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1. Introduction

Chebyshev Spectral Tau methods are a useful technique for solving ordinary dif-

ferential equations. Numerical programs using this method are often considerably

faster with greater accuracy than other standard techniques such as finite differ-

encing. In my attempt to understand Chebyshev polynomials and their applica-

tions, I was unable to find one definitive book or article which took me from only

a general knowledge of calculus and linear algebra to being able to confidently

apply these new techniques. This tutorial is an attempt to fill that need. Several

examples are worked out to demonstrate the usefulness and occasional difficulty

of their application.

This series has been broken down into four major parts. Section one gives

a brief explanation and example of when and why Chebyshev Polynomials are

so useful. The second section is a detailed account of the definitions, properties

and algebra that surrounds Chebyshev Polynomials. Because section two is so

detailed, the reader may read only the first few and last few paragraphs to get

an overview of its material. Section three is also a detailed piece. It deals with

the recurrence relationship between functions and Chebyshev Polynomials. These

recurrence relationships are very important in the implementation of Chebyshev

Polynomials to spectral methods. None the less, most of the common recurrence

relationships are tabulated in the appendix of Gottlieb and Orszag's book [4]. For

this reason, the hurried reader may just browse over the third section. Section

four gives several examples of how to implement Chebyshev Polynomials with

spectral tau methods. All the examples are linear differential equations and most

involve finding the eigenvalues of these equations.

It can be shown that the coefficient on the x n term of the Chebyshev polyno-

mial is 2 n-1. This is left as an exercise in Exercise 2.3. In this tutorial we will

take some function, truncate it and expand it in terms of a Chebyshev Polynomial.

When a function is expanded in terms of some other polynomial, the coefficients

of the expansion are roughly inversely proportional to the coefficients of the poly-

nomial. Therefore, a function expanded in terms of a Chebyshev Polynomial will

have coefficients roughly proportional to 21-n. This gives a geometric rate of con-

vergence as the number of terms in the expansion, n, is increased. The following

example 1 is taken from an excellent source for spectral methods , Spectral Meth-

ods in Fluid Dynamics [2]. The example deals with a linear heat equation with

1Reproduced with authors permission

2



homogeneousDirichlet boundary conditions,over the interval of [-1, 1].

Ou 02u
- o (1.1)Ot Ox2

u(1,t) = o (1.2)
u(-1,t) = 0 (1.3)

u(x,O) = sinlrx (1.4)

A Chebyshev collocation method and a second order difference equation are used

to solve for u. The convergence of the two compared to the number of terms is

given in the table below.

Table 1.1 Maximum error for the one-dimensional heat equation

N Chebyshev collocation Second Order finite difference

8 4.58 • 10 -4 6.44 • 10 -1

10 8.25 • 10 -6 3.59 • 10 -1

12 1.01 • 10 -7 2.50 • 10 -1

14 1.10 • 10 -9 1.74 • 10 -1

16 2.09 • 10 -11 1.35 • 10 -1

Looking at the errors between the two methods, it becomes rather obvious that

the Chebyshev method converges significantly faster. This faster convergence rate

would produce enormous savings in computational time.

2. Chebyshev Polynomials

2.1. Definition

The Chebyshev polynomial is defined as

Tn(x) = cos [narccos(z)]

-1 _< x_<l

X = COS 0

2.2. Minima and Zeroes

(2.1)
(2.2)
(2.3)

T,_(x) = 0 = cos(n0) (2.4)

cos(n0j) = 0 0j= 2j-lrr forj=l,2,--.,n
n 2

The minima are the values in which the Chebyshev polynomial is equal to zero.



2.3. Extrema

[T,_(x)l= 1 is the extremaof T,_(x)

ITn(vk)l= 1 Vk= cos

Tn(+l) = (±1) n

(_) fork= 1,2,---,n (2.5)

(2.6)

2.4. Polynomial Expression

A simple method for finding Chebyshev polynomial expressions can be done using

trigonometry and a recurrence relation. Start with the first two polynomials,

To(x) = cos 0 = 1, and T1 (x) = cos 0 = x. From the relation

2cosOcosnO = cos(n+l) O+cos(n-1)O

2xT,,(x) = T,.,+l(x) + Tn__(x)

T.+l(X) = 2zT,,(x)- T.__(x)
T2(x) = 2xTl(x) - To(x)= 2x _- 1

T3(x) = 2xT_(x)- T_(x)= 4x_- 3x

(2.7)

(2.s)

This method of arriving at the n th degree polynomial is preferred when writing

computer programs[12].

The following is a more rigorous method for determining Chebyshev Polyno-

mials of any degree. First write out DeMoivre's Theorem.

e i° = cosO+isinO

e_'_° = (cos 0 + isinO) n = cos(nO) + i sin(nO) (2.9)

by the binomial expansion,

(cosO + isinO)'_ = cos'_ o + (nl) cosn-l O(isinO) +

Equating the real parts of (2.10) gives
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where

2

substituting sin20 = 1 - cos 2 0

n is even

(2.12)
n is odd

cos ne

cos ne

cos n#

__
+ +/_,>+(;)cos_-_+_¢,_co,_>_

__ (;)cos (;)

= )-_J-1) j cos_-_j 0 -1) k cos_k0
j=0

(2.13)

(2.14)

The summation can be reordered by letting

__-(__)3(:j)cos_-__ .+j=__i_k(_)cos2+0

cos nO
n J n

= _Aj _Bkj = _Aj [Bo# + B13 +"" + Bjj]
j=0 k=o j=o

= Ao [Boo]

+A1 [Bol + Bn]

+As [B02 + B12 + B22]

+Aq [Boq + Blq + "" + Bqq]

+ A,7 [Bon + B2n +"" + B_] (2.15)
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Factor the Bkj terms

Boo [Ao] + BolAz + Bo2A2 -4-... + Bo,TA,7

+BllA1 + B12A2 -4-." + B1,TA,_

+BqqAq + Bqq+zAq+l -4-Bqq+2Aq+2 + "'" + Ba,zA,7

+ B,7_ l ,l_ l A,7_ z -4- B,7_ l ,TA,7

+ B ,7,TA ,7

= _ BjkAk

= E E B;_Ak

for j = 0, 1,2,---,77

j=O k=;

Substituting back in the expressions for Akand Bjk gives

Z _2 (-115 cos_;0 (-1/_ n cosO__0
j=o k=j 2k

= Z(-l/;cos _;02E (-11 2k
¢=o k=;

, [_ COS n-23 0-- y_(-1) _cos 2;0 (-llJ n
3=o 2j

n

• n + q) cos '_-20+q) 0 + ...
/

(2.16)

(2.17)

= _](-1) 2j+¢ cos "-2q 0
j=o 2 (j + q j

for q = 0,1,...,n (2.18)
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showing that (-1) v+q = (-1)23(-1) q = (-1) q gives the final expression for

the Chebyshev polynomial of degree n.

Tn(x) = cosn0 = _(-1) k _ 2j
k=0 j=k

substituting for x -- cos 8

Tn(x) = to + tlx +'" + tnx n

tn-(2k+l) = 0 fork=O,...,[_ln-1

t,-2k = (-1)k_ 2j
j=k

(2.20)

The above equation states that if n is even then all powers of x are also even

and if n is odd then all powers of x are odd. The first few polynomials are given

below.

To(x) = 1 T2(x) = 2x 2- 1

Tl(x) = x T3(x) = 4x 3-3x

T4(x) = 8x 4 - 8x 2 + 1

T5 (x) = 16x 5 - 20x 3 + 5x

2.5. Methods of Summation

In the next section, certain recurrence relationships involving derivatives of Cheby-

shev polynomials will arise. These recurrence formulas will give a rather compli-

cated summation expression. To properly deal with these summations, a technique

know as methods of the summation [ll]will now be introduced.

To begin, we first define the difference operator

A f (x) = f (x + h) - f (x) (2.21)

and let h -- 1.

Af (x) ---- f (x + 1) - f (x) (2.22)

The difference operator A is a linear operator and behaves similarly (but not

exactly) to a differential operator.

