RSRM Chamber Pressure Oscillations: Transit Time Models and Unsteady CFD

Tom Nesman and Eric Stewart
Fluid Dynamics Division
National Aeronautics and Space Administration, MSFC
Marshall Space Flight Center, AL 35812

Abstract

Space Shuttle solid rocket motor (SRM) low frequency internal pressure oscillations have been observed since early testing. The same type of oscillations are also present in the redesigned solid rocket motor (RSRM). The oscillations, which occur during RSRM burn, are predominantly at the first three motor cavity longitudinal acoustic mode frequencies. Broadband flow and combustion noise provide the energy to excite these modes at low levels throughout motor burn, however, at certain times during burn the fluctuating pressure amplitude increases significantly. The increased fluctuations at these times suggests an additional excitation mechanism.

The RSRM has inhibitors on the propellant forward facing surface of each motor segment. The inhibitors are in a slot at the segment field joints to prevent burning at that surface. The aft facing segment surface at a field joint slot burns and forms a cavity of time varying size. Initially the inhibitor is recessed in the field joint cavity. As propellant burns away the inhibitor begins to protrude into the bore flow. Two mechanisms (transit time models) that are considered potential pressure oscillation excitations are cavity edge-tones, and inhibitor hole-tones. Estimates of frequency variation with time of longitudinal acoustic modes, cavity edge-tones, and hole-tones compare favorably with frequencies measured during motor hot firing. It is believed that the highest oscillation amplitudes occur when vortex shedding frequencies coincide with motor longitudinal acoustic modes.

A time accurate CFD analysis was made to replicate the observations from motor firings and to observe the transit time mechanisms in detail. FDNS is the flow solver used to detail the time varying aspects of the flow. The fluid is approximated as a single-phase ideal gas. The CFD model was an axisymmetric representation of the RSRM at 80 seconds into burn. Deformation of the inhibitors by the internal flow was determined through an iterative structural and CFD analysis. The analysis domain ended just upstream of the nozzle throat. This is an acoustic boundary condition that caused the motor to behave as an closed-open organ pipe. This differs from the RSRM which behaves like a closed-closed organ pipe.

The unsteady CFD solution shows RSRM chamber pressure oscillations predominantly at the longitudinal acoustic mode frequencies of a closed-open organ pipe. Vortex shedding in the joint cavities and at the inhibitors contribute disturbances to the flow at the second longitudinal acoustic mode frequency. Further studies are planned using an analysis domain that extends downstream of the nozzle throat.

Workshop for CFD Applications in Rocket Propulsion and Launch
Vehicle Technology Tom Nesman and Eric Stewart
Fluid Dynamics Division - NASA - MSFC
George C. Marshall Space Flight Center Fluid Dynamics Division
RSRM Pc Oscillations: Transit Time Introduction

- Space Shuttle SRM Pc oscillations issues have surfaced at various
times in past
- Pre- STS-1 loads analysis
- Post STS-1 loads evaluation
- STD to HPM change
- FWC testing
\quad - HPM to RSRM change (ASRM)
- Inhibitor stiffening evaluation (present study)
- SRM Pc oscillation evaluation based primarily on test and flight
data
- Mechanisms evaluated empirically
- Unsteady CFD activities initiated in early 1990's (funded thru

1993)

- Unsteady RSRM CFD activities revived for inhibitor stiffening
evaluation steady CFD
Introduc
George C. Marshall Space Flight Center Fluid Dynamics Division
RSRM Pc Oscillations

Background

Space Shuttle solid rocket motor low frequency internal pressure

George C. Marshall Space Flight Center Fluid Dynamics Division

Typical RSRM Pc Isoplot

Head-end Chamber Pressure (Pc) Measurement

Typical RSRM Pc Timehistory
(Bandpass Filtered Data)
This is actually an HPM Head-end Chamber Pressure (Pc) Measurement
Longitudinal
Acoustic
Mode 1
Longitudinal

Workshop for CFD Applications in Rocket Propulsion and Launch Vehicle Technology
RSRM Pc Oscillations: Transit Time

George C. Marshall Space Flight Center
Fluid Dynamics Division
Excitation Mechanisms
Cavity Edge-Tone Mechanism
Feedback Transit Time Models
Empirical estimates - time for disturbance to
travel downstream plus time for feedback to
sensitive region
Analytical estimates - sum of phase of
downstream traveling wave and phase of
upstream traveling acoustic wave
Inhibitor to Inhibitor Hole-tone Mechanism

Measured Fluctuating Pressure, p'

(zH) Kəuənbəュப
Workshop for CFD Applications in Rocket Propulsion and Launch Vehicle Technology

Time (sec)
Workshop for CFD Applications in Rocket Propulsion and Launch Vehicle Technology

George C. Marshall Space Flight Center
Fluid Dynamics Division

Measured p' Comparison

Predicted Cavity Edge Tone Frequencies

Workshop for CFD Applications in Rocket Propulsion and Launch Vehicle Technology
George C. Marshall Space Flight Center Fluid Dynamics Division Background
erical simulation of "edge-tone" phenomenon (NASA CR 4581)

- Performed by Rockwell-Huntsville in 1992 using USA flow solver
- Solved Navier-Stokes equation for low speed flows
- Dipole nature of edge-tone
- Perical simulation of RSRM (NAS8-38550)
- S+80 sec and Rockwell-Huntsville in 1993 using USA sec burn time geometry and flow
- Objective: evaluate the effect of inhibitors on Pc oscillations
- Head-end p' dominated by 1L, 2L, and 3L organ pipe modes
- Inhibitors generate oscillations, however, head-end p' lower with
inhibitor than without inhibitor (not tuned ?)
George C. Marshall Space Flight Center
Fluid Dynamics Division

Present Study

Workshop for CFD Applications in Rocket Propulsion and Launch Vehicle Technology

George C. Marshall Space Flight Center
Fluid Dynamics Division
RSRM Unsteady CFD

Workshop for CFD Applications in Rocket Propulsion and Launch Vehicle Technology
George C. Marshall Space Flight Center
Fluid Dynamics Division
George C. Marshall Space Flight Center Fluid Dynamics Division
Timeplot
CFD RSRM Unsteady
Fluctuating Pressure Downstream of Inhibitor Tip

0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8 (Isd) d
Workshop for CFD Applications in Rocket Propulsion and Launch Vehicle Technology

ZH/zisd
Workshop for CFD Applications in Rocket Propulsion and Launch Vehicle Technology

