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ABSTRACT

This paper presents a number of variations on the Davenport algorithm for in-flight gyroscope recalibration, or

first-order initial calibration, specifically tailored for use with a minimum amount of satellite telemetry data.
Central to one of the techniques described is the use of onboard integration of gyroscope data together with a

detailed model of scheduled satellite slew profiles. Methods are presented for determining adjustments to either

parameters for the standard linear model (i.e., a drift rate bias vector and/or a scale factor/alignment
transformation matrix) or individual gyroscope scale parameters, both linear and nonlinear, in cases where the

alignments are well known. The results of applying the methods in an analysis of the temporal evolution and

nonlinear response of the gyroscopes installed on the Hubble Space Telescope following its first servicing mission
are discussed. The two effects, when working coherently, have been found to result in slew errors of almost

1 arcsecond per degree. Procedures for selecting optimal operational gyroscope parameters subject to the
constraint of using a linear model are discussed.

Introduction

Reference 1 presents a derivation of the Davenport
gyroscope calibration algorithm, which has been

used for the in-flight calibration of gyroscopes for a

number of spacecraft missions, including those of
the High Energy Astrophysics Observatories and the

Hubble Space Telescope (HST). As usually
implemented, and, in particular, as implemented for

the HST mission (Reference 2), the algorithm
assumes that the user has available for use in the

calibration process a continuous and complete set of

gyroscope data extending from an initial to a final

spacecraft attitude (as determined by independent

reference sensors) for an adequately large number of

maneuvers. Empirically, we find that this constraint

causes gyroscope scale factor and alignment
calibration to be one of the more labor- and data-

intensive activities needed in support of mission

operations. Fortunately, we also have found that the

scale factor and alignment parameters for the

gyroscopes used for the HST mission are fairly

stable; calibration is usually required only following

initial deployment of gyroscopes (i.e., following

HST's initial deployment in April 1990, activation

of reserve gyroscopes in response to gyroscope

failures, and installation of new gyroscopes during

the first HST servicing mission in December 1993).

Although the HST gyroscopes are "fairly stable," a

performance analysis conducted in September 1995
(Reference 3) has indicated that in the 18 months

following the first HST servicing mission, the

gyroscope response has changed systematically, the

errors being most manifest in negative yaw

maneuvers wherein systematic errors of roughly
0.8 arcsecond per degree occur.

Given this recent experience with the HST

gyroscopes, we have found it desirable to develop
an algorithm that permits recalibration of the

gyroscopes, at least to first order in the change
parameters, using a data set that is both much

reduced in volume and readily available during
normal mission operations. We also have found it

useful to extend the algorithm to allow study of both
isolated and nonlinear scale corrections. The

algorithm that we present here requires as input
from telemetry only the attitude error measurements

determined by the onboard computer (OBC)

pointing control subsystem following large vehicle

maneuvers. All other required input can be obtained
from the schedule of commanded maneuvers and the

spacecraft parameters characterizing those
maneuvers.
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The body of this paper is divided into six sections,
excluding this introduction. These include (1) back-
ground on the basics of the Davenport algorithm,
(2) a reformulation taking advantage of OBC inte-
gration of gyroscope data and modeling of planned
maneuver profiles, (3) some comments on the cali-
bration of gyro bias, (4) an extension to both
isolated and nonlinear scale factor corrections, (5) a
discussion of selection of measurement weights to

be used in the algorithms, and (6) an application of
the algorithm to data accumulated for the gyro-
scopes used for the HST mission.

The Davenport gyroscope calibration algorithm, as
well as the variations of it discussed in this paper,

are envisioned as applied in a batch mode least-

squares algorithm. Batch mode processing is strictly
appropriate only if the time scale for collection of
the calibration data is short compared with the time

scale for any variation that may apply to the state
vector parameters. Empirically, in the case of the
gyroscopes used on HST, we have found the scale
factor and alignment parameters sufficiently stable
that a batch mode approach for their calibration is
operationally viable. In cases where this fails to be
true, reformulating the calibration equations
presented here in terms of a Kalman filter (e.g.,
Reference 4) should be considered.

Section 1 - Background on the Basics of the

Davenport Algorithm
Reference 1 presents the gyroscope calibration
algorithm that is used in the HST mission for the
calibration of scale factors, alignments, and biases

of the gyroscopes when one or more gyroscopes are
first activated for operational use. The basic

equations are as follows. Consider a satellite gyro
system consisting of No single-axis gyroscopes. In
response to some angular motion of the satellite, the
output response column matrix of gym counts, C,
consists of the NO individual gyro readings. The
response vector is translated into a measured angular

velocity, f_M,in the spacecraft frame via

t-_ = ao c - D0 (1)

where Go is the 3xNo scale factor / alignment matrix,
and Do is the gyro system drift rate bias expressed in
the spacecraft frame. The goal of the algorithm is to
determine correction matrices m and d that may be

applied to G0 and DOso that a modified equation (1)
will yield the true angular rate, _, as indicated in

equations (2a) - (2c).