A [af (x) + bg (x)] = aAf (x) + bag (x) (2.23)
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A[f(x)g(x)]

:x [f (x)a (x)]

Similarly

= f (x + 1)g(x + 1)- f (x)g(x)
- [f (x + 1)g (x) - f (x + 1)g (x)] (2.24)

= f(x+l)[g(x+l)-g(x)]+g(x)[f(x+l)-f(x)]
= f(x + 1)Ag(_)+g(x)ZXf(x) (2.25)

A f (x) = g (x) Af(x) -- f (x) Ag(x)

Here are some examples.

Ac = 0

Ax = 1

Ax 2 = 2x + 1

Ax 3 = 3x 2+3x+1

where c =constant and n is a positive integer.

Repeated operations give

A2x 2 = A(Ax 2)=A(2x+l)=2

A3X 2 = /_ (2) = 0

in general A"cx n = cn! and Amcx m = 0 for m > n.

Now we shall introduce the anti-difference operator A -1

if Ag (x)= f (x)

g (x) = A-af (x)
A,X-_f (_) = _Xg(x)

f (_) = _g (x)

1 but A-1A # 1!

then

Note that AA -1 =

commute.

(2.26)

where c is some constant.

That is to say the operations do not

£x-1[A f (x)]= f (x) + c (2.27)



Example 2.1. VeriTy that A-ix -- ½ (x 2 - x) + c

= lax2 - !az
2 2

1 1
_X_- --X

2 2

Now we will introduce some notation on factorial products.

z (n) - z(x- 1)(x- 2)... (x- n + 2)(x- n + 1) (2.28)

x (n) is called the n th factorial of x. Below is a list of the first few factorials.

x (1) = x

x (2) = x(x-1)=x 2-x

x(3) = x(x- 2)¢- 1)=x 3- 3x2+ 2x

the difference operator of these factorials are

Ax (1) = Ax = 1

Ax (2) = A(x 2-x) =2x=2x (1)

in general Ax (n) = nx (_-1)

The n th factorial of x, x (n), can be given in terms of a polynomial expression.

n

x(_) S(_)xn + _(,_-l) _-1 == • °) (2.29)
rn----0

the set {S(°),S(1),...,S(n'_) } is known as Sterling's Numbers of the first kind.

Likewise, any power of x can be represented by a polynomial of factorials.

n

x" = @(=")x(") + ®(_"-')x ("-,) +... + ®(')x (') + ®(0) = Z S(_r_)x(m) (2.30)
rrt-_0

The set {_(o), _1)..., _(,_) } is known as Sterling's Numbers of the second kind.

An excellent source for listing a large number of Sterling's Numbers is given in
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the Handbook of Mathematical Functions[6]. A list of the first few of Sterling's

Numbers of the first and second kind are given below.

x (°) ----1

x (1) ----x

X (2) = X 2 -- X

x (3) =x 3-3x 2+2x

x (4) ---- x 4 -- 6x 3 -{- llx 2 -- 6x

x (5) = x s - 10x 4 + 35x a - 50x 2 + 24x

x ° ----1 -----x (°)

X 1 _-- X (1)

x 2 = x (2) + x (1)

X 3 =X (3) q-3X (2) q-X (1)

X 4 ---- x (4) q- 6x (3) q- 7X (2) q- x

X 5 ---- X (5) q- 10X (4) + 25X (3) -q- 15x (2) -q- X

The introduction of the difference operator and the factorial notation will now

be used together to show a convenient way of solving for the limits of summations.

Look at a simple combination of the difference operator and a summation sign.

4 4

Af (x) = _ If (x + 1) - f (x)]
x=l x----1

= [f(5)+f(4)+y(3)+f(2)]-[Y(4)+f(3)+f(2)+f(1)]
x=5

= f (5) - f (1) = f (x)l== 1

in general

Now let A: (x) = g (x)

b Ix=b+ 1

A,f (x) = f (x)==a (2.31)

f(x)

_-_ A f (x)
x_a

= A-lg (x) + c ==b+l

•ob ==b+l (z)Zg(x) = : (x)=/',-lg (x)+ c=o = :,-lg
=_a

Therefore
b x=b+l

g (x) = A-lg (x) ==,_ (2.32)
x_a

This formula gives a method of taking a function under summation and finding

its limit assuming one exists and its anti-difference operator can be found.
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Example 2.2.

n

z-----1 x----1

x (m) = A _(_+1) x (2) A_ and x (1) A-_-- rn+l SO _ ---_

(n + 1) (2) 1(3) 1 (2)
+

3 2 3 2

(n + 1) (3) (n + 1) (2)
- +

3 2

(n+ 1) (n) (n- 1) (n+ 1)(n)
÷

3 2

_-_x2 = (2n+ 1)(n+ 1)n
x----1 6

(n + 1) (3)

Section 2.1 through 2.4 introduced the definition and some of the properties

of Chebyshev Polynomials as well as a derivation of the polynomial itself. Sec-

tion 2.5 showed a nice trick for evaluating summations which have limits and an

antidifference operator. The definition and properties of Chebyshev Polynomi-

als where given to aid anyone interested in more detailed derivations. Section

2.5 will be used in section 3, particularly section 3.2, where recurrence relation-

ships between functions expanded in terms of Chebyshev Polynomials and linear

differential operators of these functions, will be dealt with.

2.6. Problems

Exercise 2.1. Find the first four powers of x in terms of T_(x) by a recurrence
relation.

Exercise 2.2. Prove that T_(x) is commutable; that is Tr(T,(x)) = Trs(X) =

Ts_(x) . Note that there exists one and only one polynomial which is commutable

with T,_(x). Therefore if a polynomial p_(x) is commutable with Tn(x) then

p,_(x)=T,_(x).
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Exercise 2.3. Prove that the coefficient on the x '_ term of the Chebyshev poly-

nomial is 2 "-1 . Hint:(1 + z)" = E3"---o (_) zj for n > O, n a positive integer.

Exercise 2.4. Show that _=1 x3 =

3. Differentiation of Chebyshev Polynomials

This section will illustrate some of the derivations and applications of the deriva-

tives of Chebyshev polynomials. One of the most important applications is in

approximating a function. We will then proceed to take derivatives of the func-

tions and show recurrence relationships between the coefficients of the functions

and its derivatives. This last step is important in the application of spectral

methods.

3.1. Stfirm-Liouville solution and Orthogonality

Chebyshev polynomials can also be defined as the function which satisfies the

following differential equation.

d2y_ (3.1)

Since (3.1) is a Stiirm-Liouville problem, the Chebyshev polynomial is a pax-

ticulax hypergeometric function.

Chebyshev polynomials are orthogonal functions with respect to a weighting
1

function of (1 - x 2)- _.

1 1 __-- 71"
/_lT,_(x)Tm(x) (1- x2) -_ dx _c_ ,,m (3.2)

where

2 n--- 0 (3.3)cn = 1 n>0

0 n # m (3.4)6,m
( 1 n=m

Orthogonality in combination with its geometric rate of convergence axe the rea-

sons why this function is so useful.
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3.2. Recurrence Relations

Let's say we wanted to approximate a function by a finite series of Chebyshev

polynomials.
N

u (x) _- Ug (x) = _ a_Tn(x) (3.5)
n-_O

say we also wanted to approximate the derivatives of the function.

N-1

u'_(x) = _ 41)Tn(x)
n=o

(3.6)

The derivative of u is related to N Chebyshev polynomials by a separate set of

coefficients a(_1). By taking the derivative of (3.5) we obtain.

N
/ p

u N (x) = _ anTn(X) (3.7)
r_-I

Note that now the summation begins with n = 1 and not n = 0, while the

summation of (3.6) starts at n = 0.

A relationship between an and a0) can be found. To prove this, we will make

use of the following trigonometric identity.

2sinrScosp0 = sin(p + r) 0 - sin (p - r) 8 (3.8)

sin (p + r) sin (p - r) 8
2 cos p8 =

sin r8 sin r8

Now letp=nandr= 1

sin(n + 1)8 sin(n- 1)8
2 cos n8 =

sin 8 sin 8

which upon substitution of the definition of Tn(x) and T:(x) gives.

