in turn “dragged” incompatible shape functions, the patch test, and energy balancing into the scene.
Concurrently a separate effort was carried out to set out the assumed natural strain (ANS) and projection methods in
a mixed/hybrid variational framework [9,10]. Comparison of the results led to the rather unexpected conclusion that
a parametrized variational framework was able to encompass ANS and the free formulation as well as some hitherto

untried methods (11,12].
The common theme emerging from this unification is that 2 wide class of HP elements can be constructed using two

ingredients:

(1) A parametrized functional that contains all variational principles of elasticity as special cases.

(2) Additional assumptions (sometimes called “variational crimes™ or “tricks™) that can be placed on a variational
setting through Lagrange multipliers.

As of this writing it is not known whether the “wide class” referred to above encompasses all HP elements or at least
the most interesting ones. Some surprising coalescences, such as DKT and ANS bending elements, however, have

emerged from this study.
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Table 1. Tools for Constructing HP Elements

Technique Year introduced
1. Incompatible shape functions early 1960s
2. Patch test 1965
3. Mixed and hybrid variational principles 1965
4. Projectors : 1967
5. Selective reduced integration 1969
6. Uniform reduced integration 1970
7. Partial strain assumptions 1970
8.  Energy balancing 1974
9. Directional integration 1978
10.  Limit differential equations 1982
11.  Free formulation 1984
12.  Assumed natural strains . 1984

1.2 The Assumed Natural Strain Formulation

The assumed natural strain (ANS) formulation of finite elements is a relatively new development. A restricted form of
the assumed strain method (not involving natural strains) was introduced in 1969 by Willam [13], who constructed a
4-node plane-stress element by assuming a constant shear strain independently of the direct strains and using a strain-
displacement mixed variational principle. (The resulting element is identical to that derivable by selective one-point
integration.) A different approach advocated by Ashwell [14] and coworkers viewed “strain elements™ as a convenient
way to generate appropriate displacement fields by integration of appropriately assumed compatible strain fields. (In
fact, this was the technique originally used by Turner et al. [15] for deriving the constant-strain membrane triangle in
their celebrated 1956 paper.)

These and other forms of assumed-strain techniques were overshadowed in the 1970s by developments in reduced and
selective integration methods. The assumed strain approach in natural coordinates, however, has recently attracted
substantial attention [16,17,18,19,20,21,22,23]; particularly in view of its effectiveness in geometrically nonlinear
analysis. One of the key ingredients in this approach is the concept of natural coordinates developed by Argyris and
coworkers in the early 1960s [24-27]. Another important ingredient is the idea of reference lines introduced by Park
and Stanley [21].

As noted above, the unification presented in [11,12] merges two HP element construction schemes: the free formulation
(FF) of Bergan and Nygard (4] and a variant of ANS called ANDES (acronym for Assumed Natural Deviatoric Strains)
described in further detail below. The stiffness equations produced by the unified formulation enjoy the fundamental
decomposition property summarized in Box 1.

In the ANDES variant of ANS, assumptions are made only on the deviatoric portion of the element strains, namely that
portion that integrates to zero over each element. This assumption produces the higher order stiffness labeled K;2; in
Box 1. The mean portion of the strains is left to be determined variationally from assumptions on the limit stress field,
and has no effect on the stiffness equations.
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This paper describes the construction of the first ANDES elements. These are Kirchhoff plate-bending triangular
elements with the standard 9 degrees of freedom (one displacement and two rotations at each corner). This choice is
made because of the following reasons:

1. High-performance three-node triangular plate bending elements, whether based on Kirchhoff or Reissner-Mindlin
mathematical models, have not been previously obtained through the ANS formulation. (Although the DKT
element [28,29] qualifies as high-performance and is in fact an ANS element as shown later, it has not been
derived as such.) The situation is in sharp contrast to four-node quadrilateral bending elements, for which HP
elements have been constructed through a greater variety of tools; see e.g. {17,30,31,20,21).

2. High performance elements of this type have been obtained through the FF and ancestors of the FF [2,3,4,36], and
they are considered among the best performers available. It is therefore intriguing whether elements based on the
ANDES variant can match or exceed this performance.

The basic steps in the construction of K, and K, for a general three-dimensional element are summarized in Boxes 2
and 3, respectively. For justification of these “recipees” the reader is referred to [11,12). The derivation of conventional
ANS elements is summarized in Box 4.
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Box1 Decomposition of the Element Stiffness Equations

Let K be the element stiffness matrix, v the visible element degrees of freedom (those degrees of
freedom in common with other elements, also called the connectors) and f the corresponding element
node forces. Then the element stiffness equations decompose as

Kv=(K,+K,)v={ )]

K, and K, are called the basic and higher order stiffness matrices, respectively. The basic stiffness
matrix, which is usually rank deficient, is constructed for convergence. The higher order stiffness
matrix is constructed for szabiliry and (in more recent work) accuracy. A decomposition of this nature,
which also holds at the assembly level, was first obtained by Bergan and Nygérd in the derivation of
the free formulation [4].

In the unified formulation presented in {11,12] the following key properties of the decomposition (1)
are derived.

1. K, isformulation independent and is defined entirely by an assumed constant stress state working
on element boundary displacements. No knowledge of the interior displacements is necessary
(Box 2). The extension of this statement to C° plate and shell elements is not straightforward,
however, and special considerations are necessary in order to obtain K, for those elements.

2. K, has the general form
Ky = j33Khas + j2Kizz + j23Kizs. 2)

The three parameters ja2, j23 and j33 characterize the source variational principle in the following

sense:

(a) The FF is recovered if j»» = j;3 = 0and j33 = 1 — y, where y is a K, scaling coefficient
studied in [5,32,33]. The original FF of {4] is obtained if y = 0. The source variational
principle is a one-parameter form that includes the potential energy and stress-displacement
Reissner functionals as special cases [6-8].

(b) The ANDES variant of ANS is recovered if j2 = j;3 = 0 whereas j»; = a is a scaling
parameter. The source variational principle is a one-parameter form that includes Reissner’s
stress-displacement and Hu-Washizu's functionals as special cases [12].

- (¢) If ja; is nonzero, the last term in (2) may be viewed as being produced by a FF/ANDES
combination. Such a combination remains unexplored.

225




Box2 Construction of the Basic Stiffness Matrix K,

Step B.1.  Assume a constant suess field, @, ‘inside the element. (This should be the element
stress field that holds in the convergence limit; for structural elements the assumption would be on
independent stress resultants. ) The associated boundary tractions are @, = 7.n, where n denotes
the unit external normal on the element boundary S.

Step B.2.  Assume boundary displacements, d, over S. This field is described in terms of the visible
element node displacements v (also called the connectors) as

d= Nd v, (3)

where Ny is an array of boundary shape functions. The boundary motions (3) must satisfy interelement
continuity (or at least, zero mean discontinuity so that no energy is lost at interfaces) and contain
rigid-body and constant-strain motions exactly.

Step B.3.  Construct the “lumping matrix” L that consistently “lumps” the boundary tractions &'
into element node forces, f, conjugate to v in the virtual work sense. That is,

f= f Ny, 7,dS =L7. : 4)
S

In the above, Ny, are boundary-system projections of Ny conjugate to the surface tractions @,.

Step B.4.  The basic stiffness matrix for a 3D element is
K, = v LELT, &)

where E is the stress-strain constitutive matrix of elastic moduli, which are assumed to be constant
over the element, and v = [, dV is the element volume measure.

For a Kirchhoff plate bending element, stresses, strains and stress-strain moduli become bending
moments, curvatures and moment-curvature moduli, respectively, and the integration is performed
over the element area A:

K, = A~'LDL7, (6

where D is the matrix of moment-curvature moduli. Specific examples for L are provided in Section
4.
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Box3 Construction of K, by the ANDES Formulation

Step H.1. Select reference lines (in 2D elements) or reference planes (in 3D elements) where
“natural straingage” locations are to be chosen. By appropriate interpolation express the element
natural strains € in terms of the “straingage readings” g at those locations:

€=Ag )

where € is a strain field in natural coordinates that must include all constant strain states. (For structural
elements the term “strain” is to be interpreted in a generalized sense.)

Step H.2.  Relate the Cartesian strains e to the natural strains:
e=Te=TA.g = Ag ®

at each point in the element. (If e = ¢, or if it is possible to work throughout in natural coordinates,
this step is skipped.)

Step H.3.  Relate the natural straingage readings g to the visible degrees of freedom

g=Qv, ¢)]

where Q is a straingage-to-node displacement transformation matrix. Techniques for doing this vary
from element to element and it is difficult to state rules that apply to every situation. In the elements
derived here Q is constructed by direct interpolation over the reference lines. (In general there is no
unique internal displacement field u whose symmetric gradient is e or ¢, so this step cannot be done
by simply integrating the strain field over the element and collocating u at the nodes.)

Step H4.  Split the Cartesian strain field into mean (volume-averaged) and deviatoric strains:
e=¢+e,=(A+A)g, (10)

where A = f v TA¢dV /v, and ey = A, g has mean zero value over V. This step may also be carried
out on the natural strains if T is constant, as is the case for the elements here.

Step H.5.  The higher-order stiffness matrix is given by

K, =aQ'KsQ,  with m:/AgEAddv, (11)
14

where o = jy» > 0 is a scaling coefficient (see Box 1).

It is often convenient to combine the product of A and Q into a single strain-displacement matrix
called (as usual) B, which splits into B and B,:

e=AQv=(A+A;)Qv=(B+By)v=Bv, (12)

in which case
K, = f BJEB,dV. (13)
v

The notation B, = A.Q is also used in the sequel.
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Box4 Construction of K by the Conventional ANS Formulation
Steps S.1105.3.  Identical to the first three steps H.J through H.3, in Box 3. The fourth step: strain
splitting, is omitted.

Step S.4.  The element stiffness matrix is given by

K = Q'K.Q, with m:fVATEAdV. (14)

or, if B = AQ is readily available
K=/ BTEBd4V. (15)
V .

In general this stiffness matrix does not pass the individual element test of Bergan and Hanssen [2,3]
(a strong form of the patch test that demands pairwise cancellation of node forces between adjacent
elements in constant stress states). For this to happen, K must admit the decomposition

K =K, + K, = v"'LELT +K,, (16)

where L is a force-lumping matrix derivable as per Box 2 and K is orthogonal to the rigid body
and constant strain test motions. In other words, the ANS element must coalesce with the ANDES
formulation with @ = 1. The equivalence may be checked by requiring that

B=AQ=v"'L7, a7
where A is the mean part of A (cf. Box 3). As of this writing, no general techniques for explicit

construction of strain fields that satisfy these conditions a priori are known.

If the patch test is not satisfied, one should switch to the ANDES formulation by replacing the basic

. . =T = .
stiffness constructed from constant strain, namely vB EB, with one constructed from constant stress
as in Box 2. Additional details are provided in Appendix A.

2. THE TRIANGULAR ELEMENT

2.1 Geometric Relations

The geometry of an individual triangle is illustrated in Figure 1. The triangle has straight sides. Its geometry is
completely defined by the location of its three corners, which are labelled 1,2,3, traversed counterclockwise. The
element is referred t6 a local Cartesian system (x, y) which is usually taken with origin at the centroid 0, whence the
corner coordinates x;, y; satisfy the relations

xi+x+x3=0, n+y+y3=0. (18)

Coordinate differences are abbreviated by writing x;; = x; — x;, and y;; = y; — y;. The signed triangle area A is given
by

1 1 1
2A =|x; X2 X3|=X21¥31 — X31Y21 = X32Y12 — X12Y32 = X13¥23 — X23)13, (19)
yo oy y3
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Figure 1. The triangular element.

and we require that A > 0.

We shall make use of dimensionless triangular coordinates {;, ¢ and {3, linked by ¢; + &2 + ¢3 = 1. The following
well known relations between the triangular and Cartesian coordinates of a straight-sided triangle are noted for further
use:

x = x8) + x282 + x383, Y =yé+ y252 + y383, (20)
1
&= 2-;[11)’1: —xeyj + (x —xo)ye + (y ~ )'O)ij]v 2n

in which i, j and & denote positive cyclic permutations of 1, 2 and 3; for example, i =2, j = 3, k = 1. (If the origin
is taken at the centroid as in Figure 1, xg = yo = 0.) It follows that

0 ) d
2Aﬁ = yz, 24282 - Y3, 2Aﬁ = Y12,
dax ax ax 22)
14} 842 343
2A— = x33, 2A— = x;3, 2A— = x3;.
ay ay dy
Other intrinsic dimensions and ratios of use in future derivations are (see Figure 2)
ij=¢; = ,/X,?j + )’;2,-. cij = x;ifCij,  sij = yjillij,
(23)

a = 24785, bij = (xijxie + yjiyei)/ &ij = &ij — b,

Nij = bij /i = (xijxae + Yjiyei) ) (55 + ¥3), Aji = 1 = X = bji/Lij.
Here ¢;; = ¢;; is the length of side i—j and ¢;; and s;; the cosine and sine, respectively, of angle (i — j,x). Furthermore
bij and b; are the projections of sides i—k and k—j, respectively, ontoi—j; A;; and A;; being the corresponding projection
ratios.

On each side i/, define the dimensionless natural coordinates w;; as varying from O at i to | at j. The coordinate u;
of a point not on the side is that of its projection on i-j. Obviously

ax ay
— =, — =y (24)
i § Yj
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Figure 2. Intrinsic dimensions of triangle.

2.2 Displacements, Rotations, Curvatures

As we are dealing with a Kirchhoff element, its displacement field is completely defined by the transverse displacement
w(x,y) = w(li, {2, §3), positive upwards. In the present section we assume that w is unique and known inside the
element; this assumption is relaxed later. The midplane (covariant) rotations about x and y are §, = dw/dy and
8, = —dw/dx, respectively. Along side i—j with tangential direction t and external-normal n (see Figure 3) the
tangential and normal rotations are defined as

]
O = ‘a—l;) = Ox35ij oycljv
dw (25)
6 = —a = 6;ci; + Gysi,-.
The visible degrees of freedom of the element collected in v (see Boxes 2-3) are
vi= [wi 6 eyl wy B2 eyZ wy b3 6Oy ]. (26)

The first and second derivatives of the displacement w with respect to the Cartesian and triangular coordinates are
linked by the relations (summation convention used)

dw dw 3y 1 dw

5 Tanax T 2Aa

a_u_)_ _ dw 9¢g; _ 1 awx ' @n
ay 8y dy 2405
Pw w53y dwdy 1 Fw
52 agar, ax ax | 8% ax? | aAragag
32 aZ 9 ‘,a ) 2 ; 2
w w _c_ﬂ + itﬁ——a § ! dw YikXik (28)

axdy _ 850y, 9x By | 0% 0xdy  4A? 95;0¢;
Pw _ 3w a3y dwdly _ 1w
ay? _ anay, dy dy | 8% 9y2  4ATagay oo

since 8%¢2/3x2, 82¢2/3xdy and 3277 /3y? vanish on a straight-sided triangle, cf. Eq. (22). We can represent the second
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Figure 3. Local coordinate systems over a element side.

derivative relations in matrix form as

9w

axt

3w _ 1
3yr [T aa?
2 Bzw

3x3y

or

The inverse relation does not exist.

2.3 Natural Curvatures
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The second derivatives of w with respect to the dimensioniess side directions defined in Section 2.1 will be called
the natural curvatures and denoted by x;; = 3w/ au,?j. Note that these curvatures have dimensions of displacement.
The natural curvatures can be related to the Cartesian plate curvatures «;; = 9’w/3x2, kyy = 3*w/0y* and «zy =
23%w/3xdy, by chain-rule application of (22):

X12
X23
X3t

X:

3w
3Ly,

32w
duy;

3w
aus,

y%, X21 Y21
2 2

X3 Y3 Xnyxn
2 2

X173 Y13 X3y

2
N
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The inverse of this relation is

2
a?.w 9°w
ax’ BUT,
5 1 Yy Yaiy21 Y12Y32 32 <
%;wz' vy x23X13 X31%21 X12X32 E’% : (32)
o
) PL yux31 +X12Y13 yaxiz +Xi3ya Yiz¥s T X2y 32w
=% Sw
xdy duy
or, in compact matrix notation
k=Tx. (33)

A comparison of (29) with (31)(32) displays the advantages of natural curvatures over triangle-coordinate curvatures
when the curvature field is to be constructed directly. On the other hand, (29) is useful when the transverse displacement
w over the element is built as a function of the triangular coordinates.

At this point we relax the requirement that the curvatures be derivable from a displacement field w; consequently the
partial derivative notation will be discontinued. However, the foregoing transformations will be assumed to hold even
if the curvature fields < and x are not derivable from w.

3. DIRECT CURVATURE INTERPOLATION

3.1 The Straingage Readings

ANS and ANDES plate bending elements are based on direct interpolation of natural curvatures. All elements discussed
here adopt the three triangle sides as the reference lines defined in Box 3. The natural curvatures are assumed to vary
linearly over each reference line, an assumption which is obviously consistent with cubic beam-like variations of w
over the sides. A linear variation on each side is determined by two straingage sample points, which we chose to be at
the corners.

Over each triangle side chose the isoparametric coordinates &;; that vary from —1 at corner i to +1 at corner j. These
are related to the u;; coordinates introduced in Section 2.1 by &;; = 2u,; — 1. The Hermite interpolation of w over i-j
is

w;

eni

w= {1 -E)PQ+&) 41— )P +E) (L+6)2Q &) —38;(L+ &2 = &))) w;

j

Bnj

where 8, denotes the rotation about the external normal n on side ij. The natural curvature over side ij is given by
w;
aZw em'
Xij = — =168 ¢€;3&; -1 —6&; &;(3&;+ 1] R E (34)

CIT wj
Onj

Evaluating these relations at the nodes by setting &;; = £1 and converting normal rotations to x-y rotations through
(25), we build the transformation

wh ]
Xlle 1 —6 —4)’21 4x9 6 —2y-_;| 2x4; 0 0 0 gxl
X2l 6 2yn —2x3 =6 4yy —4xy O O 0 u':l
ol | _| 0 0 0 -6 —4yn 4x; 6 —2yn xx 92 35)
X23 ]3 0 0 0 6 2)’32 —2):32 -6 4y32 —4x32 9"2
X3l 6 —2y3 2x3 O 0 0 —6 -4y 4 ||
—6 4y3 —4x3 O 0 0 6 2y3 =2xi3 3
x3th _ 6x3
: 6,5
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The left hand side is the natural straingage reading vector called g in Box 3 and thus we can express (35) as

g=Qv. (36)
This relation holds for all elements discussed here.

The six gage readings collected in g provide curvatures along the three triangle side directions at two corners. But nine
values are needed to recover the complete curvature field over the element. The three additional values are the natural
curvatures x23, X31 and 12 at corners 1, 2 and 3, respectively. Three possibilities for the missing values are discussed
below.

3.2 The Average-Curvature Rule

To each comner k assign the average natural curvature x;; of the opposite side. This average is given by (34) evaluated
at&;; = 0. For example

xizls = 3002l + xazl) = y21(6c2 = 61) + x12(652 — 6y0). 37
The natural curvature now can be interpolated linearly over the triangle:

X1z = xizh &1 + Xzl S2 + xa2l3 &3 = xualy (1 4 383) + xazly (2 + 1¢3). (38)

It is readily verified that under this rule the natural curvature x;» is constant over lines parallel to the triangle median
that passes through node 3. Formulas for the other curvatures follow by cyclic permutation, from which we construct
the matrix relation

Xi2 (o+3s L+l 0 0 0 0
X = 0 0 L+ ih B+ 0 0 g
X3t 0 0 .0 0 LD+in L+in
(6221 (3221 — Dyar (¢4 Dxar 6212 (BZa + Dyn Btz — Dya
=1 0 0 0 6232 (3¢32 — Dy (3f23 + Dx3z (39
L6 GBS+ Dy GBiai—Dyz 0 0 0
0 0 0

603 Bl2+ Dy (Bf—Dyn |v,
6013 (B¢iz—Dyis Bisi + Dxys

in which £12 = {| — {3, etc. In the notation of Box 3,
X=Apg=AQv=B,vV (40)

where subscript a identifies the “averaging” rule (37). Since the natural curvatures vary linearly over the triangle, their
mean values are obtained by evaluating (39) at the centroid {; = {3 = {3 = 1/3:

X2 0 —=yu xa 0 yy =xn 0 O 0 _
X=3Xn(=[|0 O 0 0 -yn xn 0 yn —xn|v=By,v (41)
X31 0 y3 —x3 0 0 0 0 -y x3

Finally, the Cartesian curvatures are given by
&k =TB,,v=B,v, (42)

An explicit expression of these relations is easily obtained, but not required in what follows; however, that of the mean
Cartesian curvatures € = TB,,v = B, v (arelation valid because T is constant over the triangle) is enlightening:

Krz 1 0 0 Y32 0 0 Y13 0 0 yai _
K= Eyy = -27 0 X32 0 0 X113 0 0 xy 0 V= BaV« 43)
2Ky 0 y3 x3 0 yu xu1 0 yn xn2
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3.3 The Projection Rule

To each corner k assign the natural curvature x;; of its projection onto the opposite side. This results in x;; being
constant along lines normal to side i j. For equilateral triangles this agrees with the averaging rule, but not otherwise.
The underlying motivation is to make the element insensitive to bad aspect ratios in cylindrical bending along side
directions.

To illustrate the application of this rule consider side 1-2. For node 3 take

2

‘w
xizls = =5 | =Xz xiz2h + A2 x2lz, (44)
a"“’lz 3

where x> and A4, are defined in (23). Proceeding similarly along the other sides we construct the matrix relation

X1z G+ AnRs L2+ Aad 0 0 0 0
X3t = 0 0 L2+ Al G+ Anh 0 0 g 45)
X3 0 0 0 0 G+ Al L+ A
or
X = AXP g, K= TAXP g. (46)

where subscript p identifies the “projection” rule. As in the preceding rule, since T is constant we can do the strain-
splitting step of Box 3 directly on the natural curvatures by evaluating at the centroid:

Agp = (Xxp + Aydp)

T3+ A2)  §(1+2A2) 0 0 0 0
= 0 0 10 +2) 3(1+13) 0 0
| 0 0 0 0 Hi+a) 304 43) (47)
[ 10+ A2830 $20 + 221830 0 0 0 0
+ 0 0 220 + Ao &30+ As28i0 0 0 .
L 0 0 0 0 Zo+ Al S0+ M3

in which o = {; — 3. Then

B, = TA,,Q=T(A,, + A4;,)Q =B, + Byp. (48)

The explicit expression of these matrices is not revealing and for the construction of the stiffness matrix given in
Appendix B it is better to leave (48) in product form. If all A coefficients are % which happens for the equilateral
triangle, the expressions reduce to those of the averaging rule.

3.4 The ‘Sliding Beam’ Rule

This is a refinement of the average-curvature rule. Consider a fictitious beam parallel to side i — j sliding towards
comner k. The end displacements and rotation of this beam are obtained by interpolating w cubically, 6, quadratically,
and 6, linearly, along sides i— and j—k. Compute the mean natural curvature of this beam and assign to node k the
limit as the beam reaches that corner.

The required calculations can be simplified if we observe that the mean curvature of the sliding beam varies linearly as
it moves from i—j, where it coincides with (41), to corner k. At one third of the way this mean is the natural centroidal
curvature, which can then be readily extrapolated to k. These centroidal curvatures are given by X = -ﬁx,v. where
subscript s identifies the ‘sliding’ rule. A symbolic calculation yields the explicit form
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i 243 =2(A21 + A31) 2X12 7T
axc3 aicy) + axc13 ascy
axs13 assz; + azs13 a;3sy)
_r 2X2 2h2 =2(A2 + A32)
B, = aics azcyy aic;z +ascy |, 49)
a;s3 assay a;s32 + azsy
=2(A13 + An) 223 223,
axcy3 +acn axci3 acyn
L G513 + a1532 aszs(3 a2 A

where a;, ¢;; and 5;; are defined in Egs. (23). Extrapolating to the opposite corners and interpolating over the triangle
we get X = By, v, with

[ 6(=81 + {2+ Aiads) —6{A21 + A31)¢) 6(53 =&+ A282)
2y2 (1 = 321) + 3axc1383 (3azcn + 3a2c13)0 2y13(38; — 1) + 3ascu sz
2x21 (381 — 1) + 3az51383 (3azsa + 3ax513)8 2x13(1 = 381) + 3a3s2182

6(%1 — &2+ A2383) 6(=52+ 8+ Aa8n) —6(M2 + A32)82
BL = | 2yu (3% — D+ 3aic32{3  2y3n(l = 38) + 3azendy (3ajc3z + 3asc) 2 . (50)
2x31(1 = 382) + 3a1s3283  2x32(382 — 1) + 3assa (3aisyz + 3azsn)
—6(Az3 + A13)83 6(32 — &3+ And) 6(—23 + &1 + A3282)

(Baaci3 + 3acn)ls 2y32(38 — D) +3ac1381 2yi3(1 = 383) + 3a1¢3282
(Bazsis + 3a1s0)0 2x32(1 = 3853) + 3azs38 2xi3(383 — 1) + 3a353282

It should be noted that A x and Q are inextricably enmeshed in the above formula and cannot be easily separated.
Premultiplication by T yields & = B;v. Evaluation of B, at the centroid yields B, = LZ /A, where LZ = ATEX s IS
the force lumping matrix given in Eq. (56).

A variation on the sliding-beam theme would consist of interpolating the normal rotation 6, along i—k and j—k linearly
rather than quadratically. This scheme turns out to be identical, however, to the average curvature rule and thus it
provides nothing new.

3.5 The Six Beam Lattice Rule

In addition to the sides, consider three fictitious beams along the triangle medians. Determine the displacements and
rotations at the triangle midpoints by the same interpolation procedure as in the sliding beam rule. The linear curvatures
along the medians are thus readily computed. At each triangle corner we now know the curvatures in three directions:
the two sides and the median. We can therefore transform to x — y curvatures using Eq. (32), and interpolate these
linearly over the element. This apparently new model gives, however, identical results to the projection rule, a result
that can be a posteriori justified by geometric reasoning. Consequently this scheme will not be pursued further.

3.6 The ANS Elements

Three ANS elements based on the previous interpolation rules may be constructed by following the prescription of Box
4. Their stiffness matrices are identified as K, K, and K, for averaging, projection, and sliding-beam, respectively.
The following properties hold for these elements.

Parch Test.  Assuming that the element has constant thickness and material properties, K; and K; pass the individual
element test, but K, does not. This claim can be analytically confirmed by applying the criterion of Eqs. (16)-(17), and
noting that B, = L,T /A and B, = L; /A, where L; and L, are the force lumping matrices derived in Section 4.

Equivalence with DKT. K turns out to be identical to the stiffness matrix of the Discrete Kirchhoff Triangle (DKT)
element, which was originally constructed in a completely different way [28,29] that involves assumed rotation fields.
Thus DKT is an ANS element, and also (because of the equivalence noted below) an ANDES element. This equivalence
provides the first variational justification of DKT, as well as the proof that DKT passes the patch test without any
numerical verification.
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ANS/ANDES Equivalence. If the basic stiffness matrices Ky and Kpq derived in Section 4.1 are used in conjunction
with the averaging and sliding-beam rules, and & = 1, the ANDES formulation yields the same results as ANS if the
element has constant thickness and material properties. (If the element has variable thickness, or the material properties
vary, the equivalence does not hold.) The ANDES formulation used with the projection rule yields two elements, called
ALR and AQR in the sequel, which differ in their basic stiffnesses. Both of these elements pass the patch test and are
not equivalent to the ANS formulation.

4. STIFFNESS MATRIX COMPUTATION

4.1 The Basic Stiffness
As explained on Box 2, the basic stiffness is obtained by constructing the lumping matrix L. In our case this is a 9x3
matrix that “lumps” an internal constant bending-moment field (M .x, iy, Myy) tO node forces f conjugate to v.

On each element side, the constant moment field produces boundary moments 7, and m,, referred to a local edge
coordinate system n, t (see Figure 3):

—_ m
{'"""] =[ oG _zzs”c?] 7y (1)
ij

M SijCij  —SijCij S —Cj mxy

The boundary motions d conjugate to m,, and m,, are dw/dn = —6, and dw/3t = 6, (see Figure 3). Given the degree
of freedom configuration (25), the normal slope dw/dn = —6; along side i-j can at most vary linearly (it could be
also taken as constant and equal to %(6{,’ + 6,;) but the results are the same as for a linear variation).

For the tangential slope (the rotation about the normal) dw/dt = 6, there are three options: constant, linear and
quadratic variation. But a constant 8, = (w; — w;)/¢;; turns out to be equivalent to the quadratic variation and a
constant 6, = %(9,; + 6,;) equivalent to the linear variation. Consequently only the linear and quadratic cases need to
be examined.

Linear Normal Rotation. The variation of 6, and 6, along each side is linear:

o, =

where & = £;;. Under this assumption one obtains [33]

w;

N

0 1-¢ 0 O 1+§& O Ons
[o 0 1-¢ 0 0 1+s] w; (52)
ng

0 0 y2 0 0 y3 0 0 yxu
L/=4{0 x» 0 0 x3 0 0 xx O |, (53)
0 yn x3 0 yn xn 0 y2 xn

where superscript / stands for “linear 8,.” The corresponding basic stiffness is
Ky = A~'L,DL], (54)

where D is the Cartesian moment-curvature constitutive matrix resulting from the integration of E through the plate
thickness. This matrix been used as component of the free formulation (FF) element presented in Ref. [33].
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Quadratic Normal Rotation. A quadratic variation of 8, can be accomodated in conjunction with the cubic variation
of w along the side:

w;
9,,'
6, 1 0 1-¢ 0 0 1+¢& 0 Oni
=3 2 1 2 1 (55)
6 . 3¢6°-D/e 0 FBE+DE-D 3¢°-1D/E 0 GE-DE+D ] w
9‘}'
Onj
where £ = &, and £ = ¢;;. Then the resulting lumping matrix can be presented as
[ —cusip+cousn - —ceusy+cnse (5 =) — (h -
1hrz+siix)  3chxin +Gixn) chyn + ¢y
=3(shyn +shyn)  —3(chyn + ¢ ys) —Shx12 = s} x31
—C23523 + C12512 —Ccisiz+cnsn (sh—ch) — (533 — cdy)
Ly = | jGhri+shxn)  3(chxn + chxn) chyn + 3y . (56)
—i(shyn +shyn) —Hchyn +chyn)  —shxip—shin
—c31831 + c35n —ensn+enusy (sh—cky) — (3 — k)
$(shxn +shxa)  3(chxas +cdxn) cyn + ¢y
[ —3Ghyn +s3y13)  —1(Gyn + c5ys) —shxy —shxy
The corresponding basic stiffness matrix is denoted by
Kuy = A7'L,DL]. (57)
4.2 The Higher Order Stiffness
The higher order stiffness for the ANDES elements described in Section 3 is
Ki: = 2Q"K;,Q = 2Q” [ f AT DA,. dA] Q=c¢ f B! DB, dA, (58)
A A

where x = a, p, s for the average, projection and sliding-beam rules, respectively. (The last expression is appropriate
when By, is not easily factored into A4, Q, as in the sliding-beam rule.) Since A4, varies linearly, if D is constant we
could numerically integrate K, in (58) exactly with a three point Gauss rule; for example the three-midpoint formula.
But as the element stiffness formation time is dominated by these calculations it is of interest to derive K, in closed
form. This is done in Appendix B for K, which from the numerical experiments appears to be the best performer.

5. NUMERICAL EXPERIMENTS: GENERAL DESCRIPTION

An extensive set of numerical experiments has been run to assess the performance of the new ANDES elements based
on the projection rule (ALR and AQR) and to compare them with other existing high-performance elements. Table
2 lists the tests, material properties and some relevant geometrical properties, whereas Table 3 lists elements, loading
and mesh identifiers.

An inspection of the element identifiers in Table 3 displays two important points: the difference in the results obtained
with AQR and ALR can be attributed to their basic stiffness, whereas differences between AQR and DKT can be
attributed to their higher order stiffness. With these facts in mind, we conducted first a set of distortion tests so that the
less distortion sensitive combinations can be identified. Then, the best performers are submitted to a set of representative
thin-plate bending problems in linear elasticity.
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The scaling @ = 1.5 for ALR and @ = 1.0 for AQR have been chosen to obtain energy balance in some simple
cylindrical bending tests. No further adjustment of these parameters was made. In the distortion tests we included the
results obtained with the free formulation (FF) element presented in [33], since that reference did not report such tests.

Whenever the simply supported condition appears it implies that only the transverse displacement w is restrained. Itis
equivalent to the SS1 condition described in Hughes’ textbook [34].

For tests involving an uniform distributed load g, two node-force computation schemes are usually reported:

1. Triangular lumping (TL), in which one third of the load g A is assigned to each triangle corners, and nodal moments
are set to zero.

A .
ff=%—[1 001001 0 O] (59)

2. Consistent lumping (CL), in which the element node force vector is

fr=4_3é[1 yutwm fundE g e (60)

This lumping was obtained using the transverse displacement w of the FF element in [33)]. It is used for the ANS
and ANDES elements as a matter of expediency, since for such elements a unique internal transverse displacement
does not exist.

Inasmuch as the present elements pass the linear patch test by virtue of their construction, no validation experiments
along these lines are necessary once the elements are correctly programmed.

6. DISTORTION TESTS

6.1 Simply Supported Square Plate under Central Load

This distortion test was proposed by Kang [31]. The use of a coarse mesh exacerbates the distortion effect when
far from of the converged solution. (In a fine mesh the distortion effect would be diluted.) The mesh and distortion
parameter are shown in Figure 4. When the distortion parameter a approaches 2.5 the mesh converges toa four element
cross-diagonal mesh. Results are reported as a percentage of the deterioration with respect to the undistorted mesh.

The results given in Table 4 show that AQR is superior in this test. FF and ALR are the worst for @ > 2. DKT and
AQR display low deterioration rate froma =2 uptoa = 2.49, but DKT behaves poorly fora < 2.

6.2 Cantilever Beam

A cantilever beamn with a transverse load at the tip was selected for this test. Two meshes shown in Figure 5, A and B,
are used to observe the effect of the element orientation under a linear bending state. The results are reported in Table
5. Also shown in this table is the ratio of the computed tip deflection to the exact value w,; for zero distortion.

For mesh A, AQR is the best performer closely followed by DKT. FF and ALR behave poorly.

For mesh B FF is the best performer in terms of deterioration, followed by AQR, DKT and ALR. However it must be
noted that FF and ALR recover only 77% of the exact solution. This is a serious drawback in elements supposedly
capable of providing an appropriate response for linear bending. This shortcoming can be attributed to the basic
stiffness Ky which is the same for both elements. AQR and DKT recover almost 95% of the response for both meshes.

