CFD ANALYSIS OF MODULAR THRUSTERS PERFORMANCE

Ronald J. Ungewitter, James Beck, Andrew Ketchum
Rocketdyne Division, Rockwell International
Mail Code IB39, 6633 Canoga Avenue
Canoga Park, CA 91303

Abstract

The effective performance of modular thrusters in an aerospike configuration is difficult to determine. Standard analytical tools are applicable to conventional nozzle shapes, but are limited when applied to an aerospike nozzle (An aerospike nozzle is an altitude compensating external nozzle). Three baseline nozzle shapes are derived using standard analytical procedures. The baseline nozzles sizes are restricted to fill a volume envelope. The three shapes are an axi-symmetric round nozzle, a 2D planar square exit nozzle, and a super elliptic round to nearly square nozzle. The integrated (thruster /aerospike) performance of the three nozzles is determined through the use of 3-D viscous CFD calculations where complex features of the flowfield can be accurately captured. The resulting installed performance is then used to evaluate the efficiency of these nozzle shapes for aerospike applications.

The determination of effective performance of a thruster nozzle integrated into an aerospike nozzle requires the solution of the three dimensional turbulent NavierStokes equations. The model used in this study consisted of two zones; one of the upstream thruster cowl surface so freestream conditions can be accurately predicted, and two, the aerospike surface beginning with with thruster outflow and extending to the end of the aerospike surface. The numerical grid consisted of over 120,000 nodes and used symmetry on the thruster centerline and edge. A two species non-reacting chemistry model was used to capture the variation of fluid properties between the hot plume gas and freestream air.

From the results of the three baseline nozzle aerospike calculations, the effective performance of the nozzle was determined. The flowfield of these calculations do show some variation between the cases. Recirculation zones on the cowl surface is predicted for the 2D planar nozzle and a smaller one for the super elliptic nozzle. The recirculation is caused by the strong pressure gradient between the plume and freestream flows. The axi-symmetric nozzle results indicates recirculation zones on the thruster face. These recirculation zones smooth the pressure gradient between the plume and freestream flow limiting the formation of recirculation on the cowl surface. Thruster to thruster interaction is evident for the axisymmetric and super elliptic calculation while the 2D planar nozzle did not have any lateral expansion in the nozzle so thruster to thruster interaction is limited. The integrated performance results, at the altitude choosen, shows very little variation between the three thruster shapes. This result allows for nozzle shape determination to based on additional considerations (thermal, structural, weight) besides performance.

CFD ANALYSIS OF MODULAR THRUSTERS
PERFORMANCE
CFD WORKSHOP
MARSHALL SPACE FLIGHT CENTER
HUNTSVILLE, AL
CFD WORKSHOP
MARSHALL SPACE FLIGHT CENTER
HUNTSVILLE, AL

APRIL 25-27, 1995
 Performance Analysis and Applied Fluid Dynamics

CFD Technology Center
BASELINE COMPARISONS

- GOAL

- APPROACH
- USE MOC AND CFD CODES TO DETERMINE THE Isp OF THE INDIVIDUAL
BASELINE NOZZLES
- COMPARE THE MOC AND CFD RESULTS FOR CONSISTENCY
- USE 3D CFD MODEL TO DETERMINE THE INSTALLED BASELINE NOZZLE
/ AEROSPIKE PERFORMANCE
BASELINE NOZZLE DEFINITIONS

BASELINE NOZZLE DESIGNS

Baseline Thrust Cell Nozzle	Schematic	Throat Area (in2)	Nozzle Length (in)	Exit Dimension (in)	Nozzle Area Ratio
Axisymmetric			3.7688	11.585	$\mathrm{D}=7.519$
2-D Planar	11.8				
3-D Super-Elliptic		3.7688	11.585	$\mathrm{H}=\mathrm{W}=7.519$	15.0