2Tn(_)- T41(_)
n+l n-1

Substituting (3.9) into (3.6) and equating it to (3.7) yields.

E 41)_ t n + 1n=0 n-1

N

= E anT_(x)
n=l

(3.9)

(3.10)
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With the knowledge that Tim(x) = T_(x), we can start writing out terms of

(3.10).

+
a_l)[Tl_ x) T'-I (x)-1

N -Tn+l

n=l n+l

N

= 2E anTi(x) (3.11)
n----1

ao "ltx)-'-_l [ '_ - o .jT,..,,,_L 3 " J (3.12)

Since {T_(x) • n = 1, 2,- -., N} make up the basis of an N dimensional Chebyshev

space, the coefficients on each term can be set equal to each other. Also note that

lim T'n(x) _ lim sinm0_ 0 =0 (3.13)
m--,0 rn m--,0 sin 0 sin 0

2a(01)-a O) = 2al

- 2a2
2 2

a_ 1) a (1)
-- 2a3

3 3

agl) ,.,(1) = 2 (k + 1) ak+l-- _k+2 (3.14)

in general
2kak _ _(1) ,_0) for 1 < k < N (3.15)¢_k-lt_k--1 -- _k+l -- --

where Ck is defined in (3.3)

The same relationship can be developed for the (q - 1) th derivative of (3.9).

"D(q) { X'l

1__1_ j n > q (3.16)2T2_1>( )_ T tl( )
n+l n-1

where T_(q) (x) is the qth derivative of T,_(x). Applying the same procedure to (3.16)

would yield

_(q) -(q) =2(k+l)"(q-1) 0<k<g-q (3.17)Ckt_k -- _k+2 U°k+l --

14



Starting with (3.14) a simplified form of the recurrence relation can be devel-

oped. Notice that ak = 0 for k > N. Start with k = N- 1 and work in descending
order.

C ^(1) ,,(1)
N-lt_N-1 -- _N+I

c _ a_ )N-2ttN_ 2

-

c2a_1)- a(41/

cla_) - a(3_)

_oa(0_)_ a_1)

Simplifying and substituting yields

a(_)__1 =

a(_) 2 =

a_)_3- 2(N)aN =

a(_)_ 4- 2(N- 1)aN-i =

a_1) =

coa (1) =

Put (3.19) into summation form.

= 2(N)aN

---- 2 (N --1) ag_l

---- 2 (N- 2) aN_2

= 2 (3) a3

= 2 (2) a2

= 2 (1) a2

2(N)aN

2 (N - 1) aN-1

2 (g - 2) aN_ 2

2(g--3) ag_3

2.2a2 + 2- 4a4 +.-. + 2 (N - 1) aN-1

2.2al + 2.4a3 +-.. + 2 (N) aN

(3.18)

N

_a(U=2 E pap
p=n+l

p+n odd

(3.19)

(3.20)

The relationship between the qth and the qth _ 1 derivative coefficients can also

be written. In addition (3.20) does not need to be truncated to N terms. The

combination of the two gives.

OO

c_a_ ) = 2 E pa(pq-l) (3.21)
p=n+ 1

p+n odd

15



To carry this exercisefurther, let's say we wereinterested (which we are) in
the secondderivative recurrencerelation betweenan and a_). Let q = 2 in (3.21)

and substitute (3.20) in for a(p1).

m+n odd p+m odd

Since m will always be greater than zero, c_ = 1. Simplifying (3.22) gives

_37) = 4 Z m pap (3.23)
rn=n+l p=rn+l

m+n odd Lp+m odd

To get rid of the oc in the inner summation we can switch the order of sum-

mation. Note that the summations can only be switched when the summations

are uniformly convergent• Start by expanding the inner summation.

O0

c_a(2)=4 _ m[(m+l)am+l+(m+3)am+3+'"] (3.24)
rn=n+l

rn+n odd

Followed by the expansion of the outer summation.

!._a(2) = (_+ 1)[(_+ 2)_.+2+ (_+ 4)_.+4+ (_+ 6)_.+6+.--]
4 TM n

+ (n + 3)[(n + 4)a,+4 + (n + 6)a,+6 +...]

+ (n + 5) [(n + 6) a,+6 + (n + 8) a,+8 +'-']

+ (n + 2i- 1)[(n + 2i)a,+2; + (n + 2i + 2) a,_+2i+2 +-" .[3.25)

Regroup the a, terms and their corresponding coefficients.

4 { (n + 2) an+2 In + 1]

+ (n + 4)a_+4 [(n + 1)+ (n + 3)]

+(n+6)a,_+6[(n+ 1) + (n+3) + (n+5)]

+ (n + 2i)a,+2,[(n + 1) + (n + 3) + .-. + (n + 2i- 1)]}

• (3.26)
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Write the inside bracketsasa summation.

n-i-2i--I

4(n-4- 2i)a,+2, _ rn for i = 1,2,3,--- (3.27)
rn=n+ 1

rn+n odd

and finally
p-1

c.na(n2)=4 _ pap y_ m (3.28)
p=n+2 rn=n+l

p-+-n even ra+n odd

Recalling from section 2.5 on the methods of summation, we saw ways of

finding the value of _P,T_,_+I m . It would be more aesthetic and computational
m+n odd

less intensive if there existed a single value that would replace this summation.

Begin by expanding the summation.

p-1

m=(n+l)+(n+3)+...+(p-1)
m----n+ 1

rn+n odd

(3.29)

Let k = a_:__9_
2

(3.30).

2 2 2

=
z=l z=l z=l

(3.30)

Look at first of the two summations on the right hand side of

_(n- l)=(n- I) _Ax(U=(n -1)xz=k+l=(n -1) k
x=l z=l x=l

(3.31)

Now look at the second summation of (3.30).

z_-k-4-1

2_x = 2k_Ax(2) =x (2) =(k+l) k (3.32)
x=l

p-1

m = (n-1) k+(k+l)k (3.33)
rn=n+l

m+n odd

= k[(n-1)+(k+l)]=k(n+k)

17



Substituting back into (3.28)and truncating to N terms gives.

N

= E p(p2_ n2)ap (3.34)
p=nq-2

p+n even

Equation (3.34) is a convenient way of representing the second derivative of a

function in terms of a series of Chebyshev polynomials.

There is another formula which is very important in solving boundary value

problems. The equation gives the value of the pth order derivative of a Chebyshev

polynomial when evaluated at one of its end points, 1 or -1.

dp p-- 1

-d-_T.(±1)= (±1)"+_II (,_2_ k2)_:o (2k+ 1)
(3.35)

Equation (3.35) is given without proof but has been verified by the author in

several problems. Notice that instead of using coefficients to relate the derivative

of the function to the zeroth order derivative of the Chebyshev polynomial, one

directly takes the derivative of the Chebyshev polynomial and then evaluates it at

the end points. Equation (3.35) gives an extremely useful method for evaluating

derivatives in boundary conditions.

3.3. Matrix Notation

In the last section, summation notation was used to develop recurrence relation-

ships between expansion coefficients of a function (i.e. an) and the expansion

coefficients of derivatives of the function (i.e. a_)). In this section, a matrix nota-

tion will be used to develop the same relationship between an and a(_1) as well as

other expansion coefficients. In my personal experience this method proved the

most insightful and easiest to derive. It does not, however, deal very well with

recurrence relationships such as the following expansion.

or

XU N (X) = E bnTn (X) (3.36)

n=o

(X)
t

xu N (x) = y_ b(1)T,n (x) (3.37)
n=0

The matrix notation will be used in the next section which explores the application

of Chebyshev Polynomials to spectral methods.
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Look back at the recurrenceequation (3.18). Put the equationsinto matrix

(form by letting a = a(01) a_1) a and remembering that Co = 2, c_ = 1_'''_ 1

for n > 0.

0

0

0

.° ..........