6 = (i_ + m) G, (2a)

D = (l_+m)Do+d (2b)

£'1 = GC - D = (l_+m)t'_-d (2c)

where /3 is the 3x3 identity matrix. Gyroscope
miscalibration information is sampled through any

given maneuver via the error quaternion

5Q - Q_Qo' (3)

where Q_ represents the true vehicle rotation as
determined from reference star measurements, and

Qo represents the vehicle rotation inferred from the
gyroscope measurements. As discussed in
Reference 1, 5Q represents a rotation from the

gyro-inferred to the true posunaneuver attitude,
expressed in the premaneuver reference frame. The
information content of 5Q is related to m and d via

the sensitivity equation

Z = 1/2JT(fi-f_)dt (4a)

= I/2 J T (m t_,, - d) dt (4b)

where Z is the vector component of 5Q, T is the
matrix that transforms vectors to premaneuver

spacecraft coordinates, and the time integral is over
the whole maneuver. Because equation (4b) is
linear in m and d, it can be used as the basis for a

linear least-squares algorithm to provide estimates
for m and d. If a solution for all 12 correction terms
is needed, at least 4 independent "maneuvers" are

required to perform the calibration. The maneuvers
must provide a reasonable sample of pitch, roll, and
yaw variation, as well as an independent sample for
bias determination; the latter is permitted to be a

period of essentially constant attitude.

Although the information content is unchanged, it is
often more convenient to reexpress Z in terms of an

error vector, _, representing the rotation from the
true postmaneuver attitude to the intended (and
gym-inferred, assuming closed-loop control) post-
maneuver attitude, i.e., the rotation that the

spacecraft must perform after it determines its post-
maneuver error. The vector _ is related to Z and

{m, d} via

= -T,'Z

= - 112 T_" J r ( m _u- d ) dt (5)
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where x represents the maneuver duration time, and

its use as a subscript on T, means that T is to be

evaluated at the maneuver end-time. The matrix T( t

(which equals T, r) is thus the premaneuver to post-
maneuver reference frame transformation matrix.

Section 2 - Use of OBC Gyro Data Integration
and Model Maneuver Profiles

As discussed in Reference 1, equation (5) is accurate

only to first order in m and d, implying that the

associated least-squares algorithm is intrinsically

iterative. The matrix terms _, T, and _, must be
reevaluated on each iteration. Multiple iterations

can only be applied if a complete set of gyroscope
data from throughout each of the calibration

maneuvers is available. In this section we discuss a

procedure that excludes the possibility of multiple
iterations, the gain being a drastic reduction in the

total volume of data required to perform the calibra-

tion. This can be significant if either (1) the sheer
volume of data for frequent, normal calibrations

becomes unwieldy or (2) the standard telemetry
format used does not contain an adequately dense

sampling of gyro data for accurate integration.

If calibration needs are adequately met via a first

order correction, it is possible to implement an

algorithm with drastically lower data requirements.

Integration of the full set of gyroscope data is

required at two points in the use of equation (5):
first in the determination of Qo for the construction

of _, and then in the time integral over (Tint'S).

Ground processing of gyro data to determine Qo can
be eliminated if the spacecraft OBC maintains and

transmits an estimate of the spacecraft attitude based

solely on gyroscope data, at least through the time
period between the accumulation of star sensor data

for pre- and postmaneuver definitive attitude

estimation. Sampling the OBC's pre. and postma-
neuver attitude estimates then allows construction of

Qo as the connecting eigenvector rotation between

the two. Ground processing of the gyro data for use

in the integral over (Traf_,_) can be eliminated if a

sufficiendy precise model of the maneuver profile is
available. This follows because, to first order in the

correction terms, equation (5) is unchanged if mt"_

is replaced with mt'_, D_ being the planned angular

velocity as a function of time based on spacecraft
design parameters. We make the latter substitution
in what follows.

The simplifications noted in the preceding para-

graph allow the elimination of all ground processing

of the raw gyro data. The elimination of ground

processing of the reference star data may also be

possible, although this results in a smaller gain. For
many satellites, the OBC generates an attitude error

estimate based upon postmaneuver reference star

measurements and uses this estimate to generate an
error nulling maneuver. If the vehicle attitude is

maintained accurately by the onboard pointing
control system during the periods between maneu-

vers, the postmaneuver error nulling maneuver will

correspond to the error vector _ required for our
analysis. If this error vector is included in telem-

etry, no other spacecraft data are required.

