513-27 57388 132110 14P

TPS Sizing for Access-to-Space Vehicles

William Henline, David Olynick and Grant Palmer NASA Ames Research Center, MS 230-2, Moffett Field, CA 94035-1000 Y.-K. Chen Eloret Institute, MS 234-1, Moffett Field, CA 94035-1000

Abstract

A study was carried out to identify, develop, and benchmark simulation techniques needed for optimum TPS material selection and sizing for reusable launch vehicles. Fully viscous, chemically reacting, Navier-Stokes flow solutions over the Langley wing-body single stage to orbit (SSTO) configuration were generated and coupled with an in-depth conduction code. Results from the study provide detailed thermal protection system (TPS) heat shield materials selection and thickness sizing for the wing-body SSTO. These results are the first ever achieved through the use of a complete, trajectory based hypersonic, Navier-Stokes solution database. TPS designs were obtained for both laminar and turbulent entry trajectories using the Access-to-Space baseline materials such as tailorable advanced blanket insulation (TABI). The TPS design effects (material selection and thicknesses) of coupling material characteristics to the aerothermal environment are illustrated. Finally, a sample validation case using the shuttle flight data base is included.

For the laminar trajectory, the TPS areal mass density is 1.2 lbm/ft^2 , while the turbulent trajectory yields slightly less than 1.3 lbm/ft^2 . An additional conclusion from this study is that the TABI blankets will have to be manufactured in thicknesses greater than 1.5-2.0 inches. Further, if typical turbulent flow conditions are found on these SSTO vehicles during re-entry, some of the baseline materials may experience significant over-temperatures.

TPS Sizing for Access to Space Vehicles

by

William Henline, David Olynick, Grant Palmer and Y.-K. Chen

NASA Ames Research Center

CFD Workshop April 27, 1995

NASA Ames Research Center

965

Relationship Between Ames Complementary Analysis Tasks For All Candidate TPS

RLV Technology Review #2

TPS Sizing for Access to Space Vehicles

Fully Coupled Thermal Analysis for TPS Sizing

Trajectory (Altitude - Velocity) Plot for the LaRC SSTO Vehicle

<u>6</u>969

Winged Body Configuration 1300 s

Winged Body Configuration 1300 S

Top Layer TPS Thickness (in.) for the LaRC Winged Body SSTO Vehicle (Total Heating Time, 6200 sec) (TURBULENT FLOW SOLUTION)

Surface TPS Thickness (in.)

Effect of TPS Material Properties on Surface Temperatures