('2 0 -1 0 ... 0

0 1 0 -1 ... 0

0 0 1 0 0

: ... ".. :

: 1 0

_0 ......... 0 1

2 0 0 ...... O_

0 4 0 ...... 0

0 0 6 "-. 0

"- . "-, ".. ;

2(N- 1)

0 2N)

a_1)

a(N1)_1

go

al

aN-1

aN

(3.38)

which can be written in matrix form as

C- a (1) = A. a (3.39)

Since C is an upper triangular matrix, det (C) is the product of its diagonal entries

which here det (C) = 2. As det (C) _ 0, C is non-singular and C -1 exists. This

allows (3.38) to be multiplied by C -1.

a 0) = C -1 • A- a (3.40)

Let C -1 • A = E . This gives a (1) = E- a. In general the expression for the qt_

derivative can be written

a (q) = E.a (q-l) (3.41)

a (2) = E-a (1)=E.E-a=E2.a (3.42)

in general we have

where E k =E. E-E ..... E
k times

a (k) = Ek.a (3.43)
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It canbe shownthat
0 1 0 3 0 5 0 7 0 ... 2N
0 0 4 0 8 0 12 0 0 0
0 0 0 6 0 10 0 14 0 ... 2N

E= : "'. "'. (3.44)
• .. ".. :

0 ........................... 2N

0 ........................... 0

which corresponds with

E = E(_+l)(m+l) =--m for n ..... (3.45)
c_ m =n + l,n + 3,...,N

and that

0 0 4 0 32 0 108 0 256 ......

0 0 0 24 0 120 0 336 0

0 0 0 0 48 0 192 0 480

E 2 = " 80 0 280 0 (3.46)

: 120 0 384 "'. :

............... "-. ".. °.. :

0 .................. 0

0 .................. 0 j

which corresponds with

E: [E(n+l)(p+l) ] = lp(p 2 --Tt2) p=n+2,n+4,...,Yn= 0,1,2,-..,Y- 3 (3.47)

The main focus of this section was to take a function and derivatives of that

function, which we wanted to expand into Chebyshev Polynomials, and show

that the expansion coefficients of each can be related. This was done by two

methods, summation notation and matrix notation. The matrix notation is useful

in demonstrating how to solve for systems of differential equations. It will also be

used to solve for a variety of eigenvaJue problems• The recurrence relationships

are preferred when only the solution vector to a problem is desired. Most of

the common recurrence relationships for linear operators are tabulated in the

appendix of Gottlieb and Orszag's book, Numerical Analysis of Spectral Methods

[4].
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3.4. Problems

Exercise 3.1. Prove that T,(x) = cosn0 is the solution to

d2Tn(x) xdTn(x)
(1 --x2) _ T q-n2Tn(x) = 0

Exercise 3.2. Prove that

Z 1 71"

Exercise 3.3. ff ¢_ (x) is a real orthogonal function with respect to a weighting

function w (x) and w (x) > 0 on the intervad Z -- -1 < x < 1. Prove that Cr (x)
has r tea/and distinct roots on the interval Z.

Exercise 3.4. Prove

c a (3) = 1
n n _ 712

re:n+3
m+n odd

1] 1] (3.48)

Exercise 3.5. Prove

1 N

p:n+4
_-_-n even

[p2(p2-4)2-3n2p4+ 3n4p2-n_(n2-4)2]ap (3.49)

Exercise 3.6. Prove that the derivative of Tn(x) evMuated at the boundary of
its interval is

d ( 1),_+1 n2_xxT,(=kl) = _

4. Spectral Tau Methods

4.1. Introduction

Spectral Methods are a particular numerical scheme for solving differential equa-

tions. It is a discretization scheme developed from the Method of Weighted Resid-

uals (MWR) [1]. The Tau method is one of the three most commonly used tech-

niques of spectral methods. The three techniques are Galerkin, collocation and

tau. This section will concentrate solely on the tau method. The interested reader
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is referred to Spectral Methods in Fluid Dynamics [2] for examples of the other

two methods.

Before further explanation of the spectral tau method, a brief review of the

method of weighted residuals may be appropriate. Given the problem

Ou
- L + f (4.1)

Ot

Bu = 0 (4.2)

where L is some linear spatial operator and B is a linear boundary operator. We

want to express u (x, t) as an infinite sum of some trial function Cn (x).

u (x,t) = _ a= (t) ¢n (x) (4.3)
n=l

the function is then approximated by truncating the series to N terms.

N

UN(X,t) = _ a,_(t)¢,_(x) (4.4)
n=l

Now choose a test function ¢m (x) such that Cn (x) is orthonormal to Cm (x) on

some interval 27 = a < x _ b for a given inner product (,, ,).

b(¢n (x), ¢,_ (x))= ¢,_(x)¢,_(x)dx=6n,_ (4.5)

where ¢--_ (x) is the complex conjugate of Cm (x). The essence of the Galerkin

method is to find the set {an (t) " n = 1, 2,---, N} such that the errors {en} are

minimized. The error is defined as

O'U OZ$ n

& &
Lu + Lu= -f+fn=e.

To find the set of coefficients {aN (t) : n = 1, 2,-.-, N} multiply both sides of the

governing equation (4.1) by the test function and take the inner product (,, ,)

such that

__0<era(x) uN)
0t

u
Z <¢m(X),¢n(Z)) dt
rt=l

(_,,_ (x),LuN) + (era (x), f) (4.6)

N

_-_(¢m(x),L¢,(x)) + (¢m(x),f) (4.7)
rt=l
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Take the complex conjugateof the equation and note that (%6,,,,Cn) = _n,,. This

yields

dam N

d--_ -- _ an (_m (x),LCn (x)> + (f, Cm (x)) (4.8)
n=l

Equation (4.8) can be solved by well known methods which will depend upon the

operator L and the inner product.

4.2. Spectral Tau Methods

Notice that the choice of the trial function Cn (X) must satisfy the essential bound-

amy conditions. For particular problems, the boundary conditions can be compli-

cated. Choosing a trial function which satisfies the boundary conditions exactly

can become extremely difficult if not impossible. The spectral tau method offers

a solution to this problem. The solution is quite simple in its concept. Instead

of trying to satisfy the boundary condition by choosing the proper trial function,

just add more constants to the expansion.

N+k

UN(X,t) = _ an(t)¢.(x) (4.9)

Here N is the dimension in the domain and k is the number of boundary condi-

tions. So before where Cn (x) was forced to satisfy the boundary conditions, we

just add k more coefficients, {an (t) : n = N + 1,..-, N + k}, to be solved. The k

additional equations needed are produced from the boundary conditions.

N+k

anB¢, (x) = 0
n=l

(4.10)

So the complete set of N + k equations to be solved for the set of N + k coefficients

are the N equations of (4.8) and the k equations of (4.10).

The application of Chebyshev polynomials to the spectral tau method is to let

¢.(x)=Tn(x) (4.11)

and

cm(x)= ---2T.(x) (1- (4.12)
ram

The best way to explain the use of Chebyshev spectral tau method is to work out

an example.
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Example 4.1. The following system is a second order differential equation with

homogeneous boundary conditions.

d2u

= 1 (4.13)
dx 2

u(-1)--0 (4.14)

du(1) -0 (4.15)
dx

Solve for u using the Chebyshev spectral tau method. This system has the solution

_x -x-_.

