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Abstract

An all-at-once reduced Hessian Successive Quadratic Programming (SQP) scheme
has been shown to be efficient for solving aerodynamic design optimization problems

with a moderate number of design variables [1]. This paper extends this scheme to

allow solution refining. In particular, we introduce a reduced Hessian refining technique
that is critical for making a smooth transition of the Hessian information from coarse

grids to fine grids. Test results on a nozzle design using quasi-one-dimensional Euler
equations show that through solution refining the efficiency and the robustness of the

all-at-once reduced Hessian SQP scheme are significantly improved.

Key words, design optimization, constrained optimization, reduced Hessian meth-

ods, quasi-Newton methods, successive quadratic programming, solution refining

Abbreviated title. Reduced Hessian SQP with solution refining

1 Introduction

An aerodynamic design optimization problem can often be posed as

min I(X, u)

s.t. F(X,u) = O, (1.1)

where X E _'_ denotes the discretized flow variables, and u E R'_ denotes the design

variables, which, for example, could be geometry parameters describing the shape of a

profile; I : _'_+"_ ---* _ is a cost function, which may, for example, measure the deviation

from a desired surface pressure distribution; F : _'_+"_ _ _R'_ is a discretized version of the

governing equations of the flow field. It is often the case that I and F are nonlinear, and

the number of flow variables is much larger than the number of design variables (n >> m).

In [1], a reduced Hessian SQP scheme is introduced for solving (1.1). This approach

treats X and u as independent variables and updates them simultaneously at each iteration.

One interesting property is that the flow equations are not required to be satisfied until

convergence. It is intended to alleviate the cost of repeatedly solving the nonlinear flow

equations required by other methods [9, 6]. Test results show that this scheme has a

potential to be very efficient. This paper shows that the efficiency of the reduced Hessian

SQP scheme can be further improved through solution refining.

Solution refining techniques have been successfully used for aerodynamic design opti-

mization by many authors [11, 7]. The basic idea is to solve the design problem on a coarse

grid first, then use the coarse grid solution as an initial guess for a finer grid, and repeat

this process until a solution on a desired grid is reached. Solution refining can be used with

reduced Hessian SQP schemes as well. However in addition to refining solutions of flow

and design variables it also needs to refine the reduced Hessian matrix approximation. This

refinement is critical since the amount of Hessian information retained greatly influences

the speed of convergence. However, as we are aware of, this issue has not been studied for

aerodynamic design optimization. It is tempting to use the reduced Hessian approximation

from the coarse grid solution directly as the initial guess for the next grid. However, this



practice may result in a mismatch of Hessian information between the two grids, particu-

larly when unorthogonal bases are used for the null space, due to the dramatic change of

bases in the null space caused by the change of grid sizes.

This paper introduces a technique that satisfactorily solves the information mismatch

problem. The basic idea is to use the fact that the reduced Hessian matrix can be treated

as an invariant when the basis for the null space is properly chosen. This invariant bridges

the information transition of the Hessian information between two grids.

2 A review of an all-at-once reduced Hessian SQP scheme

for aerodynamic design optimization

Reduced Hessian SQP is a special case of SQP, which is a mature and successful technique for

solving nonlinear constrained optimization problems due to its relatively low computational

cost and fast convergence.

In the context of aerodynamic design optimization problem (1.1), at each iteration of

SQP, a quadratic approximation to the Lagrangian function of (1.1)

L(X, u, _) = t(X, u) + _TF(X, u),

is minimized subject to a linearization of the flow equations. This gives a subproblem

minde_-+,_ gTd + ½dT Hkd (2.1)

subject to Fk + ATd = 0, (2.2)

whered= (AX) (_) ( 0F )Au , gk = at (Xk, uk), Ak = at (Xk, uk), Fk = F(Xk, uk),

and Hk is the Hessian (or approximation) of the Lagrangian function.

One way of solving (2.1-2.2) is via separation of variables. Suppose we can compute two

matrices Yk E _(n+m)×n and Zk E _(n+m)×m such that the matrix [Yk Zk] is nonsingular

and ZTAk = 0 (Zk is a basis for the null space of AT). Let d = Ykdl + Zkd2 and plug this

into (2.1-2.2). If we assume ZTHkZk is positive definite (which is reasonable because this

matrix is indeed positive definite close to the solution due to the second order sufficient

optimality condition), by standard techniques, dl and d2 are given by

dl = --(ATyk)-'Fk (2.3)

d2 = --(ZT HkZk)-I(ZTgk + ZT HkYkd,).