6.3 Twisted Ribbon

This test has been selected to assess the distortion effect under a field which combines bending and twisting. The test
uses mesh B of Figure 5. The results shown in Table 6 indicate that AQR and DKT are the least distortion sensitive
elements for this problem.
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Table 2. Key to Material and Geometrical Data

Test

Description

Square plate

Cantilever beam

Twisted ribbon

Rhombic cantilever

Rhombic plate

Isotropic material v = 0, E = 1; thickness ¢ = 1, plate span a = 10;
load scaled so that center deflection w. = 100

Isotropic material v = 0, E = 1; thickness + = 1; load scaled so that
center deflection w, = 100

Isotropic material v = 0.25, £ = 107; thickness ¢ = 0.05; transverse
load at tip so that Pg = ~P,4 = 1

Isotropic material v = 0.3, E = 10.5 10%; thickness t = 0.125; uniform
transverse load g = 0.26066

Isotropic material v = 0.3, E = 1; thickness ¢ = 1, plate side a = 100,
uniform transverse load g scaled so that w, = 100

Table 3. Key to Element, Loading and Mesh Identifiers

Key Explanation

ALR ANDES element Ky + 1.5Kp,

AQR ANDES element Ky, + Ky,

FF FF element of {33] with 3-parameter scaling of K,
DKT ANS/ANDES element K, + Kp;: identical to DKT

CL Consistent lumping (59) of uniform load ¢
TL Triangular lumping (60) of uniform load g
SDC In rhombic meshes, triangles obtained by splitting quadrilateral mesh

units with short diagonal cuts

LDC In rhombic meshes, triangles obtained by splitting quadrilateral mesh
units with long diagonal cuts
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Figure 4. Square plate: mesh for distortion analysis.

Table 4. Distortion Analysis of Centrally Loaded SS Square Plate: Percent
Error of Center Deflection with Respect to Undistorted Mesh

Element Distortion parameter

type 0.50 1.00 1.50 2.00 2.49
ALR 0.83 2.65 5.05 7.88 10.38
AQR 0.17 -0.14 -1.59 =329 —4.40
DKT -0.95 —3.46 -6.29 —8.06 -8.42
FF 0.81 2.27 3.69 4.85 -13.50

7. CONVERGENCE STUDIES

From the distortion test results, it can be concluded that elements whose basic stiffness is Kpq are less distortion
sensitive. Consequently only results for the AQR and DKT elements are presented in the following studies.

7.1 Square Plate

In this analysis a square plate with either simply-supported or clamped edges is considered. Due to symmetry only
one quarter of the plate is modeled. The two different mesh orientations, A and B, used in the analysis are illustrated
in Figure 6. The number of elements used is 2NV 2 where N is the number of side subdivisions.

For the cases involving a concentrated load, Figures 7 and 8 show that for both meshes AQR converges faster and is
less sensitive to mesh orientation than DKT.

In the case of uniform loading with triangular lumping, Figures 9 and 10, the convergence is uniform for all the meshes
and elements. For the simply-supported condition all answers are within the 5% error limit for N = 4. Clearly DKT
converges faster in this case. For the clamped condition and N =4, DKT(A) is outside the 5% error limit.

For consistent force lumping, the results shown in Table 7 indicate a dramatic improvement of AQR. DKT also improves
in the sense that becomes less mesh sensitive and that all the results are within 5% error for N = 4.
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A
Y

Mesh A

Mesh B

Figure 5. Distorted meshes for cantilever beam and twisted ribbon.

Table 5. Distortion Analysis of Cantilever Beam: Percent
Error at Node C with Respect to Undistorted Mesh

Mesh  Element Distortion parameter We/Weex
type 1.00 3.00 4.90 (no distortion)
A ALR -10.70 -19.80 8.40 1.031
A AQR 0.15 0.10 -2.05 0.995
A DKT 020 -0.59 341 0.982
A FF -775 -17.30 -18.35 0.974
B ALR 0.20 300 4590 0.764
B AQR -0.10 040 -2.85 0.995
B DKT -0.13 -1.09 -349 0.979
B FF -0.05 -0.15 2.20 0.769
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Table 6. Distortion Analysis of Twisted Ribbon:
Loss of Symmetry under Distortion (Mesh B)

Element Node  Distortion parameter

type 1.00 3.00 490
ALR A 1016 1.122 1.363
B 1013 1.098 1.076
AQR A 0989 0966 0945
B 1010 1.029 0995
DKT A 0993 0978 0.940
B 1006 1015 1018
FF A 0983 0933 0789
B 0994 0877 0877
Mesh A Mesh B

Figure 6. Meshes for square plate convergence studies.
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Figure 7. Central deflection of centrally loaded SS square plate.

DKT(B)
DKT(A)
z 2
AQR(A)
AQR(B)
1 2 4 8

Number of subdivisions on each side

Figure 8. Central deflection of centrally loaded clamped square plate.
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Figure 9. Central deflection of uniformly loaded SS square plate
with TL force lumping.
30
20 £\ _DKT(A)
AQR(AN \
10 \
0
-10
-20

1 2 4 8

Number of subdivisions on each side

Figure 10. Central defiection of uniformly loaded clamped square plate
with TL force lumping.
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Table 7.  Uniformly Loaded Square Plate with CL Force Lumping:
Percent Error of Central Deflection

Support  Element Mesh Mesh over quarter plate
type type Ix1l 2x2 4x4 8x38
SS DKT A 3.L73. 449 101 024
B 455 537 156 041
AQR A 1628 220 047 0.11
B -155 230 074 020
Clamped DKT A 4635 1490 4.10 1.03
B -21.60 208 130 036
AQR A 2665 826 187 044
B -4120 -322 -0.28 -0.05

< 12 |

~

SDC LDC

AV,

Figure 11. Rhombic cantilever: meshes for convergence studies
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Table8. Rhombic Cantilever: Percent Difference

of Tip-A Deflection with Respect to Experimental Value Reported in (28]

Mesh  Element

Subdivision of whole plate

type  type 4x4 8x8 16x16

LDC DKT 23 =37 —4.0
AQR -17.8 -104 -6.0

SDC DKT -67 =5.0 -4.0
AQR -63 =50 —4.0

7.2 Rhombic Cantilever

The test involves a rhombic cantilevered plate subjected to uniform load. This problem was used in {28] to test the DKT
element with reference given to an experimental deflection result; however, no convergence analysis was performed.
This has been done here taking into account the two possible mesh subdivision patterns, SDC and LDC, depicted in

Figure 11. Triangular force lumping has been used.

The results are shown in Table 8. For the LDC mesh DKT converges from above to an answer 4% below the
experimental value quoted in [28]. On the other hand, AQR converges from below. For the SDC mesh both elements
behave identically and converge to a value 4% under the experimental one.

It is clear from these results that the experimental tip deflection given in [28] is in error by about +4% with respect to
the analytical value for the material properties quoted. The apparently small error for the 2 x 2 DKT/LDC mesh is

thus fortuitous.

Table 9. Uniformly Loaded SS Rhombic Plate with TL Force

Lumping: Percent Error in Center Deflection

Mesh Element

Subdivision of whole plate

type type 4x4 8x8 16x16
SDC DKT 11.05 4.07 2.86
AQR 13.86 456 2.89
LDC DKT 80.97 22.64 7.51
AQR 685 -036 -291
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7.3 Simply Supported Rhombic Plate

This problem poses severe difficulties for ordinary finite element methods because of the presence of a singularity in
the bending moments at the obtuse corner. A detailed description of this problem may be seen for example in [33].
The acute angle o« = 30° was selected for the test. Again both SDC and LDC meshes were tried.

The results are shown in Table 9. For the SDC meshes AQR and DKT show slight difference and almost the same rate
of convergence. For the LDC meshes DKT is too flexible whereas AQR converges faster.

8. CONCLUSIONS
The main conclusions of the present study can be summarized as follows.

1. The ANDES formulation represents a variant of the ANS formulation that merits serious study. The key advantages
of ANDES over ANS are:

(a) a priori satisfaction of the patch test. Although this advantage is less clear for elements where ANS and
ANDES coalesce for constant thickness and material properties, it reappears for more general cases.

(b) The separation of the higher order stiffness allows the application of a scaling parameter. Furthermore it
opens the possibility for an energy-balanced combination with other formulations as per Eq. (2), although
this possibility presently remains unexplored.

2. The study of plate bending elements shows that the widely used DKT element is both an ANS and ANDES
element. This discovery provides a variational foundation hereto lacking and analytically proves (because of the
ANDES connection) that DKT passes the patch test.

3. The numerical results clearly demonstrate that the choice of basic stiffness is of paramount importance in the
behavior of elements based on the ANDES formulation. Of the two elements sharing the quadratic-rotation basic
stiffness, namely AQR and DKT, the former has excelled in geometric distortion tests and in convergence studies
that involve concentrated forces. For other cases the performance of AQR and DKT is similar, and generally
superior to those elements that use the linear-rotation basic stiffness.

The numerical experiments have not addressed questions of material sensitivity such as element performance for highly
anisotropic and composite plates. This behavior, as well as the possibility of applying this technology to C° bending
elements, is currently under investigation.
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Appendix A. SANITIZING INCOMPATIBLE ELEMENTS

The stiffness-splitting technique summarized in Box 1 provides a systematic way for “sanitizing” existing nonconform-
ing bending elements that do not pass the patch test. The technique amounts to the replacement of the basic stiffness.
The main steps will be briefly outlined for the simplest such element: the BCIZ triangle proposed in 1965 by Bazeley
et al [35). The assumed transverse displacement is given explicitly in (36} as

23 -2 205t )T
L2282 ~ y3183) + Nihibads
L2 (xnd2 — x1383) + X1818283

£33 — 202) + 2015283
CAynt —yf) + 2558 ¢ v
L2 (x3d3 — xn 1) + 2615283

L33 = 203) + 2015283
L2yt — yng2) + Ysbiad
gi(xi38y = x3282) + X3818283

(61)

where 5, = yi2 = Y31, Y2 = Y23 = Y12, 3 = Y3 = ¥, 01 = Xo1 — X3, 3 = X2 — Ko, X3 = xy3 — x32. The strain-
displacement matrix B is obtained by double differentiation with respect to the triangular coordinates and application
of (30):

Kxx
k=1{ k,, { = WRv=Bv=(Bo+Bi{i + B2 + Bs{3)v, (62)
pr
in which W is given by (29), and
[ 3(1—-¢) 0 0 &3 &1 &2 ]
Y1282 — yngs 0 0 Y28 + 3N N ~yuli + 30
x1282 — x383 0 0 xud1 + 3%183 3518 =xi381 + 3582
0 3(1-%2) 0 <] & 52
RT = 0 y2383 — Y128 0 -yl + 30 ynht %)’241 15282
0 x3283 — x2161 0 —xn$2 + 35283 xnd2 -+ 3%240 3X282
0 0 31 -¢3) <) &1 52
0 0 yné = ynbh lz:ﬁ —ynl+ i yul+ 12_351
L 0 0 x1351 = X3282 3%303 —x383 + 35352 X383 + 35380 3
Split the strain-displacement equations as .
=K +ky =B +By)v, (64)
where B = By + %(Bl +B,+Bj), By=B-— B. Then the “sanitized” stiffness matrix is
K=K, +af B]D,BsdA, (65)
A

where K, is one of the basic stiffness matrices derived in Section 4.1. The free formulation leads to the same result but
in a less direct manner, because w would have to be decomposed into rigid body, constant curvature and higher order
states. Although the corrected element passes the patch test it is unlikely to be competitive with ANDES elements in
distortion insensitivity as this property appears to depend on relaxing curvature compatibility conditions.
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Appendix B. EXPLICIT REPRESENTATION OF HIGHER ORDER STIFFNESS

To obtain an explicit representation of K, begin by defining

Ch Cn Cg
C=T'DT= Cn Cnl. (66)
symm Cxn

which can be interpreted as a constitutive matrix that relates the natural moments T7 m to the natural curvatures x.

Then )
- -m rn2 -=ra n3y —ns

rny =na2 T2 =—=rs s

Al rm -r ra —r

= T dA= 2 2 p7) 23 23
K ‘/;Ad CAsda 36 m —rz s ©n

r33 —ri

symm 33

where r;; = 8;;Cij fori =1,2,3, j=1,2,3,and

Bu=20%-2p+1), Bn=204-Apn+1), Bu=20} -2 +1),

(68)
Ba=Q2-Ap)ixn—Aiz2—=1, Bn=Q-ApAn—2An-1, Bu=Q-A)h2—Ai; -1

Carrying out the congruential transformation K, = QTKd,Q with MACSYMA yields

Ku=4(r3—ri3—riz+ru),

K13 = 2((ri3 — ru)xz + (r33 — rizdxas),

Kis = 2((rniz = ra)ysz + (ry = rizdya),

K7 =4(=r +r+r3—ri), _

K9 = 2((rn — ri2)xs2 + (r33 = ri3)xis),

Ky = (—ruxa — riazxiz)yn + (—risxa = rsxizns,
Kas = (r2ya + rasyis)ys2 + ruya + risyayar,

Ky = 2((rn3 — ri2)ya + (r33 = ra)yis),

Ky = (—rizxn — riaxis)yn + (—raxs2 — raxs)ns.
K3 = 2((riy = riadxar + (n3 — r3)xna),

K35 = (riaxa + raxis)xs + ruxd) + riaxiaxa,

K3g = (—riaxa; — raaxi3)ys2 + (—risxa — raxis)ys,
Ku=4(rp—r2—rnz+r),

K = 2((r12 — ra)xs2 + (ry — n2)xa),

Kag = 2((rz — ri2)ys2 + (rn — ria)ns).

Kss = ray% + 2rpynyn + ruys,

Ks1 = 2((rs — r)yna + (riz — ri2)ya),

Ksy = (—rnxy — raxiz)yn + (—n2x;2 — raxis)ya.
Ke1 = 2((ra — r3)xsz + (nz — na)xa),

Koo = rpxd + (ripxn + roxia)xs; + raxisxar,

K78 = 2((r3 — ra2)ysz + (r33 — r3)yis),

Kss = rayh + 2rayisyn + rayh,

Kog = rnX§2 + 2r33x;3x33 + r33x33.
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K12 = 2((ri1 = ria)ya + (n3 = r33)yn)
Kuy=4(-ra+r3+rz—r)

Ki6 = 2((rz3 — niz)xsz + (ri3 = ru)xa)

Kis = 2((r2 — ra)ys2 + (ris = r3)yi3)

K2 = riuy3 + 2raysyn + rayh

K24 = 2((r12 — ru)ya + (ra — ris)yis)

K26 = (—=ri2x32 — ruxa)yn + (=rpxa — riaxa)dn;
Kag = (rizy21 + rayu)ys + raynya +rayh

K33 = riyxd) + 2rpxisxa + rsxdy

K3s = (—rizxa1 — rpxi3)ys2 + (—ruxa — risxis)ya
K37 = 2((r2 = riz)xn + (r = r33)x13)

K39 = (rizxa1 + roxi3)xs + risxisxay + rxgy

Kas = 2((rz — n2)ysz + (riz = ru)yar)
Kag=4rp—ro-ri3+n

K9 = 2((ri2 = ro)xs2 + (n3 = r3)x3)

Ksg = (—rnx32 = riaxa)ys2 + (—rizxsz — rnxa)ya
Ksg = ray% + (rayu + rayi)ys + rsysyn

Kes = rnxh + 2ripxaxn + ryx3,

Keg = (—r2x32 — riaxa1)ys2 + (~ruxs; — risxa)yns
Kn=4(r33—rp—rn+ra)

K79 = 2((rz — ro)xs2 + (r3 — ras)x3)

Kgs = (—rpx32 — raxiz)yn + (=raxs — raxis)yi

The same stiffness expression applies for Ky, if one sets ;= Ayy = Ay = §.
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PARAMETRIZED VARIATIONAL PRINCIPLES ENCOMPASSING
COMPRESSIBLE AND INCOMPRESSIBLE ELASTICITY

SUMMARY

Abstract — A parametrized five-field variational principle that can accomodate both compressible and incompressible
hyperelasticity is presented. The primary variables are mean and deviatoric stresses, mean and deviatoric strains, and
displacements. Through appropriate selection of parameters the functional of this general principle specializes to those
previously presented by Atluri-Reissner, Herrmann, and Franca.

1. GOVERNING EQUATIONS

Consider a linearly hyperelastic body under static loading that occupies the volume V. The body is bounded
by the surface S, which is decomposed into S : 54 U §;. Displacements are prescribed on Sy while surface
tractions are prescribed on S;. The outward unit normal on § is denoted by n = n;.

The three unknown volume fields are displacements u = u;, infinitesimal strains e = ¢;;, and stresses
o = o0y;. The problem data include: the body force field b = b; in V, prescribed displacements d = d; on
Sy, and prescribed surface tractions t = f; on S,.

The relations between the volume fields are the strain-displacement equations
e=1(Vu+V7u)=Du or ;=31 ;+uy) inV, n

the constitutive equations
o=Ee or Oij = Lijkeere in V. (2)

and the equilibrium (balance) equations
—divo=D%c=Db or oyj+bi=0 inV, 3)

in which D* = — div denotes the adjoint operator of the symmetric gradient D = $(V + V7).

The stress vector with respect to a direction defined by the unit vector v is denoted as o, = o.v, or
ovi = og;;v;. On S the surface-tracticn stress vector is defined as o, = .n oroy; = oy;n;. With this notation
the traction and displacement boundary conditions may be stated as

a~

dn=i or a,-,-n,-=f.- on S;, and u=d or u,-=c?; on Sy. )
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2. NOTATION

Field Dependency

In the following investigation of variational methods, the notational conventions used in References [1-5] are
followed. An independently varied field will be identified by a superposed tilde, for example 4. A dependent
field is identified by writing the independent field symbol as superscript. For example, if the displacements
are independently varied, the derived strain and stress fields are

e =1(V+VNi=Di, o"=Ee" =EDi. ®
Using this convention, tildeless symbols such as u, e and o are reserved for the exact or for generic fields.

Integral Abbreviations

Volume and surface integrals may be abbreviated by placing domain-subscripted parentheses and square
brackets, respectively, around the integrand. For example:

(€ [rav. UL ¥ [ras U ¥ [ras [ ¥ [ras @©

If f and g are vector functions, and p and q tensor functions, their inner product over V is denoted in the
usual manner '

def ; def
(f- g)v = /; figidV, (P- q)v = j‘.’ Pij4ij dv, )]
and similarly for surface integrals, in which case square brackets are used.

Stress and Strain Vectors

To facilitate the construction of variational matrix expressions, stresses and strains will be arranged as
6-component column vectors constructed from the tensors o;; and ¢;; following the usual conventions of

structural mechanics: , .

oan en |
on én
o33 en
o= y e= - (8)
on |’ 2e2 .
on 2en -
[ o31 [ 231 |

Then (o, e)v = (oijeij)v = (oTe)v, and so on. Similarly, fourth order constitutive tensors such as E; ;¢ are
arranged as symmetric 6 x 6 matrices (resulting from their restriction to the space of symmetric stress-strain
tensors) in the usual manner.

3. STRESS-STRAIN SPLITTINGS
For incompressible materials, in which divu = tr Vu = u;; = 0, the stress-strain relation (2) only holds in
the space of traceless strain tensors, and its inverse does not exist. With a view to including both compressible
and incompressible elasticity in the variational principles, some general splittings of the strain and stress
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fields are studied below. Define (actual) pressure p and total strain condensation (negative of the volumetric
strain) @ as

p=-3tro=—}(on+on+on) ©)
0 =—tre=—(e +en+en) =—divua.
Throughout this paper it shall be assumed that the material is volumetrically isotropic in the sense
p =k, (10)

where k > 0 is the modulus of compression (one third of the bulk modulus X). In the incompressible limit,
k = oo.

Parametrized Splitting

A family of stress-strain splittings considered here is

oij =s(&)ij —Epdij,  eij = g(n)ij — §n68;, (11)

where §;; is the Kronecker delta, and & and 7 are scalars in the range [0, 1] that determine the splitting. If
& = 0, s(0);; = 03, whereas if § = 1, s(1);; reduce to the usual deviatoric stresses s;; and the argument £
will be omitted. If p = 0, g(0);; = e;;, whereas if n = 1, g(1);; reduce to the usual deviatoric strains g;; and
the argument n will be omitted.

Using the matrix notation (8) for strains and stresses (11) is represented as
o=s()~-&iph, e=gn) —nbh, (12)

where h is the 6~component column vector
h={1 1 1 0 0 O}. (13)

Note that hTh = 3, h7o = tro = —=3p, hTe = tre = —6, h7s(§) = trs(¢) = —=3(1 — §)p, hTg(n) =
trg(n) = —(1-n)9,andh’s =hTg =0.

Constraintson & and n

Parameters £ and 7 are not independent but chosen so that s(§) and g(n) are connected by an invertible
“deviatoric™ constitutive equation

s(§) = Cg(n), or s(&)ij = Cijre (M, (14)

where matrix C is finite and nonsingular. This condition is assumed to hold if § = # = 1 for any material.
For other values of & and 7 the choice is possible if the material is fully isotropic because if so (2) may be
written (see e.g. Section 22 of Gurtin {6])

oij = 2ue;; + Aew, or o =2ue—A\6h, (15)

where & and A are the Lamé coefficients (u is the same as the shear modulus G), so that C = 2ul.
Furthermore, p, A and k are related to the elastic modulus £ and Poisson’s ratio v through

_Ad+v) E
T3 3(1-2w

_E
2(1 +v)’

Al —-2v
=3B +2p), u= Li-v—l =3k-2)=

k (16)
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Substituting these relations into (15) and (14) one obtains the condition

(1 + v)& — (1 = 2v)n = 3v. 17

The pair § = n = 1 satisfies this constraint for any v. If v # 0.5, specifying0 < & < 1 or n determines the
other; for example if 7 = 0, § = 3v/(1 + v). If the material is incompressible, i.e. v = 0.5, & = 1 regardless
of the value of .

Deviatoﬁc Split
The usual deviatoric stress-strain splitting is obtained by taking £ = n = I:
o =5s— ph, e=g— ;6h. (18)
As noted above, this choice satisfies the condition (14;) for isotropic or anisotropic materials.
Lamé Split

The Lamé splitting for isotropic materials — so called because of its intimate relationship with the constitutive
form (15) that displays the two Lamé coefficients — is obtained if n = 0 so that g = e. Then ¢ is chosen so
that 7= s(£) = 2ue:

3v
+v

o =Ce—{ph=2pe - I ph=7-gh. (19)

In the literature ¢ = £p is called the pseudo pressure whereas T = s(¢) = 2ue = Ce is called the extra stress,
although a better name would be pseudo deviatoric stress. In the incompressible limit, pseudo pressure g
and extra stress T reduce to ordinary pressure p and deviatoric stress s, respectively.

Although the Lamé split may in principle be extended to anisotropic materials, parameter & then becomes
amatrix: I-(3k)~!C, which complicates derivations substantially. The same is true of (12) unless & = n = 1.
It follows that splittings other than (18) are of limited value for non-isotropic behavior.

4. THE GENERALIZED STRAIN ENERGY
The variational principles of linear elasticity studied here have the general form
O=U-P. (20)

Here U is the generalized strain energy, which characterizes the stored energy of deformation, and P is the
forcing potential, which characterizes all other contributions. The conventional form of P is

P = (b,u), + [u—4d,0u];, + i u]. @1
Other two forms of P, which are of interest in hybrid finite element formulations, called P¢ and P* for

displacement-generalized and traction-generalized, respectively, are studied in other papers [1-5]. As this
term is not affected by material behavior attention will be focused on U.

For a compressible material, the generalized strain energy introduced in References [4,5] has the following
parametrized structure:

= 3Ju(G. €y + j12(5.8), + jis(6, ), + Lina(0°. &), + jn(of. "), + 1jn(c" e),, (22)
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where ji; through j33 are numerical coefficients. The three independent fields are stresses &, strains € and

displacements @i. Following the notational conventions stated in Section 2, the derived fields that appear in

(22) are .
o°=E¢, o*=EDda, ¢ =E7'5, ¢ =Di (23)

As an example, the U of Hu-Washizu’s functional is obtained by setting ji2 = —1, i3z = 1, jz = 1, all
others being zero:

Un(5,8 @) = 3(0%, &), +1(6.¢ - 8), + }(o* — 0" &), = (0. &), + (5. e —§),. (29
Equation (22) can be rewritten in matrix form as
&1T T jul jial jul] ()
U=3 / o jnl jal |4 & }dv. (25)
L - symm Jul e*

where I denotes the 6 x 6 identity matrix. The functional-generating symmetric matrix (to justify the
symmetry note, for example, that j;3(&, €*), = 1j13(5. ¢*), + 3j13(e?, &*),, and s0 on)

jn i i3 .
h=ljir j2 jo (26)
js jn Jn»

is seen to fully characterize (22) hence, once the forcing potential 2 is selected, the functional (20). (The
subscript of J identifies the number of independent parameters, as shown below.)

On replacing (23) into (22), U may be expressed in terms of the independent fields as

TmE™ el juD . ] ([&

U=} [ jul  jrE  j»ED & 1dv, 27
14 -
u

jsDT  jsD'E  jDTED
which verifies the symmetry of Js. iJsing (27) the first variation of U may be presented as

st o Qe

3U = (Ae, 85), + (a0, 88), — (divd’, 8i), + [}, si];, (28)
where ;
Ae= j € + ji€ + jie*, A0 = jud+ jno’ + jno”, o = ji3é+ juot + jndt. (29)

The last two terms in (28) combine with contributions from the forcing potential variation. For example, if
P is the conventional forcing potential (21), the complete variation of [1° = U —~ P€ is

5T = (e, 85), + (Ao, 88), — (dive’ +b, 8i), + [0} — £, 5] — [6-4,85.]),.  (30)

Using P¢ or P* does not change the volume terms. Consequently the Euler equations associated with the
volume terms of the first variation

Ae=0, Ao =0, dive’'+b =0, (31)
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are independent of the forcing potential.

For consistency of the Euler equations with the field equations (1-3) one must have Ae =0, Ac =0
and ¢’ = ¢ if the assumed stress and strain fields reduce to the exact ones. Therefore

Ju=+jiz+j13=0,
jnz+jn+jn=0, (32)
Jstjn+ja=1

Because of these constraints, the maximum number of independent parameters that define the entries of J; is
three as claimed. The specialization of these functionals to conventional and parametrized forms is discussed
in References [4,5].

5. SPLIT FORM OF GENERALIZED STRAIN ENERGY

The expression (22) for U is not suitable for incompressible materials. To construct a parametrized form
that encompasses incompressibility the generalized strain energy is augmented with additional independent
fields, one of which must be the pressure. There are several ways of accomplishing this objective. In this
Section the starting point is the conventional deviatoric splitting (18); the Lamé splitting (19) is considered
in Section 7.

An augmented generalized strain energy Uy, (subscripts stand for “deviatoric split”) is constructed in
terms of the five independent fields § , g, G, p and 6. Using (25) as a “template” the following quadratic form
is postulated:

()7 [jul  jul  jul juh jish jish] (8]
s& Jul . jnul  jnl  jah  jash  jyh g
s* Jjul  jaal  jul jash jish  jagh g
Ugs =14 f . ; ; ; . ' 0115 Y av, 33
“T )5 jabT  johT  jehT  ju s jes | ] 67 &)
»° jsth”  js2hT  jsshT  jsa  jss  Jjss 0
P} Ljah™ jehT joh  je  jes  jes 4 | 6* )
in which the derived fields are

g'=MD-ihdivii=D,d, g=C's, 6°=k7'5, ¢*=-divi, 34
$#=Cg s"=Cg=CD;ii, p°=k8, p"=k6"=—kdivi

The kernel matrix of the quadratic form (33) is now 21 x 21 and is characterized by the thirty-six j coefficients.
Unlike the treatment in Section 4, coefficient symmetry conditions are not set ab initio. Substituting (34)
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i
:

into (33), Uy, may be expressed in terms of the five independent fields as the quadratic form

(§Z\T T juc™! Jjiad
g jul jnC
Us=} [ {@} | D] +jakgradh™c! juDIC+ jukgradh’
Y p jahTC™! jah?
(6] | jsikh7C™! JsokhT
Ji3Dg + jighdiv juak~'h Jish
J3CD, + j2sCh div jask~1Ch J2sCh

DIC(jssD; + jashdiv)  jak™'DICh + jesgrad  jasD] Ch + jssk grad
+k grad (j3 K7D, + js div)
jashT Dy + jas div Jaak™! Jus
Jjs3khTDy + jsek div Jsa Jssk

D "o

=t o o

P

+ dV.

(33

in which grad = div? = {3/9x; 9/dx; 8/dx3}” when applied to a scalar function. The kernel matrix
in (35) must be symmetric, a condition that provides the following symmetry relations:

jmn=jnm’ m=l|2v3 n=192v3 jmn=jlwu m=495v6 n=495o6

jmnl:jnmk-lc. m =4, 5,6 n= 1, 2.3.
If these conditions are imposed on (33) that kernel matrix becomes

jul Jjizl jual jish  jish  jigh]
Jial jnl Jnl Jush  jash  jash
jisl Jal Jjaal juh  jash  jigh

Juk™'ChT  jpuk~'ChT  jsuk™'CHT i jas |
jisk™'ChT  josk='ChT  jssk™IChT  jos  jss s
| jisk™'ChT josk™'ChT  jsgk™'ChT  jis  jss  jes .
This is fully characterized by the 6 x 6 functional-generating symmetric matrix

n Juz Ji jw s ]
Ju J2 Jj3 s Jas s
Jis JB 3 Ja Js Js
Jle Ja ja Jas  Jas  Jas
Nis Jas Jas Jas Jss  Jse
_Jis J6 J Jew Jse Jes |

Ju=

(36)

G

(38)

(the J subscript denotes the number of free parameters, as explained below). The kernel matrix of (35)

becomes

Jaak™!

| symm
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CjuCt il jisDg — jighdiv juk~'h jish
J=C jz3CD; = jasCh div jrek~'Ch J2sCh
j5DICD; + jsskgrad div)  juk~'DICh  jssDCh
—jss(DfChdiv + gradh’CD;) —jisgrad —jsck grad

Jas

Jssk

(39



The first variation of (35) is

8Uqs = (Bg. 55), + (As,88), — (dive’, 8a), + (46, 85), + (Ap, 86), + [}, sii];, (40)

where

Ag = jug + juB + j138* + h(j1b” + jis6 + jish"*),
AS = jio§ + ju¥ + jns* + Ch(j246° + fos6 + jas8"),
"= ji13§ + jo3s® + ja3s” + B(j40? + jasO + jzsb*)
+ hh7 (i + j265® + Jjass*) — h(jas p + jssp® + Jesp™) (41)
= ji3§ + jo3s® + ja38* + B(j3487 + j3s8 + j268*) — h(jasp + jss2® + Jesp®),
A6 = hTk™' (j1aS + jauS® + ju5*) + jusb® + jusB + jagb" = jaab® + jash + jasb",
Ap = b7 (jis§ + joss® + jas$*) + jasp + Jssp® + jsep* = jash + jssp® + jse P"-

where B = (I — {hh")Ch, and the éimpliﬁcations in o/, AB and Ap result from h”s = h7s¢ = h7s* =0
since the deviatoric stress tensor is traceless. Applying again the consistency argument and noting that mean
and deviatoric parts may vary independently one obtains the constraint conditions

intie+js=0 ju+jis+js=0 jut+jn+in=0,
Jaa+ jas+ jas =0, jutin+ju=1,  ju+js+j=0, (42)
Jas + jss + Jos = 1, Jas + jas + jas =0, Jas + jss + jss = 0.

Because of these nine constraints the maximum number of independent parameters that define the coefficients
of matrix (38) is 21 —~ 9 = 12 as claimed.

6. SIMPLIFICATIONS

Having a co!2 family of functionals for constructing numerical approximation methods such as finite elements
leaves the selection wide open. In the absence of other information it appears prudent to reduce the number
of free parameters by setting to zero all coefficients that couple mean and deviatoric quantities:

CJju Ji2 js 0 0 07
ju Jun jn O 0 O
_lJj1 Jjn j3 O 0 O 43
Js 0 O O ja Jjas Jjas “3)
0 0 O s Jss Jss
L0 O O s Jss Jes.

subject to the constraints that the row (implying column) sums be 0, 0, 1, 0, 0 and 1, respectively. This
simplified form exhibits six independent parameters.

The next question is how to include exact incompressibility, for which k — 00. A study of the matrix
(39) reveals that the only coefficients affecting terms multiplied by k are jss and jgs. One solution would be
to take jss = jss/ k. and jes = jg/k with the primed coefficients as source data. A more expedient solution
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~— i B iR

is to set those coefficients to zero, which reduces (43) to

v iz i 0 0 0
jiz Jjn Js 0 0 .0
_|Js Jj2 Jn 0 0 0
Ji=1% %0 0 2w-1 -0 1-0 (44)
0O 0 O - 0 ®
0 0 0 l-0 o 0o

where w is a free parameter that determines the lower 3 x 3 principal minor. The total number of parameters
is reduced to four, just one more than in compressible elasticity. Thus the following practical rule emerges:
any compressible-elasticity. principle characterized by the coefficients (26) can be extended to embody
incompressibility by modifying U as follows:

(D Replace o and e by s and g, respectively. (In fact, only the first modification is actually needed, since
sTg=sTe, etc)

(I) Add the pressure and volumetric strain terms characterized by the lower 3 x 3 principal minor in (44).
If w is zero the volumetric strain drops out as independent field and the additional terms reduce to

(5. 6" — 67), +i(p".67), = —/ (§+ﬁdivﬁ)dv. (45)
. v .
Furthermore, in exact incompressibility only the term — p div u survives.

7. LAME SPLIT

Consideration of the Lamé split (19) is of interest because of historical reasons, since the first mixed variational
principle encompassing compressible and incompressible isotropic elasticity constructed by Herrmann {7
was based on it. Again one can start by postulating a quadratic form for the generalized strain energy Urs
(where subscripts stand for “Lamé split”™):

T

[ ) B tul tnl l|3l luh tlsh llsh’ [ e )
7 81 €l &nl  fxh fsh Eh é
™ &1 €pl 4331 &b fsh E36h e
_1 31 32 33 34, 35 36
V=t [ 7] | b cont ot cw vs ca|]or (¥ @O
q° tsih”  eh?  Essh? 8se  fss s @
(g% ) Leah™ E€xh” 2eh”T e les  €es | L 6% )
in which the £’s coefficients take the place of the j's, and where the new terms are
F=o0—gh, 7 =Cg, 7 = CDu, e =C'3 @7
E=3v/(1+v), §G=£&p, ¢ =¢&r6, qg"*=-Erdivd, 67=g¢q/Ar

Going through the same mechanics one obtains relations similar to (35) through (40) with s, g, p, k and D,
replaced by T, e, g, A and D, respectively. But now h” is not necessarily zero and so the counterpart of (41)
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retains more terms:

Ae =" + €28+ Li3e" + h(£,467 +8155 + £166"),
AT = L1274+ EnT + 837 + Ch(£2407 + 8258 + £266%),

o' =Li3T+ €n7 + €337 + Ch(€3407 + €350 + €166")

+ hh7 (£167 + L267 + £36™) — h(Lasp + Es6P° + Lss P*).
A0 = hTA™V (L 1T+ €247 + L347) + £4s87 + 8458 + L46B",
Ag =hT (8157 + os™ + £357) + Lasd + E5sq° + Eseq”.