We assume finally that each maneuver is a pure

eigenaxis maneuver. This allows the analysis to be
done in a coordinate system, designated here with a

prime ('), in which the x'-axis is aligned along the

maneuver axis. Expressed in the primed frame,
equation (5) becomes

R(2_) =-T 'r JT'(m'_'p-d')dt (6a)

Ii o o1cos[0(t)] -sin[0(t)]

sin[0(t)] cos[0(t)] _]

= RTRI= RTR T (6b)

m' = RmR_= RmR r (6c)

d' = R d (6d)

ta'p = [ o(0, 0, 01" = K f_, (6e)

where R is the transformation matrix that converts

premaneuver spacecraft coordinates to the prema-

neuver primed frame, 0(0 is the maneuver angle as

a function of time, and o) = d0/dt. The form of 0(0

will depend upon the total maneuver angle, O, and

design parameters governing the execution of

maneuvers. To first order, R may be based on the

planned maneuver quaternion, Q,. The eigenvector

and rotation angle set, {r, (p}, defining the quater-
nion representation of R is constructed from the

spacecraft frame Q, eigenvector, 11, and the space-

craft frame standard unit vectors, {x, y, z}, using

r = (xx11)/Ixx_ll

= ( -y'q, + zrl,)/ (rl,' + rl,')'" (Ta)

_o = cos"(x- 11) = cos-'( 11,) (7b)
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Thesimpleformsof equations(6b)and (6e) allow

equation (6a) to be reexpressed as

R(2_) = -T'_ [K, [m'], - K0d'] (8a)

0]xk - IL_ -K. (8b)

K, K.,

K_ - I _0' at (8c)

K=, ---J cos(0) co' dt (8d)

K,, -= J sin(0) o_kdt (8e)

where [m]l indicates the column matrix formed
from the first column of m'. Note that the elements

of KI are analytic, i.e., K, = O, Kc, = sin(O), and

K,_=[l-cos(O)], whereas K o is equal to the
maneuver duration, x. The functional form of 0(t)

enters only via K_ and K,..

The multipfication of T'_ r into K, and K, in equa-

tion (8a), together with an application of the sine

and cosine laws for two angle sums, produces

R(2_) = -[K*,[m'], - K%d'] (%)

0 01K*k -- K*._ K *._ (9b)

-K *.k K *_

K% --- J cos(O-0) ¢0_ dt (9c)

K** - I sin(O-0) ¢0'dt (9d)

Because K, depends only on O and not the form of

0(t), it can be shown that K*I = K1T. This

relationship holds for K* oas well (actually, for all k)

if c0(t) is an even function of time about the

maneuver midpoint. This constraint, which is fairly

standard for spacecraft maneuver profiles, also

yields the following convenient equations for K_,

and K_ (expressed for general k):

I_ = cos(O/2) F,(O) (10a)

K_. = sin(O/2) F,(O) (10b)

Fk(O) -= I COS[0(t) - O/'21CO_ at (10c)

We now need to transform equation (9a) back into

the spacecraft frame so as to have _ related to m and
d rather than to m' and d'. Defining m as the 9-by-1

column matrix [[m], T, [m]_r, [m],Tl T and using equa-

tions (6b) and (6c), we can rewrite equation (9a) as

2 _ = -RTK*_ B m +RTK*oRd (lla)

B_j.x,.,) - R,jR_° (lib)

where equation (I lb) defines the elements of the

3-by-9 matrix B. Equation (lla) is our new least-

squares algorithm sensitivity equation. Its use

removes the need for an integration of the gyro

telemetry data. The only required time integrations

are for K*,_ and K*_, or, more simply, F,(O) if the

symmetry constraint on _t) is applied. Appexdix A

presents a specific, fairly common maneuver profile
usable in the latter evaluation.

Section 3 - Bias-Only Calibration Assuming Fixed

Scale and Alignment

We consider now the application of the algorithm of

Section 2 to a bias-only calibration. This begins

with the constraining assumption m = 0. This
constraint is reasonable for many operational

scenarios; empirically, it has been found that

spacecraft gyro biases can change significantly
within as little as a single day, whereas time scales

for scale factor and alignment are considerably

longer. For this situation, equation (11 a) reduces to

2 _ = RTK*oRd (12)

Two data gathering scenarios are of possible interest
for this calibration. For the first scenario, the

spacecraft is held at constant, or nearly constant,
attitude over the time period of interest. "Nearly

constant" in this context means that the magnitude

of any net maneuver angle must be smaller than the

product _lAt, where _xl is the maximum permitted
error in the estimate for d, and At is the time period

between two reference attitude measurements. For

this case, [RTK*0 R] reduces to l_At, and equa-

tion (12) becomes

d = 2 _/At (13)

We have used At rather than x here because there is

no scheduled or executed maneuver for which we

can evaluate x(O). The vector _ may be constructed

from separate initial and final reference star
measurements or from an OBC-determined attitude
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errorattheendof thetimeperiodif thespacecraft
appliedanattitudecorrectionat thestartof the
period. In thelattercase,caremustbetakento
ensurethattheonboardattitudepropagationacross
thetimeperiodinvolvedtheuseof gyroscopedata
only, i.e., no control-lawfeedbackbasedon
referencestardata.