To avoid the computation of Hk, the "cross" term ZTHkYkdl is simply ignored and

ZTHkZk is approximated by an m x m matrix Bk using a variable metric formula such as

BFGS, giving,

d2 = -B_ 1ZTgk. (2.4)

Methods based on (2.3-2.4) are referred to as reduced Hessian SQP methods.
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To avoid undue computational cost of orthogonal basis, many authors [3, 4, 2, 10] choose
to use

Zk = -[0-:VJ I t]_'_ J = , (2.5)

where, in aerodynamic design optimization, S is the sensitivity matrix.

As analyzed in [1], the popular choice of Yk = [I 0]T potentially has an undesirable

effect of producing a larger cross term. Instead

is chosen, which is likely to produce a smaller cross term. Clearly zTYk = 0 holds.
From (2.3), dl satisfies (ATyk)dl = -Fk, which is equivalent to

(0r T

which in turn is equivalent to

dl _ --Fk,

Jk(I + sST)dl = -Fk, (2.7)

where Jk = at (Xk, uk) is the current Jacobian matrix of the flow equation. (2.7)

can be solved by first solving JkY = -Fk for y, and then solving (I + sST)dl = y for dl.
The solution of the former is a linear flow calculation. The solution of the latter can be

obtained by the conjugate gradient method, which is guaranteed to converge within (m + 1)
iterations due to Rank(SS T) = m (see Golub and Van Loan [5]). Another way of solving

(I + sST)dl = y is by inverting (I + SS T) directly. It is easy to show that

(I + ssT) -1 = I - S(I + sTs)-IS T.

Note that (I + sTs) is only an m x m matrix and its factorization can be obtained at
minimal cost.

After dl and d2 are available, d is given by

d = Ykdl + Zkd2

Before going to the next iteration, we update the solution with



andthe reducedHessianapproximationwith the BFGSformula

BksksTBk yky T

Bk+l -_ Bk sTBksk "_-y[sk'

where Yk and sk are given by

Yk

(2.8)

r Zk(Z[Zk)-'Z[g ]= Zk+l[gk+l --

sk = (ZT+,Zk+I)-'zT+lad, (2.9)

when certain update criteria are satisfied.

In standard schemes the Lagrange multiplier is asked to satisfy

(yT Ak)A k = --yT gk, (2.10)

which is equivalent to

(I + $$T)(JTAk) = --yTgk. (2.11)

In our scheme, Ak is not explicitly needed, instead only the value of (JT_k), which can be

obtained by solving (2.11), has to be calculated.

To ensure convergence, a merit function is needed to monitor the progress towards the

solution. The ll merit function is chosen for its simplicity and low computational cost,

which is defined as

¢.(x, u) = I(x, u) + _IIF(X, u)ll,.

Throughout this scheme, the transpose of the flow Jacobian jT is never explicitly needed,

which is desirable for many aerodynamic calculations.

3 Reduced Hessian SQP with solution refining

For the efficiency and the robustness reasons, solution refining is widely used in aerodynamic

calculations. The basic idea is to get through the transient mode on cheaper, easier to solve

coarse grids instead of on expensive, harder to solve fine grids. The translation of flow

and design solutions from coarse grid to fine grid can be done in a variety of ways. Basic

techniques include interpolation and mapping. Interesting discussions of related issues are

covered by many papers including [11] and [7]. We will not go into details of them. Instead

we will concentrate on the refining of the reduced Hessian matrix approximation, which has

not been previously studied.

For a given number of design variables m, an interesting fact is that the size of the
reduced Hessian matrix is the same (m by m) on each grid level. On grid level l, assume (1.1)

is solved with X. t , ul., Z_. and Bt.. Through interpolation and mapping, an initial solution of

the flow variables X] +1 and design variables u_+1 at grid level l + 1 can be approximated. At
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X_ +1, U_+1 on the new grid, the null space basis Z_+1 can be calculated. The question is how

to obtain a reasonable level 1 + 1 reduced Hessian approximation B_+1 at X] +1, u_+1. One

choice is Bt.. However, B:. is intended to approximate the reduced Hessian zt.vHt.Zt., while

