# Progress Towards an Efficient and General CFD Tool for Propulsion Design/Analysis 

C. F. Cox, P. Cinnella, and S. Westmoreland<br>Engineering Research Center for Computational Field Simulation<br>Mississippi State University<br>Mississippi State, MS 39762

The simulation of propulsive flows inherently involves chemical activity. Recent years have seen substantial strides made in the development of numerical schemes for reacting flowfields, in particular those involving finite-rate chemistry. However, finite-rate calculations are computationally intensive and require knowledge of the actual kinetics, which are not always known with sufficient accuracy. Alternatively, flow simulations based on the assumption of local chemical equilibrium are capable of obtaining physically reasonable results at far less computational cost.

The present study summarizes the development of efficient numerical techniques for the simulation of flows in local chemical equilibrium, whereby a "Black Box" chemical equilibrium solver is coupled to the usual gasdynamic equations. The generalization of the methods enables the modelling of any arbitrary mixture of thermally perfect gases, including air, combustion mixtures and plasmas. As demonstration of the potential of the methodologies, several solutions, involving reacting and perfect gas flows, will be presented. Included is a preliminary simulation of the SSME startup transient. Future enhancements to the proposed techniques will be discussed, including more efficient finite-rate and hybrid (partial equilibrium) schemes. The algorithms that have been developed and are being optimized provide for an efficient and general tool for the design and analysis of propulsion systems.
MISSISSIPPI STATE UNIVERSITY / National Science Foundation
Progress Towards an Efficient and General
CFD Tool for Propulsion Design/Analysis
Carey F. Cox, Pasquale Cinnella and Shawn Westmoreland Workshop for Computational Fluid Dynamic Applications
in Rocket Propulsion and Launch Vehicle Technology
April 25-27, 1995
Huntsville, AL
Purpose


Provide an overview of the development
of a solver for reacting gas flows, which
utilizes EFFICIENT numerical techniques
○
capable of handling ARBITRARY mixtures.

## MOTIVATIONS

Finite-rate chemistry is COMPLICATED
EXPENSIVE
O


Chemical kinetics, actual reaction path are required.
N species continuity equations.

Finite-rate equations are extrememly stiff for near equi-
librium flows.

APPROACH

Chemical equilibrium "Black Box" solver
coupled to the "usual" gasdynamic equations
5 equations, not the $\mathrm{N}+4$ equations required for finite-
rate chemistry.
o

An "off-the-shelf" multi-block flow solver is
modified to handle "real gas" effects
Unstructured Block Implicit solver
○
XOG YOV7g


O

Capable of handling ARBITRARY mixtures
10 chemistry models available including air, combustion
and plasma mixtures, as well as perfect gas.
O

Variety of computational options
$\mathbf{2}$ Solution Methods: Mass Constraint \& Degree of Advancement
$\mathbf{2}$ Rate Coefficient Models: Curvefit \& Consistent
$\mathbf{2}$ Thermodynamic Models: Vibrational \& Curvefit
EFFICIENT and ROBUST






FLOW SOLVER
Implicit, finite-volume, high-order TVD scheme. ○

on RHS y using ...








SNOISDTONOD

- An EFFICIENT and GENERAL solver for
can handle arbitrary mixtures,
which...
reacting
is applicable to propulsion design/analysis.
uses efficient numerical techniques,
and