Theseconddatagatheringscenariousestheproce-
dares outlined in Section 2 applied to equation (12).

The potential operational advantage of using this

approach arises if a set of dual mode gyroscopes,
i.e., sensors with high-rate and low-rate modes, is

being used -- the high-rate mode being used during
large maneuvers to allow greater dynamic range,

and the low-rate mode during periods of near-

constant attitude to allow greater precision. For

such gyroscopes, equation (13) can be used to

calibrate the high-rate mode bias only if the gyro-

scopes are commanded to remain in high-rate mode

during the calibration period, implying that

dedicated spacecraft time would be required for the

calibration. In contrast, the use of equation (12)
would allow relatively frequent high-rate mode bias

calibrations based on serendipitous maneuvers.

A caveat pertains here -- one of relevance to the

next section. An estimate of the bias based on equa-

tion (12) applied to a single maneuver may fail to be

good if the estimate for the scale factor / alignment
matrix G is insufficiently accurate, because of either

poor initial calibration or an actual change in the
gyroscope parameters since the time of calibration.
The effect of errors in estimates for linear scale

factors would tend to cancel each other in the

estimate for d if the least-squares fit is performed

using an ensemble of randomly directed maneuvers

or paired sets of oppositely directed maneuvers.
Taking advantage of this fact to reduce the influence

of possible scale factor errors may be desirable.

Section 4 - Isolated and Nonlinear Scale Factor

Calibration

The original Davenport algorithm combines the

observable aspects of alignment and scale factor

changes into the single change matrix m. It also

assumes that gyroscope response is purely linear.

We have found it useful to be able to study the

indiviual gyroscope response curves, with respect to

both nonlinear corrections as well as temporal

variations of the dominant (i.e., linear) terms. In

this section we discuss an extension of the algorithm

presented in Section 2 designed for this purpose.

To keep the initial discussion simple, we will

assume that the state vector for our problem is

restricted to scale factor adjustments. Specifically,

we assume that the gyro alignments are well known

and fixed, and that the adjustment to the operational
drift rate bias is restricted to that associated with

scale factor corrections (i.e., the "roD0" term in

equation (2b)), with no intrinsic bias changes

permitted (i.e., no d term in the state vector). We

will relax both of these simplifications eventually.

We will, however, not attempt to model ongoing

temporal changes in the drift rate bias that occur
during the time period over which the calibration

data are accumulated. Given that bias changes

occur relatively rapidly and are likely to be signif-

icant over the data accumulation time period, this

last simplification may at first glance seem inappro-

priate. If, however, a good estimate of the changing
bias vector associated with the operational align-

ment and scale calibration is maintained throughout
the period of data accumulation (using the methods
of Section 3), the effect of the bias will have been

removed on an ongoing basis. From this perspec-

tive, we see that we are not actually neglecting the
changing bias; rather, the bias effects have been

precorrected as part of ongoing operations.

To allow for nonlinear scale effects, we assume a

model for gyroscope responsivity of the form

C_ = S. [ _,_ + Y. s_ gk(f2m_) ] (14)

where subscript n indicates the nth gyroscope, C° is
the resultant gyro reading, S° is the nominal (or

current best estimated) gyro scale factor, f_ is the
spacecraft angular rate projected onto the gyro input

axis, and the summation over k represents a set of
small corrections to the predominantly linear

relationship between f_.._ and Co. The parameters s_,
are correction coefficients applied to the functions

gk(_,_). The latter can be any convenient set of
functions, subject only to the constraint that the

same set of functions be used for all of the

gyroscopes. To minimize the eventual size of the

least-squares state vector, the functions should be

selected so that a good fit can be found with as few

correction functions as possible. For our HST

analysis, we have found it convenient to use two:

gl(f_) = f_ and g2(f_) = g,,(_) - If_l. In this model,

so_ represents an average linear correction, and so2
represents the difference between scale factors for

positive and negative maneuvers.
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We assume next that an acceptably accurate inverse
to equation (14) can be written in the form

_._ = cds. + Z c.. gdc./s.) (15)

In principle, each c._ is a function of the full set

{s,,, s,_.... }. However, if the sum Es_,g_(fZ_,_)and
all of its individual terms are small relative to _,._,
and if the correction functions gk vary continuously,

then a._ =-s., to first order in the correction terms
for all n and k values. We will be using this

approximation in what follows.