B_+1 is intended to approximate the reduced Hessian 71+lTrdl+l 71+1 Since the Z matrices
_1 "_ 1 _1 "

are not normalized, there is a potential mismatch of information between the two reduced

Hessian approximations. A better choice is to treat the reduced Hessian in a norma_zed

null space as invariant, which leads to

71+1 [ _l+l T Tl+l _-l/2_T gll+l[ _l+l [ _l+l T qM+l _-1/2_

1 l T I -1/2 T l 1 1T 1 -1/2(z.(z. z.) ) H.(Z.(Z. Z.) ),

which in turn implies

ZI+I T MI+I Z_+I1 ._.t 1

_., [zl+lTgd+l_l/2[_lT_l _t-1/2_lTMI,71

zI T TI "l-1/2( _l+l T _l+l )1/2.

Hence it is reasonable to choose

B_+ 1 {7.1+lT_l+l_l/2[TITTl'_-l/21rtl[TITq, l'_-l/2 l+l T /+1 1/2=Wl -1 J _". ".J _'._-.-.J (Zl Zl ) •

Since in our case a Z matrix always has full rank, zTz is always positive definite,

and from its eigen-decomposition (zTz)-I/2, as well as (zTz) 1/2, can be obtained. Since

the number of design variables m is much less than the number of flow variables n, the

computation of the eigen-decomposition of ZTZ, which is of size m x m, is not significant

and is affordable for many applications. In addition, since the decomposition is only carried

out once at each grid level, the extra cost introduced by the Hessian refining is likely to be
minimal.

4 Quasi-one-dimensional Euler equations

For our purposes here, we have chosen one popular form of central finite differences with

nonlinear artificial dissipation,

The quasi-lD Enler equations are

where

F(Q) = 0_E(Q) + H(Q) + D(Q) = 0

Q= , E = aCr) pu 2 + p ,
[_(_ + p)J

0.0 < x < 1.0 (4.1)

H

0

-p,9_a(_)
0

(4.2)
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with p (density), u (velocity), e (energy), p = (7 - 1)(e - 0.5pu 2) (pressure), 7 = 1.4 (ratio

of specific heats), and a(x) = (1.- 4.(1 -at)x(1 -x))(the nozzle area ratio), with at = 0.8.

For a given area ratio and shock location (here x = 0.7) an exact solution can be obtained
from the method of characteristics.

We choose one popular form of central finite differences to discretize these equations.

O:_q_ _fxqj = qj+l -- qj--12Ax J = 1,...,Jmax

Ax = 1.O/(Jmax- 1), uj = u(jAx) (4.3)

It is common practice and well known that artificial dissipation must be added to the

discrete central difference approximations in the absence of any other dissipative mechanism,

especially for transonic flows, see Pulliam[8].

For simplicity here, we use a constant coefficient dissipation of the form

(4.4)

with

V_qj = qj - qj-1, A_qj = qj+l - qj (4.5)

with a typical value of e(4) = _.

Boundary condition at j = 1 and j = Jmax are defined in terms of physical conditions

(taken from exact solution values) and will be treated as Dirchlet (fixed conditions) for now.

The total system we shall solve is

{ _E(Q)j - H(Q)j + D_(Q), j = 1,-.-,JN (4.6)_'(Q) = B(Q)_ = O, i = O, JN

5 Test results for a nozzle design problem

The nozzle design problem. We assume that a target velocity distribution u_, is given

for each computational grid point. The design problem we are trying to solve is

Find Yi, i = 1,---, m (sptine coefficients describing a(x)), such that
1 _",Jmax(_.z__.j=l , , - u_) 2 is minimized subject to (4.6) being satisfied.

For our test examples, the breakpoints of the spline are evenly distributed in the interval

[0, 1].
Some implementation issues. At each grid level l, the design problem is solved using

the reduced Hessian SQP to a specified tolerance et (in our testing, e is uniformly set to

1.E- 7), then grid is refined and the initial estimates to the design variables, flow variables,

as well as the reduced Hessian on grid l + 1 are obtained from corresponding solutions on

grid I. This procedure is repeated until the solution on the desired grid level is reached.
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Forour tests, a flat nozzle shape and a flat flow are used as starting data on grid 1. The
starting reduced Hessian approximation is B_ = z_Tz1 o.

Design results with grid size 65 and 7 design variables. In order to assess the

efficiency of solution refining, we first choose to solve the design problem with grid size 65

and 7 spline coefficients. This is quite a difficult problem because of over parameterization.

