A Coupled CFD/FEM Structural Analysis to Determine Deformed Shapes of the RSRM Inhibitors

Richard A. Dill and R. Harold Whitesides
ERC, Incorporated, Hunstville, AL 35816

Abstract

Recent trends towards an increase in the stiffness of the NBR insulation material used in the construction of RSRM propellant inhibitors prompted questions about possible effects on RSRM performance. The specific objectives of the CFD task included: 1) the definition of pressure loads to calculate the deformed shape of stiffer inhibitors, 2) the calculation of higher port velocities over the inhibitors to determine shifts in the vortex shedding or edge tone frequencies and 3) the quantification of higher slag impingement and collection rates on the inhibitors and in the submerged nose nozzle cavity.

A coupled CFD/Finite element structural analysis was required to calculate the deformed inhibitor geometry. Since the NBR inhibitor material erodes at a different rate than the motor propellant burns, an inhibitor stub which protrudes above the propellant into the port cavity is created during motor operation. The impinging port flow causes the inhibitor stub to bend in the downstream flow direction. Since a stiffer NBR inhibitor material would cause the inhibitor to bend less, it was necessary to know the difference in the tending of the original NBR material compared to the stiffer NBR materiai. The CELMINT CFD computer code was used to perform the fluid dynamic calculations of the motor flow field. The structural bending effect of the pressure loads from the CFD code was analyzed by ED28. Initially, the CELMINT code was used to determine the flow field and inhibitor pressure loads for unbent motor inhibitors. This pressure loading on the inhibitors was used by ED28 to generate the bending which would occur in the inhibitor. The computed bent inhibitor geometry was then used again by the CFD code to compute a new pressure loading on the inhibitors. This iterative computation between the CFD code and the structural analysis code was continued until convergence in the inhibitor bent geometry was achieved.

The CFD solution was then used to assess the effect of higher flow velocities and edge tone frequencies from the reduced inhibitor bending on the maximum oscillating pressure amplitudes that occur during resonance between the edge tones and the motor longitudinal modes. Also, a comparison of the difference in slag accumulation between the two NBR materials was also made to determine if the stiffer material increases slag collection in the field joints and the submerged nozzle cavity.

The coupled CFD/FEM structural analysis was successful in defining the effect of inhibitor stiffness on inhibitor geometry and the shift in edge tone frequencies. Also, the two-phase CFD analysis showed that there was a small increase in the rate of slag accumulation at the aft inhibitor; however, motor trajectory analyses of slag debris shed from the inhibitors showed that the debris would pass out the motor nozzle and therefore create no additional slag accumulation in the slag pool around the nozzle.
Background

- In October, 1994, Thiokol reported the use of NBR material in RSRM's with properties
significantly different from the historical database.
- A 30\% to 40\% increase in modulus was reported.
- This increased stiffness had the potential to affect the amplitude of chamber pressure
oscillations in the SRM:
--By changing the inhibitor structural response
--By indirectly changing the flow/acoustic interaction
The slag accumulation in the field joints and submerged nozzle region might also be
increased thereby increasing the potential for pressure and thrust perturbations.
ERC, Inc.

Coupled CFD/FEM Analysis Approach

1) Perform single-phase gas CFD analysis of entire RSRM port at 80 second burn time
using straight inhibitor lengths from erosion analysis.
2) Perform FEM structural analysis on inhibitors to determine deformations using surface
pressure distributions from CFD analysis.
3) Perform CFD analysis using deformed inhibitor geometries from step 2).
4) Repeat steps 2) and 3) until convergence of inhibitor geometry is achieved.
5) Provide velocity profile at each inhibitor location for both nominal and stiff inhibitors as
input to flow/acoustic interaction analysis.

Two-Phase Flow CFD Methodology
CELMINT Code
(Combined Eulerian Lagrangian Multi-Dimensional Implicit Nonlinear Time-Dependent)
- Navier-Stokes Solution
- Fully implicit, density-based, conservative, ensemble-averaged Navier-Stokes code
- Low and high Reynolds number and wall injection $\kappa-\varepsilon$ models
- Equilibrium and finite-rate chemistry for multi-species flows
- Two-phase Flow Models
- Coupled Eulerian-Lagrangian for solid and liquid phases
- Hermsen aluminum burn rate model for particle combustion
- Specification of particle properties (density, size distribution)
- Particle break-up based on Weber number
- Agglomeration based on collisions between discrete phase particles and continuous
phase smoke particles
- Programmable for various particle capture criteria
ERC, Inc.