Consistency provides the twelve constraints

u+én+3=0,
Ly + €5+ €2 =0,
Lig+ L+ 836 =0,
ag+ s+ 8 =0,

This leaves 21 — 12 = 9 independent parameters in the functional-generating symnietric matrix

KATERAY)
2 €

_ b3 £
Ly = s a4
&is s
RATRR T

L3
&
£33
&34
35
43

m
N
&34
L
as
Les

Ly + s+ s =0,
bn+lntin=1,
€as + Lss + les = 1,
Lis + s+ 835 =0,

4
s
&35
Las
£ss
€s6

Lp+en+8s =0,
8+ 835+ L3 =0,
Gis+ 8o+ 8 =0,
Lys + €55 + €56 = 0.

Li6
£26
436
L4s
Ls6
Lo _

(43)

(49)

(50)

If the off-diagonal blocks of this matrix are set to zero as in (43), Lo becomes L and the conditions on the
remaining nonzero coefficients are identical to those of Js.

Treatment of the more general splitting (12) with n # 0 does not cause any particular difficulties.
However, as splittings other than (18) do not accomodate anisotropic materials naturally, they will not be

investigated further.

8. SPECIALIZATIONS

The simplest principle (in the sense of having the sparsest J matrix) that accomodates both compressible and
incompressible elasticity is obtained by specializing (44) to

K

0
00
00
00
00
0

0

0 0
0 0
1 0
0 -1
0 0
0 1

CO0OO0O0OCO

OO =0 0O

-

This choice leaves only displacements and pressures as independent field variables and yields

= =2
Us(@, 5) = 4(s". &), — (ﬁ, £+ divﬁ)v =1i(s e, - (gk— + ﬁdivﬁ)

261

14

»

(51)

(52)

L]

T T e e T T

LAy { i

i



F' .‘
bt

which may be viewed as an modification of the minimum potential energy functional. For practical use it
is important to note that g* may be replaced by e* in the first integral because tensor s;; is traceless. In the

incompressible limit Up collapses to ;(s*, e“)y — (5. divi)y.

The specialization
"0 -1 1 0 0 07
1 1.0 0 0 0
SRR RN
0 0 0 -1 10
0 0o 0 1 0 0]

reduces Uy — P to the five-field functional presented by Atluri and Reissner [8] (in that paper p and & are
defined as the negatives of the quantities used here). Notice that since both 3 x 3 principal minors of Jar
display the numerical structure of the Hu-Washizu principle of compressible elasticity, use of (24) yields

Uiz = UnG. & @ + Un(5h, 6h, 0*h) = 3(5.8), + G.g" — &), +1(¢".8), +5(6“ - 8),. 59

in which again g* and § may be replaced by ¢ and &, respectively. As jss # 0, this functional does not
accomodate exact incompressibility. This drawback can be easily corrected, however, through the techniques
discussed in Section 6.

Finally, specialization of (50) to
"0 0 0 0 0 07 "0 -1 1 0 0 07
000 0 00O -1 1. 0 0 00O
001 0 00 1 0 0 0 00O
L”"ooo—lol'LF“ooo-lol' (53)
000 0 00O 0O 0 0 0 00O
000 1 0 O] 0 0 0 1 0 0]

reduces the functional Uy, — P to those presented by Herrmann [7) and Franca [9), respectively; which are
identified as Uy — P and Ur — P in the sequel.

Herrmann’s functional, which as noted above has historical importance, contains two independent fields:
displacements u and pseudo pressure g. Its U functional is

52
Up(d, §) = 3(*. ), - (% +qdivﬁ) . (56)
1 4

The upper and lower 3 x 3 principal minors of Ly display the numerical structure of the minimum potential
energy and stress-displacement Reissner compressible-elasticity functionals, respectively.

Franca’s functional contains four independent fields: extra stress 7, total strains e, displacements u and
pseudo pressure g. Its U functional is

Ur(%. 8,6 3) = (.8, + (1. —8), — (% +¢jdivﬁ) : 57
1 4

The upper and lower 3 x 3 principal minors of L display the numerical structure of the Hu-Washizu and
stress-displacement Reissner functionals of compressible elasticity, respectively.
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9. CONCLUSIONS

The parametrized formulations presented here extend the parametrized functionals of References [4.5] to
accommodate incompressibility. In doing so a wider and perhaps bewildering range of possibilities is
encountered, which raises some questions as regards the usefulness of parametrization techniques.

The formulation of parametrized variational principles offers conceptual and practical advantages. From
a conceptual standpoint the technique is intellectually satisfying in that all possible variational forms are
obtained once and for all. This should be contrasted to the conventional case-by-case derivation, which

can only take “potshots” at the infinite domain of possible functionals. The key practical advantage is that

generating matrix coefficients may be left free in finite element applications down to the element level, and
use to enhance the quality of the numerical approximations as discussed in References [1-5].

But coming face to face with twelve free parameters as in Section 5 may be confusing and negate
the claimed benefits of generality. The simplifications of Section 6 appear reasonable from an applications
standpoint because (1) they cut the number of independent parameters while retaining flexibility in the
weighting of the participating fields, and (2) all important specific functionals proposed to date are still
covered.

Finally, the simplicity and generality of the functionals based on the deviatoric splitting (18) should
be kept in mind. It is difficult to understand why the finite element literature is still preoccupied with the
Lamé split and associated functionals. Not only is this split unnatural for anisotropic materials but note that
associated functionals such as (56) and (57) degenerate for A = 0, which happens if v = 0. At this value,
£ = 0, g vanishes identically, and 0/0 terms requiring special treatment appear in U. As a zero Poisson’s
ratio is physically realizable the claim to generality of application, even with restriction to isotropic behavior,
is seriously weakened.
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THE INDIVIDUAL ELEMENT TEST REVISITED

SUMMARY

The subject of the patch test for finite elements retains several unsettled aspects. In particular,
the issue of one-element versus multielement tests needs clarification. Following a brief historical
review, we present the individual element test (IET) of Bergan and Hanssen in an expanded context

that encompasses several important classes of new elements. The relationship of the IET to the
multielement forms A, B and C of the patch test and to the single element test are clarified.

1. BACKGROUND

The patch test for convergence is a fascinating area in the development of nonconforming finite
element methods. It grew up of the brilliant intuition of Bruce Irons. Initially developed in the
mid-1960s at Rolls Royce and then at the Swansea group headed by Olek Zienkiewicz, by the early
1970s the test had became a powerful and practical tool for evaluating and checking nonconforming
elements. And yet today it remains a controversial issue: accepted by most finite element developers
while ignored by others, welcomed by element programmers, distrusted by mathematicians. For
“tracing down the origins of the test there is no better source than a 1973 survey article by Irons
and Razzaque [12). Added remarks to the quoted material are inserted in footnotes, and reference
numbers have been altered to match those of the present paper.

Origins of the Patch Test

In 1965 even engineering intuition dared not predict the behavior of certain finite elements. Expenence
force those engineers who doubted it to admit that interelement continuity was important: the senior author!
believed that it was necessary for convergence. It is not known which ideas inspired a numerical experiment by
Tocher and Kapur [25], which demonstrated convergence within 0. 3% ina bthm'momc groblem of plate bending,
using equal rectangular elements with 1, x, y, x2, xy, y2, 2, x3, x%y, xy?, 3, and x°y and xy3, as functional
basis. The nodal variable of this Ari Adini rectangle [1] are w, dw/dx and dw/3y at the four comers, and this
element guarantees only C° conformity.

Some months later, research at Rolls-Royce on the Zienkiewicz nonconforming triangle [2], — a similar
plate-bending element?— clarified the situation. Three elements with C! continuity were simultaneously avail-
able, and, because the shape function subroutine used for numerical integration had been exhaustively tested,

! Bruce Irons
2 This element is that identified by ‘BCIZ’ in the present paper
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the results were trustworthy. It was observed: (a) that every problem giving constant curvature over the whole
domain was accurately solved by the conforming elements whatever the mesh pattern, as was expected, and (b)
that the nonconforming element was also successful, but only for one particular mesh panem.3

Thus the patch test was born. For if the external nodes of any sub-assembly of a successful assembly of
elements are given prescribed values corresponding to an arbitrary state of constant curvature, then the internal
nodes must obediently take their correct values. (An internal node is defined as one completely surrounded by
elements.) Conversely, if two overlapping patches can reproduce any given state of constant curvature, they
should combine into a larger successful patch, provided that every extemal node lost is internal to one of the
original patches. For such nodes are in equilibrium at their correct values, and should behave correctly as internal
nodes of the extended patch. In an unsuccessful patch test, the internal nodes take unsuitable values, which
introduce interelement discontinuities. The errors in deflection may be slight, but the errors in curvature may be

£20%. We must recognize two distinct types of ermrors:

(i) The finite element equations would not be exactly satisfied by the correct values at the internal nodes —
in structural terms, we have disequilibrium;

(ii) The answers are nonunique because the matrix of coefficients K is semidefinite.
Role of the Patch Test

Clearly the patch test provides a necessary condition for convergence with fine mesh. We are less confident
that it provides a sufficient condition. The argument is that if the mesh is fine, the patches are also small. Over
any patch the correct solution gives almost uniform conditions to which the patch is known to respond correctly
— provided that the small perturbations from uniform conditions do not cause a disproportionate response in the
patch: we hope to prevent this by insisting that K is positive definite.

The patch test is invaluable to the research worker. Already, it has made respectable

(i) Elements that do not conform,

(ii) Elements that contain singularities,

(iii) Elements that are approximately integrated,
(iv) Elements that have no clear physical basis.

In short, the patch test will help a research worker to exploit and justify his wildest ideas. It largely restores
the freedom enjoyed by the early unsophisticated experimenters.

The late 1960s and early 1970s were a period of unquestionable success for the test. That optimism
is evident in the article quoted above, and prompted Gilbert Strang to develop a mathematical
version popularized in the Strang-Fix textbook [21].

Confidence was shaken in the late 1970s by several developments. Numerical experiments, for
example, those of Sander and Beckers [20] suggested that the test is not necessary for convergence,
thus disproving Irons’ belief stated above. Then a counterexample by Stummel [22] purported to
show that the test is not even sufficient.* This motivated defensive responses by Irons [13] shortly
before his untimely death, and by Taylor, Simo, Zienkiewicz and Chan [24]. These papers tried to
set out the engineering version of the test on a more precise basis. _‘

Despite these ruminations many questions persist, as noted in the lucid review article by
Griffiths and Mitchell [11]. Some of them are listed below.

3 The bending element test referred to in this sentence appears in the Addendum to [2]. This Addendum was not part
of the original paper presented at the First Wright-Patterson Conference held in September 1965; it was added to
the Proceedings that appeared in 1966. The name “patch test” will not be found there; see the Appendix of {21} for
further historical details. .

4 Stummel has constructed [23) a generalized patch test that is mathematically impeccable in that it provides necessary
and sufficient conditions for convergence. Unfortunately such test lacks important side benefits of Irons’ patch test,
such as element checkout by computer, because it is administered as a mathematically limiting process in function
spaces. Furthermore, it does not apply to a mixture of different element types, or to situations such as a side shared
by more than two elements.
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Q1.  What is a patch? Is it the ensemble of all possible meshes? Are some meshes excluded?
Can these meshes contain different types of elements?

Q2. The test was originally developed for harmonic and biharmonic compressible elasticity
problems, for which the concept of “constant strains” or “constant curvatures” is unambigu-
ous. But what is the equivalent concept for shells? Even Reissner-Mindlin plates (which
lead to the so-called C° elements) pose difficulties.

Q3.  What are the modifications required for incompressible media? Is the test applicable to
dynamic or nonlinear problems?

Q4.  Are single-element versions of the test equivalent to the conventional, multielement ver-
sions?

Q5.  Is the test restricted to nonconforming assumed-displacement elements? Can it be extended
to encompass assumed-stress or assumed-strain mixed and hybrid elements? (For intial
attempts in this direction, see [10])

The following treatment is aimed primarily at answering the last two questions. No position
as to the mathematical relevance of the test is taken.

2. THE INDIVIDUAL ELEMENT TEST

Because of practical difficulties incurred in testing all possible patches there have been efforts
directed toward translating the original test into statements involving a single element. These will
be collectively called one-element tests.

The first step along this path was taken by Strang [21], who using integration by parts recast
the original test in terms of “jump” contour integrals over element interfaces. An updated account
is given by Griffiths and Mitchell [11], who remark that Strang’s test can be passed in three different
ways: ‘

JCS: Jump integrals cancel over common sides of adjacent elements (e.g. DeVeubeke’s 3-
midside-node triangle, Morley’s plate elements).

JOS: Jump integrals cancel over opposite element sides (e.g. Wilson’s incompatible plane rect-
angle [26]).

JEC: Jump integrals cancel over the element contour (see examples in [11]).

Another important development, not so well publicized as Strang’s, was undertaken by Bergan
and coworkers at Trondheim over the period 1975-1984. The so called individual element test, or
IET, was proposed by Bergan and Hanssen [4] in 1975. The underlying goal was to establish a
test that could be directly carried out on the stiffness equations of a single element — an obvious
improvement over the multielement form. In addition the test was to be constructive, i.e., used as
an a priori guide during element formulation, rather than as a post-facto check.

The IET has a simple physical mctivation: to demand pairwise cancellation of tractions among
adjacent elements that are subjected to a common uniform stress state. This is precisely the ‘JCS’
case of the Strang test noted above. Because of this inclusion, the IET is said to be a strong version
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of the patch test in the following sense: any element passing the IET also verifies the conventional
multielement form of the patch test, but the converse is not necessarily true.

The IET has formed the basis of the free formulation (FF) later developed by Bergan and
Nygard [6]. It has also played an important part in the development of high performance finite
elements undertaken by the authors [7-9,15-18].

In an important paper written in response to Stummel’s counterexample, Taylor, Simo,
Zienkiewicz and Chan [24] defined multielement patch tests in more precise terms, introducing
the so-called A, B and C versions. They also discussed a one-element test called the “single ele-
ment test,” herein abbreviated to SET. They used the BCIZ plate bending element [2] to show that
an element may pass the SET but fail multielement versions, and consequently that tests involving
single elements are to be viewed with caution. In what follow we try to clarify this apparent contra-
diction and to establish precisely what the individual element test entails. In particular it is shown
that the [ET contains a crucial condition that the SET lacks, and that the two tests are not therefore
equivalent.

Furthermore, we extend the IET to conditions beyond those considered by Bergan and Nygard
by including elements with unknown internal displacement fields. The most important sources of
such elements are: stress-assumed hybrids, and elements constructed through the assumed natural
strain (ANS) and assumed natural deviatoric strain (ANDES) formulations.

3. ASSUMPTIONS FOR ELEMENT CONSTRUCTION

Suppose that we want to test an individual element of volume V and boundary S with exterior
normal n. The element satisfies the following assumptions.

Al. The element shares displacement degrees of freedom collected in v (the so called visible
degrees of freedom) with adjacent elements. The boundary displacement field d is uniquely
determined by v as

d = Ngv, (1)

where Ny are boundary shape functions.
The term “boundary displacement field” is meant to include normal derivatives (side rotations or slopes) in bending

problems. More generally, in a problem governed by a variational principle of index m > 1, d includes normal
derivatives up to the (m — 1)* order.

This assumption says nothing about the internal displacement field u. In free-formulation elements u is known
and agrees with d only at the nodes. In the ANS [3,14,19,] and ANDES {8,9,17,18] formulations, u is unknown
because the deviatoric strain field e, introduced in A2 below is not generally integrable.

A2.  The strain field € within the element is expressible as

e = By, 2)

which admits the following decomposition into mean and deviatoric parts:

e=¢é+e, =Bv+B,v=(B+Byy, (3)
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A3.

Ad.

where
é=—fedV, €, = € — E. 4
v

We note that
fB,,dV:O, /AB,,dV:O. : '®))
v v :

in which A is an arbitrary matrix constant over the element.

Subscript h stands for “high order”” The strain field €, is not generally integrable, that is, associable with an
internal displacement field u such that ¢, = Du, where D = %(V +VT) is the symmetric vector gradient operator.
On the other hand, the mean strain field €, being constant, is integrable, as discussed under assumption A4.

Suppose the element is under a constant stress state oo. Then a nodal force system p,
conjugate to v in the sense of virtual work develops. These forces are connected to v
through the relation

pp=Log, L= f Nuw S, 6
M

where L is called the force lumping matrix and Ny, denotes the projection of the shape
functions Ny over the normal to the element side.

Matrix L was introduced by Bergan and coworkers in their studies leading to the free formulation (5,6}, and plays
a crucial role in the individual element test.

The constant stress field o is associated with a given displacement field called u,., such
that the associated strain and stress fields are

& =D(u.), o°=E&, (7

where E is the symmetric matrix of elastic moduli, assumed constant over the element. This
constitutive assumption excludes incompressibility, which must receive special treatment.

Field u,. cannot be immediately linked to v because it spans a subspace of the possible
boundary motions. We must start by expressing u,. in the modal or generalized-coordinate
form

u, =N q,, &

r

where N?_ are modal functions and q,. their amplitudes. The projection v, of u,. over the
space of boundary motions spanned by v can be most easily obtained by collocation, that
is, evaluating u,. at the nodal points. This process yields

Vee = Grcqrcv (9)

in which G, will generally be a rectangular matrix with more rows than columns.

Subscripts r and ¢ mean that u,, is supposed to include rigid-body and constant-strain modes. In mathematical
terms, u,. is a polynomial of degree m — 1 when the variational index is m.
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4. THE STIFFNESS MATRIX

Under the previous assumptidns, the stiffness matrix is given by
K= LBTEBdV. : | (10)
Using the strain decomposition (3), K splits as follows:
K=K, +K, = fVETEEQV +fVB,{EB,,dv = v§TE§+fVB,{EB,,dV (1D
because of the energy orthogonality condition

f B EB,dV =0, (12)
v

which results on taking A = §TE on the second of (5). Matrices K, and K, receive the name of
basic stiffness and higher order stiffness, respectively.

5. FIRST CONDITION: CONSTANT STRAIN STATES

Bergan and Nygard [6] state two constraints for FF elements, which taken together represent
the satisfaction of the IET. The first one is

KV,C=L0’0, (13)

which is essentially an equilibrium statement at the element level. Premultiplying (13) by vl we
get vZ'ch,c = v,TCLao, which on introducing (9) and (11) becomes

P .
q’.GT B EBG,.q,.V + q".G! K,G,.q,. = q],G],Loy. (14)

If we request that K, cannot contribute to the internal energy under a constant strain state we must
have GT K, G, = 0, or, since K, = [, BLEB,dV,

B.G,. =0, (15)

This may be called the higher order strain cancellation condition. Taking into account that op =
EB?_q,.. where B/, = D(N?), the above equation becomes B'EBG,. = V-! LEB]_. This can be
split into _ET = V~!'L and BG,. = B?_. Replacing the former in the latter we obtain

V-ILTG,. = B, (16)

These conditions were introduced by Bergan and Nygard [6] in the context of the free formulation.
They state that equation (16) should be used to check that the matrix L is correct. Then (16) is
the first consistency constraint on L. Equations (15) and (16) are necessary in order that a single
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Figure 1. A common side i — j shared by two elements.

element, which is in equilibrium, be capable of copying a constant strain state. To prove that they
are also sufficient conditions is straightforward.

An important consequence of (16) can be investigated as follows. Rewrite itas V-'LTG, g, =
Du,.. Multiplying both sides by ol and integrating over the element volume we obtain

olL7G,cq,. = f ol Du,.dV. (17
14

Integration by parts of the right hand side yields

olLTG,.q,. =} fs N.» dS q,., (18)

where N, are the the projections of the modal functions over the normal to the element side. From
the definition of L in (6) we conclude that

f NI dSG,q,. = f NundS q,.. (19)
S S

This result may be stated as follows: the force lumping produced by the boundary displacement field
should be energy consistent (in the sense of virtual work) with that produced by the displacement
field u,. over the element side. Although BY, is unique for a given problem, since G, is generally
a rectangular matrix, equation (16) clearly shows that L is not necessarily unique. Examples that
illustrate this property may be found in {17]. L is unique for simplex elements where we have the
same number of nodal connectors v and rc-modal amplitudes q,, because in this case G, is square
and non-singular. For these elements the total and basic stiffness matrices coalesce. An obvious
example is provided by the constant strain triangle (CST).

6. SECOND CONDITION: PAIRWISE FORCE CANCELLATION

Quoting from [4]: “The basis for the individual element test is that the element, when interact-
ing with its neighbors, should be capable of identically reproducing an arbitrary rigid-body/constant
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strain field ... The interelement forces transferred at nodes should cancel out in a pairwise manner
for adjacent elements during such state.” This establishes a second key constraint on L.

Suppose we have a side i — j joining elements k and k + 1, as illustrated in Figure 1. The
second condition requires that

i J
[ Nk,.dS = / Nirlds. (20)

The easiest way of enforcing this condition is by choosing a boundary displacement d that is
uniquely defined over i — j by degrees of freedom on that interface.

This rule can be extended to cases in which more than two elements share a side, as is the case in many practical structures.
Note that (20) does not involve the internal displacement field in any way. Consequently it establishes the mixability of
elements of different types (for example, FF with ANDES elements). The SET discussed in [24] omits this important
condition.

7. MULTIELEMENT PATCH TESTS AND THE IET

Bergan and coworkers called conditions (13) and (20) the IET. We now prove that if the element
under consideration satisfies these conditions, it will also pass the so-called forms A and B of the
multielement patch test [24]. Furthermore, if the element is rank sufficient it will also pass form C.

Figure 2. An assemblage of elements

Let us consider the assemblage of elements shown in Figure 2 as a patch. The global displace-
ment field consistent with a constant strain field is v¥; = G2.q,. The stiffness matrix of the kth
element satisfies equation (13), or its equivalent global form

PHTK*P*v8, = (PY)TL*ay, @D
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where P* are Boolean localization matrices. Upon assembly we obtain
ngfc = L8cy = p, (22)

but because of the satisfaction of equation (20) the force vector p has only components in nodes
j,...J+n. Then, for the i** internal degree of freedom we have

K&v: =pi =0, (23)

ifrej —

which is the statement of the form A of the patch test. If an element satisfies A, form B is also
satisfied because from (22) we can obtain the displacement of the internal node i as:

vre, = (K§) ™ (pi — Kijvf,), j#i. (24)

Because the element satisfies (13), v, can be obtained if upon removing the rigid body motions
K* is nonsingular and can be inverted. Consequently K* should be rank sufficient in order to satisfy
form C. ’

8. CONCLUSIONS

It has been shown that the IET constraints plus rank sufficiency provide sufficient conditions
to pass any form of the multielement patch test. The main practical advantages of the IET are:

1. By applying rules (13) and (20) elements can be constructed that will pass any multielement
patch test a priori, provided that they are rank sufficient, while being capable of copying
constant strain states. No such possibility exists in the conventional patch test, which must be
necessarily applied a posteriori.

2. Element mixability is immediately established.

A “surgical operation” can be established to “sanitize” elements that fail the IET, as discussed
in the Appendix of [17]. The operation essentially amounts to the replacement of the basic
stiffness.

The price paid for these advantages is that the test is occasionally stronger than strictly neces-
sary. For example, the BCIZ nonconforming triangle [2] fails the IET but passes the multielement
test for certain mesh configurations.

A potential difficulty in the application of the IET to existing elements is the need for extracting
the force-lumping matrix L. This matrix may not be readily available and, as mentioned in Section
5, is not necessarily unique.

Finally, as remarked in several places, the present statement of the IET is not restricted to the free
formulation, and has actually been used in this expanded form for constructing high-performance
elements based on the ANDES formulation [8, 9,17,18].
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MEMBRANE TRIANGLES WITH CORNER
DRILLING FREEDOMS: I THE EFF ELEMENT

SUMMARY

This paper is the first of a three-Part series that swdies the formulation of 3-node, 9-dof membrane elements
with normal-to-element-plane rotations (the so-called drilling freedoms) within the context of parametrized
variational principles. These principles supply a unified basis for several advanced element-construction
techniques; in particular: the free formulation (FF), the extended free formulation (EFF) and the assumed
natural deviatoric strain (ANDES) formulation. In Part I we construct an element of this type using the EFF.
This derivation illustrates the basic steps in the application of that formulation to the construction of high-
performance, rank-sufficient, nonconfonning elemeats with comer rotations. The element is initially given
the 12 degrees of freedom of the linear strain triangle (LST), which allows the displacement expansion to be a
compiete quadratic in each component. The expansion basis contains the 6 linear basic functions and 6 energy-
orthogonal quadratic higher order functions. Three degrees of freedom, defined as the midpoint deviations
from linearity along the triangle-median directions, are eliminated by kinematic constraints. The remaining
hierarchical midpoint freedoms are transformed to corner rotations. The performance of the resulting element
is evaluated in Part III.
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1. INTRODUCTION

The idea of including normal-rotation degrees of freedom at corner points of plane-stress finite
elements — the so-called drilling freedoms — is an old one. The main motivations behind this idea
are: |

1. To improve the element performance while avoiding the use of midpoint degrees of freedom.
Midpoint nodes have lower valency than corner nodes, demand extra effort in mesh definition
and generation, and can cause modeling difficulties in nonlinear analysis and dynamics.

2. Tosolve the “normal rotation problem” of smooth shells analyzed with finite elements programs
that carry six degrees of freedom per node.

3. To simplify the modeling of connections between plates, shells and beams, as well as the
treatment of junctures between shells and/or plates.

Many efforts to develop membrane elements with drilling freedoms were made during the period
1964-1975 with inconclusive results. A summary of this early work is given in the Introduction
of an article by Bergan and Felippa [1], where it is remarked that Irons and Ahmad in their 1980
book [2] had dismissed the task as hopeless. In fact, the subject laid largely dormant during the late
1970s, but it has been revived in recent publications [3,1,4-8] that present several solutions to this
challenge. Especially noteworthy is the study by Hughes and Brezzi [9] of variational principles that
include independent displacement and rotation fields. A membrane element with drilling freedoms
based on these principles has recently been constructed by Ibrahimbegovic [10].

The first successful triangles with drilling freedoms were presented by Allman in 1984 [3]
and Bergan and Felippa in 1985 [1]. Both elements are nonconforming and pass displacement-
specified patch tests. In addition the Bergan-Felippa triangle, being rank sufficient, passes traction-
specified patch tests. The original Allman element, based on the concept of vertex rotations, had
remaining problems such as rank deficiency, which were cormrected in an improved version published
in 1988 [7]. The two approaches share procedural similarities, such as the use of incompatible
displacement functions. But the element construction methods are entirely different: Allman
used the conventional potential energy formulation whereas Bergan and Felippa used the free
formulation (FF of Bérgan and Nygérd {11]. Furthermore Bergan and Felippa, following mid-
1960s work at Berkeley and Trondheim [12-15] exploited the concept of continuum-mechanics
rotations, sometimes referred to as true rotations. A discussion of the relative performance of these
elements is given in Part III of this series [16].

Both approaches can be extended to quadrilateral elements with drilling freedoms for plane
stress and shell analysis. Extensive experience with Allman-type quadrilateral shell elements is
reported by Frey and coworkers; see the excellent survey article [17] and references therein. A
FF-based quadrilateral called FFQ was constructed by Nygérd in his thesis [18] using quadratic and
cubic higher order functions; this is presenly a workhorse shell element in the nonlinear program

FENRIS [19]).
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At the time the Bergan-Felippa element was constructed (summer 1984) the free formulation
lacked a variational basis. This deficiency was remedied five years later by the introduction of
parametrized variational principles in a series of recent publications [20-23]. Therein it is shown
that the energy-orthogonal FF with scaled higher order stiffness can be accommodated in the
framework of a one-parameter d-generalized hybrid variational principle that reduces to hybrid
versions of the potential energy and Hellinger-Reissner’s principle as special cases. This rigorous
justification of the FF opened the door to a variant called the extended free formulation or EFF [24],
which circumvents a major kinematic restriction of the FF.

The present work may be viewed as a continuation of two mid-80 papers [1,6] but now on firmer
theoretical grounds. Our main objective is to illustrate the application of the EFF to the construction
of a triangular membrane element with drilling freedoms that initially has complete quadratic
polynomial expansions in each displacement component. The use of complete quadratic expansions
as departure point requires a total of 12 degrees of freedom. Nine freedoms are defined at the corner
nodes in the usual fashion, i.e., six translations and three drilling rotations. Three additional degrees
of freedoms, to be subsequently eliminated, are needed. In the EFF such additional freedoms can
be eliminated in three ways: duality pairing with divergence-free stresses, static condensation of
augmenting degrees of freedom, or a posteriori application of kinematic constraints. The present
derivation uses the last technique. : :

Four choices of “eliminable midpoint freedoms” intrinsically related to the triangle geometry
were considered: side directions, normal-to-sides, median directions and normal-to-medians. It
was found that only the third choice provides for stable elimination. Once this key discovery was
made, the remaining element derivation steps, though laborious, could be followed in a systematic
way.
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2. THE STIFFNESS EQUATIONS

The stiffness equations derived from the parametrized variational principles referenced in the In-
troduction enjoy the fundamental decomposition property summarized in Box 1. The element
stiffness matrix can be additively decomposed into K = Ky + K, where K, is the basic stiffness
matrix, which is constructed for convergence, and K}, is the higher order stiffness matrix, which is
constructed for stability and accuracy. As discussed in Box 1, for free-formulated elements K, can
be scaled by (1 — y), where y is a scaling coefficient < 1 that may be used to increase the element
performance for coarse meshes. This value may vary from element to element without affecting
convergence. This scaling is justified variationally in [20,21). Multiparameter scaling is discussed
in [25] to improve the performance of a specific plate bending element.

The basic stiffness part of the present element (as well as that of the element derived in Part
II [26]) is identical to that presented in Bergan and Felippa [1,6). The higher order stiffness is
initially based on a modification of the twelve shape functions of the linear strain triangle (LST).
The modification makes the higher order (quadratic) shape functions energy orthogonal to the lower
order (linear) ones. The coefficients of these quadratic shape functions are generalized coordinates
in terms of which a generalized higher order stiffness matrix is readily constructed in closed form.
A chain of transformations follows in which these generalized coordinates are first transformed to
mldpomt degrees of freedom of the hierarchical LST, and then to three drilling freedoms at corners
and three median hierarchical displacements at the midpoints. Finally the latter are eliminated by
invoking a parametrized boundary constraint.

The main advantages sought for this element over the FF element of [1,6] are:

1. The higher order stiffness matrix is obtained in explicit form without need of numerical inver-
sion. Explicitness is expected to facilitate the direct derivation of energy-balancing formulas
to attain high performance under in-plane bending. This is especially true for orthotropic or
anisotropic material behavior.

2. Shorter formation time for K, which dominates the computation of K.

3. The coarse-mesh performance should be comparable to that of the lmear strain triangle (LST)
without the encumbrance of midpoint nodes.

Experience with the EFF element, as reported in Part ITI [16], indicates that the first two advantages
were realized, but the last one was not. Its performance turned out to be similar to that of the
original FF element, except for some regular-mesh problems where explicit energy balancing was
able to make a difference. The performance is, however, substantlally better than all other elements
tested for large element aspect ratios.

Aside from its intrinsic value as illustration of a powerful new technique for constructing
high-performance elements, the present derivation serves as prelude to a far more challenging task:
the construction of a rank-sufficient element in three dimensions (a 24-dof, rank-18 tetrahedron
with 12 comer rotations).
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3. THE FREE FORMULATION

The original free formulation (FF) was developed by Bergan and Nygéard [11] for the construction of
displacement-based, incompatible finite elements. This work consolidated a decade of research of
Bergan and coworkers at Trondheim, milestones of which may be found in [27,28,19]. The products
of this research have been finite elements of high performance, especiaily for linear and nonlinear
analysis of plate and shell structures. As noted in the Introduction, a theoretical justification based
on parametrized hybrid variational principles is provided in references [20-23].

The original FF was based on nonconforming displacement assumptions, the principle of
virtual work and a specialized form of Irons’ patch test that Bergan and Hanssen [27] called the
individual element test. The basic and higher order stiffness are constructed in largely independent
fashion by following the procedures outlined in Boxes 2 to 4.

Box 2 lists the main steps for constructing the basic stiffness matrix; for justification the reader
is referred to the previously cited references. The key steps in constructing the higher order stiffness
matrix using the standard free formulation (FF) are listed in Box 3.

The extended free formulation (EFF) presented in [24] removes the restriction ny = ng4 of
Step H.1(b) in Box 3 by three methods: (1) injection of higher order divergence-free stress fields,
(2) freedom augmentation with elimination by static condensation or (3) freedom augmentation
with elimination by kinematic constraints. The last method, which is the one used for the present
element, is outlined in Box 4.
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Box1 Decomposition of the Element Stiffness Equations

Let K be the element stiffness matrix, v the visible element degrees of freedom (those
degrees of freedom in common with other elements, also called the connectors) and p
the corresponding element node forces. Then the element stiffness equations decompose
as

Kv=(K,+K;)v=p. (1)

K, and K, are called the basic and higher order stiffness matrices, respectively. The
basic stiffness matrix, which is usually rank deficient, is constructed for convergence.
The higher order stiffness matrix is constructed for szability and (in more recent work)
accuracy. A decomposition of this nature, which also holds at the assembly level, was
first obtained by Bergan and Nygérd in the derivation of the free formulation [11].

In the unified formulation presented in [22, 23] the following key properties of the
_decomposition (1) are derived. ' .

1. K, is formulation independent and is defined entirely by an assumed constant stress
state working on element boundary displacements. As detailed in Box 2, no knowl-
edge of the interior displacements is necessary for this stiffness component. The
extension of this statement to C° plate and shell elements is not straightforward,

“however, and special considerations are necessary in order to obtain K, for those
elements.

2. Kj has the general form

Ki = j1Kiaz + j2Kiz + jKizs. (2)

The three parameters ji,, j»3 and ji3 characterize the source variational principle in

the following sense:

(a) The FF is recovered if j» = j»3 = O and jz3 = 1 — y, where y is a K,
scaling coefficient studied in [1,6,25]. The original FF of [11] is obtained if
y = 0. The source variational principle is a one-parameter form that includes
the potential energy and stress-displacement Reissner functionals as special
cases.

(b) The ANDES variant of ANS is recovered if j,3 = j33 = O whereas j is a
‘'scaling parameter. The source variational principle is a one-parameter form
that includes Reissner’s stress-displacement and Hu-Washizu’s functionals as
special cases.