First apply
N

u (x) = _ anT,_(x) (4.16)
n=0

Here the order of the summation has been changed to n = 0 to n = N. We will

need the first and second order derivatives of u (x) as they relate to T,_(x). For

this, equations (3.20) and (3.34) will be used.

du _la(1)T,_(x) (4.17)
_XX _ _=0

d2u N-2

= Z a )Tn(x) (4.1S)
n=0

Substitute (4.16) into the governing equation (4.13) and the boundary conditions

(4.14) and (4.15).
N-2

a_)Tn(x) = 1
n=0

N

= 0
n=0

N-1

(4.19)

(4.20)

aO)T,_(1) = 0 (4.21)
n----0

Alternatively and preferentially, we can use equation (3.35) for (4.21). Equation

(3.35) is preferred because it is easier to program in FORTRAN. When (3.35)
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is used on the boundaries, the lower index must be raised to the order of the

derivative. So in general,

dPuy N dPT:(x ) (4.22)
dip - y_ am dip

.----p

For this problem we will use the recurrence relationship of aO). In the next and

subsequent problems, (3.35) will be used. As an exercise, the reader should use

both methods to verify that each will obtain the same result. So (4.21) can be
written as

N N

y_ anT'_ (1)= y_ ann 2 (4.23)
n=l n=l

The first step will be to take the inner product of the domain equation (4.19)

N--2

at2)(T.(z),_,.(x))= (1,era(x)) = (T0(x),era(x)) (4.24)

where

2 /_ T,_(x)Tm(x)(1 - x2) -½ dx = _5,,-_ (4.25)(Tn(x), era(x)) = 7r--_ 1

this gives.

1 n = 0a_)=6_= 0 0<n_<N-2 (4.26)

On the boundaries, we need only evaluate the Chebyshev polynomials, Tn(1) = 1

and T,(-1) = (-1)". Upon substitution into (4.20) and (4.23) yields

N

a,(-1)" = 0 (4.27)
n=0

N

E n_a- = o (4.28)

This gives N + 1 equations, N- 1 for (4.26) plus the two boundary equations

(4.27) and (4.28). Let N = 5 and write out equation (4.26) using the recurrence

relationship for the second derivative expansion coefficient from equation (3.34).

a_o2) = l[2.4a2+4.16a4]=l
2
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ai_) = 3.(9-1)a3+5.(25- 1)a_=O
a_2) = 4.(16-4)aa=0

a(__) = 5- (25- 9)_ = 0 (4.29)

The boundary conditions are

a0 - al -4-a2 - a3 + a4 - a5 = 0

al + 4a2 + 9a3 + 16a4 ÷ 25a5 -= 0

(4.30)

(4.31)

Put the N + 2 equations into matrix form.0040320 /a0 1
0 0 0 24 0 120 J [ Jal 0

0 0 0 0 48 0 a2 = 0
0 0 0 0 0 80 a3 0

1 -1 1 -1 1 -1 a4 0

0 1 4 9 16 25 a5 _ 0 /

(4.32)

The solution to (4.32)is a-- (-5,-1, ¼,0,0,0)T, substitute into (4.16).

5 1

_To(x) - TI (_)+ -_T_(x)

5 3x+_ - =2 -_

which is the exact solution.

The matrix notation is a heuristic lesson in solving differential equations with

the spectral method. The matrix notation is also an excellent way of solving for

eigenvalue problems. When only the solution vector is needed, the use of the

recurrence relation (3.17) is preferred. The reason is purely computational. In

general, solving eigenvalue problems take of order N 3 operations. The recurrence

relation will usually form a tridiagonal system (for one dimensional problems)

which can be solved with much more efficient algorithms [12]. An example of how

this is done is given in Spectral Methods in Fluid Dynamics pp. 129-131 [2].

Now we will demonstrate the use of Chebyshev spectral tau methods in solving

eigenvalue problems.
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Example 4.2.

boundary conditions. We will try to solve for the first few eigenvalues, A.

g2u

+ = 0 (4.33)
u[_=o 0 (4.34)

-- + u 0 (4.35)

This example deals with an eigenvalue problem with homogeneous

The analytical solution for A is

A = - tan A (4.36)

In this example, we will more closely look at the details of each step. This

careful analysis will shed light on some of the intricacies involved in this method.

There are three key steps that must be applied between the system of equations,

which comprise of the governing equations and the boundary conditions, and the

set of equations that need to be solved for the expansion coefficients, an. The first

step is to interpolate or approximate the function u (x) into Chebyshev space.

N

u (x) _-Ug (x) = _ anTn(x) (4.37)
n----O

The interpolated function, UN (X), is projected into the equation space. This step

will be explained in more detail later. And finally, take the inner product of the

domain equations (governing equation) and evaluate the projected functions on
the boundaries.

Notice that the Chebyshev polynomials lie in the interval of -1 < x < 1

and the problem is stated on the interval of 0 < y < 1. In order to transform

the problem into the proper space, we will apply a stretching function (more

commonly called a coordinate transformation). The stretching function we need

here is x = 2y - 1. Transforming the system of equations (4.33) through (4.35)

yields.

dy] -'_x2+ A2u = 0 (4.38)

U[___ 1 : 0 (4.39)
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dx

Using the derivative "77 = 2 and interpolating u (x) into U N (X) will give.
ay

d2ulv

-Jr-A2UN _--- 0 (4.41)

UN[_=_I ----0 (4.42)

2 daN :_=1dx x=l + ug = 0 (4.43)

Notice that now the problem is cast into U N (X), the solution technique will find

the exact solution to UN (x). If u (x) is exactly cast into UN (X) then the exact

solution to u (x) will be found. In general if u (x) is a polynomial of degree equal

to or less than the degree of the Chebyshev polynomial being used, then the exact

solution to u (x) will be found. That is why example 4.1 came up with the exact

solution. In this problem, and in general, we will not find the exact solution, since

there exists an infinite number of eigenvalues.

Substitute (4.37) for Uy (x) into (4.41), (4.42) and (4.43).

N-2 N

4 _ a_)T,_(x) + A2 _ a,.,Tn(x) = 0 (4.44)
n=O n=O

N

a_T_(-1) = 0 (4.45)
n=0

N N

2 __, n2anT,_(1) + _ a,T,_(1) = 0 (4.46/
n= 1 n=O

The last key step is to take the inner product of (4.44) and evaluate Tn(-1) and

Tn(1) in (4.45) and(4.46), respectively. Remember from the Tau method, that

the inner product of (4.44) will be taken N - 2 times; N minus the number of

boundary conditions. It is important to note that we will subtract from equations

in which the boundary conditions apply to. This will become important when

there is more than one differential equation.

4a_ ) + A2an = 0

N

Ea,_(-1)" = 0
n,=O

N N

n=l n=O

for n = 0,1,--.,N- 2 (4.47)

(4.48)

(4.49)
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By usingthe matrix notation developedin the last part of section3, (4.47)through
(4.49)can be simplified.

(4E2+A2I).a = 0 (4.50)

(-1) nI-a = 0 (4.51)

(2n2I+I).a = 0 (4.52)

where (-1)"I=(1,-1,1,-1,...,(-1) N) and 2n2I=(O, 2,8,18,...,2N2). Note

that 4E 2 + A2I is an (N - 1) x (N + 1) matrix. The last two rows needed to make

a square matrix come from (4.51) and (4.52). Also notice that the I in (4.51) is a

vector with N + 1 entries equal to one. This notation leads into the format that

will be needed to write a numerical computation.

Now the initial statement of the problem was to find the first few eigenvalues

of the system. We can achieve this by rewriting (4.50) through (4.52) as.

4E 2.a = -A2I .a (4.53)

(-1)"I.a ---- 0 (4.54)

(2n2I+I)-a ---- 0 (4.55)

Equations (4.53) through (4.55) give a generalized eigenvalue problem

A. a = wC. a (4.56)

where for N = 5

4E 2 )
A= (-i)'_ I =

2n2I + I

0 0 16 0 128 0

0 0 0 96 0 480

0 0 0 0 192 0

0 0 0 0 0 320

1 -I 1 -1 1 -1

1 3 9 19 33 51

(4.57)

-1 0 0 0 00

0 -1 0 0 00

0 0 -1 0 00

0 0 0 -100

0 0 0 0 00

0 0 0 0 00

(4.58)
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and _ = A2 is the eigenvalue. Note that both A and C are (N + 1) x (N + 1)

matrices. If the matrices A and C were imported into a computer program and

then subsequently passed to a generalized eigenvalue solver, the first few values

of A can be found.

To calculate the first few eigenvalues, I used MathCad ® version 5.0+ . A

general eigenvalue solver is available in this software. Below is a table of the first

four eigenvalues for different values of N and the analytic values of A found using

equation (4.36).