For notational compacmess, equation (14) can be
rewritten as

C = S(At_ + gs,["(X_)]) (16)

where C is a No-by-1 column matrix (the C,'s), S
and sk are No-by-No diagonal matrices (the S,'s and
s.'s), A is the No-by-3 matrix of gyro input axis unit
direction vectors, and the symbol [a'] is defined
such that

["-v] - [gdV,), gdV0 ..... g,fV.)]" (17)

for any N-by-1 column matrix V. We also need a
matrix version of equation (15) that gives t]_ as a
function of C. If No exceeds 3, our equation must
include a weighting scheme for how the gyro data
are to be combined in forming D_. We use the
following equation:

= [A_A]"A_t].

= R (S_C+Y_o_[a(S"C)]) (18)

where _j, is the No-by-1 matrix formed from the

various t]=, estimates, R _ [ArA]'A T, and o k is an
No-by-N o diagonal matrix (the o_.'s). By using
equation (18) as the mechanism for constructing tqt_
from C, we have selected a convention whereby
equal weight is given to each of the components of

f_,.. This is a change from the more typical
convention in constructing the matrix G° for

equation (1) whereby equal weight is given to each
component of C.

At this point we should clarify notation a bit in
preparation for constructing the least-squares
algorithm for a recalibration of the s._ coefficients.
Equation (16) should be viewed as applying the
true s._ values; it represents the actual response of

the sensors. In contrast, equation (18) represents the
users interpretation of the counts; thus the o.. are
functions of Is, l.,, s,_ .... }, where the subscript 0
indicates current estimate. The "small correction

terms" approximation thus leads to o., = -s._. The
least-squares state vector will be the set { 8s., } for

all n and k, where iSs._- s., - s._.

To proceed with a formulation of an extended least-
squares algorithm based on equation (4a), we
require an expression for (_- t_M) linear in the
correction terms 8sk. Combining equations (16) and

(18) yields

_M = R { A_ + 5"-sk [a'A_]

+ _-ok[_ (Ata + _ st t_'Ata])] } (19)

The assumptions that the g_ functions vary
continuously and that all of the sk and o k elements
are small imply that terms of the form
ok [st (A_ + Z st ['_'Afl])] are equal to ok [st'A_] to
first order. Using this simplification and setting

o k = - s_, yields

( _- _M ) = - R E { 6sk [_A_] } (20)

To be able to follow our analytic maneuver model
approach as developed in Section 2, we insert equa-
tion (20) into equation (4a) and apply appropriate
transformations to the "primed" reference frame.
The resulting sensitivity equation is

2 ¢ = Rr r'_ I r' (R K Y{Ssk [_" [ART]_ ']})dt

=R_gir'JJr' (R It l_- [ox4R'l,lOdt}[_sk]_(21)

where [_ [ttx4Rr],], indicates a diagonal matrix
formed from the elements of [_" [ox4R_],], and [Ssk]c
indicates the column matrix formed from the

diagonal elements of 8sk (recall that 8sk is a diagonal
matrix). If we impose the additional constraint on
each g_ that it satisfy the commutivity relation
gk(ab) = &(a)g_(b), equation (21) can be written in
the convenient form

2 _ = RTEK*_,(R It [a [AR'I,]D) [_]c (22)

where the K*,, matrices are defined analogously to

the K* k matrices discussed in Section 2, with gt(to)
replacing of in defining the required components.
For the case of {g,(f2) ffir; ga(fl) - g,,(fZ) a Ifll},

equation (22) becomes
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2 _ = RTK*, R b_ ( [ [ARt]_]D [_]c
+ [""[Ar'],]_ [_,,]c ) (23)

where the symbol ["'] in the last term implies that

the absolute value operation is applied to all of the

elements of [ARt],. The K*, matrix applies to the

last term with no adjustments because 0} is by
definition positive in the primed reference frame.

For each maneuver used in the calibration process,

equation (22) provides three linear equations in the

No'k,, unknowns {Ss_}. To get proper visibility for

accurately measuring all of the {Ss.,} elements, a
range of both positive and negative maneuvers in all

of the pitch, roll, and yaw directions must be

sampled. With an appropriately large number of

maneuvers sampled, equation (22) can be used as

the basis for a standard least-squares algorithm to
determine estimates for the correction terms.

As with the original Davenport approach to the
calibration problem, adjustments to the scale factor

calibration imply an associated adjustment to the
current estimate for the drift rate bias vector. In

equation (2b) this adjustment is represented by the
quantity roD,. The analogous correction for the

derivation in this section, which we will here call _,
is given by

a, = -_t E { _s, ifADd } (24)

which follows from equation (20) by replacing

(_- D_) with _ on the left-hand-side and t'l with

D, on the right-hand-side. The D, value to be

inserted into the equations is the most recent value

determined for operational use.