(c) If ja3 is nonzero, the last term in (2) may be viewed as being produced by a
FF/ANDES combination. Such a combination remains unexplored.
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Box 2 Construction of the Basic Stiffness K,

Step B.1.  Assume a constant stress field, 7, inside the element. The associated
boundary tractions are &, = &.n, where n denotes the unit external normal on the
boundary S.

Step B.2.  Assume boundary displacements, d, over S. This field is described in terms
of the visible element node displacements v (also called the connectors) as

d= Nd v, (3)

where Ny is an array of boundary shape functions. The boundary motions (2) must satisfy
interelement continuity and contain rigid-body and constant-strain motions exactly.

Step B.3.  Construct the “force lJumping matrix”

L= f Ny, dS, @)
S

that consistently maps the boundary tractions &, = @.n into element node forces, P,
conjugate to v in the virtual work sense. That is,

ﬁ:/;N,,a',, dS =Lgo. (5)

In the above, N4, = Ny.n are boundary-system projections of N4 that work on the surface
tractions &,.

Step B.4. The basic stiffness matrix for a three-dimensional element is

K, = %LELT. (6)

where E is the stress-strain constitutive matrix of elastic moduli, which are assumed
to be constant over the element, and v = [, dV is the element volume measure. For

“two-dimensional or one-dimensional elements, v is replaced by the element area A or

length £, respectively, if the remaining dimensions are incorporated in the constitutive
matrix E.
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Box3 Construction of K, by FF

Step H.1.  Assume an internal displacement field over the element volume V':

u=N,q= N.q, + Ncq, + N:q,

7
rigid body constant-strain  higher order M

where array N, collects shape functions and q collects generalized coordinates. This
assumption must satisfy the following conditions:

(a) linear independence with respect to v;
(b) the dimensions n, and n, of vectors q and v, respectively, are the same;
(c) the rigid motions and constant-strain fields are complete;

(d) the higher order displacements are energy orthogonal with respect to the constant-
strain displacements. (Although this requirement was not mandatory in the orig-
inal FF, it is an essential part of the variationally formulated FF.)

Often (7) is written so that the rigid body and constant strain shape functions are combined:
u = N,.q,. + Nxq,. (8)

Step H2.  The internal strain field derived from u is e* = Du, where D is the strain-
displacement operator. Decompose this field as

¢ = DN,q = ¢! + e} = B.q. + B,q,, 9

since the strains associated with rigid body motions, B, q,, must vanish.

Step H.3. By collocation at the node points assemble the square nonsingular transfor-
mation

which inverted gives
| a H,
q H,

Step H.4.  The higher order stiffness matrix is given by

Ki=(-y)H KusHy,,  where Kg= f BTEB,dV. (12)
14

K, is the generalized stiffness in terms of the q, coordinates, and (1 — y) is a scaling
parameter (see Box 1).
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Box4 Construction of K, by EFF with Freedom Augmentation

Step E.1.  The internal displacement expansion is written as in (7) or (8) but now
ng > n, is allowed. The general prescription is to augment vector v with ng — ny
degrees of freedom collected in subvector v;. These additional degrees of freedom must
be chosen so as to produce an invertible square transformation matrix with the following
hierarchical structure:

q-
)=[3 & @]z ]-e @
9

Step E.2.  Solving (13) for q one obtains an inverse relation of the form

qr H’ 0 v
q=4{q ¢t=|H 0 {v ] (14)
qs H, H "'~

Step E.3.  Eliminate v, through a kinematic constraint, say

v, =Tv (15)

H, H,
q= H, v=| H: v (16)
H;, +HT]| H; .

Having Hj, available, proceed as in step H.4 of Box 3.

Many variations and shortcuts are possible. For example, often H,, can be expressed as
the product of k transformation matrices:

‘Hy = HuHy ... Hpi. (17)

some of which can be directly constructed whcreaé others result from solving simpler
inverse problems. If all matrices in (17) can be determined in closed form the numerical
inversion of G is avoided. This is the approach followed in the element constructed here.
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4. ELEMENT GEOMETRY

The geometry of an individual triangle is illustrated in Figures 1 and 2. The triangle has straight
sides. Its geometry is completely defined by the location of its three corners, which are labeled 1,2,3,
traversed counterclockwise. The element is referred to a local Cartesian system (x, y). The Cartesian
distances from the nodes to the triangle centroid xo = (x; + x2 +x3)/3, yo = (y1 + y2 + y3)/3 are
denoted by x;o = x; — xo and y;p = y; — yo. It follows that

x10 + X20 + x30 = 0, yio + Y0+ y =0. (18)

Node coordinate differences are abbreviated by writing x;; = x; — x;, etc. The signed triangle area
A is given by the formulas

2A = x21y31 — X31¥21 = X32)12 — X12¥32 = X13Y23 — X23)13, (19)

and we require that A > 0. We shall also make use of dimensionless triangular area coordinates
$1, &2, &3 linked by the constraint

L+h+ha=1 (20)

The following well known relation between the area and Cartesian coordinates of a straight-sided
triangle is noted for further use:

1
{i = Ez[xi}’k —xyj + (x —x)yj + (y — }’o)ij], (21)

where i, j and k denote positive cyclic permutations of 1, 2 and 3; for example, i = 2, j = 3,
k = 1. (If the origin is taken at the centroid, xg = yo = 0.) It follows that

0 d 0 .
2Aa—i‘ _— 2A5% = ya1, 2A3i—3 = yiz,

3L, 3L, 33 (22)
24— =x33, 2A— =13, 24— = x3;.

dy ay ay ‘

Other intrinsic dimensions of use in subsequent derivations are

L= = \/xizj + yizj, ajj = aji = %\/xfo + y,fo, bij =24 /aij, 23)
Si=1h-8) =i -8 S=1i¢h -
in which j and k denote the positive cyclic permutations of i; for example i =2, j =3, k= L.
The q;; are the lengths of the triangle medians (see Figure 2). :

In addition to the corner nodes 1, 2 and 3 we shall also use the element midpoints 4, 5 and
6 for intermediate derivations although these nodes will not appear in the final equations. These
are located opposite corners 3, 1 and 2, respectively. As shown in Figures 1 and 2, two intrinsic
coordinate systems are used on each side:

na1, i1, M32,532, N3, 813, (24)
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Figure 1. Triangle geometry, showing Cartesian and
normal/tangential coordinate systems. '

Mg = My

Figure 2. Intrinsic triangle dimensions and median/normal-to-median
coordinate systems.
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may, by, maz, tn, m, . (25)

Here n and s are oriented along the external normal-to-side and side directions, respectively, whereas
m and ¢ are oriented along the triangle median and normal-to-median directions, respectively. Note
that the two coordinate sets (24)-(25) coincide only for equilateral triangles. The origin of these
systems is left “floating” and may be adjusted as appropriate. If the origin is placed at the midpoints,
subscripts 4, 5 and 6 may be used instead of 21, 32 and 13, respectively, as illustrated in Figure 2.

The visible degrees of freedom of the element collected in vector v are

vVi=[v vy 6 v v 6 s vz B]. (26)

Here v,; and v,; denote the nodal values of the translational displacements «, and u y along x and
¥, respectively, and 8 are the “drilling rotations” about z defined by

(gﬁ - a“‘) : o))

0 =80 =
¢ ox ay

-

5. THE BASIC STIFFNESS
The assumed constant stress field of Step B.1 of Box 2 is
Oxx = O yx, Oyy = Eyyv Tey = Tyy. (28)

For Step B.2, the boundary displacements (d,, d;) along side j-k opposite corner i in the nor-
mal/tangential side coordinate system (nj, sjx) may be expressed in terms of the visible node
displacements as :

oy )
v_,,-
dn _ %' 0 Otb%' '\[fnk 0 Otb%k ) 6;
{d,}"[oj Vi O 0 s O ] out | (29
| Usk
L ek J
with the shape functions
Vaj = (1 - Q2 + ), Vg, = §8(1 = £)X (1 + &),
Vo = 3 (1 +£)22—§) Vo = —3£(1 +8)%(1 - &), (30)
Vs = %(] - £), sk = %(l + §)-

Here § is the isoparametric side coordinate § = (2s/£) — 1, which varies from —1 at node j (s = 0)
to +1 at node k (s = £); s being the side distance from node j and £ = ¢ the triangle side
length. A scaling factor a; has been introduced on the shape functions that relate boundary normal
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displacements to the comer rotations. The significance of this factor is discussed by Bergan and
Felippa [1]. (In that work this parameter is-called «. The subscript b is used here to distinguish this
parameter from a similar one that appears in the derivation of the higher order stiffness.)

The surface tractions along a side of the element are

- . : G
- Tnn cos? w sin® 2sinwcosw _
on=1_ = . . 2 . 2 Tyy ¢ (31)
T s —sinwcosw sinwcosw costw—sinfw || _
xy

in which @ = wjy is the angle of the external normal with x. In 1] it is shown that on carrying out
the boundary integrals of Eq. (4) one obtains the force lumping matrix

i Yz 0 x32 7
0 x32 y23
tapys(yis — ya)  goxn(xn — X12)  3ep(x3yiz — x2ya)
y3 0 x13
L=1 0 x13 31 . (32)
§2 321 — ¥32)  gepxin(xiz —x) 3@ (X12yn — Xnyn)
yi2 0 x21
0 X2 Y12
| dapyiz(rs2 — yi3)  gaexai(xs — x31)  tes(xsyn — xa1yis)

If ap = O the force lumping matrix of the constant strain triangle (CST) results, in which case
all nodal forces are associated with translations only. Once L is available, it is a simple matter to
form the basic stiffness K, according to the prescription (6), which for a two-dimensional element
becomes :

K, = %L (hE)LT, (33)

where h is the mean thickness of the element and E the plane stress constitutive matrix arranged as
a symmetric 3 X 3 matrix in the usual manner:

Eyy Ep En
E=|Ey En En (34)
Eyz Epn Es

Often the thickness-integrated constitutive matrix D, = hE is specified instead of E. This is
particularly useful for nonhomogeneous plates where E varies through the thickness.
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6. THE HIGHER ORDER STIFFNESS

T

6.1 The Internal Displacement Field

AR

The construction of the EFF higher order stiffness requires a considerable amount of analytical
derivations, the details of which are given in the Appendix. In the present Section only the key
results are reported. One starts by expressing the internal displacement field u of Boxes 3—4 as

K l
| o i
Ue | _19x1 9x2 9x3 9x4 Gxs gx6 g
= $ 7% (35)
uy a1 G2 9y Qe s dys] | ¢a £
¢s \
. P6 J -
where the ¢'s are generalized coordinates, and {-
1 =41, - =0, $3 =143, “
2 2 2 2 2 2 (36) ‘
pa=@1—8) =5 ds=E -0 =5 d6=(H-0) = {‘
This expansion befits the form (7), with ‘
Q,Tc =[gx1 gx2 4x3 gyt  4y2 qy3] (37 \i
Q) =[ges Qx5 Gx6 Gye Gys 9y6) (38)
Note that rigid body and constant strain terms coalesce into one set of linear shape functions. It '
is shown in Section A.2 of the Appendix that the six basis functions (36) enjoy the following
properties: .

1. They span a complete quadratic basis.

2. The higher order base functions ¢4, ¢s and ¢ are energy orthogonal to the basic functions ¢,
¢2 and ¢.

6.2 Gradients and Strains [

The displacement gradients are obtained by differentiating (35) with respect to x and y:

yu
) ' 2
gn 492 43 0 0 0 gu gs 96 0 O O x13 ,
{ | _ _l_ 0 0 0 gu G2 ga 0 O O g 45 4s6 } x| (39)

2Al gy 92 93 0 0 0 gu gs g 0 0 O 6521y%
0 0 0 gy g2 g3 O 0 0 gy qys ays 6532510

|
6%13y20
: 6¢21x30 !
| t
(

Q Q Q ]
SIF 8IF ofF aff

632x10
L 613x20
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[

where use of (18) has been made in the derivation of the last six entries in the rightmost vector. The
displacement-derived element strains may be conveniently split as in (9):

€xx du,/ox

e=1¢€,t= duy/dy =e; +e,=B.q . +Biq,  (40)
Yxy du,/dy + duy/0x

where e and e}, are associated with constant strain and higher order terms, respectively, as discussed

in Box 3. The strain-displacement matrices are

1 |¥3 ¥ y2 0 0 O
B,c=§74— 0 0 0 X32 X|3 X321 (41)

X32 X13 X21 Y3 Yit iz

and .
3 [ fayn fmyw foyn O 0 0 _
By = Z 0 0 0 Cizxzo $z3xi0 Snuxo | =BiZ, (42)
S12x30  $mxi0 $3x20. {uyio 3210 {13y
where
(2 0 0 0 0 O
0 0 0 0 O
[y o » 0 0 0 o T 0 0 0
Bi==| 0 0 0 =—xx —xp0 —x0|, Z= 12 . (43)
A 0 0 0 ¢, O O
—X3 —X|0 —X20 poi] Yo Yo 0 0 0 0 ;32 0
0O 0 0 0 0 I

6.3 The Generalized Higher Order Stiffness Matrix

The higher order stiffness matrix in terms of g, is given by the second of (12), which for a plate of
thickness 2 becomes

Ko = f B! (hE)B, dA. (44)
. A
For constant hE we can express (44) in closed form as
K, =AB, iEB, * J, (45)
6x6 6x6 3x3 3x6 6x6

where the asterisk denotes entry-by-entiy matrix product, and J is a purely numeric matrix:

L#1 2 -1 -1 2 -1 -1
In -1 2 -1 -1 2 -1
1 f13 -1 -1 2 -1 -1 2
J=X/; tn (fa i ts fu fm inldA=g 2 -1 -1 2 -1 -1] (@6)
o -1 2 -1 -1 2 -1
L1 -1 -1 2 -1 -1 2
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The explicit expression for the upper triangle entries of Kgy. is as follows:

Koall, 11 = 2k(E11y3 — 2E13x30y30 + E33%3) )
Kqnl1,2) = k((Ey3x10 — Ennyio)yso + (Erayio — E33x10)X30) ' h
Kqnll, 3] = k((Ei3x20 = Enny20)y30 + (E13y20 — E33%20)x30)

K all, 4] = 2k(E13y% — (E33 + Er2)x0y30 + Exsx3y) _

Kall, 51 = k((E12x10 — Eizyi0)yso + (E33y10 — E23X10)%30) | ‘
Kgnll, 6] = k((E12x20 — E13y20)y30 + (E33y20 — E23x20)%30) N
K2, 2] = 2k(Eniydy — 2E13x10y10 + E33xgo) | \r

K;al2, 3] = k((Ei3x10 — Ennyi0)y2o + (Ei3yio — E33x10)x20)

Kgi(2,4) = k((E33x10 — E13y10)y30 + (E12y10 = E23%10)%30) i
Kqi[2, 51 = 2k(E13y% — (E33 + Ep2)xi0y10 + Enx?)
K x(2, 6] = k((E33x10 — E13y10)y20 + (E12y10 — E23x10)%20) i_

Kgi[3, 3] = 2k(Eny3) — 2Esxa0y0 + Es3xp)
K3, 4] = k((E33x20 — E13¥20)y30 + (E12y20 — E23%20)%30)
K43, 5] = k((Er2x10 — E13Y10)¥20 + (E33¥10 — E23%10)X20) T
K1 [3, 6] = 2k(E13y% — (Es3 + Ei2)x20y20 + Enx)
K, (4, 4 = 2k(Essydp — 2Enxnys + Enxy)
Kqal[4,51 = k((E2sx10 — Es3yi0)y30 + (Ez3y10 — Exx10)X30)
K 1[4, 6] = k((E23x20 — E33¥20)y30 + (E23y20 — E22%20)X30)
K (5, 51 = 2k(Exyfy — 2Enxioyio + Enxiy) {
K,4[5, 6] = k((Ezsx10 — En3y10)y20 + (E23y10 — ExaX10)%20)
K16, 61 = 2k(E33y3, — 2Enxayan + Enty)

where k = 3/(2A?). Having formed K, the first of (12) says that the higher order stiffness is

Ky = (1 - y)H,qu,,H;,. Thus the 6 x 9 matrix H;, which relates q, = H,v, remains to be
determined.

- p—
P EHA

6.4 Building H,

We will build H,, as the product of five transformation matrices: -

H, = qu Hn; Hy, Hyp Hy,. 47
6x9 6x6 6x6 6x6 6x3 3x9

These five matrices link the following vectors:

=H,,m, m=H,s, s=H,r, r=H40, 6=Hyv. (48)
qs q .
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Vectors q, and v are given by (38) and (24), respectively. The others are

Uys
Ure

uys

Urq )

uuyG‘

Em4 )
;ImS
EmG
U4

U;s

~
\ u[64

il
Pl Pt DY

(49)

Here m, s and r collects x — y and m — ¢ midpoint degrees of freedom, respectively, of the hierarchical
LST element discussed in Sections A.1-A.2 of the Appendix (recall that m and ¢ denote median
and normal-to-median directions). Vector 8 collects the hierarchical corner rotations 6 defined in
Section A.3. We list below the expression of the matrices in (47), referring all derivations to the

Appendix.
[—-10 - 2 2 0 0 07
2 =10 2 0 0 0
go_i| 2 2-10 0o o o
wm 9 0 0 0 -10 2 2
0 0 0 2 =10 2
. 0 o o0 2 2 -0,
[ x30/a12 0 0 —y30/a12 0 0
0 x10/a% 0 0 —Yio/an 0
H. = -2 0 0  xp/as; 0 0 —y0/a31
™ 2| yso/a12 0 0 x30/a12 0 0
0 Yio/azs 0 0 x10/an 0
. 0 0 Ya0/a31 0 0 x20/a3
- 1 0 0 0 0 0 1
0 1 0 0 0 0
SQ 0 1 0 0 0
H, = f‘ glﬁgu -a 2 -012 %alz —%alz
_azAaalz %L azea;“ _ % an _;_ - % a3
_}“{_?.1 %7' 2031 _—-031 éasx =
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- _Aay Aoy - i
a2 ai2
0 _ Aa;, Aa;. [

n  4an “
Aap : Aap |
Ho=| 75, 0 5 (53)

1 0"~ 0
0 1 0

. 0 0 1

Here the a's and s’s are defined in (23), and a;, is a scalar parameter introduced in Section A.6 of
the Appendix. Finally,

| | %2 ¥m 4A x3 yi3 0 x5y yn O
Hpy=—{x32 y2 0 x3 Y5 44 xn yn 0 }|. (54)

4A
x32 y2 0 x3 y 0 xu yn 44

i
e -

6.5 Closed Form Evalua_tion

Multiplying symbolically the middle three matrices in (47) a surprisingly simple closed-form ex- \E
pression emerges for Hpg = Hpu H; H,y. If we choose ap = 5/4, which as shown in Part ITI is ‘
optimal for pure bending, then

- (=S + 2a%)yn + Axn  (S3+ 2ad)yn — Axso .
7.3 T 32 Y30
5912 5912
Yo (=81 + 2ad)yi0 + Axio (S + 3al)ywn — Axpp
1 iz i
(52 + 2a}))y0 — Axpo o (S2 — 2a3)yw0 — Axp i
3 { | 12 -
#=T6| (S3—2ad)xn+Ayn (=S — 1ah)xxn + Ayw _ E :
1.2 Ia2 %30 '
5912 $912
10 (51 — 2ak)xi0+ Ay (=51 — 3ad,)x10 — Ayio [
- 1.2
5ok s -
(=52 — 3a})x0 — Ay — (S2 — 3ad)x0 + Ayo
%agl 2 ﬁ?ra%l
- -

With H,,¢ directly computable, the fastest evaluation of K is obtained as follows. First form
Hgo = HynH,g, which can be done quickly because (50) is a block-diagonal numeric matrix.
Next, obtain the higher order stiffness in terms of hierarchical rotations:

Kos = HI, K, Hpo. (56)

3x3 Ix6 6x6 6x3

AR B S
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Finally, K, is obtained from

K; = (1 - y)H], Koy H,. (57)
9x9 9x3 3x3 3x9

The congruential transformation (57) can be speeded up because of the special nature of Hp,, cf.
(54), and the bulk of the numerical work is actually spent in (56).

6.6 Generic Stiffness Template and the IET

_The expression (57) has significance that transcends this particular element. It is an generic ex-

pression for the higher-order stiffness of any satisfactory membrane triangle with this freedom
configuration. The transformation matrix Hy, is always given by (54). Only the generalized stiff-
ness Kg,, which is a higher order stiffness in terms of the hierarchical comer rotations &;, changes
from element to element. Since this is a 3 x 3 symmetric matrix, it follows that the higher order
stiffness of all elements of this type form a six parameter family.

Using (33) for K,, it follows that the generic template for the total stiffness is

. , .
K =Ky + Ky = 2 L(e) ("E) L(@)" + (1 - y)H], KonHo,. (58)

with each component contributing 3 to the rank of K, and where the dependence of the force-
lumping matrix L on «; has been emphasized. It is easy to show that any element that befits
this template passes the individual element test (IET) of Bergan and Nygard, and consequently no
numerical verification to that effect is necessary. In this regard it is interesting that the 1988 Allman
triangle befits (58), and consequently must pass the IET; further details are given in Section A.9 of
the Appendix. :

7. CONCLUDING REMARKS

We have presented the derivation of a plane stress triangle with drilling freedoms using the extended
free formulation (EFF). The main advantage over the FF triangle derived in [1] is that an explicit
form is obtained for the higher order stiffness. This simplifies the symbolic determination of
optimal parameters by energy balance, as investigated in Section 2 of Part III. In addition the
explicit derivation reveals an generic template form that all elements of this type must fit. Other
element implementation details, such as consistent node force calculations, as well as performance.
of the EFF element with respect to other 9-dof triangles, are discussed in Part III.
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Appendix A. AUXILIARY DERIVATIONS

Al The-LST Interpolation

Let w = w({y, {2, {3) denote any quantity being quadratically interpolated over the six-node linear strain
triangle (LST), for example the displacement components. The node values of w are w;, i = 1, ... 6. The
hierarchical LST interpolation is {29]

] &
2 b .
- ~ o~ o~ el _ s T
w=[{w w wy Wy ws W] 4 =w’ ane =w . (59
@s 4543
¥6 ' 4838, .

where the hierarchical nodal values w,, ws and wg are defined as the midpoint deviations from linearity

we = 3(w) + wy) + Ws, ws = Lw, +wy) +Ws,  we= 3wy +w)) + Ve (60)

If one sets W, = ws = wg = 0, (60) collapses to the linear interpolation of the three-node constant strain
triangle (CST), a property characteristic of hierarchical elements.

Two types of shape functions appear in (60). Following the free-formulation (FF) terminology, the three
linear shape functions associated with the corner nodes, namely ¢\ = {1, 92 = {z,and 3 = {3, are called basic
shape functions, because they provide the rigid-body and constant strain motions when w is identified with the
displacement components u, and u,. The three quadratic shape functions associated with the midpoint nodes,
namely @5 = 42182, 05 = 45243 and g = 4¢3y, are called higher order shape functions. The higher order
functions are not energy orthogonal to the lower order ones according to the definitions given below. As we
shall see, (60) is not suitable as a departure point for the internal displacement expansion of an EFF element,
but it is useful as an intermediate step.

A.2 Generalized Interpolation
A generalization of the quadratic interpolation (60) is

h
6 ¢ '
W=ZQ«'¢:(§1.§2. Gy =l 42 @ 94 95 9l :Z ' (61)

&s
¢6 .

in which the coefficients g; are not necessarily node values but may be interpreted as generalized coordinates.

The associated functions ¢; are called generalized shape functions. These functions no longer enjoy the nodal

interpolation properties of the ordinary shape functions ;.

To construct EFF elements we shall keep the same three basic shape functions in (62):

h=p=41 hr=p=0, =g =10, (62)

As for the higher order shape functions, the most general choice may be written

b0 = pi (&2 + 83) + pal? + palifo + w283 + 55)
&5 = (82 +&3) + pall + uafals + pa(Gd + 4102) (63)
B = i (E2 + L3) + palt + palsly + sa(Gif2 + 5283)
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[, where w, w2, p3 and ug are numerical coefficients, at least one of which must be nonzero. Because the
functions may. be scaled by an arbitrary nonzero common factor, only three coefficients are in fact independent.
s The grouping of the terms in (64) is dictated by triangular symmetries. In subsequent developments we shall

restrict the choice to energy orthogonal functions defined below. The general case is briefly commented upon
in subsection A.8. :

A.3 Energy Orthogonal Shape Functions

A higher order shape function ¢; (j = 4, 5, 6) is said to be energy orthogonal with respect to the basic shape
functions ¢; (i = 1,2, 3) if the area integral of any product of their triangle-coordinate derivatives is zero.
[This definition applies strictly to the case in which the thickness and material properties are constant over the
element. But these conditions hold in the limit of infinitesimally small elements, which is the same limit of
interest for the patch test.] This condition can be expressed as '

3%; 3¢; . : '
e AL =4 smn=1,¢,9, =4v » V. 64
_/,,3§m3§ndA 0 iimn=1,2,3, j 56 64)

But since all derivatives of ¢; are constant, (65) is equivalent to

8d:
- f 4 44 =0, (65)
S 4 8%
which expresses the fact that the element mean value of the first derivatives of an energy orthogonal shape
Junction must vanish. :
Applying this condition to (64) we find that the higher order shape functions are energy orthogonal if

2 +pstpa=0, pa+p=0 (66)

Given u; and p, which may not be simultaneously zero, these relations determine x5 and uqs. Because (as
noted above) only three coefficients in (64) are actually independent, it follows that the energy orthogonal
' subclass forms a one-parameter family. Note that (60), in which u3 = 4, others zero, violates (67).

Two physically transparent sets of shape functions supplied by these relations are

s & - &)
st =1 G-06)1¢, : (67

- %6 (&= &)
L s [ (63— 3)? (=81 = b2 +283)°

s t=1 @G- t=3{-n-u+20) ¢, : (68)
{ o6 (42— 4P (=5 = &+ 25)?

which correspond to taking p) = 1, uz = 0, and p; = —2/9, 2 = 8/9, respectively. The first sct vanishes
on the triangle medians, whereas the second set vanishes on lines parallel to sides passing through the ceatroid.
Any linear combination of these functions, such as

t=cal - +al—n)l (69)

is also energy orthogonal. Moreover, the sets (68) and (69) are not independent because they can be linked
through the linear transformations

& - 3P & - R)? & - o) & -3
-3 =3Q) -5V ¢, G-t?p=3Q"{ - ¢, (70)
(& — 3¢ (& —to)? (& - o) (t3- 1)
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where
-1 2 2 '
Q=§|: 2 -1 2] (71)
2 2 -1
is an orthogonal matrix. Thus we confirm that all energy orthogonal sets can be related by a linear transfor-
mation, and all of them would produce the same higher order stiffness. Consequently the choice of basis for
the higher order functions is merely a matter of convenience. For the element derived here we select (68) as

this choice leads to a fairly simple generalized higher order stiffness matrix K4, derived in Section 4. Thus
the generalized interpolation formula (62) becomes

4]
9]
- £ T
w=[q ¢ 49 94 g 4gs] € — b =q ¢ (72)
(&2 — 53)?
& - &)’
A.4 Freedom Transformations

We need to establish the transformations q = TguW, W = T;,',q that connect nodal values to generalized

coordinates. Formulas (73) and (60) are related by equating their left hand sides because they both correspond
to complete quadratic expansions referred to linearly independent bases:
w=wep=q¢= WTT:wqb. (73)

Thus ¢ = T:w¢>. Evaluating this relation at the six nodes yields

"1 00 3 0 37 "1 0 0 3 3 07
01014 30 0100 3 3
1! 0014 0 ¢
0010 2 2 =TTw 2 . f (79)
000100 “l1r 100 7 2
000O0T1O0 o1 1 4 0.%
[0 00 0 0 1_ (1 01 § 3 0]
Solving we get ‘
- 8 8§ = - ‘ . -
1 00 5 -% 3 100 1 0 1
8 3 4 .
010 3 5 -5 010 1 1 0
o001 - & % coo0o1 o0 1 1
Tow = - T, = L (s)
ocoo0o -2 § 3 “ °°°—1—z—§
2 0 2 1 1
0 00 5 -—lg- 5 000 -3 —: -3
2 0 1
000 § § -3 L0 0 0 —3 -3 —1.
Setting w to u, and u, in turn we can write
qx}=[qu 0] mxw. (76)
{Qy 0 Tgdim,

From this 12 x 12 transformation we extract the 6 x 6 matrix Hy given in (50).
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( A.S Hierarchical Drilling Freedoms
We now study the “migration” of freedoms of the hierarchical LST into drilling and eliminable freedoms. The
i continuum-mechanics rotation about the z axis, positive counterclockwise, is defined by formula (27). For the
hierarchical LST element we set w to u, and u, in turn and evaluate # making use of (39) to get
X23 1
X31
X2
Y3
Y3
f= Z'Z [ug wx2 Ugs Uyt Uy2 Uys Ugs  Ugs  Ux6 Ups Uys Uy6 ] 4(¢1xn ;_ ) b (7

4(Laxyy + $3x31)
4(L3xs + L1x12)

ff ; 4(&1yn + b2y3)
- 4($2y12 + £3y31)
L 4(53yn + Siyn2) |
[- Note that 8 varies linearly over the element. It follows that only ¢three independent drilling freedoms may
a be defined, and the obvious locations are the corner points. Any additional drilling freedom (chosen, for
example, at the centroid) would not be linearly independent. The three corner drilling rotations 6, 8; and 6,
{ at the comers are related to the other freedoms by replacing the comer triangular coordinates in (78):
[ Ux1 )
i. U2
Hx3
' 61 { [z * x2 Yy yn Ju 4xy 0 4xp 4yn 0 dyp Z’:
bt =gz| % *n Xz Ys ¥u I 4xzz 4xz 0 4dyn 4y 0 | T;"  (78)
< 6s X3 X X ym yn yz O 4xy dxm 0 dyn 4yn —;’s
7.
Im‘ Ux6
Uy
iys
|76
2 Subsequent manipulations are facilitated by defining the hierarchical rotations 5; = 6; —6p,i =1,2,3, where
[' 8o is the CST rotation, that is, the mean rotation obtained if one sets Tes = Uss ... Uy =0
1
{j’_ bo= 7 (xz3ue1 + X3rttaz + Xizbias + Y2ty + ynsiyz + Yiaky3) (79)

Then (79) simplifies to a matrix relation that involves only the hierarchical midpoint displacements:

' . zxd
Urs
1[0 0 =2 yn 0 yo o

I ==l x2 0 ¥ yo 0 |{=°}=Hemm (80)
A E;M

s
Uys

!
1l
PLPL M

0 xuu x3 0 yu ys
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For reasons explained in subsection A.6, we shall link 8 to vector s of (49) as = HyH,nss. Matrix Hy,
which is given in (51), can be constructed by inspection of Figure 2. Carrying out this multiplication and using
the definitions in (23) we obtain

S+ a’ S—-ay - - Uma

~ _93t+a; _ 3N 1 1 ~

9\ Aanz 0 ) Aas; 212 0 a3 ﬁmS

a - S3 —-a Sl + a, - - Umeé

?.2 T Aalzm T Aan : 0 ay en 0 le:s ) @1

6s S, — a S +ak -1 - a,
= ARt

A.6 Choosing Eliminable Freedoms

The 12 — 9 = 3 eliminable freedoms must be displacements because no more linearly independent drilling
freedom choices remain. From symmetry and invariance considerations four possible choices emerge:

(1) The hierarchical midpoint freedoms directed along the side directions: u,4, Ugs, Uss-

(2) The hierarchical midpoint freedoms directed along the normal directions: Up4, Uns, Kn6-

(3) The hierarchical midpoint freedoms directed along the median directions: im4, kms, Umé-

(4) The hierarchical midpoint freedoms directed along the normal-to-the-median directions: w4, 4;5, &:6-

Choices (1) and (4) lead to transformation matrices that are singular for any triangle. Choice (2) leads to a ’

transformation matrix that is singular for right-angled triangles. That leaves choice (3), which as shown below
has a well conditioned inverse. The necessary relation relating 6 to s is available in (82). This is rendered
square by augmenting it with the trivial relations U = Umi. i = 4,5, 6:

p~ B 1 0 0 .0 0 0~ H
Yms 0 1 0 0 0 0 ||
Ums 0 0 1 o 0 O Ums
Um S +ab, S - 2321 - -1 Umé
4 5'6 = | = Aapz 0 - asg 2 0 @ 1 ’Jm [ (82)
- _sz-ajz _S.+a§3 0 a=! az! 0 .
& Aajz Aanz ) 12 9 Uss
& Si—an _Sitay -t -l I
L&) Lo TTAam ~  Aan 0. apy ay |\ M

or r = H,,s in the notation of (46). The determinant of Hy, is appapay /2A3. Thus H,, is nonsingular for any
nondegenerate triangle. Symbolic inversion of this ufansformation provides matrix H,, given in (52).

A.7 Elimination of Hierarchical Median Displacements by Collocation

We now proceed to eliminate U4, Ums and ine through kinematic constraints. To fix the ideas consider Uma.
From the boundary expansion (29) on side 1-2 we can obtain the normal displacement d, in terms of the
freedoms on that side. The hierarchical value at 4 is

Gt = dus = 3(dut + du2)
= [V + ) + an(vor 161 + 11192_(5)92)]650 — Hdw + du2) ®3)
= Loyl (6 — 8) = Senln@ — 8).

Here parameter aj of (29) has been renamed aj to emphasize the fact that we can vary both independently for
the basic and higher order stiffness. Assuming the collocation

Uma = Ung COS(n12, M12) = dya (Br12/£12), (84)
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where the b;; are defined in (23), we find

Tms = Lanbi2(@2 = 8Y). (85)

Repeating this procedure for the other two sides and collecting into one matrix equation we get

Uma —by  bn o] (%
Ums ¢ = 3 0 =bn bn|{& - (86)
Tims b 0 -buld|p

Augmenting this with the trivial equations 5: = 5: (i = 1,2, 3) as last three rows and replacing b;; = 2A/a;j
yields the transformation matrix Hy, listed in (53). An energy balance analysis presented in Section 2 of Part
IIT shows that the best value for oy is ’

a = 5/4, (87)
a value that has been hardwired into (55).

A.8 What Happens for Non Energy-Orthogonal Functions?

The original FF does not depend on the energy orthogonality concept although the variational justification
of Refs. [21-24] does. To assess the effect of that condition on this element, symbolic experiments (with
Macsyma) were conducted with elements derived with the general assumption (62) for the higher order shape
functions. The orthogonality condition (67) was replaced by

2u + s+ pe =4y, Mo+ pa =02, (88)

where 8, and & may be regarded as deviations from energy orthogonality.