Table 4.1 First four eigenvalues of Example 4.2

for various values of N and the actual value.

4

1.990

5.73

N

A1

A2

A3

A4

5

2.029

4.966

9.377

22.44

6

2.029

4.917

8.204

13.96

7

2.029

4.914

8.076

12.30

8

2.029

4.913

7.981

11.23

9

2.029

4.913

7.978

11.10

Actual

2.029

4.913

7.798

11.09

The next example will illustrate how multi )le, connected domains can be

solved. The main point to this exercise is to demonstrate how sets of coeffi-

cients can be concantenated to form a new larger set. This new set of coefficients

can then be solved in the same manner as before.

Example 4.3. The following system describes the heat conduction between two

solids. It is assumed that the heat flux and the temperatures are equal at the

interface of the two solids. The temperature is held constant at the outer, exposed

surfaces. Solve for the first few eigenvalues.

d2u
-- + A2u = 0 (4.59)
dy 2

d2v

dy 2 + A2v 0 (4.60)

u[_=z ' = 0 (4.61)

v[_=z2 = 0 (4.62)

u[y=o = vl_=o 4.63)

4.64)
du y=0 dv _=0dy dy

The eigenvalues for this system can be found analytically.

A= 11_12 for n = 1,2,3,...
4.65)

3O



y = l1 x 1 = 1

u(y) u(x)
y=O

v(y) v(x)

X 1 _ -1

x 2 = 1

Figure 4.1: Coordinate transformation from y to xl and x2

Figure ?? shows the coordinate transformation that is needed here.

First we will break the two layers up into two different domains. The top layer

0 _< y < ll will be transformed to the first new variable -1 < xl _< 1 and the

bottom layer 12 _ y < 0 will be transformed into the second new variable -1 <

x2 _< 1. The coordinate transformation is given in the following two equations.

Zl = y- 1 (4.66)

x2 = -(_2)y+1 (4.67)

Apply the coordinate transformation to equations (4.59) through (4.64).

_-02 d2u

+ )_2u (4.68)

2 d2v

d_x22+ A2v = (4.69)

ulxl_-i = o (4.70)
vl:_z=_ 1 = 0 (4.71)

ul_:,=_ 1 = Vlx2= 1 (4.72)

(_) d_l x1=_1 = - (_) d-_2 L_=I (4.73)
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Two separate approximation functions are needed when applying the spectral

method to u (zl) and v (x2).

N

(Xl) ----Z anTn(xl)
n=0

M

VM (x2) = Y_ bmTm(x2)
rn=O

for -l<_xl_< 1

for -1<x2_< 1

(4.74)

(4.75)

Substitute (4.74) and (4.75) into (4.68) through (4.73) and take the inner product

of (4.68) and (4.69).

(_)2a(2)+A2an = 0 forn=O, 1,...,N-2 (4.76)

(_)2b_)+A2bm = 0 for m=0,1,...,M-2 (4.77)

N

_ an = 0
rt=0

M

Z bm(-1) m = o
rn=0

N M

(4.78)

(4.79)

aT, (-1) '_ = _ b,,_ (4.80)
n=O m=O

2 y_ n2a, _ (--1 = - _ m2bm (4.81)
n=l m=l

If we tried to apply the matrix notation, we will run into some difficulties. The

dependence of an on bm and vice versa, creates difficulties in setting up the problem

to be solved numerically. One way to work around this is to concantenate the

set {a,_ : n = 0, 1,...,N} with the set {bin : rn = 0, 1,...,M} to create a new set,

call it {cp : p = 0, 1,..., P}. Now use the new set in (4.76) through (4.81) and
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apply the matrix notation.

o
o
I 0

0 (--1) p-N-I I

(-1)'I -I

(-1) _(,h) n2I (p-N-l) 2I

¢' Cl '_

/ :-°I
= A_ 0 0

0 0

0 0
cp-1 0 0

\ Cp /

/ Cl

C2

Cp-I

k Cp /

(4.82)

The first row in the left and right hand side matrix of (4.82) actually has N -

1 rows, as well as the second row. The last four rows are exactly four rows.

The first column is N large and the second column is M large. To clarify the

appearance of (4.82), let N = 4 and M = 4. This gives P = 9, which maps as

follows, {am:n=0,1,...,4}={%:p=0,1,...,4}and{bm:m--0,1,...,4}=

{% : p = 5, 7,..., 9}. Substitute in the values of E 2 and I, and explicitly write

out the left hand side matrix of (4.82).

0 0 4 (_)' 0 32 (_)2 0 0 0 0 0

0 0 0 24(_) 2 0 0 0 0 0 0

0 0 0 0 48(_)2 0 0 0 0 0

0 0 0 0 0 0 0 4(_) 2 0 32(g

0 0 0 0 0 0 0 0 24(_) 2 0
/_\2

0 0 0 0 0 0 0 0 0 481_,
k t2

1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 1 -1 1 -1 1

1 -1 1 -1 1 -1 -1 -1 -1 -1

0 (l_)l -4(z_) 9(z_) -16( _)11 0 1 4 9 16

(4.83
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The right hand sidematrix of (4.82) looks like

-I0 0 0000 0 0 0005

0 -I0 0000 0 0 000

0 0 -10000 0 0 000

0 0 0 -1000 0 0 000

0 0 0 000-I0 0 000

0 0 0 0000 -I0 000

0 0 0 0000 0 -1000

0 0 0 0000 0 0 -100

0 0 0 0000 0 0 000

0 0 0 0000 0 0 000

0 0 0 0000 0 0 000

0 0 0 0000 0 0 000

(4.84)

Again, if the two matrices were imported into a computer program, a general-

ized eigenvalue solver could find the eigenvalues, A, as well as the solution of

coefficients, {% :p = 0, 1,...,P}.

The following example will show how Chebyshev spectral methods can be used

to solve for eigenvalue problems where the eigenvalue is located in the boundary

condition. The example is a heat transfer model in a semi-infinite slab. The

temperature is held constant at the bottom of the slab and there is Newtonian

cooling at the top of the slab. The cooling rate is determined by the heat transfer

coefficient, h.

Example 4.4. Solve for the heat transfer coetticient, h, which will not give a triv-

ial solution to the problem using Chebyshev spectral tau methods. The analytical

solution to h is -A cot(A).

d2u

dx----5 + A2u = 0

du

dx + hu 0 at x i

u = 0 at x = -1

Here A is fixed and h is the eigenvalue we wish to solve for.

substitute the Chebyshev series in for u.

(4.85)

(4.86)

(4.87)

Again we will

N

u = _ a_Tn (x) (4.88)
n_0
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d2u N
-- _a(2)T,_ n (x) (4.89)

dx2 n=o

After substitution, the Chebyshev inner product is taken.

a (21+_2an = 0 for0<n<N-2 (4.90)

N

E (n2an +ha_) = 0 (4.91)
n=l

N

(-1)ha. ----- 0 (4.92)
n=l

Equations (4.90) - (4.92) can now be written in matrix form.

n2I a =h - a (4.93)

(-1)hi 0

The generalized eigenvalue problem was solved using MathCad (_) . Table 4.2

gives the eigenvalue h for different values of N.

Table 4.2 The eigenvalue h for Example 4.4 for various values of N.

 1 1ol _ 9]10115 Actual)_ 8.115 -1.885 -0.3182 0.4461 0.5772 0.5853 0.5883 0.5883

Note that in this example, there was only one eigenvalue to be found. In

general, the number of eigenvalues that will be found will be equal to the rank

of the left hand matrix or the right hand matrix, whichever is smaller. Here the

rank of the right hand matrix is equal to 1, which is the number of eigenvalues
found.

The next and last example will demonstrate an actual application of this

method to the Nield problem [7]. The Nield problem is the solution of the onset

of fluid convection in a single layer of liquid. The liquid layer is either heated

from above or below by a heating plate. The upper surface of the liquid is free to

deflect and is exposed to air (or some other gas).

Example 4.5. Given the following system, solve for the critical Marangoni num-

ber (Ma) which corresponds with the onset of/]uid convection.