We use the cost of solving the flow equations (without the presence of design variables)

as a baseline to compare the cost of the reduced Hessian SQP with and without solution

refining.

Figure 1 shows 2 level flow solutions against the target solution. It also shows the

convergence history of the flow residuals. The flow problem is first solved with grid size 33
(upper subgraph). A significant number of iterations were taken due to difficulties in the

transient regime (upper right). Then the solution is refined with grid size 65 (lower left).

Due to good initial guess from the coarse grid solution, only 5 iterations were required to

reach the tight tolerance (lower right).

Figure 2 shows the design result of the reduced Hessian SQP without solution refining.

Although the convergence of flow residuals and projected gradients appears to be superliner,

it took a fair amount of iterations to get through the transient regime. The target, initial

and final solutions are marked with solid, dashed and checked solid lines, respectively.

The reductions in the projected gradient and the flow residual are marked with + and.,

respectively. These notions are used consistently throughout the rest of this paper.

Figures 3 and 4 show the test results of the reduced Hessian SQP with two levels of

refining. First the design is solved on grid level 1 with grid size 33 (Figure 3). Then it is

subsequently solved on grid level 2 with the desired grid size 65 starting from the grid level

1 solution (Figure 4). Due to the good initial information supplied from coarse grids, it

only took 10 (versus 35 without solution refining) expensive fine grid iteration to reach the

tolerance. The overall saving over no solution refining in flop counts is about 33%. The

final cost is only about 3 times as much as the cost of a single flow solution run.
The test results are summarized in Table 1.

Num. of Dsgn. Vats. Grid Levels Total Flops Num. of Iters. Cost Ratio

0 2 2709573 30(1)+5(2) 1.000

7 0 13631377 35 5.03

7 2 9166365 26(I)+10(2) 3.38

Table 1: Efficiency of solution refining (grid size 65)

Design results with grid size 513 and 15 design variables. To make the design

problem more challenging, we next solve the problem with grid size 513 and 15 design

variables. This time the reduced Hessian SQP without solution refining failed to solve the

problem (stuck in the transient regime), while the scheme with solution refining solved the
problem successfully.

Five levels of grid refining were carried out. Solutions on these five grid levels are shown

in Figures 5 to 9. The results are summarized in Table 2. As expected, a relatively large



numberof iterations were performed on grid 1 for getting through the transient regime

(Figure 5). As the grid is refined, the convergence is getting smoother (Figures 6 to 9). On

the final grid it only took 12 iterations to converge to the tight tolerance.

Grid Level 1 2 3 4 5

Flops Count 17570765 15228630 22709106 38298903 75681269

Iterations 39 18 14 12 12

Grid Size 33 65 129 257 513

Table 2: Results summary for grid size 257 and 15 design variables with solution refining.

Testing with a various number of design variables and various grid sizes. Finally,

we give the full set of the test results. The reduced Hessian SQP scheme with solution

refining is tested on the nozzle design problem using a various number of design variables,

i.e., 0, 1, 3, 7, 15 and various grid sizes, i.e., 33, 65,129,257,513. We want to point it out that

each grid is associated with three flow variables. Hence the number of total flow variables

is 99,195,387,771, 1539 (3 times each grid size), respectively. Table 3 summarizes the test

results, which is visualized in Figure 10.

The problem with grid size 33 is solved with no solution refining, while the problem

with grid size 65 is solved with 2 levels of solution refining, the problem with grid size 129

is solved with 3 levels of solution refining, and so on and so forth.

For each grid size, the cost with no design variables is used as a basis to measure the

costs with a various number design variables.

It seems that the cost of solving the design problem is about the same as or only one

order of magnitude more than the cost of calculating the nonlinear flow, which is very

promising for aerodynamic design optimization. Figure 10 shows that on the one hand, as

the grid size increases, the relative cost of the design calculation is increased linearly. On

the other hand it shows that as the number of design variables increases, the cost of design

calculation appears to increase faster than linearly. We feel that this is caused by over-

parameterization that results in much hard problems as more and more design variables
are introduced for the same design problem. We believe that the increase should be linear

without excessive over-parameterization.