The EFF higher order stiffness depends on two parameters: ¥ and a;, where y defines the scaling of -
K, as per Eq. (12). These parameters are selected to match pure-bending energies on regular mesh units, as
described in Part III [16]. When the energy orthogonal sets are selected, the matching can be made so that a
set (v, ay) works for all aspect ratios. With (89) it was found that such matching was possible only if

5 = L6 (89)

One choice that verifies this condition is

&4 (&~ 5)* + 8298 .
¢s t =3 G-V +84 ¢, (90)
®s (& —0) +8298

in which ¢g = {182 + 5203 + £381. This is not energy orthogonal if &; # 0. Closer examination, however,
showed that the same higher order stiffness matrix K, was produced for any value of 52; thus adding ¢5 has
no effect. '

" Any deviation from the condition (90) miade matching impossible: only specific clement aspect ratios
could be energy balanced. Thus it appears that the main effect of departure from energy orthogonality isa
degradation in element accuracy. Consequently the general assumption (62)—(64) was not pursued further.
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8.1 Allman Triangles Fit the Generic Template

The rank-sufficient Allman triangle [7] was constructed with incompatible cubic shape functions. Numerically
integrated versions of this element have been symbolically analyzed as prelude to the evaluation presented in
Part [II. Four triangle integration rules, labeled as follows, were considered:

lc  The 1-point centroidal integration rule.

3m  The 3-midpoint rule of quadratic accuracy.

3 The 3-interior point rule, also of quadratic accuracy, with poin'ts aty; =2/3, =8 =1/6.
Ti The 7-interior point rule of cubic accuracy.

The resultant (total) stiffness matrices will be denoted by KA'¢, K43 K4¥ and K4, respectively. All of them
were found to fit the generic template (58) in the sense that

KA = K, (4/3)

KA =K, (1) + K" = K, (1) + Hg K Ho,
K* =Ky (1) + K} = Ky(1) + H, K3, Hy,
K*" =K, (1) + K} =Ky (1) + B, K}, Ha,

on

where the argument of K, is the value of «, obtained by setting constant stress states. The centroid-integrated
stiffness K is of course rank deficient by 3. The 3-point-integrated Allman elements are effectively linear-
strain, quadratic displacement triangles because such sampling “filters out” quadratic strain variations. The
higher order stiffness of these 3-point integrated elements does not fit into the present EFF family except for
specific geometries. For example, for the equilateral triangle, K;","' coincides with EFF's K, if 1 — y = 1/4
and o, = (32 + +/82)/24, whereas K is obtained if 1 — y = 1/36 with the same oy = (32 * +/82)/24.
To achieve equivalence for more general geometries, however, it becomes necessary to generalize the present
EFF formulation by allowing three & coefficients, one per side, with ay; depending on the magnitude of the
opposite angle. .

The main practical value of the decomposition (92) is that it shows that the numerically integrated Allman
elements pass the patch test without any numerical experiments. The equivalent EFF elements, however, have
parameter values that do not agree with the optimal ones determined in Part IIl. As a consequence, the
performance of all Allman triangles deteriorates for high aspect ratios.
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MEMBRANE TRIANGLES WITH CORNER
DRILLING FREEDOMS: 1l. THE ANDES ELEMENT

SUMMARY

This is the second article in a three-Part series on the construction of 3-node, 9-dof membrane
elements with normal-to-its-plane rotational freedoms (the so-called drilling freedoms) using
parametrized variational principles. In this Part, one such element is derived within the con-
text of the Assumed Natural Deviatoric Strain (ANDES) formulation. The higher order strains
are obtained by constructing three parallel-to-sides pure-bending modes from which natural strains
are obtained at the comer points and interpolated over the element. To attain rank sufficiency,
an additional higher order “torsional” mode, corresponding to equal hierarchical rotations at each
comer with all other motions precluded, is incorporated. The resulting formulation has five free
parameters. When these parameters are optimized against pure bending by energy balance meth-
ods, the resulting element is found to coalesce with the optimal EFF element derived in Part L
Numerical integration as a strain filtering device is found to play a key role in this achievement.
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1. INTRODUCTION

In the first Part of this article series [1], a 9-dof triangular membrane element with three comer
drilling freedoms was constructed within the framework of the extended free formulation (EFF). In
the present work, we undertake the derivation of an element with the same freedom configuration,
using the Assumed Natural Deviatoric Strain (ANDES) formulation.

ANDES represents a recent variant of the Assumed Natural Strain (ANS) formulation. The
latter is in turn a relatively new development. A restricted form of the assumed strain method, not
involving natural strains, was introduced in 1969 by Willam [2]. He constructed a 4-node plane
stress element by assuming a constant shear strain independent of the direct strains, and using a
strain-displacement mixed variational principle; the resulting element is identical to that derivable
by selective one-point integration. A different approach advocated by Ashwell and coworkers
[3] viewed “strain elements” as a way to obtain appropriate displacement fields by integration of
assumed compatible strain fields. (In fact, this was the same technique used by Turner er. al. [4]
for deriving the constant strain membrane triangle in their celebrated 1956 paper.)

These and other forms of assumed strain techniques were overshadowed in the 1970s by
developrr{ents in reduced and selective integration methods for displacement models. The assumed
strain approach in natural coordinates, inaugurated in a pioneer paper by MacNeal [5], has attracted
increased attention since 1980. Among the main contributors we may cite Bathe and Dvorkin [6],
Park and Stanley {8,9], Crisfield [7], Simo and Hughes [10], Huang and Hinton [11], and Jang and
Pinsky [12]. The name “assumed natural strain” and the acronym ANS are due to Park and Stanley

[91.

ANS applications have been focused on plates and shell elements because of the effectiveness of
this formulation in producing elements with low distortion sensitivity, balanced stress/displacement
accuracy, and which are easily extendible to geometrically nonlinear analysis. These advantages are
somewhat counterbalanced by the fact that a priori satisfaction of the patch test is not guaranteed,
even for flat elements, and a posteriori verifications to that effect are required.

The basic steps of the ANS formulation are summarized in Box 1. The narrative assumes
that the element to be constructed has nodal displacement degrees of freedom collected in vector
v (these are those nodal variables common with other elements, also called the visible degrees of
freedom, or connectors), elastic modulus matrix E, and volume V. A generally incompatible strain
field (that is, one not necessarily derivable from displacements), is built in natural coordinates,
transformed into Cartesian coordinates where it is expressed as e = Bv, and used to compute
the stiffness matrix K by the standard formula f, BTEBJV. From the standpoint of connected
elements, an ANS element looks exactly like a displacement model and can be easily implemented
into a standard finite element code. Extensions to geometrically and materially nonlinear analysis
are equally straightforward. '
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ANDES is a variant of ANS that exploits the fundamental decomposition of the stiffness
equations described in Box 1 of Part I [1]:

Kv = (K, + aK,)v = p, (n

where @ > O is a scaling coefficient. Assumptions are made only on the “deviatoric” portion
ey of the element strains, namely the portion that integrates to zero over the element volume:
J, €adV = 0. Thus instead of e = Bv we eventually get, by the procedure outlined in Box 2,
e = By v, and

K, =« f BTEB,dV. (2)
1%

The basic stiffness matrix K, is constructed by the same procedure described in Box 2 of Part L.
The mean portion of the strains, namely &, is left to be determined variationally from the constant
stress assumptions used to develop K,, and has no effect on the stiffness equations.

The main advantage of ANDES over ANS is that elements constructed with the former tech-
nique are guaranteed to pass the individual element test of Bergan and Hanssen [13] (a strong form
of the patch test that demands pairwise cancellation of surface tractions among adjacent elements
in a constant stress state). There are cases when an ANS element and the corresponding ANDES
element with @ = 1 coalesce. The ANDES formulation retains an edge, however, in that the scaling
coefficient remains available to improve the element performance. Furthermore, the availability of
K, helps in the construction of element level error estimators [14] for r and A mesh adaptation.

The variational justification of the ANDES formulation was developed by Felippa and Militello
[15,16], to which the reader is referred for details. This justification built on previous work [17,18]
on the variational foundations of the ANS formulation. The first ANDES elements constructed
using this theory were 9-dof Kirchoff plate bending triangles presented in [19]. The technique has
also been used to formulate C? plate bending elements [14].

The present paper describes the first application of ANDES to membrane elements with drilling
degrees of freedom. The main objective is to illustrate another application of this relatively new
technique and assess its advantages and shortcomings when compared to FF and EFF.

2. THE TRIANGULAR ELEMENT

The geometry and degree-of-freedom configuration of triangular element is identical to that devel-
oped in Part I, to which the reader is referred for notation, geometric and behavioral relationships.

2.1 Extracting the Higher Order Behavior

From the EFF development in the Appendix of Part I we learned that the most effective way to
exhibit the higher order element behavior is to extract the hierarchical comer rotations 6; from the
total corner rotations 6;:

8 =6 — 6, “ (16)
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Box1 Construction of K by the ANS Formulation

Step S.1.  Select locations in the element where “natural straingage” locations are
to be chosen. For many ANS elements these gages are placed on reference lines (in
2D elements) or reference planes (in 3D elements), but this is not a general rule. By
appropriate interpolation express the element natural strains € in terms of the “straingage
readings” g at those locations:

€=Acg (3)

where € is a strain field in natural coordinates that must include all constant strain states.
(For structural elements the term “strain” is to be interpreted in a generalized sense.)

Step S.2.  Relate the Cartesian strains e to the natural strains:
e=Te=TA.g=Ag (4)

at each point in the element. (If e = ¢, or if it is possible to work throughout in natural
coordinates, this step is skipped.) The resulting Cartesian strain interpolation is

e=TA.g=Ag. &)

If T is constant over the element, as in the case of the triangle studied here, the step
during which interpolation is effected is irrelevant.

Step S.3.  Relate the natural straingage readings g to the visible degrees of freedom

g = Qy, (6)

where Q is a straingage-to-node displacement transformation matrix. Techniques for
doing this vary from element to element and it is difficult to state rules that apply to every
situation. Often the problem is amenable to breakdown into subproblems; for example

g=Qvi+Qv2+... @)

where vy, v,, ... are conveniently selected subsets of v. Some of these components may
be derivable from displacements while others are not.
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Box1 Construction of K by the ANS Formulation (Continued)

Step S.4.  For a three-dimensional element of volume V and elastic modulus matrix E,
the element stiffness matrix is given by

K = Q'K,Q, with Ka=fATEAdV. (8)
v

Should B = AQ be readily available one may use the standard formula
K= f BTEBdV. (9)
v

In general this stiffness matrix does not necessarily pass the individual element test
of Bergan and Hanssen [13] (a strong form of the patch test that demands pairwise
cancellation of node forces between adjacent elements in constant stress states). For this
to happen, K must admit the decomposition ‘

K=K, +K, =v 'LELT +K,, (10)

where v = [, dV is the element volume measure, L is a force-lumping matrix derivable
as discussed in Box 1 of Part I and K, is orthogonal to the rigid body and constant
strain test motions. In other words, the ANS element must coalesce with the ANDES
formulation with & = 1. The equivalence may be checked by requiring that

B=AQ=v"'L7, (11)
" where A denotes the mean part of A (cf. Box 2). As of this writing, no general techniques

for explicit construction of ANS fields that satisfy these conditions a priori are known.

If the patch test is not satisfied, one should switch to the ANDES formulanon by
replacing the basic stiffness constructed from constant strain, namely uB’ EB, with one
constructed from constant stress assumptions.

308




Box 2 Construction of K; by the ANDES Formulation

Steps H.1 10 H.3. Identical to the first three steps S./ through S.3 in Box 1.

Step H4.  Split the Cartesian strain field into mean (volume-averaged) and deviatoric

strains:
e=¢et+e;=(A+AEg (12)

where A = v™! [, TAdV, and e, = A, g has mean zero value over V. For elements
of simple geometry this decomposition can often be done in advance, and e; constructed
directly. Furthermore, this step may also be carried out on the natural strains if Tis
constant, as is the case for the elements here.

Step H5. The higher-order stiffness matrix is given by

K, =aQ'K;Q, with Ky= f ATEA 4V, (13)
v

where o = jy > 0 is a scaling coefficient (see Box 1).

It is often convenient to combine the product of A and Q into a single strain-displacement
matrix called (as usual) B, which splits into B and By:

e=AQv=(A+A,)Qv=B+By)v=Byv, (14)

in which case
K =/ BTEB,dV. (15)
vV
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where i = 1, 2, 3 is the comner index and 6 is the rotation of the Constant Strain Triangle (CST):

6o = Zl; (x23Ux1 + X31Vx2 + X12Vx3 + Y23Uy1 + Y31Vy2 + Yi2Vy3) - (17)
From (16) and (17) we readily perceive the fundamental transformation
Uxt |
v,l
6, L [x2 yn 44 x5 y3 0 xn oya O Ux2
Qt=gz|* »m 0 x3 y3 44 xu yn O [yvp ¢, (18)
&3 x32 y2 0 xi3 y3 0O xz ya 44 )
’ Ux3
Uy3
L 65 |
or _
8 = Hy,v. (19

The unscaled higher order stiffness of this element fits the generic template introduced in Section
6.6 of Part I:

K; = H], KoxHo. (20)
The main objective of all formulations investigated here, as well as those in Part, is to construct the

3 x 3 matrix Kgx, which represents the higher order stiffness in terms of the hierarchical rotations
6. ’

Guided by these considerations, we begin by decomposing the visible degree of freedom vector
into basic (CST) and higher order, as follows:

v=vb+vh=vb+P5, (21)
where
(g ) (0] [0 0 07
vy2 0 0 0 O
6o 81 1 00
Uz2 0 0 0 0 91
vp=1{ vy ¢, vw=40¢= 0 0O 6, (22)
Bo 6> 0 1 0 65
Vx3 0 0 0 O
Vy3 0 0 00
| 6o | [ 65 | [0 0 1]

To simplify the problem of building higher order strain fields, we further split the hierarchical
rotations into mean and deviatoric:

AMANE
Gt=161+16 (23)
63 6 e,
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where § = 1(6, + 6, +65) and 8 = §; — 6. Consequently 6; -+ ; + 6; = 0. In matrix form
0=6+¢, (24)
which in terms of the nodal displacement vector becomes
v=v,+ PO+ 8), (25)

where P is the 9 x 3 matrix shown above. The deviatoric corner rotations define the linear deviatoric-
rotation field: '

8" = 6151 + 6382 + 6383, (26)
which integrates to zero over the element. For future use we note the matrix relation
Bg 2 -1 -1 5 1 0 0 111 5,

-1 2 - 4 -
§_Z=%_1_1§g3=3é?-%i}i g; 7
6 S TR T I 1L 000 3

or
{g } =J-De. (28)

The hierarchical rotation decomposition is associated with a similar decomposition of the higher
order strains:
e =¢e +e, (29)

where subscripts b and ¢ identify “pure bending” and “torsional” strain fields, respectively. The
former is generated by the deviatoric rotations 8 whereas the latter is generated by the mean
hierarchical rotation 6. We now proceed to examine these two components in turn.

2.2 The Pure-Bending Field

This field is produced by pure inplane-bending modes associated with the deviatoric corner rotations
g/,i = 1,2, 3. One way to visualize the nature of these modes is to think of atiny triangle superposed
on a thin plane beam bent to constant curvature in its plane. Place the triangle centroid at neutral
axis height. Then rotate the triangle so that its 3 sides align in turn with the bending direction.

From this visualization it follows that the reference lines mentioned in Box 1 are the triangle
sides. The straingage locations are chosen at the triangle comners. The natural strains are the three
direct strains parallel to the triangle sides, traversed in the counterclockwise sense. These strains
are collected in the vector

€= €2 €n €3} - (30)
The natural strain €j, at corner i will be written ¢j;, the bar being used for reading convenience.
Vector €, at corner i is denoted by €;;. Our objective is to construct the 3 x 3 matrices Q,; that
relate natural straingage readings to the deviatoric rotations:

e = Q& e = Q0 €p3 = Qp38, (31)
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Once these are known the natural bending strains can be easily obtained by linear interpolation over
the triangle: €, = (Qp ¢ 1 + Qpal2 + Qu383)8 = Q, 6.

Consider the natural strain €,2; ( P) at an arbitrary point P of the triangle. Denote by da;p the
signed distance from the centroid to P measured along the internal normal to side 21. In particular,
for the corners we have

4A
38

2A
dp = dyp = —3dup = ——— (32)

day3 = .
2113 3e12

We shall assume that €,;;p depends only on dy)|p divided by the side length £3;, which introduces
a distance scaling. These dimensionless ratios will be called x21;p = da1/p/£21, Which specialized

to the comers become
4A 2A

— = = —— 33

38, X211 = X212 3 (33)
Formulas for corners 2 and 3 are obtained by cyclic permutation. According to the assumption just
stated, the natural straingage readings €,z at corner i depend only on x21;, multiplied by as yet

unknown weighting factors. This can be written in matrix form as follows:

X213 =

(eeon ) [ oixan  —p2xan paxamn | [ 6]
€1 =1 €t =| osxs2n paxsan —psxzan | 65§ = Qub,
| €513)1 | —pixi3r Paxizyn pe2xwen | 63 )

[ epa1p2 T paxaz —pixae paxape | [ 6
e2=1{ €32 { =| Paxsaz Pixzr —pxu2 |6 = Qb (34)

~

| €b1312 | | —psxi3z psxisz p3xwez ] L 63 )
€52113 | psxa —psxas esxap | [ 61)

€p3 = | €p3213 { = P4 X3213 P2X323  —P1X3213 | ¢ 9£ r = Qb39' y
| €51313 | | —poaxi33 paxiy Aixmp ] 93

where p, through ps are dimensionless weight factors to be determined on the basis of energy
balancing for rectangular mesh units, as discussed in Section 3. The distribution and sign of these
factors is made on the basis of triangular symmetries.

The strain field is energy orthogonal if

p1+ o2 =2p3, pa + ps = 0, (35)

but these conditions will not be assumed a priori. The optimal element described in Section 3.2
will be found, however, to satisfy (35).

The natural strains can be related to Cartesian strains by the transformation

2 2
€12 €1 S Sucz €rx
— N ) _ -l
E=1€3 ¢ =] €3y s§2 532€32 eyy t =T e (36)
2 2
€31 ¢t Sh S13ci3 2ey,y
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where ¢y; = x21/€21, 521 = Y21/£21. €32 = X32/€32, 532 = y32/4€32, 13 = x13/£13 and 513 = y13/€13.
The inverse of this relation is

€rr 1 }'23)’13€§1 }'31)’21352 )’123’322%3 €12
eyy (= 1A? x23x13E%1 x31x21£§2 x12x32£f3 €23
2exy (Y2331 + x32913)63; (V31x12 + X13¥21)€%, (P12x23 + x21¥32) €3 €31 t37)

or, in compact matrix notation, e = Te. Note that T is constant over the triangle. Combining with
(30) we get the Cartesian corner strains as e,; = By; 6 = TQ,, €', i = 1, 2, 3. The Cartesian strains
are obtained by linearly interpolating over the element:

e» = (Bp1&1 + B2tz + Bp3l3)d = B,6. (38)

2.3 The Torsional Field

The higher order stiffness produced by the pure bending fields alone is rank deficient (2 instead of
3) because of the deviatoric constraint 3_ 8/ = 0. To complete the construction of a rank-sufficient
higher order stiffness we need to build a strain field associated with the degree of freedom setting
; = 6, others zero. This may be viewed as forcing each corner of the triangle to rotate by the
same amount while the corner displacements are precluded. A displacement-based solution to this
problem is provided by the cubic field of the QST triangle constructed by Felippa [21] and developed
by Carr [22] as membrane component for refined analysis of thin shells. The QST expansion is

(v )T ( (23— 201) + 2515283 W
Ur x1 EE (282 — yals) + (x13 — x21)815283
Uz.yil C2(x2182 — x1383) + (31 — Y12)618283
U2 £3(3 — 282) + 20185283
yo= ez | ] 2 (ynis — yi2b1) + (x21 — x32)815283 | (39)
* Vr,yl2 £ (x3283 — x2181) + iz = y23)518283
Ur3 L33 = 203) + 2015283
Ux 213 L2311 — yab2) + (x32 — x13)815283
Ur,yi3 LE(xi3t — xn282) + (v — y31)815283
[ vo J 1 27515283

where v, »; and v, y; denote du,/0x and du,/dy, respectively, evaluated at corner i. A similar
interpolation holds for the y displacement component u,. The torsional mode with unit rotations
9; = 6 = 1 is imposed by setting the QST nodal displacements to

Vri = Uy = Vg xij = Vyy|j =O, vx,y|j=—§, vy,xlj =9_, i=0,1,2, 3, _}= 1,2,3.
(40)
Differentiating (39) with respect to x and y and setting the freedoms to (40), we obtain the torsional
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strain field

Ir -
€xx =~ _C1y23()'31§'3 = ¥1282) + L2531 (01281 — y2383) + S3yvie(yade — )’314’1)]9,
Ir _
ey =7 S1x32(x2182 — x1383) + $ax13(x3283 — x2181) + S3xa1 (138 — 1324'2)]9,
Ir 4
2e10y = ——| Lix32(33183 — Y1282) — 1y (x2a182 — x1383) “1

Al
+ Lx13(y1281 = y2383) — L2ya(x3283 — x181)
+ G3xn(yast2 — yud) — By - xszé’z)]é,

where A is the triangle area. In matrix form

€ixx _
e[ = e[yy - B( 6. (42)
2elxy

This strain field is compatible, varies quadratically, and vanishes at the corners and centroid. Inte-
grating over the triangle and using the fact that x)2 + x23 + x3; = 0 and y12 + y23 + y31 = O it may
be verified that all strain components are energy orthogonal.

The field (41) appears unduly complicated. Conversion to natural strains through the transfor-
mation (36) reveals, however, its intrinsic simplicity:

€21 X2y 82183 |
&=1en; =T e=3| xaupixh |0, (43)
€13 X133 §1382

where £ = & — &1, 832 = {3 — {2 and §13 = {; — ¢3. For future use, it is of interest to consider
a midpoint-filtered version of (43), obtained by evaluating it at the three triangle midpoints 4, 5, 6
and then interpolating linearly over the triangle:

€ Xz211éa1 |
€ = €32 { =3 | 22832 | 6. (44)
€13 X133 §13

To facilitate combination with the bending field, it is convenient to define the “spread” matrix form
of (44) in which each column receives one third of the strain:

€121 X282 X2z xau1821 é 9:
€ =1€m ¢ = | Xa22832 X382 X328 6r=Q" ¢ (45)
€13 x13383  Xxpdis xi3dis 0 6
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3. THE STIFFNESS MATRIX

Having constructed the higher order strain fields, the computation of the higher-order stiffness can
proceed according to the general rules laid out in Box 2. The bending and torsional strain fields are

combined as
: ey = B,& + B, = (B,J — B,J) § = B,6, (46)

where J' imd J are the numerical matrices in (28). We shall evaluate the higher order stiffness in
terms of 6, namely
Kon = f Bl (hE)B,dA (47)
A
where 4 is the plate thickness, by numerical quadrature. The 9 x 9 higher order stiffness Ky

then follows from the congruential transformation ¢19). At this point, however, we still have the
undetermined p; coefficients present in B,.

3.1 The Optimal Element

For reasons that will be immediately apparent, we are particularly interested in three point quadra-
ture rules defined parametrically by '

A
[ FaamdaxS[FEnm+Fausn+F o] (43)

where 0 < § < landn = %(1 — £). In practice the two most interesting rules of this type
are £ = 2/3 (the interior-three-point rule) and § = O (the midpoint rule), both of which exhibit
quadratic accuracy. But in the present context it is instructive to leave & free, excluding only the
cases £ = 1 (corners) and £ = 1/3 (centroid). A symbolic analysis with Macsyma, described fully
in Section 2 of Part III [20], shows that the choice

p1=0, ;m=1-& p=3(01-8§), pa=ps=0, (49)
has the following properties:

1. It achieves pure-bending energy balance for rectangular mesh units of arbitrary aspect ratio,
a test discussed in detail in Section 2 of Part III.

2. Let Kgu(£) be the stiffness obtained with the integration rule (48) and the choice (49) for the
p coefficients. Then the scaled stiffness

_ 2

T8 — DIE -

is independent of &, and coincides with that of the optimal EFF element derived in Part I[1).

Ko =7 Kon(©), (50)
3

For practical calculations, it is convenient to use the midpoint rule £ = 0 in which case
Kon = %th 0) forpo =1, p3 = %, others zero. If these are replaced in (34), the matrices Qy;
reduce to the simple form
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O—xap O xapg 0 0 X23 —3 X213 O
Qu=|04ixsan —3x31 |» Q= 0 O-xme|2 Qm= 0 xms O}. D
0 O X131 —1xir 0 $x13pe -x33 0 O

The seven-interior-point quadrature rule was also tried, but then it was found impossible to
construct an energy-balanced element. Because this rule accounts for quadratic strain variations in
the torsional mode, the foregoing negative result suggests that linear strain variations are required
to attain an optimal element.

3.2 The Combined Natural Strain Field

Having chosen the opﬁmal p coefficients and the midpoint integration rule, it is possible to obtain
the complete higher-order natural strain field. This is done by combining the bending matrices (51)
with the filtered torsional strain expression (45):

€4 = (QpJ — Q'8 =Qu0 = (Qu1t1 + Qu2d2 + Qu3l3)0, (52)
where
[ —xain —2xam1 —Xxam i 2x2112 X212 X212
Qi=| 0 30om —30m | Qo=| —xme —X22 —2X22 |
| X131 X131t 2ximn —3xi32 O 31 X1312
_ (53)
" lxas —gxup 0
Qi=| X323  2X3a3 X323
L =2X133  — X133 X133
Evaluation at the midpoints gives
C lxae  —3xame 0 —Xaus  —2X2us  —
3 ) 15 X215
Qus=| x2¢  2x320¢ X324 |, Qus= 0 Ixsas  —3x32s |
| —2)X1314  — X138 —X13j4 X131 X131 23135
~ _ (54)
2216 X2ue X216
Qu=| —x326 —Xx326 —2x326
| —3xi3s O 1x136

© where xjiia = 3(Xjin + Xji) etc. Note that the structure of Qqq, Qus, Qug mimics that of Qys,
Q.. and Q,, respectively, the only change being the evaluation point.

3.3 Fast Computation of K,

With the explicit strain expressions of Section 3.2 we are now in a position to try for the fastest
computation of K. For this we proceed as follows. First evaluate

"E, =TTET, (55)
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which may be interpreted as a stress-strain matrix in natural coordinates. Then apply the midpoint
rule, which for uniform thickness 4 yields

9 Ah
Rov=273

Finally, transform to physical coordinates via (20), in which advantage should be taken of the special
form (18) of Hy,. These are essentially the same computational steps described in Appendix 2 of
[19] for the ‘AQR’ ANDES plate bending triangle.

(QTE»Qus + QLE,Qus + QEnQus) (56)

4. CONCLUDING REMARKS

We have presented the derivation of a plane stress triangle with drilling freedoms using the assumed
natural deviatoric strain (ANDES) formulation. It is somewhat surprising that the optimal choice
in the energy-balance sense described in Section 2 of Part IIT [20] coalesces with the optimal EFF
element. This result suggest that this may in fact be the best available triangular element with the
present freedom configuration.

Numerical integration is seen to play a crucial role in achieving an optimal element. The key
effect is the function of the 3-point rule as a strain filtering device for the torsional mode. Note
that strain filtering was not needed for the EFF derivation in Part I, which dealt throughout with
quadratic displacements and linear strains.

Despite the coalescence, the ANDES derivation displays a different flavor than EFF. The
formulation offers greater flexibility in that one is not restricted to compatible strain fields, allowing
element developers to bypass detailed kinematic analysis. By way of contrast, the present element
was formulated in two months whereas the derivation of the final EFF form took over one year.
The difference may become more appreciable as one proceeds to shells and solid elements.
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On the other hand, FF and EFF do provide explicitly the internal displacement field. This
knowledge is useful in the calculation of consistent node force vectors — a topic further treated in
Sections 3—4 of Part ITI — consistent mass matrices, and geometric stiffness matrices. In cases where
the same element is available from both assumed-strain and assumed-displacement formulations
(the present element as well as DKT being examples), one would prefer the latter for tasks that
demand knowledge of internal displacements.
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SN,

MEMBRANE TRIANGLES WITH CORNER
DRILLING FREEDOMS: Ill. IMPLEMENTATION
AND PERFORMANCE EVALUATION

SUMMARY

This paper completes a three-Part series on the formulation of 3-node, 9-dof membrane triangles
with comer drilling freedoms based on parametrized variational principles. The first four sections
cover element implementation details including determination of optimal parameters and treatment
of distributed loads. Then three elements of this type, labeled ALL, FF and EFF-ANDES, are tested
on standard plane stress problems. ALL represents numerically integrated versions of Allman’s
1988 triangle; FF is based on the free formulation triangle presented by Bergan and Felippa in 1985;
and EFF-ANDES represent two different formulations of the optimal triangle derived in Parts I and
II. The numerical jtudiés indicate that the ALL, FF and EFF-ANDES elements are comparable in
accuracy for elements of unitary aspect ratios. The ALL elements are found to stiffen rapidly in
inplane bending for high aspect ratios, whereas the FF and EFF elements maintain accuracy. The
EFF and ANDES implementations have an edge in formation speed over the FF.
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1. INTRODUCTION

This paper is the last in an article series [1,2] that deals with the formulation and evaluation of
high-performance triangular membrane elements with corner drilling freedoms. Those elements
were derived using two recently developed techniques: the Extended Free Formulation or EFF [3]
and the Assumed Natural Deviatoric Strain or ANDES [4, 5].

Part III has two main objectives:

1. To complete the theoretical derivations of Parts I and II with formulation and implementation
details. These include the determination of optimal parameters by energy-balance methods,
and the conversion of distributed applied loads to node forces. A third topic: accurate recovery
of strains and stresses, is deferred because the study of superconvergent stress points (Barlow
points) is still in progress.

2. To carry out a comparative evaluation of triangular elements of this type derived with three
different construction methods: Allman’s, FF and EFF-ANDES. The comparison involve
accuracy for known test problems, accuracy degradation for high element aspect ratios, and
computer formation times.

Table 1 summarizes notational conventions for the elements considered in following sections.

2. PARAMETER DETERMINATION

The EFF and ANDES triangles derived in Parts I and II respectively, initially carry along a set of
numerical parameters, most of which affect the higher order stiffness:

KEF = K, () + (1 — ¥)K¥ (), (1

KANDES = Kb(ab) + (ZK: (pl’ P2, P3, P4, pS) (2)

where K is the unscaled higher order stiffness. Parameter &, must be the same for all elements in
an assembly, for otherwise the patch test would be violated. All other parameters may, in principle,
vary from element to element without affecting convergence.

Equations (1)-(2) display a total of 3 and 7 parameters for the EFF and ANDES elements,
respectively. The presence of these parameters is both a nuisance and an opportunity. In production-
level programs one should never leave such parameters to be defined by users, as that would demand
specialized knowledge. On the other hand, they provide the opportunity to improve the element
performance in some respects, a process that may define “optimal values” for at least some of them.
Such values may then be either hardwired in the element subroutine, or in the element-calling
programs.

In the most favorable case the best value of a parameter is element independent; if so it can
be set once and for all. Example are the “magic values” a;, = 3/2, o, = 5/4 for (1). Next best is
dependence on material properties but not on geometry; such parameters may be left as subroutine

321



Table 1 Element Notational Conventions

AND(abv Q, L1y PS)'7I

AND(ap, @, o1, - . - ps)-3§

EFFAND

Identifier Description
ALL-3i 1988 Allman triangle [6] numerically integrated by the 3-interior-
point rule with sample points at (% i é) (é, g %), (é i %)
ALL-3m Ibid., numerically integrated by the 3-midpoint rule.
ALL-7i Ibid., numerically integrated by the 7-internal-point rule.
CST Constant Strain Triangle; same as EFF(0,0,0).
EFF(ap, an, B) EFF triangle constructed in Part I, with free parameters.
EFF EFF triangle with optimal parameters (6), except that 8 =
max(3(1 — 4v?),0.01) to maintain rank.
FF(8) FF element constructed in (7] with & = 2but with g =1-y as
free parameter.
FF

FF element with 8 = 3.

ANDES triangle constructed in Part I, with free parameters, nu-
merically integrated by the 7-interior-point rule.

As above but numerically integrated by the parametrized 3-point
rule with sample points at (&, ;(1 - §), 3(1 — £)),
(1 -6.610-8), (30-6,30-8),§) for0 < ¢ < 1,

but excluding & = 1.

As above, upon substitution of the optimal parameters (7). Coa-
lesces with EFF.

Designates indistinctly the optimal EFF or ANDES triangles.

arguments to be set by calling routines that may examine constitutive properties. A typical example
is the higher order stiffness scaling factors 8 = 1 — y for EFF and « for ANDES. Least favorable
is when the best value depends on element geometry; if so some compromises may be called for.

2.1 The Bending Test

For the present elements, parameters will be determined by an energy balance method on rectangular
mesh units under simple but nonuniform motions. (This method resembles a linear patch test whose
satisfaction is sought on an energy sense.) A modification of the test described by Bergan and Felippa
[7] for the FF element is used. More specifically, we require exact energy response to pure bending
in the configuration shown in Figure 1. The material is isotropic with elastic modulus E, Poisson’s
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Figure 1. Mesh unit used for optimal parameter determination.

ratio v, and uniform thickness 2. Each mesh unit is assembled with two triangles; because of the
symmetry the results would be identical if four half-thickness overlaid triangles (with no internal
nodes) were used.

The 0 < x < L,0 < y < H mesh unit is subjected to the pure-bending displacement field
Uy = —KXY, uy = %fc(x2 + vyz), 6 =«x, 3

where « = M/(EI), with [ = le'hH 3 is the bending curvature. This produces an equilibrium
plane stress state o, = Exy, others zero. The exact strain energy stored in the elastic body that
occupies the mesh unit domain is

1 1
U, = §Eh/c2LH3 = §Eh:c2L2r3, 4)

where r = H/L or r~! = L/H are used as aspect ratio measures in the sequel.

Let v be the nodal displacement vector obtained by evaluating (3) at the nodes. The strain
energy taken up by the finite element assembly is

Ure = $¥' Ky, (3)

where K is the total stiffness of the assembly. If the triangle stiffnesses contain parameters, these
are taken to be the same for both. The strain energy ratio n = Urg /U, obtained through Macsyma
is listed in Table 2 for several elements. The identification conventions of Table 1 are followed.
All data pertain to isotropic elements; for the ANDES element of Part I only the case v = O is
shown to prevent the equations from overflowing the page. Table 3 complements Table 2 by giving
numeric values for specific values of parameters, Poisson’s ratio v and aspect ratior.