(D 2 -w2)2W = w2RaO (4.94)

(D2 - w2) O = -W (4.95)
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The system needs six boundary conditions plus an additional equation for the

deflection of the gas-liquid interface, _.

W(-1) = 0

DW(-1) = 0

o(-1) = o
w (0) = 0

+ w2q

(4.96)

(4.97)

(4.98)

(4.99)

=0 (4.1oo)

D2W(O)-w2Ma[q(O)-O(O)] -- 0 (4.101)

De(0) + L[O(0) -q] = 0 (4.102)

The system of equations has been non-dimensionahzed and linearized using a lin-

ear stability analysis. The time derivative has been eliminated using a Fourier

expansion. Because we are only interested in the steady solutions, the time con-

stant is set equal to zero. The problem will be set up so that the Marangoni
d

Number, Ma, is the eigenvalue. Here D is the derivative _z' W is the velocity, O

is the temperature, w is the wave number corresponding to the perturbation, Ra

is the Rayleigh number, G is the Weber number, C is the Crispation number, Ma

is the Marangoni number, L is the Biot number and _ is the surface deflection

term. For a complete derivation, the interested reader is referred to the paper by

Nield. In Nield's paper, the surface deflection is neglected. Here the surface is

allowed to deflect. Values for the deflecting case have been calculated [10].

Again we need to stretch the coordinates from 0 _ z < 1 to -1 _ x < 1,

using the stretching function, x = 2z + 1. Apply the Chebyshev polynomial

interpolation.

N

W = _ a,_T,_(x) (4.103)
n----0

M

e = _ b,,Tm(x) (4.104)
m=0

After substitution, the inner product is taken.

(16E 4 _ 8w2E 2 +wal).a_ _2 Ral. b = 0 (4.105)

(4E 2-w21) b+a.l = 0 (4.106)
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N

(-1) an = 0 (4.107)
n._-0

N

= o (4.1os)
n----1

M

(-libra = 0 (4.109)
m----0

N

an = 0 (4.110)
n----O

8 _ (n 2 - 1) (n 2 - 4) - 6w 2 n2a,_
n=3 n-----1 (4.111)

-[Ra+ = 0

4 _ -_- (n 2 - 1) an -us2Ma q -bm = 0 (4.112)
n----2 m----0

M M

2_m2bm+L_bm-Lg = 0 (4.113)
m----1 ra=0

E 4 can be found by using equation (3.49).The strange products in (4.111) and

(4.112)are the resultof the third and second order derivativein equation (3.35).

There are severalinterestingpoints to be made at thistime. In (4.105),the in-

ner product ofthe equation restrictsthe number ofterms that b = {bin:m = 0,I,.

could have, which is the number of inner products taken. Here we willchoose

N - 4. The number N - 4 corresponds to the choice of N and that there are

4 boundary conditions associated with (4.105). The same situation holds for

(4.106).Again we willchoose N but here there are only two boundary conditions

associated with the equation,which gives N - 2 equations. Equation (4.105)ap-

pliesrestrictionsto the choiceof M. When the inner product of the equation is

taken, ON must liein WN and vice versa.

For simplificationand in general, we will let N -- M and truncate the in-

dices accordingly. With thisin mind, equations (4.105) through (4.112) can be

rewritten.

(16E a - 8w2E 2 +w4I).a- w2RaI- b = 0 (4.114)

',(4E 2 -w2I) b + a. I = 0 (4.115)

.. ,M}
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N

Z(-1)a- = 0
n----0

N

_(-1)"+1n2_ = o
n=l

N

Z(-l/bm = o
m=0

N

E an = 0
n=O

N

-- 6w2En2an

n=l
 [n2 ]8 _ Z (_4- 5_2+ 4)

n=3

-- w2_ = 0

- bm_ = 0

)Un2 (_4 __---_- (n2-1) an-o;2Ma
n=2 m=0

Now write (4.113) through (4.120) in matrix form.

0

0

0

0

0

0

- ( Ra + --_ ) w 2

0

-L

0 0

0 0

0 0

0 0

Ma 0 0

0 0

0 0

0 -w2I

0 0

0

0

0

0

0

0

0
O;2

0

16E 4 - 8o;2E 2 + o;41 --o; 2 Ra I

I 4E 2 - o;2I

(-i)" I 0

(-1)'_ n2I 0

0 (--1) n

I 0
n 2

8_ (n 4 -- 5n 2 + 4) -- 6w2n 2 0

4n'-"'_2(n 2 -- 1) 0
3

0 (2n 2 + L) I

l ao

al

an

bo

bn

_ (ao

al

an

bo

i :
bn

(4.116)

(4.117)

(4.118)

(4.119)

(4.120)

(4.121)

(4.122)
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The first row of both matricesin (4.122)hasactually N- 3 entries and the second

row has N - 1 entries. The first and second column has N entries, and the last

column has only one entry. The FORTRAN program used to set up and solve for

the above generalized eigenvalue problem is given in the appendix. One of the

subroutines was called from an IMSL subroutine library.

5. Summary

I hope that this paper has helped to demonstrate the usefulness of Chebyshev

Spectral Tau methods. Of course there is no such thing as a free lunch. It

becomes obvious that the implementation of this method is more comphcated than

a finite difference method. The Chebyshev Spectral Tau method is most useful

for problems which may need to be solved for many times or when a parameter in

the problem needs to be changed often. The usefulness of spectral methods was

also demonstrated for eigenvalue problems.

In section two, the Chebyshev polynomial properties and the methods of sum-

mation were given as background material for the third section. Section three de-

veloped the recurrence relationships between functions expanded into Chebyshev

polynomials and the derivatives of those expansions. The relationships between

the derivatives of the expansion coefficients were used in section four in the spec-

tral tau technique. These recurrence relationships can be found in the appendix

of Gottlieb and Orszag's book [5] for various linear operators. If the relationship

you are interested in is not tabulated, the techniques given in this paper can be

used to generate them. The appendix gives a copy of the FORTRAN program

used to solve for the eigenvalues of Nield's problem in Example 4.5. Some of the

newer higher level software could also bemused to solve_., these equations. Good
Matlab ® .examples of these programs are MathCad _-j, Maple _ and

The intent of this report is to help the beginner or uninitiated start using

Chebyshev spectral methods. There are several aspects which were not dealt

with. Some of these are singularities in the governing equations, efficient solver

methods, such as fast Fourier transforms, and stability. These topics are covered

in Spectral Methods in Fluid Dynamics [2]. It appears that fourth order and higher

differential equations will become unstable. This problem can be worked around

by splitting fourth order equations into two second order equations. Even though

the fourth order equations are unstable, most problems can still be solved using

the Chebyshev Spectral Tau technique. A good example is given in Numerical

Analysis of Spectral Methods [5] on page 144-145. Some higher order problems,
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howeverdo exhibit unstable behavior. I have discovereda system which gives
incorrect eigenvaluesfor only certain valuesof the systemparameters.This system
wassimilar to the Nield problembut dealt with two liquid layerswith deflecting
surfaces. Whenever possible, it is advised to deal with secondorder equations
only.