Propellant Thermochemical Properties and Motor Operating Conditions RSRM 80 Second Burn Time

Flow Rate, Forward Segment Flow Rate, Center Segment 1
Flow Rate, Center Segment 2 Flow Rate, Aft Segment Flow Rate, Total
Throat Diameter
RSRM Motor Geometry

(Dashed Line Shows The 67 Second Burn Back)
Computational Grid Resolution
400×50
30×20
4×20
70×20
488×70
Port
Field Joints
Inhibitor Stub
Submerged Region
Overall Grid

Computational Grid, Full Motor
RSRM 80 Second Stiff NBR Inhibitor

Computational Grid, Forward Slot
RSRM 80 Second Stiff NBR Inhibitor

Computational Grid, Center Slot
 RSRM 80 Second Stiff NBR Inhibitor

Computational Grid, Aft Slot
RSRM 80 Second Stiff NBR Inhibitor

utational Grid, Submerged Nozzle
RSRM 80 Second Stiff NBR Inhibitor

Flowfield Velocity Magnitude
RSRM 80 Second Stiff NBR Inhibitor

Flowfield Static Pressure
RSRM 80 Second Stiff NBR Inhibitor

Velocity Vectors, Center Slot RSRM 80 Second Stiff NBR Inhibitor
\longrightarrow -
\longrightarrow

$=-$

RSRM 80 Second Stiff NBR Inhibitor

Forward Inhibitor Radial Pressure Distribution
RSRM 80 Seconds Burn Time
Stiff NBR

Center Inhibitor Radial Pressure Distribution
RSRM 80 Seconds Burn Time
Stiff NBR

Aft Inhibitor Radial Pressure Distribution
RSRM 80 Seconds Burn Time
Stiff NBR

Forward Inhibitor Deformation Iterations
RSRM 80 Seconds Burn Time

Forward Inhibitor Deformations
Nominal and Stiff NBR
RSRM 80 Seconds Burn Time

Center Inhibitor Deformations
Nominal and Stiff NBR
RSRM 80 Seconds Burn Time

Aft Inhibitor Deformations
Nominal and Stiff NBR
RSRM 80 Seconds Burn Time

ERC, Inc.
Port Velocity Profile at Forward Inhibitor
Nominal and Stiff NBR
RSRM 80 Seconds Burn Time

Port Velocity Profile at Center Inhibitor

Port Velocity Profile at Aft Inhibitor Nominal and Stiff NBR
RSRM 80 Seconds Burn Time

Comparison of the Motor Port Velocity Profiles Immediately

ERC, Inc.
Two-Phase CFD Analysis Approach

- Perform two-phase CFD analysis of RSRM port at 80 second burn time using final
deformed inhibitor geometries for both nominal and stiff inhibitors.
- Calculate slag captured on both nominal and stiff inhibitors at all three field joints.
- Perform trajectory analysis for slag debris shed from inhibitor tips for all above cases to
determine whether it passes through nozzle or accumulates underneath nozzle nose.

ERC, Inc.
RSRM Inhibitor Slag Accumulation
Nominal and Stiff NBR Inhibitors
80 Second Burn Time

Slag Debris Trajectories
RSRM 80 Second Stiff NBR Inhibitor
Debris Diameter: 0.2 Inches

Slag Debris Trajectories
RSRM 80 Second Stiff NBR Inhibitor
Debris Diameter: 0.2 Inches
Slag Debris Trajectory Results
Nominal and Stiff NBR Inhibitors

Release Location	Debris Diameter			
	0.2 inches	0.4 inches	0.8 inches	1.6 inches
		Nominal NBR		
Forward	Exits Nozzle	Exits Nozzle	Exits Nozzle	Exits Nozzle
Center	Exits Nozzle	Exits Nozzle	Exits Nozzle	Exits Nozzle
Aft	Exits Nozzle	Exits Nozzle	Exits Nozzle	Nozzle Nose
Forward	Exits Nozzle	Exits Nozzle	Exits Nozzle	Exits Nozzle
Center	Exits Nozzle	Exits Nozzle	Exits Nozzle	Exits Nozzle
Aft	Nozzle Nose	Nozzle Nose	Nozzle Nose	Nozzle Nose

Two-Phase CFD Analysis Conclusions

- The rate of slag accumulation for both the nominal and stiff inhibitors at all joints is a very
small percentage of the total motor slag accumulation rate.
- The rate of slag accumulation on the center inhibitor is approximately four times greater
for the stiff NBR compared to the nominal NBR.
- Slag debris shed from the nominal inhibitors at all three joints exits the nozzle throat
plane.
- Slag debris shed from the stiff inhibitors at the forward and center joints exits the nozzle
throat plane. Slag from the aft joint stiff inhibitor impacts the nozzle entrance ramp.
- No excess slag collected on the stiff inhibitors is transported underneath the nozzle nose
to add to the normal slag pool.