6 Concluding remarks

This paper shows that solution refining can be combined with the reduced Hessian SQP

scheme for aerodynamic design optimization. A particular useful technique introduced in

this paper is the reduced Hessian refining under a variable metric formula. Test results show

that the efficiency and the robustness of the reduced Hessian SQP scheme are significantly

improved through solution refining. We believe that the efficiency could be further improved

for certain problems through refining in the design variable space by gradually increasing the

number of variables, particularly for problems with a significant number of design variables.



This brings forth a more challenging research topic for the efficient and effective reduced

Hessian refining. Finally, applications of the reduced Hessian SQP scheme to 2D and 3D

problems are currently under investigation by the authors.

References

[1] D. FENG AND T. H. PULLIAM, An aU-at-once reduced Hessian sqp scheme for aero-

dynamic design optimization, Tech. Rep. 95.19, Research Institute for Advanced Com-

puter Science, NASA Ames Research Center, Moffett Field, California, 1995.

[2] R. FLETCHER, Practical Methods of Optimization, Second Edition, John Wiley & Sons,
second ed., 1989.

[3] D. GABAY, Reduced quasi-Newton methods with feasibility improvement for nonlinearly

constrained optimization, Mathematical Programming Studies, 16 (1982), pp. 18-44.

[4] J. C. GILBERT, Maintaining the positive definiteness of the matrices in reduced Hessian

methods for equality constrained optimization, Math. Programming, 50 (1991), pp. 1-
28.

[5] G. H. GOLUB AND C. F. V. LOAN, Matrix Computations, The John Hopkins Univer-

sity Press, second ed., 1989.

[6] A. JAMESON, Aerodynamic design via control theory, Journal of Scientific Computing,

3 (1988), pp. 233-260.

[7] G. KURUVILA, S. TA'ASAN, AND M. D. SALAS, Airfoil design and optimization by

the one-shot method, AIAA Paper 95-0478, (1995).

[8] T. PULLIAM, Artificial dissipation models for the Euler equations, AIAA Paper 85-
0438, (1985).

[9]J. REUTHER, S. E. CLIFF, R. M. HICKS, AND C. P. VAN DAM, Practical design

optimization of wing/body configuration using the Euler equations. AIAA paper 92-
2633, 1992.

[10] Y. XIE AND R. H. BYRD, Practical update criteria for reduced Hessian SQP, Part I:

Global analysis, Tech. Rep. CU-CS-753-94, Computer Science Department, University

of Colorado, Boulder, 1994.

[11] D. P. YOUNG, W. P. HUFFMAN, M. B. BIETERMAN, R. G. MELVIN, F. T. JOHN-

SON, C. L. HILMES, AND A. R. DUSTO, Issues in design optimization methodology,

Tech. Rep. BCSTECH-94-007 REV. 1, Boeing Computer Services, Seattle, Washing-
ton, 1994.



Flow Solution

1.2 /

o.8 

0.4
o

1.2

1

0.6

0.4'

0.5

Length Along Duct

Flow Solution

"5

.9° -lo

-15

:,v

10 20 30
Iterations

51

=o+
LL ...... _ ...... _x

- 15 \

0 0.5 0 2 4

Length Along Duct Iterations

4O

Figure 1: Flow solutions with 2 levels of solution refining. Grid size = 33, 65.

Flow Solution Nozzle Solution
1.2 1 i

1

B O.8
>

0.6

0.4

= 2
IJ.

-_-2
Z_

"_--4
E

_-8 '
0

0.5

Length Along Duct

Optimality Conditions

10 2'0 30

Iterations

0.51

0.5

Length Along Duct

Objective Function Reduction

O

_-_-0.5

E -1

40 40

_=-1.5

-2

-2.5
o 10 20 30

Iterations

Figure 2: Design solutions without solution refining. 7 design variables and grid size = 65.

10



1.2

1

®_Z_'O.8

0.6

0.4

Flow Solution

2

0

-4
o

E -6

-10

0.5

Let_t Along Duct

OptlmaJlty Conditions

0 10 20 30
Iterations

Nozzle Sotutlofl
1.05

0.95
o.g

0.8

0.75
0.5

Length Along Duct

Objective FunclJon Reduction

0.5 I

_-0.5

_-l.s "_,

-2.5 _'_'_'_<'_'_':'"":
0 10 20 30

Iterations

Figure 3: Design solutions on grid 1 with 7 design variables and grid size = 33.

1.2

1

0.8

0.6

0.4

Flow Solu_on

M.