It should be noted that if v = O, the test of Figure 1 could be further simplified by moving the
(x, y) axes to the center of the rectangle. Because of symmetry only one triangle would then need
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to be considered. But this simplified test, which was in fact the one used in [7], does not properly
account for the y-contraction effect if v # O because the displacement field (3) applied to the nodes
would not be distinguishable from a y rigid-body motion.

2.2 Nice Solutions for EFF and ANDES

The energy-balancing condition n = 1 leads to algebraic Riccati equations in the free parameters.
The resulting system is linear in 8 and @, quadratic in parameters such as @, o and the p;, and
quartic or higher in the aspect ratio r. A solution of these equations is called “nice” if it yields real
values for the parameters that are independent of r. Being aspect-ratio independent, these solutions
are of significant practical value. They are sought by equating coefficients of powers of r to O or 1.

The parametrized EFF element has the surprisingly simple nice solution

=3 =3  B=l-y=i1-4?, (6)

[S1I)

The values for o, and a;, emerge as double roots of quadratic equations while 8 is the root of a
linear equation; thus (6) is the only such solution.

For the ANDES element the situation is more complicated. All nice solutions of the Riccati
equations of the 7-point integrated element are imaginary. For the 3-point-integrated element with
£ -parametrized sample points (cf. Table 1), the value oy = 3/2 is exceptional in the sense that the
nice solution

2
YTRe-nE- L

is unique (it appears as a double root of a quadratic). This can be generalized to arbitrary v by
multiplying « by (1 —4v?). Ifa, < 3/2, many other solution families exist that satisfy py = ps = 0,
p1 = pr—1+&; forexample,ifv=£6 =0,a, =0, p3 = %pz = (5+/15)/4,a = 9/(—16:|:JT§).
But since all these solutions lead to the same K, nothing new emerges. On setting the values (7),
the resulting element coalesces with the optimal EFF.

@)

, m=ps=ps=0, p=2p=1-§,

Nw

Oy =

2.3 The FF Triangle

For the FF element of {7] an “almost nice” solution is possible. If o, = % the condition n = 1
yields the “balancing 8” as

3 (=4t 4+6r8+11rt+6r241)

z : 8
8r8 +3r6 + 84 +5r2+ 14+ v(3ré +3r*t4r?) ®

This expression differs somewhat from the numerical results presented in [7] because the energy
balance test done in that paper was on a different mesh unit that did not account for lateral contraction.

Equation (8) has the disadvantage of depending on the aspect ratio r; thus securing the correct
energy balance for bending along x does not imply such balance for bending about y unless r = 1
(square mesh unit). Nonetheless for a given v the dependence is mild; for example if v = 0, 8
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Table 2. Energy Ratios for Mesh Unit of Figure 1
under Pure Bending — Isotropic Material

Element Energy ratio n = Urg /U Nice solutions
of n=1
ALL-3m | [72—48v% + (5 — 9v)r=2 +2r=]/[64(1 — v?)] | None
ALL-3i | [1880 - 1296v* + (79 — 91w)r* + 6r=]/(1728(1 - v»)] | None
ALL-7i | [264 - 180v2 + (15 — 19)r~2 +2r=*]/[240(1 — v¥)] | None
CST | [62 = v¥) +3(1 = v)r=2)/8(1 = v¥)] | None
[(16a2 — 52a + 43)8 + 20 — 120, + 36 — 18V
+ ((@2(16v + 32) — (80 + 64v) + 50 + 55v)8 ; .
EFF 2 _2 ap = i,a,, = I
@rcn, ) | (= el = 122 =) B=1-y=11-4?
+ (4802 — 120a, + 75)Br*]/124(1 = v1)]
[(45 - 36V + 86)r® + (270 - 216v% + (24v + 24)8)r®
+ (495 — 396v% + (24v + 64)B)r* _
FF(B) 2 2 ) None (but see Section
+ (270 — 216V% + (8v + 40)B)r? + 45 — 36v% + 8] 23)
/[48(1 = v))(r* + 6r% + 11r* +6r* + 1]
[(((6Op5 — 60p4 + 480p3 — 120p2 — 120p1) 5
+ (4504 — 240p; + 18002 + 18001) 04
+ (96003 — 4800, — 480p,)p3 + (1950, + 33001 + 12)p2
#1950 — 12, + &) + 3600 — 2160c; +3240)
+ (3005 — 2400, ~ 7200, + 4807, + 6009 — 43)p
AND(a;, «, + (210p4 + 10800; — 480p; — 4200, — 24)p4 None
pr-..ps)-Ti | 4 (14400, — 1320p, — 1080p; — 48)p3
=0 + 3302 + 6001 92 + 390p7 — 24p; +8)a
+720a? — 216005 + 1620) -
+ ((540p§ — 540045 + 40502 + 15p2
— 300102 — 1202 + 150 + 1201 + 4)a) r-“]/loso
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Table 2. Energy Ratios (Continued)

Element

Energy ratio n = Urg/U,x

Nice soluttons
of n=1

AND(«,, o,

pr...ps)-3¢
(v=0)

{[9&* — (1802 — 1801 + 24)8 + (1203

+ 03(96ps + 4804) + p1(24ps + 12p4 + 9603 + 602

— 30) + p2(24ps + 12p4 + 9603 + 30) + 12405
+3pF + 1920} + 210} +21p} + 22)8°
+ (p1(—16ps — 8ps — 64p3 — 407 + 14)

+ p2(—16ps — 8ps — 64p3 — 14) + p3(—64ps — 324)

— 8p% — 8p4ps — 2p; — 128p3 — 14p2
— 14p} — B)E +4p% + p3(32p5 — 1604)
— 4405 + p1(—80s + 1204 — 3203 + 220, — 2)

.+ p2(—8ps + 1204 — 3203 +2) + 3p7 + 64p}

+ 1302 + 130} + D + 24 — 1440, + 216

+ [(186* + (72p5 + 36p4 + T2p3 + 36p) —~ 48)§°
+ (7202 + p3(144p5 + T2 = 120) + p1(72ps

+ 3604 + 12003 — 2407 — 60) + p4(72p5 — 60)
— 120ps + 1892 + 96p% — 24,3 + 603

+42p? + 44)E? + (5605 — 48p5 + p1 (—48ps

— 24p4 — 80p3 + 16p; + 28) + 04(28 — 48p5)

+ p3(—96ps — 484 + 56) — 1207 — 642

+ 16p203 — 4p2 — 28p% — 16)§ + 2002

+ p1(40ps — 28ps — 7203 + 40p; — 4) + p2(32p5
— 32p4 — 88p3) — 8ps + pa(—16ps — 4)

+ p3(—48ps + 7204 — 8) + 1402 + 9607 + 222
+26p% + 2)a + 480 — 144a;, + 108] r 2
+[98* + (18p, — 18p, — 24)° + (10803

+ 108p4p5 + 270 + 903 — 300

+ p1(30 — 18p2) + 99} + 22)E% + (140,

— 7202 — T2p4ps — 180} — 6p2 + p1(12p, — 14)
— 602 — 8)¢ + 3602 — 360405 + 2707

+p3 =20 + P12 - 202) + o} + Da]r*}/72

R 3
o
2
I
— A
|
e

)
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Table 3 Energy Ratio n for Specific Elements, v and r

v 1/r ALL-3m ALL-3i ALL-T: CST EFFAND FF

0 1/4 1.130 1.091 1.104 1.523 1.000 1.009
172 1.146 1.100 1.116 1594 1.000 0.997

1 1.234 1.137 1.171  1.875  1.000 0.998

2 1.938 1.326 1483 3.000 1.000 1.009

4 10.375 2.708 4233 7500 1.000 1.016

8 134.125 18.236  39.233 25500 1.000 1.020
16 2069.125 240.347 563.233 97.500 1.000 1.021

1/4 1/4 1.153 1.113 1.126 1.569 1.000 1.030
172 1.164 1.119 1.135 1.625 1.000 1.020

1 1.229 1.149 1.178 1.850 1.000 1.020

2 1.867 1.309 1.448 2750 1.000 1.029

4 10.417 2.614 4.128  6.350 1.000 1.035

8 140.617 18.503  40.448 20.750 1.000 1.038
16 2197417 252725 595.328 78.350 1.000 1.039

12 1/4 1.251 1.202 1.219  1.766 1.000 1.103
172 1.255 1.207 1.225 1.812 1.000 1.095
1 1.302 1.231 1.258  2.000 1.000 1.096
2 1.958 1.378 1.517 2750 1.000 1.103
4 12.083 2.799 4550 5.750 1.000 1.108

8 172.583  21.818  48.683 17.750 1.000 1.110
16 2734.583 311.225 737.217 65.750 1.000 1.111

varies from 0.375 to 0.547 and so the “compromise” value of 1/2 was recommended in [7] for
general use. This is confirmed by Table 3, in which one can see that the deviation of n(v, r) from
1 for FE(3) never exceeds 12%.

2.4 Orthotropic Material

All previous results can be extended to an orthotropic material characterized by the strain-stress
relation

1 v
€xx E -E:lz 0 Oxx
€yy ( = Pﬁ‘ N 0 Oyy [ »
Yay 0o o0 GJ'%

implying that the principal orthotropy axes are directed along the bending directions. The displace-
ment equilibrium solution (5) has to be suitable modified. All previous nice solutions were found to
apply if v? is replaced by vj2v2;. The case of general anisotropic material has not been investigated,
as for such materials the construction of a pure-bending equilibrium solution is difficult.

3. BODY LOAD LUMPING
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The conversion of distributed loads to node forces (a process herein called load lumping) in high-
performance elements displays several points of interest. Discrepancies arise with respect to the
well ordered world of conforming elements. These can only be explained satisfactorily through the
underlying variational principles. To focus subsequent discussions it is convenient to distinguish
between interior or body loads, and boundary loads.

If body loads bT = {b, by} per unit volume are given within a two-dimensional FF or EFF
element, the variational formulation says that the consistent node force vector p is given by the
usual formula

p=/N5hbdA, ®
A

where A is the element thickness and N, is a 2 x 9 matrix of shape functions that gives the internal
displacements u in terms of the visible degrees of freedom:

u= {u"}=Nuv. (10)
Uy

In the FF and EFF, the shape functions N, are not usually known directly but result from trans-

formations on modal functions initially constructed in terms of generalized coordinates (cf. Part

D).

But if the element is of ANS or ANDES type the internal displacements u are not necessarily
known, because the assumed strains may not be integrable. A heuristic solution is to use the p
vector of an FF, EFF, or conforming element with the same v. This expedient device has been used
sotto voce in stress-assumed hybrid elements for over two decades.

Although the subject is not treated here, it should be noted that a similar obstacle arises when
computing the consistent mass matrix and geometric stiffness matrices of assumed strain elements.
These two calculations require knowledge of the internal displacements and their gradients, respec-
tively.

4. BOUNDARY LOAD LUMPING

Suppose boundary loads t (“surface tractions” in continuum mechanics terminology) are specified
per unit length and thickness on the boundary S of a two-dimensional FF, EFF, or ANDES element.
The variational formulation presented in [8] asserts that, under certain assumptions examined further
in Section 4.3,

p= fN§ htds. (11)
S

where N, are the shape functions for the boundary displacement field. In general u and d do not
match on S, so (11) is not necessarily the same as [ NT htdS. The following difficulties may arise.

1. Ny may depend on free parameters, for example the rotational factor & in equation (29) of
Part 1. The optimal value of these parameters may be different for the basic and higher order
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Figure 2. Triangle side subjected to normal linearly-varying load f

parts; for example in the optimal EFF element, o, = 3/2 but @y, = 5/4. Which value should
be used for p?

2. The assumptions that lead to (11) may not be appl'icable, and if so the internal displacement
u evaluated on the boundary, rather than d, appears for portions of t.

These difficulties are best assessed through a detailed example relevant to the present appli-
cation. A side of length L of a right-angled EFF triangle of constant thickness & is subjected to a
normal distributed load f (per unit of length and k) that varies linearly from fi atnode i to f; at
node j. The x and y angles are placed as shown in Figure 2. We shall see that nodes forces p;,
py and py at nodes i and j depend on f; and f; through formulas that can be placed in the generic
form

pri = s(Wifi + A= WAL, pu=0. pour=go(Vefi+ A =¥D[RLY
1
2

(1=v)fi+ ¥ fi)hL,  pyj=0. poj = —so( =¥ fi + Y f;)RL?.

Pxj =

Here ¥, ¥, and w are numerical coefficients (subscripts ¢ and r stand for translation and rotation,
respectively.) A simple calculation shows that translational equilibrium is always satisfied by (12),
but that rotational equilibrium for f; # f; requires 12y, — 6wy, = 8 — 3w. Table 4 collects results
from several methods outlined below.

4.1 Boundary Shape Functions
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Table 4 Load Lumping Formulas for Case of Figure 2

Identifier Method Coefficients of (12) Rotational
label description . /A w equilibrium?
HCI(es) Eq. (11) with Hermite cubic 5 % %o Onlyifay,=1
interpolation shape functions unless f; = f;
LI Egq. (11) with linear interpolation ¢ amy O Yes
shape functions
EBZ Energy balance, v =10 i—; % 1 Yes
— 1 5 5
EBH Energy balance, v = 3 2 z 1 Yes
EBQ v = | interpolating EBZand EBH £ 3 1 Yes

The simplest load lumping technique consists of using (11) with N4 from the boundary interpolation
for the basic stiffness. This is exact if the boundary loads are uniform, and in any case reasonable
from the standpoint of convergence.

Using the cubic Hermite interpolation — equation (19) of Part I-— with rotation shape functions
multiplied by e yields the coefficients listed under label ‘HCI(ry)’ in Table 4. A similar calculation
using linear interpolation yields the coefficients listed under label ‘LI’. This is effectively the CST
load lumping, for which the fixed-end nodal moments p, vanish.

4.2 Energy Balance

A different procedure uses energy balance (EB) concepts similar to those exploited in Section 2.
Embed the triangle into the four-triangle rectangular mesh unit illustrated in Figure 2(b). A stress
field that equilibrates the boundary loads is ‘

ox=(1=80fi+¢ fj, oy =05=0, (13)

where{ = % +x/L is a side isoparametric coordinate. The associated strain field is easily integrable
if h is constant and the material is isotropic. Taking symmetric boundary conditions about the mesh
unit midcenter one gets the displacement field

Uy = CmX — CpXy, Uy = —CmVy+ %(Jc2 + vyz), 0 =cpx, (14)

in which ¢, = %(f, + fi)/E and ¢, = (fj — fi)/(EL). Evaluate this at the nodes of the mesh
assembly to form the 12 x 1 displacement vector v. Evaluate the 12 x 12 EFF stiffness K of the
assembly using the optimal parameters (6). From the energy condition %vTKv ~ vI'p = min the
force vector is taken to be p = Kv from which the forces on nodes i and j can be extracted. For
Poisson’s ratios v =0 and v = % this method gives a formula that befits (12), with the coefficients
listed under labels ‘EBZ’ and ‘EBH’, respectively, in Table 4.
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4.3 Locality Lost

What happens if v £ 0 and v # %? Then the expressions given by the EB method bring in the
triangle dimension normal to side i-j, and forces appears on the third corner! This is contrary to
intuition, but the variational principle in [8] explains this mystery. The original boundary traction
energy term is J, ¢ htudS rather than [ htddS. The key assumption in the reduction to the latter
is that t be in the range of o} = n’ (EDu), namely the normal projection of the internal stresses
generated by the internal displacement field u.

Now the internal displacement field (14) is in the range of the applied load £, but is not exactly

representable by EFF elements if v # 0. Thus o can match any constant f exactly through the

basic modes, but a linearly varying f only approximately through the higher order modes. (The case
V= % is a fluke in that the higher order stiffness vanishes on setting the optimal § = %(1 -4vd) =0
and only the basic stiffness survives.) As a result the boundary term f; htudS emerges on part of
the linear variation of f. This destroys locality because u along an element side does not necessarily
depend only on freedoms located on that side. |

For the numerical experiments in Section 6 the case v = ;';, labeled ‘EBQ’ in Table 4, is handled
by linear interpolation of the coefficients for EBZ and EBH, a device that maintains locality despite
being variationally inconsistent.

4.4 Rotational Disequilibrium

A comparative analysis of HCI, EBZ and EBH leads to the following conflict. For uniform load
(fi = fj = f) the three expressions coincide if ¢y = % for HCI, giving

psi = pxj = 3fL (asexpected),  pp = —py; = g fL%. (15)

By running uniform stretch problems, reported in Section 6, it is readily verified that these “fixed-
end moments” are the correct ones. But for a varying force (f; # f;) HCI violates rotational
equilibrium unless «; = 1. This violation does not affect ultimate convergence as the mesh size is
refined, but may worsen coarse-mesh results.

Thus both techniques for computing node forces are found to have limitations. Use of (11)
maintains locality but may lead to inaccurate or out-of-equilibrium formulas. The energy balance
technique is accurate and upholds equilibrium, but brings in material properties and may lose
locality.

4.5 Practical Recommendations

In production programs the force computation module may not be aware of “interior details” such
as the element type and material properties. Then it appears best to take a compromise value for the
coefficients. For example: ¥, = 3/4 = 0.75, ¥, = 2/3 and w = 1, a set that satisfies rotational
equilibrium. The difference between two equilibrium force systems is a self-equilibrated force
system. By Saint-Venant’s principle its effect should be felt only within a few element layers.
Thus for fine meshes the choice for load lumping should make little difference. But the effect
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Figure 3. Slender beam under axial loading: E = 32, v varies, h = 1;
- root contraction allowed for v # 0; four-overiaid-triangle
mesh units used; a2 32 x 2 mesh is shown in (b).

can be important for coarse meshes, or when accurate local stresses are desired. The numerical
experiments of Section 6 corroborate this observation.

For distributed forces tangential to element sides no such difficulties arise because the only
possible tangential displacement interpolation is linear. Consequently the node force lumping of
the constant strain triangle (CST) can be used.

5. ACCURATE RECOVERY OF STRAINS AND STRESSES

One of the goals of high-performance elements is to achieve comparable accuracy in stresses and
displacements at any location. Two steps are necessary to attain that objective:

1. Identify superconvergent points (also called Barlow points) at which higher order stresses (or
stress components) are most accurate.

2. Devise interpolation-extrapolation procedures for “transporting” that accuracy to other loca-
tions of interest; for example the corner points.

For the EFFAND and FF membrane elements these steps are being investigated and will be the
subject of a future communication.

6. EXAMPLE 1: UNIFORMLY STRETCHED BEAM

The first numerical example, illustrated in Figure 3, is a cantilever beam of rectangular cross section
and length/height ratio 16:1. The beam is under constant uniaxial stress o, = 100. Consequently
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Table 5 Results for Beam Under Uniaxial Loading f‘
Element Load Quantity Poisson’s ratio [
Lumping v=0 v=1/4 v=1/2
EFFAND EB or HCI(3) VD 10000 100.00  100.00 _.
EFFAND EB or HCI(3) Usc 10000 10000  100.00 E
EFFAND EBorHCI(}) Maxog emor 0% 0% 0%
EFFAND  HCI(1) Vsp 101.12 10132 103.92
EFFAND  HCI(1) Vs 99.74 9973  99.63
EFFAND  HCI(l)  Maxog,emor 22%  29% 71% F:
EFFAND LI Vsp 103.35 10394 11175
EFFAND L ViC 9923  99.19  98.88
EFFAND LI Max o, error  61% 87%  211%
CST LI Ve 10000 100.00  100.00 [
CST LI Vee 160.00 100.00  100.00 '
CST LI Max o, error 0% 0% 0% t

the beam functions as a bar throughout its length as long as root contraction for v # 0 is permitted;
it is also important to set the drilling rotation to zero at the root. A regular 32 x 2 mesh of square
elements, each square being fabricated by four half-thickness overlaid triangles, is used. The elastic
modulus E = 32 is chosen so that the exact end deflection is always 100.
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Figure 4. Slender cantilever beam under end moment: E = 768, v varies, h = 1; root
contraction for v # 0 allowed; four-overaid-triangle mesh units;
a 32 x 2 mesh is shown in (b).

Of course this problem should be solved exactly by any membrane element with any mesh. |
The purpose of the example is to illustrate potential difficulties with the treatment of the applied
distributed loads f = 0, = 100 atx = 32. All energy balance (EB) load lumping methods listed in
Table 4, as well as HCI(3/2), yield fixed-end moments % f H 2/8 = £125 at the top/bottom nodes
of the end section, whereas HCI(1) yields £ f H2/12 = £83.33. On the other hand, the linear
interpolation method (LI) gives zero end moments. All these load lumpings satisfy equilibrium.

Displacement results as well as maximum stress errors for EFFAND and CST elements are
shown in Table 5. For EFFAND all load lumpings giving (15) yield the exact solution as expected.
For Poisson’s ratios v = 0 and: ﬁ the end displacement error induced by LI is of the order of 3%,
which is not unreasonable. But maximum stress errors at near-end locations reach levels of 60
to 90%. Errors disappear rapidly as one moves from the end, as it may be expected from Saint-
Venant’s principle, and are imperceptible for x < 28. For many applications, however, those stress
error levels would be intolerable.

Results for HCI(1) fall 1/3 of the way between those of EB and LI Errors for v = 1/2 are
about three times higher, these being exacerbated by the use of a very low 8 =0.01.

Obviously the CST has no problems with LI load lumping or root drilling rotation settings,
and would be the cheapest and safest element for this problem. This observation underscores a
general rule well known to practitioners of finite element methods: Any refinement device — here,
the inclusion of drilling freedoms — increases the potential for element misuse.
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Table 6 Tip Deflections (exact=100) for Beam under End Moment

Element v Load Mesh: x-subdivisions x y-subdivisions
Lumping 32x2 16x2 8x2 4x2 2x2
ALL-3i 0 EBZ 8799 7547 37.01 551 0.42
ALL-3m 0 EBZ 81.02 51.62 9.64 0.74 0.04
ALL-7i 0 EBZ 8543 6744 2365 2.55 0.17
. CST 0 LI 5333 3333 1333 392 1.02
EFFAND 0 EBZ 100.00 100.00 100.00 100.00 100.00
FF 0 EBZ 10025 99.15 9838 98.08 97.98
ALL-3i 1/4 EBQ 87.08 76.48 3832 542 0.39
ALL-3m 14 EBQ 8136 53.57 9.59 0.70 0.03 |
ALL-7i 1/4 EBQ 8492 69.09 2425 247 0.16
CST 1/4 LI 5405 3636 1575 4.82 1.28
EFFAND 1/4 EBQ 9999 99.99 9999 99.96 100.07
FF 1/4 EBQ 9836 97.17 9658 9634  96.27
ALL-3i 1/2 EBH 8126 72.61 35.76 4.58 0.31
ALL-3m 12 EBH 76.80 51.06 8.26 0.56 0.02
ALL-7i 12 EBH 7948 6595 2198 2.04 0.17
CST 12 LI 5000 3636 17.39 5.63 1.52
EFFAND 12 EBH 9998 99.98 9998 9998  99.97
FF 172 EBH 9127 90.66 9022 90.06 90.01 .
EFFAND 0 HCK %) 97.51 97.50 97.50
EFFAND 0 HCI(l) 100.00 100.01 100.00
EFFAND 0 LI 99.98 100.01 100.01
EFFAND 0 EBZ 100.00 100.00 100.00
EFFAND 0 EBQ 99.99 100.00 100.00
EFFAND O EBH 99.97 99.99 100.00
EFFAND 172 HCI(%) 98.68 97.67 97.51
EFFAND 172 HCI(1) 101.36 100.19 100.00
EFFAND 12 LI 101.66 100.20 99.99
EFFAND 12 EBZ 101.75 100.09 99.99
EFFAND 12 EBQ 100.31 100.04 100.00
EFFAND 172 EBH 99.98 99.98 99.97

7. EXAMPLE 2: CANTILEVER UNDER END MOMENT

‘We take up again the slender cantilever beam of Example 1, but now subjected to an end moment
M = 100. The problem is illustrated in Figure 4. The modulus of elasticity is adjusted to E = 768
so that the exact tip deflection 8y, = ML/ (2EI) is 100. Regular meshes ranging from 32 x 2 to
2 x 2 are used, each rectangle mesh unit being composed of four half-thickness overlaid triangles.

The element aspect ratios vary from 1:1 through 16:1.

Table 6 reports computed tip deflections (y displacement at C). It display
variables: element type, element aspect ratio, load lumping, and Poisson’s ratio. The first two are
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the most important. The element types are identified following Table 1.

The root clamping condition was imposed by setting
Vgl = Ugd = VU3 = 0, Uy2 = 0, 9,; = 9,2 = 9,3 =0, (16) :

where 1,2, 3 are the root nodes, numbered from the top. It is essential to leave vy and vy;3
unrestrained for v # 0. This allows for the Poisson’s contraction at the root and makes the exact
solution merge with the displacement solution (3) over the entire beam.

The first 18 lines of Table 6 compare elements for aspect ratios varying from 1:1 to 16:1 as
columns, and Poisson’s ratios of 0, 0.25 and 0.50. The EB load lumping formula appropriate to v
is used for all elements, except for CST, for which the LI lumping — which is consistent for that
element — is used. The last 12 lines compare the effect of different load lumping formulas on
EFFAND.

Because two elements through the height are used, the discretizations are nothing more that
repetitions of the test mesh unit of Figure 1 along the length. Consequently the computed deflections
should be 100/n(v, r). This provides a valuable numerical confirmation of the Macsyma resuits of -
Tables 2-3. Discrepancies from 100/7 for elements other than EFFAND and CST are due to the-
use of EB load lumpings which were not rederived for each element.

Because 7(v, ) = 1 for EFFAND, that triangle should maintains full accuracy for all v and
r. The slight discrepancy from 100.00% for v = 0.25 is caused by EBQ not being in exact energy
balance, as explained in Section 4.3. The slight discrepancy for v = 0.5 is due to the use of
B =1—y = 0.01 rather than 0 to keep correct rank.

The FF element with fixed 1| — y = 0.5 maintains good to excellent accuracy. The Allman
triangles perform well for unit aspect ratios, but rapidly become overstiff for aspect ratios over 2:1,
and are inferior to the CST for aspect ratios exceeding 8:1. Of the three numerically integrated
versions 3i is consistently superior, followed by 7i.

The last 12 lines in Table 6 show that the EFFAND accuracy for low Poisson’s ratio is not
affected by the choice of load lumping formula as long as equilibrium is maintained. In fact the
results for v = 0.25 are virtually identical to v = 0, and are not shown here. The effect becomes
more significant, however, as v approaches 1/2. For v = 0 the only visible difference from the
exact solution are the results for HCI(3/2), which violates rotational equilibrium by about 3%.

8. EXAMPLE 3: CANTILEVER UNDER END SHEAR

The shear-loaded cantilever beam defined in Figure 5 has been selected as a test problem for
plane stress elements by many investigators since originally proposcd' in [9]. A full root-clamping
condition is implemented by constraining both displacement components to zero at nodes located
on the x = 0 section. . Drilling rotations must not be constrained at the root because the term
du,/8x in the continuum-mechanics definition is nonzero there. The applied shear load varies
parabolically over the end section and is consistently lumped at the nodes.
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Figure 5. Cantilever under end shear: E = 30000, v = 1/4, h = 1; root
contraction not allowed; four-overiaid-triangle mesh units;
a 8 x 2 mesh is shown in (b).

The main comparison value is the tip deflection 8¢ = vyc at the center of the end-loaded
cross section. One perplexing question concerns the analytical value of éc. An approximate
solution derived from 2-D elasticity (based on a polynomial Airy stress function) gives 6 =
0.34133 4-0.00145 = 0.35583, where the first term comes from the bending deflection PL3/3EI,
I = H?/12, and the second from a quadratic shear field. The shear term coefficient in the second
term results from assuming a warping-allowed root-clamping condition that is more “relaxed” than
the fully-clamped condition prescribed on the FE model. Consequently in [9] it was argued that &,
should be an upper bound, which was verified by the conforming FE models tested at that time.

The finest grid results in [7] gave, however, 8¢ = 0.35587, which exceeds that “bound” in the
fifth place. The finest EFFAND mesh ran here — 128 x 32 — gave a still larger value: 0.35601.
The apparent explanation for this paradox is that if v # 0, a mild singularity in gy, and 7y,, induced
by the restraint uy|;=o = 0, develops at the comners of the root section. This singularity “clouds”
convergence of digits 4-5. (In retrospect it would have been better to allow for lateral contraction
effects as in Example 2 to avoid this singularity.) The percentage results in Tables 3-5 of [7]
therefore contain errors in the 4th place.

Tables 4 gives computed deflections for rectangular mesh units with aspect ratios of 1:1, 2:1
and 4:1, respectively. Mesh units consist of four half-thickness overlaid triangles. For reporting
purposes the load was scaled by 100/0.35601 so that the “theoretical solution” becomes 100.00.
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Table 7 Tip Deflections (exact = 100) for Beam under End Shear

Element Mesh: x-subdivisions x y-subdivisions
8x2 16x4 32x8 64x16 128 x32

ALL-3i 96.41  98.59  99.59 99.91 99.99
ALL-3m 8270 9478 9857 - 99.62 99.91
ALL-Ti 8943 9688 99.16 . 99.79 99.96

CST 5509 8259 94.90 98.65 99.66
EFFAND 101.68 10030 10003 100.00 100.00
FF 99.15 99.71 99.87 99.96 -99.99

4x2 8x4 16x8 32x16 64x32
ALL-3i 82.27 93.22 97.86 99.38 99.83
ALL-3m 54,23 81.84 94.52 98.50 99.61
ALL-7i 7071 89.63 96.93 99.15 99.77

CST 3785 69.86 90.04 97.25 99.28
EFFAND 9668 9844  99.37 99.78 99.93
FF 9427 9785 99.23 99.74 99.92

2x2 4x4 8x8 16x16 32x32
ALL-3i 4253 7266 90.72 9732 99.27
ALL-3m 1239 3181 63.68 87.24 96.41
ALL-7i 26.16 5693 8354 95.14 98.69

CST 1783 4334 75.01 92.13 97.86
EFFAND 9224 9699 98.70 99.48 99.81
FF 89.26 9637 98.66 99.50 99.83

The data in Table 7 generally follows the patterns of the previous example; the main difference
being the lack of drastically small percentages because element aspect ratios only go up to 4:1. Of
the three Allman triangle versions again ALL-3i outperformed the others. The results for FF and the
optimal EFF-ANDES triangles are very similar, without the latter displaying the clear advantages of
Examnple 2. The data for FF and CST changes slightly from that of Tables 3-5 of {7] on two accounts:
four-triangle, rather than two-triangle, macroelements are used to eliminate y-directionality, and
the normalizing “theoretical” solution changes by +0.00014 as explained above.

9. EXAMPLE 4: COOK’S PROBLEM

Table 8 gives results computed for the plane stress problem defined in Figure 6. This problem was
proposed by Cook [10] as a test case for nonrectangular quadrilateral elements. There is no known
analytical solution but the EFFAND results for the 64 x 64 mesh may be used for comparison
purposes. The last 6 lines in Table 8 pertain to quadrilateral elements. Results for HL, HG and
Q4 are taken from [10] whereas those for Q6 and QM6 are taken from [11]. Results for the free-
formulation quadrilateral FFQ are taken from Nygard’s thesis {12]. Further data on other elements
is provided in [13].
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Figure 6. Wing-like plane stress structure (Cook’s problem):
E =1, v = 1/3, h = ; root contraction not allowed;
two-triangle mesh units; a 2 x 2 mesh is shown.

For triangle tests, quadrilaterals were assembled with two triangles in the shortest-diagonal-cut
layout illustrated in Figure 6 for a 2 x 2 mesh. Cutting the quadrilaterals the other way or using
four-overlaid-triangle macroelements yields stiffer results.

The performance of the drilling-freedom triangles was similar, with ALL-3i giving the best
results, especially for coarse meshes. It should be noted that accuracy of the FF, EFF and ANDES
triangles for this problem is dominated by the basic stiffness response. Consequently the deflection
values provided by the FF and EFFAND elements, which share the same basic stiffness, are virtually
identical.

10. ELEMENT FORMATION TIMES

Table 9 gives a breakdown of formation times of the stiffness matrix for an individual triangle.
Times are on milliseconds measured on a Sun 4/260; all floating-point computations being carried
out in double precision (DP). T and T}, denotes times spent in forming the basic and higher order
stiffness matrices, respectively. All elements use the same basic stiffness routine written in 1984.
Forelements labeled ANDES-1991, EFF-1991 and FF-1986, the subroutines listed in the Appendix,
compiled with £77 for Sun-OS level 4.1.1, were used. The element labeled FF-1984 shows the
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Table 8 Resuits for ka’s Probiem

Vertical deflection at C for subdivision
Element 2x2 4x4 8x8 16x16 32x32 64x64

ALL-3i 21.61 23.00 23.66 23.88 23.94
ALL-3m 1661 2105 23.02 23.69 23.87
ALL-Ti 19.01 21.83 2343 23.81 2391

CST 1199 1828 2202 2341

EFFAND 2056 2245 2343 2380 2391 2395
FF 2036 2242 2341 2379 2391

FFQ 2166 2311 2379 2388  23.94

HL 18.17 22.03 23.81

HG 2232 2323 2391

Q4 11.85 1830 23.43

Q6 2294 2348

QM6 21.05 23.02

timing for the first FF element implementation reported in [7], and illustrates the progress since
made in reducing the higher order stiffness formation time. The CST is formed by the basic stiffness
subroutine when called with @, = 0, in which case all computations dealing with rotational freedoms
are skipped. No data is given for the ALL elements because their shape function subroutines are
far from optimized, and as a result their formation times are between 5 to 10 times — depending
on the integration rule — those of ANDES and EFF.

Table 9 DP Element Formation Times on Sun 4/260 in msec

Implementation T T, T, + Ty K, code bytes
ANDES-1991 134 1.55 2.89 4739
EFF-1991 134 190 3.24 6698
FF-1986 1.34 2.07 341 4507
FF-1984 134 6.71 8.05 8173
CST 0.77 0.00 0.77

From this data it can be concluded that the ANDES implementation has a slight edge over that
of the EFF, which is turn is somewhat faster than the FF-1986 implementation. The last column of
Table 9 gives the length in nonblank characters of the K, subroutine, excluding comments. As can
be seen the FF-1986 implementation is the most compact one, closely followed by ANDES.
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11. CONCLUDING REMARKS

The present study confirms the beneficial effect of adding drilling degrees of freedom to 3-node
plane stress triangles when in-plane bending performance is to be enhanced. Successful elements
of this type can be constructed using methods that lead to element families. Two such families have
been compared here: numerically integrated versions of the Allman triangle, and the FF, EFF and
ANDES triangles based on parametrized variational principles.

The numerical studies indicate that the performance of most of the 9-dof triangles is comparable
for meshes containing €lements of unit aspect ratio, or in problems where in-plane bending actions
are secondary. (It can be argued, however, whether drilling freedoms are cost-effective under such
conditions.) As regards the three tested versions of the Allman triangle, the one integrated with the
3-interior-point rule consistently outperformed the other two. For meshes containing elements of
high aspect ratio under dominant in-plane bending action, the FF, EFF and ANDES elements with
optimal parameters clearly outperformed the others.

plane strain

e

Figure 7. Elongated mesh units in thin-tube wall modeling.