[3]
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6. Appendix

PROGRAM NIELD

INTEGER I, J, N, M, PC, II

REAL PI, OMEGA, OMEG2, OMEG4

PARAMETER (N = 20, M = 2*N+l, PI = 3.141592654)

REAL B2(N, N), B4(N, N), A(M,M), B(M,M), BETA(N)

REAL VECON(N), VECI(N), VEC1N(N), VEC2(N), VEC3N(N)

REAL L, MA, RA, OMEGA

REAL TN1, TN2, TN3, TN4, TN0

COMPLEX ALPHA(M), EVEC(M)

* Define the matrices used in defining the large matrices **********
*** INTMAT initializes the matrix entries to zero. ***************

CALL INTMAT(B2, 1, N, 1, N)

CALL INTMAT(B4, 1, N, 1, N)

CALL INTMAT(A, 1, M, 1, M)

CALL INTMAT(B, 1, M, 1, M)

***CHDERx gives the E x matrix *****************************

CALL CHDER2(B2, N, N)

CALL CHDER4(B4, N, N)

***CHDERB gives the boundary condition vector **************

CALL CHDERB(VECON, 0, N, -1)

CALL CHDERB(VEC1, 1, N, 1)

CALL CHDERB(VEC1N, 1, N,-1)

CALL CHDERB(VEC2, 2, N, 1)

CALL CHDERB(VEC3, 3, N, 1)

*Define the parameters to be used. OMEG2, OMEG4, TN1 through *
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*TNPI areused for optimization puposes***********************
OMEGA = 2.13
L -- 1.04
G -- 0.452

C = 50.9E-5

OMEG2 = OMEGA * OMEGA

OMEG4 = OMEG2 * OMEG2

TNI=2*N- 1

TN2 -- 2 * N - 2

TN3 = 2 * N - 3

TN4 = 2 * N - 4

TN0 = 2 * N

** Row 1 Column 1 *******

DO 20I= 1, N-4

DO 10 J = I+l, N

A(I,J) = 16.0 * B4(I,J) - 8.0 * OMEG2 * B2(I,J)

10 CONTINUE

A(I,I) = OMEG4

20 CONTINUE

** Row 1 Column 2 *******

DO 30I= 1, N-4

A(I, I+N) = -OMEG2 * RA

30 CONTINUE

** Row 2 Column 1 *******

DO 401= I,N-2

A(Iq-N-4,I)-- 1.0
4O CONTINUE

** Row 2 Column 2 *******

DO 601=I,N-2

II = I+N-4

DO 50 J = I+l, N

A(II,J+N) = 4.0 * B2(I,J)
50 CONTINUE

A(II, I+N) =-OMEG2
60 CONTINUE

** Boundary Conditions **********

DO100J= 1, N
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A(TN4,J)--- VECON(J)
A(TNJ,J) = VEC1N(J)

A(TN2,J+N) = VECON(J)

A(TN1,J) -- 8.0 * VECJ(J) - 6.0 * OMEG2 * VECI(J)

A(TN0,J) = 4.0 * VEC2(J)

A(M,J+N) -- L

A(M,J) -- 2.0 * VECI(J)
100 CONTINUE

A(TN1,M) =-OMEG2 * (RA + (G + OMEG2) / C)

A(M,M) = -1.0
*****************************************************************

• ** Now assign values to the B matrix *****

DO 200 J = 1, N

B(TN0,J+N) -- -OMEG2

200 CONTINUE

B(TN0,M) = OMEG2
• ***_¢* ****** $**_***_*****_¢ ********* **_****************_k***_*** ***

• The subroutine GVLRG is linked and called from ISML library.

• M is the size of the matrix, ALPHA is a vector of numerators of the

• eigenvalues, and BETA is a vector of denominators of the eigenvalues.
*$_¢$*_k*$$$*$$*$_k_k********_¢***$***,$***$$_¢*****,$$***,,$$$,$**,**,

CALL GVLRG(M, A, M, B, M, ALPHA, BETA)

DO 200J- 1, M

If (BETA(J).EQ. 0) THEN

EVEC(J) -- 12345
ELSE

EVEC(J) = ALPHA(J) / BETA(J)
END IF

200 CONTINUE

END

*****************************************************************

• This subroutine evaluates the derivatives of a Chebyshev polynomial

• at a boundary point of 1 or -1. It returns the vector of

• coefficients that are associated with it in VECTOR.

• VECTOR is the vector returned

• ORDER is the order of the derivative

• LENGTH is the length of the vector VECTOR
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* EVAL is the point at which the derivative is evaluated
SUBROUTINE CHDERB (VECTOR, ORDER, LENGTH, EVAL)
INTEGER ORDER, LENGTH, K, N, EVAL, N2
REAL VECTOR(LENGTH), PROD
IF (EVAL .EQ.-1) THEN
DO 20 N = 0, LENGTH-1

PROD = 1.0

N2=N*N

DO 10 K = 0, ORDER- 1

PROD =- PROD * (N2- K'K) / (2.0 * K + 1)

10 CONTINUE

VECTOR(N+I) -- (-1.0)**(N+ORDER) * PROD

20 CONTINUE

ELSE IF (EVAL .EQ. 1) THEN

DO 40 N = 0, LENGTH-1

PROD = 1.0

N2--N*N

DO 30 K = 0, ORDER- 1

PROD = PROD * (N2- K'K) / (2.0 * K + 1)

3O CONTINUE

VECTOR(N+I) = PROD

4O CONTINUE

ELSE

PRINT *, 'Boundary condition evaluated at'

PRINT *, 'value other than 1 or -1.'

PAUSE 'Executing in subroutine CHDERB'

END IF

END

* This subroutine finds the coefficient matrix associated with

* the first derivative of the Chebyshev series

* ROWS is the number of rows in the matrix

* COLUMNS is the number of columns in the matrix

* I and J are indices used.

* MATRIX is the matrix that is passed back to the main program

* MATRIX has size (I:ROWS, I:COLUMNS)
*****************************************************************
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SUBROUTINE CHDER1 (MATRIX, ROWS, COLUMNS)
INTEGER I, K, ROWS, COLUMNS
REAL MATRIX(ROWS, COLUMNS)
CK = 2

DO10I-- 1,ROWS

DO 20 J -- I + 1 , COLUMNS, 2

MATRIX(I, J) -- 2 / CK * (J- 1)
2O CONTINUE

CK = 1

10 CONTINUE

END
*****************************************************************

• This subroutine finds the coefficient matrix associated with

• the second order derivatives of the Chebyshev series
• ROWS is the number of rows in the matrix

• COLUMNS is the number of columns in the matrix

• I and J are indices used.

• MATRIX is the matrix that is passed back to the main program

• MATRIX has size (I:ROWS, I:COLUMNS)

SUBROUTINE CHDER2 (MATRIX, ROWS, COLUMNS)

INTEGER I, K, ROWS, COLUMNS

REAL MATRIX(ROWS, COLUMNS)
CK = 2

DO10I= 1,ROWS

DO 20 J = I + 2, COLUMNS, 2

MATRIX(I, J) = ((J-l) * ((J-i)**2 - (I-1)*'2)) / CK
20 CONTINUE

CK -- 1

10 CONTINUE

END
*****************************************************************

• This subroutine finds the coefficient matrix associated with

• the fourth order derivatives of the Chebyshev series

• MATRIX has size (I:ROWS, I:COLUMNS)

• MATRIX -- the matrix to be passed back assigned with the value
• of fourth order coefficients
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* ROWS = the length of the rows of MATRIX

* COLUMNS = the number of the columns of MATRIX
*****************************************************************

SUBROUTINE CHDER4(MATRIX, ROWS, COLUMNS)

INTEGER I, J, ROWS, COLUMNS

REAL MATRIX(ROWS, COLUMNS), A, B, C, D

CK = 2

DO 20 I = 0, ROWS-1

D = I*'2 * (I*'2 - 4)**2

DO 10 J = I + 4, COLUMNS-l, 2

A = J**2 * (J**2 - 4)**2

B = 3.0 * I*'2 * J**4

C = 3.0 * I*'4 * J**2

MATRIX(I+I, J+l) = J*(A- B + C- D) / (CK * 24)

10 CONTINUE

CK = 1

20 CONTINUE

END
$********$****_**********$*********_*****************************

* This subroutine initializes all the entries of a matrix

* ROWS is the number of rows in the matrix

* COLUMNS is the number of columns in the matrix

* I and J are indices used.
****$$***$$***$***************$*******$$****$********$$***$****$*

SUBROUTINE INTMAT (MATRIX, ROW1, ROWEND, COL1, COLEND)

INTEGER I, J, ROW1, ROWEND, COL1, COLEND

REAL MATRIX(ROWl:ROWEND, COLI:COLEND)

DO 20 J -- COL1, COLEND

DO 10 I -- ROWl, ROWEND

MATRIX(I, J) = 0.0

10 CONTINUE

20 CONTINUE

END
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