--2

z
-4

"5
E -6

_10 j

0 0.5 0 0.5

Length Along Duct Length Along Ducl

OptlmJlty Conditions Objective Functton Reduction
2 -1.8.

Nozzle Solution

i:iiI',. 
1

\

-2.6
5 10 0 5 10

Iterations Iterations

Figure 4: Design solutions on grid 2 with 7 design variables and grid size = 65.

ll



Flow Solution
1.2

1

0.8

0.6

0.4

= 2
LL

_-2
"6_ 4

"_--6

-u_ 8
0

0.5

Length Along Duct

Optimality Conditions

= , i ]

10 20 30 40
Iterations

1.05
Nozzle Solution

1 o

0.95

0.9

0.85

0.8

0.75

05[

0.5

Length Along Duct

Objective Function Reduction

0

_=
_'-0.5
o

...j_-1.5

-2

-2"50 10

\

._

20 30 40
Iterations

Figure 5: Design solutions on grid 1 with 15 design variables and grid size = 33

Flow Solution Nozzle Solution
1.2

1

O.S
o

0.6

0.4
0.5

Length Along Duct

Optimality Conditions

_2

1.05

1

0.95

0.9

o.85

03

0.75
0

-t.s_

__ -2

"5

-2.2

..J_-2.4

-2.6
20

0.5

Length Along Duct

Objective Function Reduction

0 5 10 15 5 10 15 20
Iterations Iterations

Figure 6: Design solutions on grid 2 with 15 design variables and grid size = 65.

12



1.2

1

_=_"0.8

0.6

0.4

Flow Solution

0 0.5

Length Along Duct

Optimality ConcNtlons

_-,T_-._

Nozzle Solution
1.05

1

.o 0.95

0.g

_ o.ss

0.8

0.75

\ /

-1.6

0.5
Length Along Duct

Objective Function Reduction

---1.8'

i,:
-2.4

-2.6
0 5 10 15 0 5 10 15

Iterations Iterations

Figure 7: Design solutions on grid 3 with 15 design variables and grid size = 129.

Row Solution
1.2

1

_=_'0.8:

0.6

0.4
0 0.5

Ler_gth Along Duct

Optimality Conditions

¢ 21

"8-4l _"_"_

E / \*;_

_1I x

Nozzle Solution

'°_I

 oo:rk /
:o.-t\_ J
00;,81V"

-I .6i

0.5

Length Along Duct

Objective Function Reduction

---1.8

_ -2 \

N -2.2F ',.

i

iZi 4 F _-_. ...... ,........ ............. ,..,

-2.6
0 5 10 15 0 5 10 15

Ileration$ Iteratiocls

Figure 8: Design solutions on grid 4 with 15 design variables and grid size = 257.

13



FiowSolution

1.2

1

_0.8

>

0.6

0.4
0 0.5

Length Along Duct

Optimality Conditions

ol-'+..

J=, , ,

1.05

0.95

0.9

0.85

0.8

0.75

Nozzle Solution

0 0.5
Length Along Duct

Objective Function Reduction
-1.8

-2

o

E-2.2

e_

,..1_-2.4

-2.6
0 5 10 15 0 5 10 15

Iterations Iterations

Figure 9: Design solutions on grid 5 with 15 design variables and grid size = 513.

Efficient of RHSQP Scheme

15

10 5OO
4oo

3oo
2oo

lOO

Design Size 0 0 Grid Size

6OO

Figure 10: Efficiency of reduced Hessian SQP scheme.

14



Num. of Des. Vaxs.

0

0

0

0

0

1

1

1

1

1

3

3

3

3

3

7

7

7

7

7

15

Grid Size Flops Cost Ratio

33 2036491 1.00

65 2709573 1.00

129 4040497

6687365257

1.00

1.00

513 11965583 1.00

33 1897820 0.94

65 3227728 1.20

129 5559882 1.38

257 10195908 1.53

513 20611283

33

65

129

257

513

33

65

129

257

2181578

4054968

513

7315226

13771675

28251307

5237019

9166365

16794298

29052365

56129543

1757076533

1.73

1.08

1.50

1.82

2.06

2.37

2.58

3.38

4.16

4.35

4.70

8.64

15 65 32799395 12.11

15 129 55508501 13.74

15 93807404 14.03

15 169488673513 14.17

Table 3: Efficiency of the all-at-once scheme
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