Meshes with highly elongated triangles are quite common in many slender structures such as
composite tubes and aerospace vehicle skins. Triangles with aspect ratios of 20:1 or even 50:1 are
not uncommon (see Figure 7). To handle such problems it would be advantageous to extend the
present EFF and ANDES elements to plane strain and axisymmetric conditions.

Despite substantial variation in implementation “flavors”, the performance differences amohg
the optimal FF, EFF and ANDES elements are relatively slight. Any of them would make a
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fine choice for a general-purpose program whether as a stand-alone two-dimensional element, or
as the membrane component of flat shell elements. The ANDES formulation appears to have a
substantial edge in simplicity that would be valuable in extending the rotational-freedom concept
to three-dimensional elements. This is counterbalanced, however, by the advantages accruing from
the knowledge of internal displacements in FF and EFF elements in the applications discussed in
Sections 3-4.
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Appendix A. COMPUTER PROGRAMS

This Appendix provides listings of the Fortran subroutines that implement several of the elements tested in
the present study. A brief description of the subroutines is given below. A detailed description of calling
sequences is presented in the comments at the beginning of the code.

SMAM. This is a driver subroutine for computing the total stiffness matrix of membrane elements with 3
degrees of freedom per node, one being a drilling freedom. It is normally called to form the stiffness matrix
of a quadrilateral composed of either two triangles, or four “overlaid” triangles of half thickness. It can also
form a single triangle. :

SM3MB. This forms the 9 x 9 basic stiffness matrix K, used by all high-performance elements. Coefficient
a has been left as a free parameter to facilitate certain studies as well as to permit the formation of the CST,
which is obtained if o, = 0.

SM3MHFF. Forms the higher order stiffness of the 1985 Bergan-Felippa triangle using a fast implementation
that is a slight modification of that presented in [14]. The scaling factor 8 = 1 — y is left as a parameter
although B = 0.5 is recommended. :

SM3MHEFF. Forms the higher order stiffness of the optimal EFF triangle described in Part L. It has oy = 5/4
hardwired, but the scaling factor 8 is left as a subroutine parameter.

SM3MHANDES. Forms the higher order stiffness of the optimal ANDES element described in Part I1. The optimal
p factors (7) are hardwired for the midpoint rule § = 0.

The numerically integrated Allman elements are formed by subroutine SM3MALL. This is not listed here because
its shape function implementation is far from optimized and as a result the element formation is slow.

Some general comments on these subroutines follow.

Initializatibn. None of the subroutines clears the stiffness array internally. They simply add the stiffness matrix
entries to the incoming array. The calling program is supposed to take care of initialization. In conjunction
with the locator array LS discussed below, this decision is intended to simplify macroelement formation.

Stiffness Locator. All subroutines utilize a location pointer array LS to direct stiffness entries into the stiffness
array SM. This has two practical uses: '

(a) The ordering of degrees of freedom can be easily changed, as illustrated in the examples given under
the USAGE section of SM4M and SM3MB. Note, however, that the sequential ordering LS = 1,2,3,...
has different interpretation in the driver SM4M and triangle subroutines as regards the position of drilling
freedoms.

(b) The formation of macroelements is facilitated. This is already illustrated by the method used by SM4M
to merge triangles by simply setting up their stiffness locator arrays appropriately. Another important
application, not illustrated here, is the formation of shell elements in which the plane stress stiffness
becomes the membrane component.
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Subroutine Listings

C=DECK SM4M

C=PURPOSE Driver to form material membrane stiffness of quad assembly
C=AUTHOR C. A. Felippa, June 1984

C=VERSION July 1991

C=EQUIPMENT Machine independent

C=KEYWORDS finite element

C=KEYWORDS material stiffness matrix membrane plane stress drilling
C=BLOCK ABSTRACT

SM4M is a driver that forms the material stiffness matrix of a
membrane quadrilateral formed by 2 or 4 triangles (optionally a
single triangle). Three nodal dof (2 tramslations, 1 drilling

END ABSTRACT
BLOCK USAGE

The calling sequence is

CALL SM4M (TYPE, OPT, X, Y, DM, ALPHAB, GAMMA
IAT, LS, SM, M, STATUS)

The inputs are:

TYPE(1:3) Element type argument (upper case assumed):
ALL Allman’s element
AND ANDES-1991 element
CST CST, drilling freedoms are ignored
EFF EFF-1991 element
FF FF-1984 element, fast reformulation of 1986

TYPE(4:5) For ALL elements specifies integration rule:
1C 1-interior point (centroid)
31 3-interior-point rule
3M 3-midpoint rule
71 7-interior-point rule

OPT Options character (upper case assumed):
B Form basic stiffness only (FF/EFF)
H Form higher order stiffness only (FF/EFF)
If neither of these, form total stiffness.

X (4 x 1) array of x coordinates of qpﬁd nodes.
(only first 3 used if IAT=0).

Y (4 x 1) array of y coordinates of quad nodes.
(only first 3 used if IAT=0).

DM (3 x 3) membrane force-to-strain comstitutive matrix.
Assumed to be already thickness-integrated.
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ALPHAB Rotational.lumping factor for basic stiffness
Applies to AND/FF/EFF elements only.

GAMMA (1-GAMMA) is H.O. stiffness scale factor (AND/EFF/FF)

1 o+++++++0 4 1 o+++++tt0 4
+ + + + + +
+ IAT=1 + + IAT=2 +
+ + + + + +
2 ot++tbttd+tto 3 2 o+++++++ttdto 3

IAT Identifier of assembly type (cf. sketch above):
0 Single triangle.
1 2 triangles: 123 and 341 (diagomal 1-3)
2 2 triangles: 124 and 234 (diagonal 2-4)
3 4 half-thick overlaid triangles: 123,341,124,234

LS (12 x 1) array of stiffness location pointers.
For the standard freedom ordering
uxl,uyl,theta2, ux2, ... uy4,thetas
set LS = 1,2,3,4,5,6,7,8,9,10,11,12. To get
uxi,uyl,ux2,uy2, ... uy4,thetal, ... thetad
set L8 = 1,2,9,3,4,10,5,6,11,6,7,12, and so on.
Other settings are useful when this element is to be
inserted in a shell element as membrane component.

SM Incoming stiffness array. NOT CLEARED by SM4M.
M First dimension of SM in calling program.
The outputs are:

SM Output stiffness array with bending stiffness
coefficients added in. The (i,j)-th entry of the
(12 x 12) element membrane stiffness is added
to SM(K,L) where K=LS(I) and L=LS(J).

STATUS Status character variable. Blank if no error
detected; else returns appropriate message.
C=END USAGE
C=BLOCK FORTRAN
subroutine SM4M
$ (type, opt, x, y, dm, alphab, gamma, iat, 1s, sm, B, status)

c
c ARGUMENTS
c
character type*(*), opt, status#*(*)
double precision x(3),y(3),dm(3,3), alphab,gamma
integer iat, m, 1ls(*)
double precision sm(m,m)
c
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2500

TYPE & DIMENSION

double precision xt(3), yt(3), f, fb, fh

integer i, j, ias, n, p
integer ntrigs(0:3), tnodes(3,4, 0:3), 1lst(9)
integer nt(3)
DATA
data ntrigs /1,2,2,4/
data tnodes /1,2,3, 9%0,
3 1,2,3, 3,4,1, 6x0,
$ 1,2,4, 2,3,4, 6%0,
$ 1,2,3, 3,4,1, 1,2,4, 2,3,4/
LOGIC
status = '

ias = max(0,min(iat,3))
f = 1.D0/(1+ias/3)

fb = £

th = £+(1.D0-gamma)

if (opt .eq. ’B’) fh = 0.0
if (opt .eq. ’H") fb = 0.0

do 3000 j = 1,ntrigs(ias)
do 2500 i =1,3

ns= tnodes(i,j,ias)
nt(i) = n
xt(i) = x(n)
yt(i) = y()
1st(2*i-1) = 1s(3#*n-2)
1st(2*i ) = 1s(3*n-1)
1st( i+6) = 1s(3*n )

continue

if (type(1:3) .eq. ’ALL’) then
p= ichar(type(4:4))-ichar(’0’)
if (type(5:5) .eq. 'M’) p=-3

call SM3MALL (xt,yt, dm, p, f, 1lst,sm,m, status)
else if (type(1:3) .eq. ’CST’) then
call SM3MB (xt,yt, dm, 0.0DO, fb, lst,sm,m, status)
else if (type(1:3) .eq. ’AND’ .or.
type(1:3) .eq. ’EFF’ .or.
type(1:2) .eq. ’FF’) then
call SM3MB (xt,yt, dm, alphab,fb, 1lst,sm,m, status)
if (type(1:3) .eq. ’AND’) themn
call SM3MHANDES (xt,yt, dm, fh, lst,sm,m, status)
else if (type(1:3) .eq. ’EFF’) then
call SM3MHEFF (xt,yt, dm, fh, 1lst,sm,m, status) .
else if (type(1:2) .eq. ’FF’) then .
call SM3MHFF (xt,yt, dm, fh, lst,sm,m, status)
end if
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else
status = 'SM4M: Illegal TYPE argument’
end if
if (status(1:1) .ne. ’ ) return
3000 continue
return

- 771

ii end
C=END FORTRAN

l C=DECK SM3MB
C=PURPOSE Form basic membrane stiffness of 9-dof triangle
C=AUTHOR C. A. Felippa, June 1984
C=VERSION June 1584
C=EQUIPMENT Machine independent
C=KEYWORDS finite element membrane plane stress
C=KEYWORDS basic material stiffness matrix
-C=BLOCK ABSTRACT

SM3MB forms the basic stiffness matrix of a 9-=dof plane
stress triangle (see CMAME, vol 50, pp 25-69).
It can generate the CST as special case.

=END ABSTRACT
=BLOCK USAGE

aaaoaaaa

The calling sequence is
CALL SM3MB (X, Y, DM, ALPHAB, F, LS, SM, M, STATUS)

The inputs are:

X (3 x 1) array of x coordinates of triangle nodes.
3 Y (3 x 1) array of y coordinates of triangle nodes.
&ﬁ DM (3 x 3) matrix relating in-plane forces to strains.
' ALPHAB Rotational lumping factor; if zero form CST.
F Factor by which stiffness entries will be multiplied.
LS (9 x 1) array of stiffness location pointers.

For the conventional dof arrangement
vxi,vyi,thetai,vx2,vy2,theta2,vxs,vy3,theta3
set LS =1,2,4,5,7,8,3,6,9. The arrangement
vxi,vyi,vx2,vy2,v13.vy3,thetal,theta2,theta3
is obtained if LS = 1,2,3,4,5,6,7,8,9.

SM Incoming material stiffness array.

M First dimension of SM in calling program.

[ EAGEE A 1

The outputs are:

SM Output stiffness array with basic stiffness
coefficients added in. The (i,j)-th entry of the
basic element stiffness is added to SM(K,L),
vhere K=LS(I) and L=LS(J).

STATUS Status character variable. Blank if no erxrorxr
detected.
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C
C=END USAGE
C=BLOCK FORTRAN
subroutine SM3MB
$ (x, y, dm, alphab, f, 1ls, sm, m, status)

|

c TYPE & DIMENSION

character*(*) status

integer m, 1s(9)

double precision x(3),y(3), dm(3,3), alphab,f, sm(m,m)
double precision area2, ¢, 1t(9,3)

double precision ell, el2, el3, e22, e23, 33

double precision  x21, x32, x13, y21, y32, yi3

double precision  x12, x23, x31, y12, y23, y31

double precision s1, s2, s3

integer i, j, k, 1, n {j
c -
c LOGIC
C ~

status = 12 [—

if (f .eq. 0.0) return -~
x21 = x(2) - x(1) . -

12 = -x21 !

x32 = x(3) - x(2) ;

x23 = -x32

x13 = x(1) - x(3) l

x31 = -x13

y21 = y(2 - y(»

yi2 = -y21

y32 = y(3) - y(2) '

y23 = -y32

y13 = y(1) - y(3) ‘

y31 = -y13 [;

area2 = y21*#x13 - x21+y13 M

if (area2 .le. 0.0) then

status = ’SM3MB: Negative area’ -
if (area2 .eq. 0.0) status = ’SM3MB: Zero area’ !
return

end if -

1t(1,1) = y23 &_

1t(2,1) = 0.0

1t(3,1) = y31 B

1t(4,1) = 0.0 [ﬁ

1t(5,1) = y12 .

1t(6,1) = 0.0

1t(1,2) = 0.0

1t(2,2) = x32 I

1t(3,2) = 0.0

1t(4,2) = x13

1t(5,2) = 0.0 !

1t(6,2) = x21 :

1t(1,3) = x32

349

r-*-“



-~ 7 .

e13*1t(j,3)
e23+1t(j,3)
e33+1t(j,3)

s2*1t(i,2) + s3*1t(i,3))

1t(2,3) = y23
1t(3,3) = x13
1t(4,3) = y31
1t(5,3) = x21
1t(6,3) = y12
n= 6
if (alphab .ne. 0.0) then
1t(7,1) = y23+(y13-y21)=alphab/6.
1t(7,2) = x32%(x31-x12)*alphab/6.
1t(7,3) = (x31*y13-x12+y21)*alphab/3.
1t(8,1) = y31ix(y21-y32)*alphab/6.
1t(8,2) = x13%(x12-x23)*alphab/6.
1t(8,3) = (x12+y21-x23+y32)+alphab/3.
1£(9,1) = yi2%(y32-y13)*alphab/6.
1t(9,2) = x21*(x23-x31)*alphab/6.
1t(9,3) = (x23+y32-x31+y13)+*alphab/3.
n = 9 .
end if :
C
c = 0.5D0*f/area2
ell = c * dm(1,1)
e22 = c * dm(2,2)
@33 = c * dm(3,3)
el2 = c * dm(1,2)
ell3 = c * dm(1,3)
e23 = c * am(2,3)
do 3000 j =.1,n
l= 1s(j)
st = e11*1t(j,1) + e12%1%(j,2) +
s2 = e12+1t(j,1) + e22*1t(j,2) +
s3 = e13+1t(j,1) + e23%1t(j,2) +
do 2500 i = 1,j
k= 1s(i)
sm(k,1) = sm(k,1) + (s1*1t(i,1) +
sm(l,k) = sm(k,l)
2500 continue
3000 continue
return
end

C=END FORTRAN

C=DECK SM3MHANDES

C=PURPOSE Form high-order material stiffness
C=AUTHOR C. A. Felippa, June 1991

C=VERSION July 1991

C=EQUIPMENT Machine independent

C=KEYWORDS finite element

of 9-dof ANDES triangle

C=KEYWORDS material stiffness matrix high-order

C=KEYWORDS triangle membrane assumed natural
C=BLOCK ABSTRACT

deviatoric strain

c
c SM3MANDES forms the higher order element stiffness matrix
c of a 9-dof membrane triangle based on the ANDES formulation.
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Implementation moderately optimized for speed.

END ABSTRACT
BLOCK USAGE

P S

The calling sequence is
CALL SM3MHANDES (X, Y, DM, F, LS, SM, M, STATUS)

The inputs are:

X (3 x 1) array of x coordinates of triangle nodes
Y (3 x 1) array of y coordinates of triangle nodes
DM (3 x 3) matrix comstitutive matrix already
_ integrated through the thickness
F Factor by which all stiffness entries will be multiplied.
SM Incoming material stiffness array.
LS (9 x 1) array of stiffness location pointers
(see examples in SM3MB) ,
M First dimension of SM in calling program.

The outputs are:

SM Output stiffness array with higher order stiffness
coefficients added in.
The (i,j)-th entry of the basic element stiffness is added

AR 4
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to SM(K,L), where K=LS(I) and L=LS(J).
STATUS Status character variable. Blank if no error i
detected.
C=END USAGE I’
C=BLOCK FORTRAN -

subroutine SM3MHANDES

$ (x, y, dm, £, 1s, sm, m, status)
Cc
c ARGUMENTS.
C

integer 1s(9), m [—

double precision x(3),y(3), dm(3,3), £, sm(m,m) '

character status#(*) (A
c N
C TYPE & DIMENSION .
c

double precision x12, x21, x23, x32, x31, x13 -

double precision yi2, y21, y23, y32, y31, yi3 hg

double precision 121,132,113

double precision chi213,chi321,chil32

double precision area, area2, area43 '

double precision ¢(3,3), e(3,3), et(3), d(3), gmu(3,3,3)

double precision t(3,3), tfac, kth(3,3)

double precision s(3), xyij(6), sum, w(3), wfac

integer i, j, &k, 1 2
C
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LOGIC
status = ’
if (£ .eq. 0.0) return
x12 = x(1) - x(2)
x21 = -x12
x23 = x(2) - x(3)
x32 = -x23
x31 = x(3) - x(1)
xi3 = -x31
yi2 = y(1) - y(2)
y21 = -y12
y23 = y(2) - y(3)
y32 = -y23
y31 = y@3) - y(»
yi3 = -y31 ’
area2 = x21*y31-x31#y21
if (area2 .le. 0.0) then

status = ’SM3MHANDES: Negative area’
if (area2 .eq. 0.0) status
return

end if
area

121 =
132 =
113 =

tfac =
t(1,1)
t(1,2)
t(1,3)

“t(2,1)

1400

1500

t(2,2)
t(2,3)
t(3,1)
t(3,2)
t(3,3)
wfac =
e(1,1)
9(1 ’2)
e(1,3)
e(2,1)
e(2,2)
e(2,3)
e(3,1)
e(3,2)
e(3,3)

0.5D0*area2

sqrt (x21**2+y21*%2)
sqrt (x32+x2+y32%*2)
sqrt(x13**2+y13*%2)
0.25D0/area*x*2
tfac*xy23xy13#121%x2
tfac*y31»xy21%132%+2
tfac*yl12xy32+113%*2
tfac*x23*x13%121%*2
tfac*x31*x21%132%%2
tfac*x12*x32#113%%2

tfac*(y23+*x31+x32%y13) *121%*2
tfac*(y31%x12+x13%y21) #132%*2
tfac* (y12+x23+x21#y32)*113%*2

0.75D0*f*area
wfac*dm(1,1)
wfac*dm(1,2)
wfac*dm(1,3)
Vfac*dm(zn 1)
wfac*dm(2,2)
wfac*dm(2,3)
wfac*dm(3,1)
wfac*dm(3,2)
wfac*dm(3,3)

do 1600 j = 1,3
do 1400 i = 1,3

et(i) = e(i,1)*t(1,j
continue

do 1500 i =1,3

c(i,j) = t(1,i)*et(1)+t(2,i)*et(2)+t(3,i)*et(3)

continue

ISM3MHANDES: Zero area’

Y+e(i,2)*t(2,j)+e(i,3)+t(3,3)
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1600 continue
area43 = - (2.D0/3.D0)*area2
¢hi213 = area43/121*%2
chi32l = aread3/132*%2
chil32 = area43/113*x2
qm(1,1,1) = -0.25%chi213
qu(1,2,1) = -qm(i,1,1)
qm(1,3,1) = 0.0
am(2,1,1) = 0.25+«chi321
am(2,2,1) = 0.50*chi321
am(2,3,1) = qm(2,1,1)
qm(3,1,1) = -0.50%chi132
gn(3,2,1) = -0.25%chi132
au(3,3,1) = am(3,2,1)
qm(1,1,2) = -0.25#%chi213
qm(1,2,2) = ~0.50%chi213
qn(1,3,2) = am(1,1,2)
qn(2,1,2) = 0.0
qm(2,2,2) = -0.25+chi321
a(2,3,2) = -qm(2,2,2)
qu(3,1,2) = 0.25%chil32
qu(3,2,2) = qm(3,1,2)
qm(3,3,2) = 0.50*%chi132
agmn(1,1,3) = 0.50%chi213
an(1,2,3) = 0.25%chi213
an(1,3,3) = qm(1,2,3)
qn(2,1,3) = -0.25%chi321
an(2,2,3) = am(2,1,3)
qm(2,3,3) = -0.50%*chi321
aqn(3,1,3) = 0.25#chil32
qu(3,2,3) = 0.0
qm(3,3,3) = -gm(3,1,3)
kth(1,1) = 0.0
kth(1,2) = 0.0
kth(1,3) = 0.0
kth(2,2) = 0.0
kth(2,3) = 0.0
kth(3,3) = 0.0
do 2800 k = 1,3
do 2600 j = 1,3
d(1) = c(1,1)*qm(1,j,k)+c(1,2)*qm(2,j,k)+c(1,3)*qm(3,j, k)
d(2) = c(2,1)*am(1,j,k)+c(2,2)*qm(2, j,k)+c(2,3) *qm(3,j, k)
d(3) = ¢(3,1)*qm(1,j,k)+c(3,2)*qm(2, j, k) +c(3,3)*am(3,j,k)
do 2500 i =1,j
kth(i,j) = kth(i,j) + _
$ qm(i.i,k)*d(1)+qm(2.i,k)*d(2)+qm(3,i,k)*d(3)
kth(j,i) = kth(i,j)
2500 continue
2600 continue

2800 continue
s(1) = kth(1,1) + kth(1,2) + kth(1,3)
s(2) = kth(2,1) + kth(2,2) + kth(2,3)
s(3) = kth(3,1) + kth(3,2) + kth(3,3)
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0.25%x32/area
0.25*y32/area
0.25+x13/area
0.25xy13/area
xyij (5) 0.25%x21/area
xyij(6) 0.25#%y21/area
do 4000 j =1,9
1= 1s(j)
do 3600 i = 1,3
if (j .le. 6 then
w(i) = s(i)*xyij(j)
else
w(i) = kth(i,j-6)
end if
3600 continue
sum = w(l) + w(2) + w(3)
do 3700 i = 1,j

xyij(1)
xyij(2)
xyij (3)
xyij(4)

k = 1s(i)
if (i .le. 6) then
sm(k,l) = sm(k,1l) + sum*xyij(i)
else
sm(k,1) = sm(k,l) + w(i~6)
end if
sm(1l,k) = sm(k,l)
3700 continue
4000 continue
return
end
C=END FORTRAN

C=DECK SM3MHEFF

C=PURPOSE Form high-order material stiffness' of 9-dof EFF triangle
C=AUTHOR C. A. Felippa

C=VERSION June 1991

C=EQUIPMENT Machine independent

C=KEYWORDS finite element

C=KEYWORDS material stiffness matrix

C=KEYWORDS triangle membrane high-order extended free formulation
C=BLOCK ABSTRACT

SM3MEFF forms the higher order stiffness matrix of a 9-dof
membrane triangle based on the extended free formulatiom.
This implementation has alphah=5/4 hardwired, and is
optimized for maximum formation speed.

aaaaoaoaoaoaoaq

=END ABSTRACT
=BLOCK USAGE

The calling sequence is

CALL SM3MHEFF (X, Y, DM, F, LS, SM, M, STATUS)

aaogaoaaa

The inputs are:
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=END

M

(3 x 1) array of x coordinates of triangle nodes
(3 x 1) array of y coordinates of triangle nodes
(3 x 3) matrix constitutive matrix already
integrated through the thickness

Factor by which all stiffness entries will be multiplied.
It is beta or 0.5*beta

Incoming material stiffness array.

(9 x 1) array of stiffness location pointers
(see examples in SM3MB).

three rotational DOF will appear at the end.
First dimension of SM in calling program.

The outputs are:

SM

Cutput stiffness array with higher order stiffness
coefficients added in.

The (i,j)-th entry of the basic element stiffness is added
to SM(K,L), where K=LS(I) and L=LS(J).

(Drilling freedoms are internally 7,8,9)

STATUS Status character variable. Blénk if no error

USAGE

detected.

C=BLOCK -FORTRAN
subroutine SM3MHEFF

$

QaaQa

aaa

aaa

(x, y, dm, £, 1s, smo, m, status)
ARGUMENTS
integer 1s(9), m
double precision x(3),y(3), dm(3,3), f, sn(m,m)
character* () status
TYPE & DIMENSION
double precision x0,y0, x10,x20,x30, y10,y20,y30
double precision xi2, x21, x23, x32, x31, xi13
double precision yi12, y21, y23, y32, y31, yi3
double precision aal2,aa23,aa3l,ss12,ss23,ss31,ss1,ss2,ss3
double precision caal2,caa23,caa3l, sum
double precision ca,cax10,cax20,cax30,cayl0,cay20,cay30
double precision area, area2, kfac
double precision kqh(6,6) ,hmt(6,3) ,hqt (6,3) ,kth(3,3)
double precision s(3),w(6),xyij(3)
double precision el1l,e22,e33,e12,e13,e23
integex i,j.k,1
LOGIC
status = *oe
if (f .eq. 0.0) return
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x12 = x(1) - x(2)
x21 = -x12
x23 = x(2) - x(3)
x32 = -x23
x31 = x(3) - x(1)
- x13 = -x31
i 12 = 7(1) - 32
y21 = -yi2
y23 = y(2) - y(3)
l _ y32 = -y23
y31 = y(3) - y(1)
yi3d = ~y31 ,
area2 = x21*%y31-x31%y21
if (area2 .le. 0.0) then

status = 'SM3MBEFF: Negative area’
if (area2 .eq. 0.0) status = ’SM3MBEFF: Zero area’

return
end if
area = 0.5D0O*area2
{7' x0 = (x(1)+x(2)+x(3))/3.
» yo = (y(1)+y(2)+y(3))/3.
x10 = x(1) - x0
e x20 = x(2) - x0
{; x30 = x(3) - x0
.yi0 = y(1) - y0
y20 = y(2) - yo
l y30 = 7(3) - 30
aal2 = 2.25D0* (x30%%2+y30**2)
aa23 = 2.25D0* (x10%*2+y10**2)
aa3l = 2.25D0* (x20%#2+y20%*2)
. caal2 = 15.D0/(32.*aal2)

caa23 = 15.D0/(32.%2a23)
caa3l = 15.D0/(32.%aa31)
ssi12 = X12*#2+y12%%2
ss23 = X23**2+y23**2
ss3l = x31%*2+y31#%2

ssl = 0.25D0*(ss12-s531)

ss2 = 0.25D0* (s523~-s512)

883 = 0.25D0* (ss31-s523)

caylQ = 0.1875D0*y10

cay20 = 0.1875D0=*y20

cay30 = 0.1875D0*y30

caxiQ = 0.1875D0*x10

cax20 = 0.1875D0*x20

cax30 = 0.1875D0*x30

hmt(1,1) = caal2#((-ss3+0.6D0*aal2)*y30+area*x30)
hmt(1,2) = 3.*cay30 - hmt(1,1)

hmt(1,3) = cay30

hmt(2,1) = cayl0

hmt (2,2) = caa23#*( (-ss1+0.6D0*aa23) *y10+area*x10)
hmt(2,3) = 3.*cay1l0 - hmt(2,2)

hmt(3,1) = caa31#*((ss2+0.6D0*aa31) *y20-area*x20)
hmt (3,2) = cay20
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2000

hmt (3,3)
hmt (4,1)
hmt (4,2)
hmt (4,3)
hmt(5,1)
hmt (5,2)
hmt (5,3)
hmt (6,1)
hmt (6,2)
hmt (6,3)
do 2000
sum =
hqt(1,3)
hqt(2,3)
hqt(3,j)
sum =
hqt(4,3)
hqt(5,3)
hqt(6,j)
continue

LI R SO S I T A B I |

.

kqh(1,1)
kqh(1,2)
kgh(1,3)
kqh(1,4)
kqh(1,5)
kqh(1,6)
kqh(2,1)
kqh(2,2)
kqh(2,3)
kqh(2,5)
kqh(2,6)
kqh(3,1)
¥qh(3,3)
kqh(3,4)
kqh(3,5)
kqgh(3,6)
kqh(4,1)
kqh(4,2)
kgh(4,4)
kqh(4,5)
kqh(4,6)
kqgh(5,1)
kqh(5,2)

[ J00 A T (N (DO U NN NN NN N DN TN N N RN B BN RN NN

3.*cay20 - hmt(3,1)
caal2x((ss3-0.6D0*aal2)*x30+areaxy30)
-3.%cax30 - hmt(4,1)
-cax30
-cax10
caa23+*((ss1-0.6D0*aa23)*x10+area*y10)
-3.%cax10 - hmt(5,2)
caa3d1x((~-ss2-0.6D0*aa31) *x20-area*y20)
~cax20
-3.*cax20 - hmt(6,1)
= 1,3
(2.D0/9.)*(hmt (1, j)+bmt (2, j) +hmt (3, j))
= sum - (4.D0/3.)*hmt(1,j)’

sum - (4.D0/3.)*hmt(2,j)

sum - (4.D0/3.)*hmt(3,j)
2.D0/9.)*(hmt (4, j)+hmt (5, j)+hmt (6,3))

sum - (4.D0/3.)*hmt(4,j)

sum - (4.D0/3.)*hmt(5,j)

sum - (4.D0/3.)*hmt(6,j)

- A~nn

1.5D0*f/area2
kfac * dm(1,1)
kfac * dm(2,2)
kfac * dm(3,3)
kfac * dm(1,2)
kfac * dm(1,3)
kfac * dm(2,3)

2% (e11+y30**2-2%013*x30*y30+e33*x30**2)
((e13#x10-e11*y10)*y30+(e13+y10-e33*x10)*x30)
((e13+x20-e11*y20) *y30+(e13*y20-e33%x20)*x30)
2% (e13*y30%#2-(e33+e12) *x30+y30+e23*x30%**2)
((e12+x10-013+y10) *y30+(e33+y10-023+x10) *x30)
((e12%x20-e13%y20) +y30+(e33+y20-23%x20) *x30)
kqh(1,2)

2% (e11*y10#*2-2*e13+x10*y10+e33+x10%%2)
((e13*x10-e11*y10) *y20+(e13+*y10-e33+*x10)*x20)
((e33+x10~813*y10) *y30+(e12*y10-¢23*x10)*x30)
2% (e13*y10#%2-(e33+e12) *x10*y10+e23*x10**2)
((e33*x10-e13*y10) +y20+(e12+y10-e23+x10) *x20)
kqh(2,3)

2% (e11#y20*%2-2%e13*x20%y20+e33%x20%*2)
((e33%x20-e13*y20) *y30+(e12+y20-¢23*x20)*x30)
((e12%#x10-e13*y10) *y20+(e33*y10-623*x10)*x20)
2% (e13+y20%*2-(e33+e12) *x20*y20+e23*x20%%2)
kqh(1,4)

kqh(2,4)

kqh(3,4)

2+ (e33+y30+%2-2%e23*x30*y30+e22%x30%*2)
((e23*x10-e33+y10) *y30+(e23+y10-e22+x10)*x30)
((e23%x20-e33+y20) *y30+ (e23*y20-e22*x20) *x30)
kqh(1,5)

kqh(2,5)
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kqh(5,3) = kgh(3,5)
kqh(5,4) = kqh(4,5)
kgh(5,5) = 2*(e33*y10**2—2*e23*110*y10+e22*x10**2)
kqh(5,6) = ((e23%x10-e33%710) *y20+(e23*y10-e22+x10) *x20)
kqh(6,1) = kqh(1,6)
kqh(6,2) = kqh(2,6)
kqh(6,3) = kqh(3,6)
kqh(6,4) = kqh(4,6)
kgh(6,5) = kqh(5,6)
kqh(6,6) = 2*(933*y20**2-2*e23*x20*y20+e22*x20**2)
kth(1,1) = 0.0
kth(1,2) = 0.0
kth(2,2) = 0.0
kth(1,3) = 0.0
kth(2,3) = 0.0
kth(3,3) = 0.0
do 3500 j = 1,3
do 3200 i =1,6
w(i) =  kqh(i,1)*hqt(1,j) + kqh(i,2)*hqt(2,j)
$ + kqh(i,3)*hqt(3,j) + kqh (i, 4)*hqt(4,j)
$ + kqh(i,5)*hqt(5,j) + kqh(i,6)*hqt(6,3)
3200 continue

do 3300 i =1,j
kth(i,j) = kth(i,j) + hqt(1,i)+w(1) + hqt(2,i)*w(2)
$ + hqt(3,i)*w(3) + hqt(4,i)*w(4)
$ + hqt(5,i)*w(5) + hqt(6,i)*w(6)
kth(j,i) = kth(i,j)
3300 continue
3500 continue
s(1) = kth(1,1) + kth(1,2) + kth(1,3)
s(2) = kth(2,1) + kth(2,2) + kth(2,3)
s(3) = kth(3,1) + kth(3,2) + xth(3,3)

ca = 0.25D0/area
xyij(1) = ca*x32
xyij(2) = ca*y32
xyij(3) = ca*xi13
xyij(4) = caxyl3
xyij(5) = ca*x21
xyij(6) = caxy2l

do 4000 j = 1,9

1= 1s(j)

do 3600 i =1,3
if (j .le. 6) then
w(i) = s(i)*xyij(j)
else
w(i) = kth(i,j-6)
end if
3600 continue
sum = w(l) + w(2) + w(3)
do 3700 i =1,j
k= 1s(i)
if (i .le. 6) then
sm(k,1) = sm(k,1) + sum*xyij(i)
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else
sm(k,1) = sm(k,1) + w(i-6)
end if
sm(l,k) = sm(k,1)
3700 continue
4000 continue
return
end
C=END FORTRAN

C=DECK SM3MHFF

C=PURPOSE Form HO material stiffness of 9-dof membrane FF-1984 triangle
C=AUTHOR C. A. Felippa, June 1984

C=VERSION September 1986

C=EQUIPMENT Machine independent

C=KEYWORDS finite element

C=KEYWORDS material stiffness matrix

C=KEYWORDS triangle membrane high-order free formulation FF 1984
C=BLOCK ABSTRACT

SM3MH forms the high order stiffness matrix of the Bergan-
Felippa membrane triangle (CMAME, vol 50, pp 25-69). A faster
reformulation (Finite Element Handbook Series, Pineridge
Press, pp 139-152) of the original implementation is used.

END ABSTRACT
BLOCK USAGE

The calling sequence is
CALL SM3MHFF (X, Y, DM, F, LS, SM, M, STATUS)
The inputs are:

X (3 x 1) array of x coordinates of triangle nodes
Y (3 x 1) array of y coordinates of triangle nodes:
DM (3 x 3) matrix relating membrane forces to strains
F Factor by which stiffness entries will be multiplied.
LS (9 x 1) array of stiffness location pointers
(see SM3MB for examples)
SM Incoming material stiffness arzay.
M First dimension of SM in calling program.

The outputs are:

SM Output stiffness array with higher order stiffness
coefficients added in. The (i,j)-th entry of the
(9 by 9) H.O. membrane stiffness is added to
SM(K,L), where K=LS(I) and L=LS(J).
(Drilling freedoms are 7,8,9 internally).