BASELINE COMPARISONS
FULL NAVIER-STOKES SOLUTIONS
BALDWIN-LOMAX TURBULENCE MO

- TWO SPECIES (FREESTREAM, PLUME) NONREACTING CHEMISTRY
MODEL
- TWO ZONE, 125,350 NODE GRID

-

$$
\begin{aligned}
& \text { - TWO ZONE, } 125,350 \text { NODE GRID } \\
& \text { • ZONE ONE INCLUDES FLOW OVER COWL } \\
& \text { - ZONE TWO SIMULATES INFINITE ARRAY OF THRUSTERS AND } \\
& \text { AEROSPIKE SURFACE } \\
& \text { - FREESTREAM INLET CONDITIONS AT 50,000 FT (MACH NUMBER = 1.83), } \\
& \text { REPRESENTATIVE OF MIDPOINT OF FLIGHT ENVELOPE }
\end{aligned}
$$

BASELINE COMPARISONS
FLOW FEATURES COMMON TO ALL SOLU
NORMAL SHOCK UPSTREAM OF THRUSTERS ON COWL SURFACE,
DECREASING IN STRENGTH FROM COWL SURFACE
MODULE TO MODULE INTERACTION CAUSES THREE DIMENSIONAL
PLUME SHAPE

- RECIRCULATION REGIONS ON COWL SURFACE AND/OR ON THRUS
FACE
- MODULE TO MODULE INTERACTIONS ON AEROSPIKE SURFACE
- AEROSPIKE EXPANDS FLOW TO SIMILAR PRESSURE VALUES
- RECIRCULATION REGIONS ON COWL SURFACE AND/OR ON THRUSTER
FACE
- MODULE TO MODULE INTERACTIONS ON AEROSPIKE SURFACE
- AEROSPIKE EXPANDS FLOW TO SIMILAR PRESSURE VALUES

MACH NUMBER CONTOURS IN THE CROSS PLANES

PARTICLE TRACES
2D PLANAR THRUSTERS

ANALYSIS
AEROSPIKE
CELL /
bASELINE NOZZLE COMPARISON
PRESSURE CONTOURS ALONG AEROSPIKE SURFACE
2D PLANAR THRUSTERS
PRESSURE (psia)

BASELINE COMPARISONS
INSTALLED BASELINE NOZZLE／AEROSPIKE PERFORMANCE

8＇6てt						O1Idㄱำ
	t2091	621	0998	0．1＞	と6ヶで	yヨdns $0-\varepsilon$
0．6で	G66S1	Sて1	ャ¢SE	－－	99921	y \quad NV7 ${ }^{\text {a－z }}$
でoとも	Lع091	621	$8 \vdash$ ¢	St	と0ヵて，	OIVLヨWW入SIXV
$\begin{gathered} (0 \mathrm{AS}) \\ \mathrm{ds}) \end{gathered}$	$\begin{array}{\|c\|} \hline * \perp S \cap Y H I \\ 7 \forall \perp O \perp \end{array}$	＊NOIIOIUJ	$\begin{gathered} * \text { *ISNYHI } \\ \text { ヨMIdSOYヨ } \end{gathered}$	$\begin{aligned} & * \forall P_{d} \\ & \exists コ \forall J \end{aligned}$	$\begin{aligned} & \text { *ISOUHI } \\ & \text { ヨาZZON } \end{aligned}$	ヨdVHS ヨNI7ヨSV8

PREDICTED VALUES OF INSTALLED PERFORMANCE ARE EFFECTIVELY
EQUIVALENT
SIMILARITY OF PERFORMANCE ALLOWS FOR OTHER DESIGN ASPECTS
（EG．THERMAL，STRUCTURAL）TO BE CONSIDERED IN NOZZLE SHAPE
SELECTION
BASELINE COMPARISONS
BASELINE COMPARISONS
TASK CONCLUSIONS

- CFD AND MOC PREDICT CONSISTENT RESULTS
- MOC CODES PROVIDE RAPID ANALYSIS CAPABILITY
- CFD CODE PROVIDE RANGE OF ANALYSIS OPTIONS
- INSTALLED BASELINE NOZZLE / AEROSPIKE PERFORMANCE
PREDICTIONS FOR THREE NOZZLE SHAPES EFFECTIVELY THE
SAME
- SIMILARITY OF PERFORMANCE ALLOWS FOR OTHER DESIGN
ASPECTS (EG. THERMAL, STRUCTURAL) TO BE CONSIDERED IN
NOZZLE SHAPE SELECTION