Equation (22) can be generalized to allow for

alignment and/or bias adjustments within the

calibration state vector. This is done by simply
combining equations (lla) and (22), with the
restriction that the summation over k exclude the

linear scale factor corrections, i.e.,

2 _ = - RT K*1B m + Rr K*o R d

+ R'Y.K*w, (R 1¢0 [_" [AoRtll]o ) [&kle (25)

with the set {Ssk} restricted to nonlinear terms. The

0 subscript on R, and A, indicates that the current

estimate for the gyro alignments is used in construc-

ting the nonlinear correction coefficients. After the

calibration set {m, d, {Ssk}} has been determined,

equations (26a) - (26d) can be used to calculate _.

ta = (GC-D)

- I(,_,{(sk,o+Ssk)[_"Ao(GC-D)]} (26a)

G = (l 3 + m) G o (26b)

D = (13+m)D, + d

- b_oE { 8s, ['_'AoD,] } (26c)

Go = R, S" (26d)

Although straightforward to use as the basis for a

least-squares algorithm (i.e., to solve for the state

vector {m,d, {_,}} given an error set {_}),
equation (25) is somewhat unaesthetic in that it

mixes a set of parameters pertaining to the com-
bined gym system (i.e., {m, d}) with another set

pertaining to the individual gyroscopes (i.e., {_}).

For elegance in presentation and to support

engineering analysis of individual gym behavior,

having a state vector consisting solely of specific
parameters of the individual gyros would be

desirable. Equation (25) could be so recast if we

were dealing only with sets of three gyros.
However, for gyro sets containing more than three

gyros, the parameter set {m, d} captures all of the

functionally observable information available in the

maneuver measurements. (Of course, if the full set

of gym data is available, the data can be processed

for each combination of three gyros and the indivi-
dual gyro parameters extracted, but this defeats the

processing simplifications discussed herein.)

This point concerning observability raises a ques-

tion: for how many gyroscopes can unique scale
factor information be obtained when equation (22) is

applied together with the constraint of fixed gym

alignments? This question may be readily answered
for the case where the state vector is restricted to

linear scale corrections, i.e., K_,. In this case, the _t
matrix transforms to an equivalent m matrix via

m = -R 8SlA = - [ATA]I[ATSs, A] (27)

Both [AtA] and [A t 8s1A] can be shown to be

3-by-3 symmetric matrices, implying that the

product [ArA]I[A r 8s, A] is as well. The change

matrix m therefore has only six independent
elements, from which we conclude that the

techniques of this section can provide independent

scale parameter corrections for at most six gyro-

scopes. ("At most" applies because any coaligned

gyroscopes will have degenerate corrections

irrespective of the total number).
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Section 5 - Least-Squares Solution and Weight

Matrix Specification
For completeness, we present in this section a few
points pertaining to the selection of weights to be
applied to the input measurements. As discussed in
many references on least-squares algorithms (e.g.,
Reference 4), the solution for the batch linear least-
squares problem associated with a matrix equation
H X = Y can generally be written as

x = (tfw X +W,/(ff W V + W, X, ) (28)

For our problem, X (the state vector) will be some
combination of m, d, and/or {gs_}, Y is [_r ..... _r]r
for N maneuvers, H is a matrix of state vector multi-

plying elements constructed from appropriate pieces
of equation (25), It' is a 3N-by-3N weight matrix for
the error measurements (the elements of Y), and WA

is a weight matrix associated with the a priori state
vector estimate, XA. For our problem, because the
state vector consists of differential changes from the

previous best estimate, we set XA = 0. Our only
remaining concern, therefore, is to establish
reasonable estimates for W and W,.

Often it is both convenient and reasonable to simply
set W to 1,, and W, to 0. (We used this approach in
our analysis of the HST maneuver data and have
found it operationally acceptable.) Implicit in the
approach are the following five assumptions: (1) the
state vector correction terms are fairly stable over

the time period of data collection, (2) the degree of
correlation between measurement error components
is fairly small, (3) the expected error component
magnitudes are all approximately the same, (4) the
data set spans the domain of state vector sensitivity
sufficiently well that observability is not a problem,
and (5) a sufficiently extensive data set has been
accumulated that neglect of a priori information
does not undermine operations. The first three
points relate to setting W to 13N,whereas the last two
relate to setting W, to 0.

If any of the conditions indicated in the previous
paragraph are significantly violated, a more
sophisticated weighting scheme is required. We
present here a method for specifying W that retains
assumption 1, eliminates assumption 3, and replaces
assumption 2 with a less restrictive one (called 2a)
that the measurement errors associated with each

maneuver are uncorrelated with those of all others.