STATUS Status character variable. Blank if no error
detected.

OOOOOOOOOOOOQQQOOQQQQQOQQQ??OOOQOO
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C=END USAGE
C=BLOCK FORTRAN
subroutine SM3MHFF

$ (x, y, dm, £, 1s, sm, m, 'status)

c

c ARGUMENTS

c
character*(*) status
integer 1s(9), m
double precision x(3), y(3), 4(3,3), %, sm(m,n)

C

C . LOCAL VARIABLES

c
double precision xc(3), ye(3), dxc(3), dyc(3), hh(3,9)
double precision sqh(3,3), qx(3,3), qv(3,3), r(3,3)
double precision area, area2, lambda, cj, 8j, ¢8j
double precision ell, el2, ei3, 22, e23, 33, jxx, jxy, Jiyy
double precision det, gamma, ggg, mu, muUx, muy, mumu, tau
double precision sum, si, s2, s3, s4, s5, s6, x0, yo
integer i, j, k, 1

C

c LOGIC

c

status = '’ '
area2 = - (y(2)-y(1))*(x(1)-x(3)) - (x(2)-x(1))*(y(1)-y(3))
if (area2 .le. 0.0) then

status = ’SM3MHFF: Negative area’

if (area2 .eq. 0.0) status = ’SM3MHFF: Zero area’

return
end if
if (£ .eq. 0.0) return
x0 = (x(1)+x(2)+x(3))/3.0
yo = (y()+y(2)+y(3))/3.0
area = 0.5%area2
lambda = 1.0/sqrt(area)
xc(1) = lambda * (x(1)-x0)
xc(2) = lambda * (x(2)-x0)
xc(3) = lambda * (x(3)-x0)
yc(1) = lambda * (y(1)-y0)
yc(2) = lambda * (y(2)-y0)
yec(3) = lambda * (y(3)-y0)
dxc(1) = xc(3) - xc(2)
dxc(2) = xc(1) - xc(3)
dxc(3) = xc(2) - xc(1)
dyc(1l) = ye(3) - yec(2)
dyc(2) = ye(1) - yc(3)
dyc(3) = yc(2) - yc(1)
eil = dm(1,1) = £
e22 = dm(2,2) * £
33 = dm(ans) L 4
e12 = dm(1,2) = £
elld = dm(1,3) = £
023 = dm(2,3) = £
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c

2400
2500

-2.%(xc(1)*xc(2)+xc(2) *xc (3) +xc(3) *xc (1)) /3.0

(xc(1)*yc(1)+xc(2) *yc(2)+xc(3)*yc(3))/3.0

-2.#(yc (1)Ysyc(2)+yc(2) *yc(3)+yc(3)*yc(1))/3.0

do 2500 j = 1,3

Dux = -3.0xxc(j) /2.0
muy = -3.0*yc(j) /2.0
mumu = mux#**2 + muy**2
m = sqrt (mumu)
gamma = 2.0/ma .
tau = 0.25D0# (dxc (j) **2+dyc(j) **2-gamma*+2)
ggg = (zumu-3.0*tau) *gamma*lambda/24.
cj = mux/m
sj = muy/mu
r(1,j) = -lambda * (cj*xc(1)+sj*yc(1)) + ggg
r(2,j) = -lambda * (cj*xc(2)+sj*yc(2)) + ggg
r(3,j) = -lambda =* (cj*xc(3)+sj*yc(3)) + ggg
csj = cj*sj
qx(j,1) = -0.5%csjxcj
gx(j,2) = -0.5%sj**3
qx(j,3) = =-csj*sj
qy(j,1) = 0.5%cj**3
qy(j,2) =  0.5%csj*sj
qy{(j,3) = csj*cj
sl = e11#qx(j,1) + e12%qx(j,2) + e13xqx(j,3)
s2 = e12+qx(j,1) + e22#qx(j,2) + e23*qx(j,3)
83 = e13+qx(j,1) + e23+qx(j,2) + e33+qx(j,3)
s4 = ellxqy(j,1) + el2%qy(j,2) + e13*qy(j,3)
s5 = e12+qy(j,1) + e22xqy(j,2) + e23*qy(j,3)
s6 = e13+qy(j,1) + e23%qy(j,2) + e33xqy(j,3)
do 2400 i =1,j
sqh(i,j) = jxx * (gx(i,1)*s1+qx(i,2)*s2+qx(i,3)*s3)
$ + jxy * (qx(i,1)*s4+qx(i,2)*s5+qx(i,3)*s6
$ +qy(i,1)*s1+qy(i,2)*s2+qy(i,3) *s3)
$ + jyy * (qy(i,1)*s4+qy(i,2)*s5+qy(i,3)*s6)
continue
continue
bh(1,7) = r(2,2)*r(3,3) - r(2,3)*r(3,2)
hh(2,8) = r(3,3)*r(1,1) - r(3,1)*x(1,3)
hh(3,9) = r(1,1)*r(2,2) - r(1,2)*r(2,1)
bh(1,9) = r(1,2)*r(2,3) - r(1,3)*r(2,2)
hh(3,7) = r(2,1)*r(3,2) - r(3,1)*r(2,2)
bh(2,7) = r(2,3)*r(3,1) - r(2,1)*r(3,3) .
hh(1,8) = r(3,2)*r(1,3) - r(1,2)*r(3,3)
hh(3,8) = r(3,1)*r(1,2) - r(3,2)*r(1,1)
hh(2,9) = r(1,3)*r(2,1) - r(2,3)*r(1,1)
det = r(1,1)*bh(1,7) + r(1,2)+hh(2,7) + r(1,3)*bh(3,7)
do 2700 i =1,3
bh(i,7) = -hh(i,7)/det
hh(i,8) = -hh(i,8)/det
bhh(i,9) = ~-hh(i,9)/det
sum =

-0.25D0*1ambda#* (hh(i,7)+hh(i,8)+hh(i,9))
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do 2600 j =1,3
bhh(i,2*j-1)
bh(i,2*j )
2600 continue
2700 continue
C

-sum*dxc(j)
-sum*dyc(j)

do 4000 j = 1,9 |
1= 1s(j) :
s1 sqh(1,1)*hh(1,j) + sqh(1,2)+hh(2,j) + sqh(1,3)+hh(3,5)
s2 sqh(1,2)#bh(1,j) + sqh(2,2)*bh(2,3) + sqh(2,3)*hh(3,3)
s3 sqh(1,3)*hh(1,j) + sqh(2,3)*hh(2,j) + sqh(3,3)*hh(3,j)
do 3500 i =1,j
k= 1s(i) ,
sm(k,1) = sm(k,1) + (si*hh(1,i) + s2+hh(2,i) + s3*hh(3,1))
sm(l,k) = smn(k,l)
3500 continue
4000 continue
return
end
C=END FORTRAN
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PARAMETRIZED VARIATIONAL PRINCIPLES
FOR MICROPOLAR ELASTICITY

ABSTRACT

A parametrized six-field variational principle for micropolar compressible linear elasticity is pre-
sented. The primary variables are symmetric and skew stresses, symmetric and skew strains,
micropolar rotations, and displacemerits. The governing functional is characterized by six free pa-
rameters. The connection between this formulation and the functionals with relaxed stress symmetry
and independent rotations fields proposed by Reissner and Hughes-Brezzi for classical (non-polar)
linear elasticity is examined. It is shown that the Hughes-Brezzi functionals are special cases of the
parametrized functional but that the Reissner functionals are not. The former may be interpreted
as a regularization (consistent stabilization) of the Reissner functionals that places them within the
framework of micropolar elasticity. An eight-field parametrized principle that accounts for couple
stresses is briefly described in the Appendix. -
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1. GOVERNING EQUATIONS

Consider a compressible linear micropolar body under static loading that occupies the volume V.
The body is bounded by the surface S, with outward external normal n;. The surface is decomposed
into S : S4 U S;. Displacements are prescribed on Sy while surface tractions are prescribed on §,.

Rectangular Cartesian coordinates will be used throughout.

The four unknown volume fields are the displacement vector ;, the infinitesimal strain tensor
¥ij» the stress tensor 7;;, and the (antisymmetric) microrotation tensor 6;;. The stress and strain
tensors are not symmetric. The symmetric and antisymmetric parts of the stress tensor are o;;
and s;j, respectively. The symmetric and antisymmetric parts of the strain tensor are ¢;; and ¢;;,
respectively. The antisymmetric tensor of infinitesimal rotations (also called macrorotations) is w;;.

The problem data include: the body force field b; per unit of volume in V, body couples c; per unit
of volume in V, prescribed displacements d; on Sy, and prescribed surface tractions 7; on ;.

The governing field equations for an isotropic micropolar continuum without couple stresses are
written below following Novacki (1970), with some notational changes. In the following equations,
8;j is the Kronecker delta, ¢;;; denotes the permutator symbol (€;jx = +1 or —1if i, j, k are distinct
and form a positive or negative permutation, respectively, of 1, 2, 3; else ;. = 0), A and y are the
Lamé coefficients, and « is a micropolar modulus that relates the antisymmetric tensors ¢;; and s;;.
In addition, a comma denotes partial derivative with respect to the space coordinate whose index

follows.
Strain-displacement and rotation-displacement equations in V:
Yij = uji — 6ij = eij + wij — 6 = e;j + ¢ij,
wij = 3(uj; — uij),
eij = 3 (Vij + ¥;i) = 3(wji + ui ;). W
bij = 3(Vij — ¥ii) = $(uji — uiz) — 6ij = wij — 6;.
Constitutive equations in V: .
Tij = (U +ij + (1 = €)yji + Aijyu = 0ij + sij,
oij = 3(Tij + Ti) = 2ueij + Mjjen, 2)
sij = 3(uj — i) = 2 §ij.
Equilibrium equations in V:
Tij +bi = 0jij +Sjij + b =0, -
€ijxTik +¢i = 0.
Stress boundary conditions on S;:

r,-jnj = ;, (4)
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Displacement boundary conditions on Sy:

]

Uu; =

&)

-

The foregoing equations apply if the presence of couple stresses m;; is neglected. The variational
treatment is extended to that case in the Appendix.

For completeness, and to facilitate correlation with other references, equations (1)—~(5) are restated
below in direct (index-free) tensor notation:

w = (V= vT)u = skew (Vu),

e=1(V+V')u = symm (Vu) = symm 7,
[}

p=w-0= 1V = VT)u - 8 = skew (Vu — 8) = skew 7,
I=(p,+x)'_y+(u—x)1T+k1trace1=g+§, v inV
g =symm 7= 2ue+ Al trace v, _ (6)

s = skew 7= 2« ¢,

divr+b=div(c+s)+b=20,

2axial r+¢=0,

Here an underlined bold symbol denotes a second order or higher tensor. This convention is used
to distinguish tensors from their vector/matrix representations introduced in Section 2.1. No such
distinction is needed for vectors such as u.

2. NOTATION

2.1 Matrix Notation

To facilitate the construction and manipulation of variational matrix expressions, stresses and strains
will be arranged as column vectors constructed from the respective tensors. The arrangement rules
vary according to the symmetry properties and are best illustrated by specifics.
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For symmetric stress and strain tensors:

o ey |
022 €22
oy o2 013 €11 €12 €3
— 033 - €33
g=|012 0n 03 |=0=\ e=|¢e2 en epn |=e=; ., (D
o;3 O3 O 92 e €33 € Zex3
13 023 033 13 €23 €33
031 2e3,
| 012 [ 2¢)2 |

where 03; = 03 and e3; = e;3. The factor of 2 in e maintains equivalence of stress-strain inner
products; cf. (12) below.

For antisymmetric (skew) stress and strain tensors:

0 S12 513 523 0 $12 @13 2023
s=|-s2 0 523 |=s=1s3¢, =|-¢2 0 ¢n|=¢=42¢
-s513 —s3 O s12 613 —¢3 O 2¢12
- (3)
0 62 613 2023 0 w32 @13 2w
8= -6 0 65 |=0=126, w=|-w2 0 owj3|=w=q2wy
—013 —63 O 201, —w;3 —wy3 O 2012
' %)
where s3; = —s)3 and ¢3; = —¢,3. The factor of 2 applies only to kinematic skew (rotational)

tensors, and again maintains inner product equivalence; cf. (12) below.

For general (unsymmetric) stress and strain tensors:

.

71y ) [ Y11
™ Y22
733 V33
Tir Tiz T3 ™3 Yu Y2 ¥Yi3 Y23
T=|ma T2 T3 |=ST={T (, Y={ra ¥2 vs|=v=1va¢. (10
31 T2 133 T12 Y31t Y32 V33 Y12
732 V32
13 i3
L T21 ) L Y21 )

With these conventions operations between tensors of equal type can be easily translated to matrix
form. For example, the inner products

g:§=0'ijeij =a-Te, §:2=S,’j¢ij =ST¢. (11)

Problems arise, however, in combining different types. For example, T = o + s is an inconsistent
matrix operation because vectors o and s have different dimensions. This difficulty can be cir-
cumvented by introducing “uncompressed” versions, in which components of symmetric and skew
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tensors are arranged as general tensors:

( o1 ] 0 ( €11 ) 0 )
02 0 €22 0
033 0 €33 0
023 523 €2 @23

‘=103 ¢, S=4{ s |, o= €3 (., ‘d=1 ¢ - (12)

o12 S12 e é12
023 =S | €23 —¢23
o31 —531 e3 -3

[ 012 ) [ =512 | L €12 ] | =12

Furthermore, T = *r and v = *, thus no distinction is needed there. This convention will let us
consistently expand expressions such as the inner product of total stresses and strains:

v =T y=Co+%) (e+"p)=cle+s . (13)

2.2 Matrix Form of Governing Equations

Using the matrix notation of Section 2.1, field equations (1)~(3) may be represented as follows.

Strain-displacement equations:

v ="e+"p, e = Du, p=w—60=Ru-26. (14)
Constitutive equations:
T="0+", o = Ee, s = Go. (15)
Equilibrium equations:
DTo+R7’s+b=0, 2s+c=0. (16)
In the above equations,
[ 8/3x, 0 0 7
g o/ g"z ) /gx —8/3x, 98/9x 0
D= 5/0x, 9/0x 0 31, R= 0 —3/9x3 8/9x2 (17)
2 : 3/8x3 0 —3/0x,

0 9/0x3 9/0x>
| 9/0x3 0 a/0x) |

are the symmetric gradient and curl operators, respectively, in matrix form, and

CL 420 W p 0 0 07
L A+24 w0 0 O Lo o
E=| # #ooAt2p 00 01 W o1 0 (18)
0 0 0 4 0 0 0 o ]
0 0 0 0 p O
0 0 0 0 0 u.
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In the sequel E and G are not restricted to these isotropic forms but can be arbitrary nonsingular
symmetric matrices. This allows anisotropy in the constitutive equations, subjected however to the
restriction that the pairs (o, €) and (s, ) remain constitutively uncoupled.

For future use, introduce the constitutive matrix C that relates Tto -:

r=Cy, c=['(’;‘ g] (19)

2.3 Reduction to Classical Elasticity

Micropolar elasticity reduces to classical linear elasticity if the couple body force ¢ vanishes. If
so the second equilibrium equation 2s + ¢ = 0 shows that s = 0, and T = o +§ = O is
symmetric. Under the assumption that G is nonsingular, the second constitutive equation in (16)
gives ¢ = G~'s = 0,and v = e+ ¢ = eis symmetric. Furthermore, 6 = w, that is, microrotations
and continuum-mechanics rotations coalesce.

2.4 Field Dependency

For the investigation of variational methods in Sections 3 and 4, the field-dependency notational
conventions used by Felippa (1989a,b,c, 1991) and Felippa and Militello (1989,1990) are followed.
An independently varied field will be identified by a superposed tilde, for example u. A dependent
field is identified by writing the independent field symbol as superscript. For example, if the
displacements are independently varied, the derived symmetric strain and stress fields are

e’ = Du, o' = Ee* = EDu. (20)

Using this convention, tildeless symbols such as u, e and o are reserved for the exact or for generic
fields. If a symbol derives from two independently varied fields, both fields appear as superscripts:
for example ¢* = Rii — 6.

2.5 Integral Abbreviations

Volume and surface integrals may be abbreviated by placing domain-subscripted parentheses and
square brackets, respectively, around the integrand. For example:
(f), € /Vde, (], € /Sde, (£, & | ras.  [f]; = | fas.
N Y@
If f and g are vector functions, and p and q tensor functions, their inner product over V is denoted
in the usual manner

def def
(t.g), & fv figidV = fv gdv, (pa), & fv pigidV = fv pTqdv, @2

and similarly for surface integrals, in which case square brackets are used.
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3. GENERALIZED STRAIN ENERGY FOR CLASSICAL ELASTICITY

The method used to construct parametrized micropolar variational principles in Section 4 repre-
sents a generalization of the corresponding principles of classical linear hyperelasticity, which are
summarized in this section. These principles have the general form

M=U-P. (23)

Here U is the generalized strain energy, which characterizes the stored energy of deformation, and
P is the forcing potential, which characterizes all other contributions. The conventional form of P

18
P¢ = (b,@), + [0 -d,&,] + [t ] (24)

where o, = o7n, n being the unit external normal on S. The other two forms of P, called pe
and P* for displacement-generalized and traction-generalized, respectively, are studied by Felippa ’
(1989a,b,c). These (mesh-dependent) forms are of interest in hybrid finite element discretizations.
As the forcing potential is not affected by parametrization, attention will be focused on U.

For a compressible material, the generalized strain energy introduced in Felippa and Militello
(1989,1990) has the following structure:

3iu(6,¢%), + ji2(5.€), + jis(5.€)y + 3n2(0° 8), + jn(0". ), + 3Jn(o” €,

' (25)
where j,; through j33 are numerical coefficients. The three independent fields are stresses o,
strains & and displacements . Following the matrix notational conventions stated in Section 2.4,

the derived fields that appear in (25) are

U=

o’ =Eé, o*=EDi, e =E'&, ¢ =D (26)

As an example, the U of Hu-Washizu’s functional is obtained by setting ji12 = =1, jiz = 1, ja = 1,
all others being zero:

Uy(,88) = 1(0%,8), +4(5.¢" —8), + (0" — 0%, ¢%), = 3(0%, &), + (. —§),. 2D
Equation (25) can be rewritten in matrix form as

&) jul gl jul] (e
U=3 / o* jnl  jal é ¢ dV. (28)
N s symm Jil e

where I denotes the 6 x 6 identity matrix. The functional-generating symmetric matrix

ju jiz Ji3
J=|Jji2 J2 Juo (29)
Jiz J3 Ji
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is seen to fully characterize (25) and consequently, once the forcing potential P is selected, the
functional (23). (To justify the symmetry of J note, for example, that j13(&, e“)v = %j13 (&, e )v +
1j3(e”, %), etc))

On replacing (26) into (28), U may be expressed in terms of the three independent fields as

juE™! Ji2l JisD

o o
=3 f e Jil Jj2E JED étdv, (30)
Vla juDT  junD'E jsDTED | (@ '
Using (30) the first variation of U may be presented as
8U = (Le, 85), + (A0, 88), — (dive’, 88), + [0, 8], (31

where
Ae = j1€° + ji€+ ji3e", Ao = ji20+ jnot + jno*, o = ji3o+ juno’+ jot. (32)

The last term in (32) combines with contributions from the forcing potential variation. For example,
if P is the conventional forcing potential (24), the complete variation of [1° = U — P is

STI° = (e, 85), + (Ao, 88), — (diva’ + b, 81), + [0, — 1, 80] — [G—d,85.];,. (33)

Using P4 or P* does not change the volume terms. Consequently the Euler equations associated
with the volume terms of the first variation

Ae =0, Ao =0, dive'+b =0, (34)

are independent of the forcing potential. For consistency of the Euler equations with the field
equations of classical elasticity one must have Ae = 0, Ao = 0 and ¢’ = o if the assumed stress
and strain fields reduce to the exact ones. Therefore

jn+juz+jin=0, Jiz+ jn+ ja3 =0, Ju+jn+ja=1 (33)

Because of these constraints, the maximum number of independent parameters that define the entries
of matrix J is three. The specialization of these functionals to conventional and parametrized forms
is discussed by Felippa and Militello (1989,1990).

Insofar as E~! appears in (30), this development is valid only for compressible elasticity. Extensions
of this variational principle to cover incompressibility are discussed by Felippa (1992).
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4. GENERALIZED STRAIN ENERGY FOR MICROPOLAR ELASTICITY

For a micropolar elastic material without couple stresses the variational principle is structuraily
similar to (23):
1-Im"'=[jm_pm» (36)

where U, now also depends on §, ¢ and 8, and P, may be P, P2 or PL. The following
generalization of U to Uy, is postulated:

(& ) [juls ji2ls Jjisls O 0 0 (e )
ot Jiz2le Jnls juls 0 0 0 e
o* Jisle jnls juls 0 . 0 0 e
Un =13 f IR . . . dv, 37
24,1 s 0 0 0 Jjals JasIz Jjasls * ¢’ } 4D
s? 0 0 0 Jjaslz JssIs  jsels Yo
| 540 | 0 0 0 Juls Jjssls Jjesls ] | 9 ]

where I and I; denote the identity matrices of order 6 and 3, respectively, and the new derived
fields are '

o =G5, *=G¢ ¢°=Ri-06, s*=G¢*=GRi-0). (38)

The block structure of the kernel matrix in (37) results from the inner product orthogonality (14)
of symmetric and antisymmetric tensors. The symmetry of the j coefficients is an assumption that
remains to be verified.

On substituting (38) and (26) into (37), Un is expressed in terms of the six independently varied
fields 7, &, @, §, ¢ and 8-

TrjuE™" Jjials jizD 0 0 0

(T l (T )
é jils  jnE  jsED 0 0 0 é
i jDT uD'E jD'ED juR’ jsR'G —jeR'G | | g
Un = %‘/ $ .t +jesRTGR s _ ¢t dV.
Vs 0 0 jwR  juG™' jisli  —jasls >
¢ 0 0 Js6GR  Jjasls  jssG  —jseG ¢
lg) L o 0 —jssGR  —juls —jssG  jesG 1 1 8 ) 39

The kernel matrix in the above quadratic form must be symmetric, a condition that verifies the
symmetry assumptions in (37). As for the forcing potential, the conventional form changes to

Py = (b,1), + 3(c 6), +[a- d Tn]sd +[t, ﬁ]s. =P+ 4(c,6), +[a- d, S"]Sd' (40)

Similarly, the generalized forcing potentials P2 and P! are obtained by augmenting P4 and P',
respectively, with %(c, Oy + [ — d, s]S4. [The 14 in the ¢ term arises from the presence of factor
2 in the definition (9) of the microrotation vector 8.]

371



The first variation of Uy, is
8Un = (D¢, 85), + (Ac, §8), — (DTo’ +R'S, si),
+ (49, 83), + (4s,89), — (5. 88), + (o, +5,. 80, ];.

where Ae, Ao and o are the same as in (32), and

(41)

A = juud® + jasd + jas®®,  As = jusS+ jsss® + jsss*?, 8 = jaeS+ jses® + jess*®. (42)
Note that (D7 & + RTs') = dive’ + divs = div 7/, where 7’ = *o’ + *5'. The first variation of
Mp = Uy — PS is

8T, = (Ae, 85), + (Ao, 88), — (divr’ +b, 5i1), + (A9, 55),

é - : > 43
b (8958), - 405 +e.dd), + b a6 - o],

Following the same argument as in Section 3, it is found that consistency with the field equations
requires, in addition to (35), that

Jaa + jas + jas =0, Jas + jss + Jjse = 0, Jas + jse + Jes = 1. (44)

It follows that the parametrized functional of micropolar elasticity
Mp = Un(5.8, 8,5 6,8) — P, (45)

depends on 12 — 6 = 6 free parameters through Un,. Specific instances of (45) are characterized
by the functional-generating symmetric matrix

Cju iz i3 0 0 07
Jz j2 ja3 0 0 O
J js Jjn 3 0 0 O
" 0 0 O s Jjas Ja
0 0 0 Jjss Jss Jse
L0 0 0 Jas Jss Jes_
subjected to the six constraints (35) and (44). The nonzero 3 x 3 blocks in J, characterize weightings
for symmetric and antisymmetric fields, respectively, and one is free to “mix or match.” Forexample,

, (46)

"0 -1 1 0 0 0]
-1 1. 0 0 0 0
1 0 0 0 0 O
=10 000 -1 1| “7
0 0 0 -1 1 0
L0 0 0 1 0 0]

represents the choice of the Hu-Washizu principle for both symmetric and antisymmetric fields.

The variational principles of Reissner (1965) and Hughes and Brezzi (1989) will be now examined
in light of the preceding developments.
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5. NON-POLAR FUNCTIONALS WITH INDEPENDENT ROTATIONS

5.1 The Reissner Functionals

Reissner (1965) proposed a functional of Hellinger-Reissner type for classical (non-polar) elasticit);
(¢ = 0) in which u, T and 6 are to be treated as independent fields. In this functional the stress
symmetry condition s = 0 appears as a weak condition with 8 playing the rdle of multiplier. In the
present notation the functional, herein called [Tz, = Ugs — P%, can be written as

Upi = -3(6,E7'5), + (7. V@-8),,  Pp=P +[i-d5], (48)

where Vu is the gradient of the displacement vector. Expanding inner products, noting that 7 (Vu—
6) = T4 = ("o + )7 ("e* + "¢“?), and making use of (13) yields

Unr = -%(&' ea)v + (&’ eu)v + (§' d’uo)v (49)
= -4(6.¢0), + 4G e, + 1059, + 3E69), + 167 B),
This corresponds to taking
-1 0 1 0 0 07
0 000 OO
1 0 00 O0O
Im = 0 0 00 01 (50)
0 00O0O0OO
L 0 0 01 0 0

It can be seen that the first consistency condition in (44), namely jus + jas + jas = 0, is violated.
Consequently ITg; is not a valid functional for micropolar elasticity. Inspection of (50) reveals that
conditions (44) can be met by simply changing ji to —1, and that is precisely the regularization of
Hughes-Brezzi described in Section 5.2.

Reissner also proposed a second functional Mgy = Ugz — P§ of Hu-Washizu type, in which

{EEQ, +(6.¢" ~F), + (5.0 - 9), :
= 1(o* 9 +4(5.¢" =), +1(0* — 0" ¢), +3(6. 0 - @), + 5(s -, 4”){51)
which corresponds to the J, of (47) except that jss = 0. Now the second consistency equation in
(44) is violated. Thus this second functional is also inconsistent with micropolar elasticity, but may
be corrected by changing jss to 1.

Up2 =

5.2 The Hughes-Brezzi Functionals

Hughes and Brezzi (1989) investigated the possible application of the Reissner functionals to
construct finite elements with “drilling” degrees of freedom for classical elasticity. Their analysis
shows that the first Reissner functional would lead to unstable discrete approximations. The physical
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cause of this instability is that deviations from stress symmetry do not produce strain energy. To
circumvent that difficulty, they proposed stabilizing Ug; by adding a penalty-like term of the form

1, . ' .
—ﬁ(s, §)y (52)

where € > 0 is a pseudo-modulus with dimensions of stress (in their paper this modulus is called y,
a symbol used here for total strain). Although x plays the same role as « in the micropolar theory,
for the intended application it is a fictitious quantity to be chosen by numerical experiments. The
term (52) can be encompassed in the present framework by choosing G = k13, which allows that
term to be written as '—%(§, ¢°)v. Adding this to Ug, yields the first Hughes-Brezzi functional:

Unar = =4(7.C'9), + (7. Va-B), -
=-3(6.¢7), - 33 ¢°), +3(6.¢), + 3(*. &), + 1 (5. &), + 3(s )v
This befits the form (37) with the generating matrix
-1 01 0 0 07
O 00 O 00O
1 00 0 0O
In = 0O 00 -1 0 1)’ >4
0O 00 O 0O
. 0 00 1 0 0

whose coefficients satisfy (35) and (44). Thus the stabilization procedure has also the effect of
rendering the functional consistent with micropolar elasticity.

For the second Reissner functional, the stabilization term added to Uy, is %(s", &)V, which effec-
tively transforms the first term in (51) from (e, E€)y to (%, C5)v. The resulting J,, is (47).

An obvious generalization of this “repeating block” rule is

CJju jiz 3 0 0 07
Jz jz Jjs 0 0 O
J Jis j3 Jji3 0 0 O
" 0 0 0 ju Jju jis|’
0 0 0 juu jn js
L0 0 0 i3z Jjs Js_

(35)

with the coefficients satisfying (35). This three-parameter family permits symmetric and antisym-
metric stress and strain fields to be merged into total stresses and strains. The resulting functionals
I1(F 4, @, 8) may be viewed as having at most four independent fields. Note, however, that this
choice is but a special case of (46).
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5.3 A Two Field Functional

The simplest generating matrix with the block structure (55) is

0 0 0 0 0 07
0 00 0 OO
0 01 00O -
Im=10 0000 0l | (56)
0 000 OO
00000 1_
The resulting two-field functional is [Ty = U4 — P€, with
Ua(ii, 8) = 1(6", ¢*), + L (s, ), (57)

This may be viewed as a generalization of the minimum potential energy functional, to which
it reduces if the second term is dropped. It can be obtained from a more general functional for
elastoplasticity proposed by Atluri (1980), who recommends taking ¥ = 44 in s“¢ = k¢“°. Hughes
and Brezzi (1989) also investigated the functional (57) but made no recommendation on «.

6. CONCLUSIONS

The functional I1,, = U, — P, extends the parametrized functional I1 = U — P of classical linear
hyperelasticity to include three more independently varied antisymmetric fields: skew stresses,
skew strains, and microrotations. This extension is made here in the context of micropolar elasticity
without couple stresses.

Another application of these functionals is the construction of finite element interpolations for clas-
sical linear elasticity in which the rotational field 6 is varied independently from the displacements.
The objective is to relax stress symmetry into a weak condition. It is in this context that the func-
tionals of Hughes-Brezzi have been proposed. A membrane element with drilling freedoms based
on these functionals has recently been constructed by Ibrahimbegovic (1990). The present study
indicates that the Hughes-Brezzi functionals fit the framework of micropolar elasticity if fictitious
modulus ¥ is identified with the micropolar modulus «.

The Hughes-Brezzi functionals can be readily generalized into a three-parameter family defined by
(55), in which the same weighting is applied to symmetric and antisymmetric fields. However this
is just a subspace of the six-parameter functional (45) characterized by the J» matrix (46), which
allows such weights to be separately chosen.
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Appendix. Parametrized Functional for a
Micropolar Medium with Couple Stresses

In this Appendix the preceding variational formulation is extended to account for the presence of couple
stresses m;;. Two changes in the field equations occur. The angular-momentum equilibrium equation gains a
divergence term: l

mjij +€ipTix+¢ =0, (58)
The constitutive equations must be augmented by a relation between the couple stresses and microrotation
vector derivatives, which for the isotropic case is

m;; = m8ij6kx + 20, j + 736 (59)

Here m,, 7; and 73 are constitutive coefficients with dimension of force, and for compactness we have used
the microrotational vector components 8, = 263, 8, = 263 and 83 = 26, in accordance to the convention of
Eq. (9). The gradients of §; will be denoted by x;i = 6;.;, which may be interpreted as “curvatures.”

In addition, the boundary conditions (4)—<(5) are augmented with

miin; = My = G on Sw, 6,' = éi on So, (60)
where S : S, U Ss.
Next, define the vectors and matrices
m={m; mp my my my mp mp m3 my 1T,
x={xu Xz X3 X» xm x2 xu X3 xall,
7, m ®m 0 0 0 0 0 07 [~ 9/3x, 0 0 7
7, g m O O .0 O O O 0 a/3x; 0
m m ns 0 0 O O O O 0 0 3/3x;3 61)
0O 0 0 @, 0 0 = 0 O 0 0 a/dx;
H={0 0 0 0 m 0 0 m 0|, Q=] 3/3x 0 0
0 0 0 0 0 m 0 0 m 0 3/dx, 0
0 0 0 ns 0 O m O O 0 9/0x3 0
0 0 0 0 73 0 O m O 0 0 9/0x,
(0 0 0 0 0 m 0 0 m_ [ a/ox, 0 0

in which 74 = m, + 72 + 3. Matrix H can be generalized to account for anisotropy without difficulty. Little
is known experimentally about couple stress constitutive behavior, however, even in the isotropic case.

With the foregoing definitions, the matrix field equations that include the effect of the couple stresses are

x = Q8, Q' m+2s+c=0. (62)

The first two are appended to the kinematic relations (14) and constitutive equations (15), respectively, whereas

m = Hy,

the latter replaces the second of (16).

A parametrized variational principle that accounts for couple stresses is easily obtained by including two
independently varied fields: couple stresses m and curvatures . Functionals U, and PS are augmented with
couple stress terms

PC

Umcs=Um+Ucn mcs=P:|+Pc

cs?

(63)
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where

m [ il jul jel] X"
Us =14 ] m* Jesly  Jjaslo x tdv, (64)
v {mf symm Joolo 4 U X°
P, =[w8) +[6—-6m.]. (65)
The derived fields in (64) are m* = H%, x™ = H'm, X’ = Q6, and m® = HQ 8; also I, denotes the 9 x 9
identity matrix.

The first variation of [, = Unes + P2

mcs

8Tlnes = (Be,85), + (A0, 88), — (R77' +b, 88), + (44, 8),
+(as,68), — 1(Q"m’ +25 +¢,86), +[r, — 1 8i] (66)
~[B-d, 5%, ] +[m, - W,80]; — (68, om,]

where m’ = jzom + jggym* + joom®. The consistency conditions are (36), (45), and

in+js+jw=0, J8 + jss + jge =0, J19 + Jeo + joo = L. (67)

It is seen that extending the variational principle (45) to accommodate couple stresses brings three additional
free parameters, for a total of nine. This may be reduced to three free parameters, however, by extendmg the rule
(55) with another 3 x 3 repeating block. Note that if one chooses jgg = 1, others zero, Ugs = 3 (0 QTHQO)V,
and no additional independent fields over those in (435) appear.

The couple-stress theory of elasticity attracted theoretical attention in the 1960s but it is rarely used in practice,
particularly in static situations. For modeling micropolar and oriented media the simpler equations of Section
1 are more common. This is especially true in homogenization of filamentary composite materials, where
the body couple ¢ and the micropolar modulus « can be estimated from component-level non-polar data
complemented by statistical and periodicity arguments; see for example Berglund (1977).

Although couple stress models can be generated in the continuum limit of regular and defective-lattice theories
— see for example Askar (1985) — the difficulties in characterizing and measuring moduli such as 7, m;
and 3 are significant, and the theory has to be regarded as experimentally inconclusive. Furthermore the
additional boundary conditions (60) are not easily interpreted physically. Consequently the main development '
of the paper focuses on the zero-couple-stress case. This has the additional advantage that the reduction to the
classical non-polar case is easily accomplished.
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