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Abstract

A study was carried out to identify, develop, and benchmark simulation
techniques needed for optimum TPS material selection and sizing for reusable
launch vehicles. Fully viscous, chemically reacting, Navier-Stokes flow solu-
tions over the Langley wing-body single stage to orbit (SSTO) configuration
were generated and coupled with an in-depth conduction code. Results from
the study provide detailed thermal protection system (TPS) heat shield ma-
terials selection and thickness sizing for the wing-body SSTO. These results
are the first ever achieved through the use of a complete, trajectory based
hypersonic, Navier-Stokes solution database. TPS designs were obtained
for both laminar and turbulent entry trajectories using the Access-to-Space
baseline materials such as tailorable advanced blanket insulation (TABI).
The TPS design effects (material selection and thicknesses) of coupling ma-
terial characteristics to the aerothermal enviroment are illustrated. Finally,
~ a sample validation case using the shuttle flight data base is included. |

For the laminar trajectory, the TPS areal mass density is 1.2 lbm/ft?,
while the turbulent trajectory yields slightly less than 1.3 Ibm/ft2. An addi-
tional conclusion from this study is that the TABI blankets will have to be
manufactured in thicknesses greater than 1.5-2.0 inches. Further, if typical
turbulent flow conditions are found on these SSTO vehicles during re-entry,
some of the baseline materials may experience significant over-temperatures.
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Fully Coupled Thermal Analysis for TPS Sizing
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Trajectory (Altitude - Velocity) Plot for the LaRC SSTO Vehicle
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Stagnation Point Heating Plot for LaRC SSTO Trajectory
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Surface TPS Thickness (in.)
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TPS Thickness (in.)

LaRC SSTO Vehicle Centerline TPS Thicknesses
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Effect of TPS Material Properties on Surface Temperatures
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Shuttle Temperature Contours (STS-2)

M=24, 72.4 km, radiative equilibrium wall
RCG kinetics, ¢=.85
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