We will not consider the possible advantages of a

nonzero W A. Assumptions 1 and 2a allow W to be
expressed as a block diagonal matrix, with each
block being a 3-by-3 matrix, w, associated with a
specific maneuver. Given the block diagonal form,
each w can be written as (p_+po)1, where p_ is the
covariance associated with reference attitude errors,

and Po is the covariance associated with random
gyro errors. The attitude covariance matrix is given

by

Pu = T_ Pt T_ + Pr (29)

where Pi and p, are the initial and final attitude
covariance matrices in the instantaneous spacecraft

frame, and T_ is as used in equation (5). Refer-
ence 5 specifies an equation for attitude covariance
matrices such as P, and Pr This equation, which
depends upon the reference star distribution and the
measurement and catalog errors for each star, is

= o? R- y.(o3o;)vy T (30)

where o,2-I _of" 11, oj is the root-mean-square
combined measurement and catalog error for the jth

star, Vj is the jth star vector expressed in the space-
craft frame, and the sums are over all observations.

This expression can be simplified for processing
purposes in the case of observations from a number
of well-separated star sensors with fairly narrow
fields-of-view (narrow relative to the field-of-view

separations). In this case, each Vj can be replaced
with the boresight direction vector for the jth sensor
expressed in spacecraft coordinates, with oj then
indicating typical error size for that sensor. This
substitution eliminates ground processing of the
reference star data.

A reasonable, albeit heuristic, model for the
covariance associated with gyro errors is

po = I, [ o. 2¢ + o,,." 0 2] (31)

where o,, is the typical single-axis standard
deviation of the gyro drift rate bias, and if.,, is the
typical scale factor/alignment maneuver error.
Equation (31) does not attempt to model the physi-
cal mechanism that produces gyro noise, but rather

requires the user to provide parameters a_ and °w.
based on typical spacecraft performance.
Empirically, for the HST gyroscopes working as a

set, we find o,_~ 0.01 arcsecond per second and

o_. ~ 0.2 arcsecond per degree.
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Section 6 - HST Gyroscope Behavior

The HST gyroscope system comprises three rate

gyro assemblies (RGAs) manufactured by

AlliedSignal Government Electronic Systems. Each

RGA consists of two single-degree-of-freedom,

dual-mode, rate integrating, mechanical gyroscopes.

The high-rate mode has a range of +_1800 degrees

per hour and a resolution of 7.5 milliarcseconds per

40-hertz sample; the low-rate mode has a range of

+20 degrees per hour and a resolution of

0.125 miiliarcsecond per 40-hertz sample. The gyro

alignments are such that any three can be used to

completely sample rotations of the spacecraft. The

onboard system is configured to nominally use four

gyroscopes simultaneously, keeping the remaining
two as backups.

RGA units 2 and 3 (those housing gyros 3, 4, 5,

and 6) were replaced in December 1993 during the

first HST servicing mission. All six gyroscopes

were activated for the servicing mission and early
on-orbit verification and calibration phase. The

iterative calibration procedure described in

References 1 and 6 was followed until convergence

was achieved. Thereafter, the two gyros in RGA

unit 1 were deactivated, leaving HST operating with

four new, freshly calibrated gyroscopes. The active

gyros are mounted with input-axis unit vectors of

approximately (_+0.586,+-0.617,-0.525), with the

sign sense for the first two components being

(--, ++, -+, +-), for gyros 3, 4, 5, and 6, respectively.

The symmetry of these vectors about the yaw axis is
significant for understanding the specific mani-

festation of an observed growing scale error.

As is typical with spacecraft gyroscopes, the biases

vary fairly rapidly. For the HST gyroscopes, the

change in the drift rate bias for both high- and low-
rate modes has been found to be about 7 arcseconds

per hour per day. The temporal variation of the

high-rate mode drift bias vector (i.e., as measured in

vehicle space) has been found to track the low-rate

mode vector variations quite closely. This allowed

implementation of an operational procedure
whereby only the low-rate mode bias is measured

frequently, based on data accumulated during

science pointing with the spacecraft pointing control

system locked on fine guidance sensor guide stars.
The high-rate mode bias is then determined from the

low-rate mode bias via an additive offset, which is

monitored for constancy once every 4 to 6 weeks.

The algorithm used for monitoring the offset had

been, until recently, essentially that discussed in

Section 3 in association with equation (13). The

spacecraft pointing control system is commanded to

place the gyroscopes in high-rate mode while

maintaining a constant attitude for approximately

one orbit (about 95 minutes). Fixed-head star

tracker star measurements are obtained at the begin-

ning and end of this constant attitude period and

used to determine the true attitude change.

In HST operations, most large maneuvers are pre-

dominantly about the yaw axis. The predominant

symptom of the scale factor problem discovered in

August 1995 was a substantially larger postslew

pointing error for negative yaw maneuvers than for

positive yaw maneuvers. Upon examining the
quantity E- (2_rl/O) for maneuvers between the

time of the first servicing mission and August 1995

with 11131> 0.9 and O > 90 degrees, we found that

although the average value of E for positive yaw

maneuvers stayed near zero, its value for negative

yaw maneuvers was fairly well fit by the curve

E = 0.2+0.6(1-e _)

arcseconds per degree (32a)

T = 6 months (32b)

The sense of the error for negative yaw maneuvers
was such that the spacecraft fell short of its intended
destination. The random scatter for E is about

0.3 arcsecond per degree (3t_).

The analysis techniques described in this paper were
developed to study the temporal change that was

seen to have occurred in the HST RGAs. As part of
our study, we have come to realize that the effects

of gyroscope nonlinearities are as important as the

temporal changes that precipitated the study. We
applied our analysis to a combined set of

83 maneuvers collected in August 1994 and August

1995. (Our data indicate that the scale factors had

stopped changing by August 1994.) For some of our

analysis runs, we also included a 1-hour period of

constant attitude. We find that studying the fit

residuals associated with the constant attitude period

is important for constructing a high-fidelity model

of gyroscope response. The results of our analysis
are specified below.

(1) To study the change in average linear scale

relative to the original post-servicing-mission cali-

bration, we performed a fit using the high mode bias
offset vector and gyro frame linear scale factors as
our state vector. The best fit values for this case are

given in equations (33a) and (33b).
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do_r = [-1.8x10"2, 3"4x10-2,'7"?x102] T
+ lxl0 2 arcsecond per second (33a)

[SSJc = [5.7x10 -S,4.2x10 s,
8.4x10 S,1.74x104] r + lxl0 _ (33b)

As will be discussed shortly, the bias offset adjust-
ment is that required to compensate for gyroscope
nonlinearities, the "true" bias at constant attitude
already having been eliminated by the standard
operational procedures. The [Ss,]c elements repre-
sent the average change in the high-rate mode scale
factors. The sign sense indicates that the gyros have
become more sensitive (more counts per degree of
actual slew). The largest single change, that for
gym 6, corresponds to an error of 56 arcseconds for
a 90-degree slew about the input axis.

(2) Because of the difference in response for
positive and negative slews, together with the fact
that the bias determination procedure had been
tuned to work accurately at zero angular rate, it
seemed likely that some scale nonlinearity was
involved. Taking d = 0 as a constraint effectively

imposed by the operational procedures, we
investigated potential nonlinearities by solving for a
state vector consisting of [Ss,]c and [_,dc. The best-
fit results in this case are

[tsJc = [6.0xl0 -_,2.9x10 "_,
1.27x104, 1.48x104]r + lxl0 _ (34a)

[Ss,Jc = [0.8x10 5, 6.1xl0 s,
1.95x104, 7.8x105]r + lxl0 5 (34b)

Comparing the nonlinear correction values with the
average change values indicated for the first case,
we see that the error associated with not taking the
nonlinear effect into account can be as large as the

temporal change. We also determined fit param-
eters for two other cases, one including d in the state

vector and another using g2(f2) = fi2 rather than I_1.
The former showed a slight reduction in the fit
residuals, whereas the latter showed a slight increase
in the fit residuals; the changes in residuals in both
cases were insignificant.

Given our findings regarding scale factor non-
linearities, the spacecraft pointing control logic
should ideally include compensation for this effect
when estimating spacecraft angular rates. Although
the HST pointing control system does not model
scale factor nonlinearities, we can compensate to a

significant degree for the nonlinearities by allowing

the low-to-high bias offset to absorb the average
effect of the gyroscope nonlinearities as weighted by
the actual distribution of maneuvers scheduled for

the HST mission. This is effectively what happens
with the fit procedure associated with equa-

tion (33a). The large negative third component for
the bias in equation (33a) is associated with the

positive sign of the components of [ts,,]c in equa-
tion (34b), together with the fact that gyros 3 - 6 are,
on average, poindng along the negative yaw axis.
This weighting for mission maneuver distribution
will also affect the estimated average scale factors,
as can be seen by comparing equations (33b) and

(34a). Empirically, it appears that adequate HST
mission performance is achieved with this approach
during normal operations. We note, however, that
this approach does not give optimized performance
for high-rate mode, inertial hold conditions, the
implied spurious drift being about 300 arcseconds

per hour.

Using the bias vector to absorb the average effect of
gyroscope nonlinearities weighted according to the
profile of mission maneuvers could be problematic
for spacecraft that use single-mode gyroscopes. For
such spacecraft, science operations would likely

require the bias vector to be selected so that pointing
performance is optimized with respect to constant
attitude periods. Adjusting the bias to improve
maneuver performance is therefore not an option.
Mission engineers designing the pointing control
and sensor calibration algorithms for such missions
should consider including compensation for gyro-

scope nonlinearities, particularly if slewing accura-
cies better than 1 arcsecond per degree are required.

(3) As part of our analysis of the HST gyroscope
changes, we also considered the possibility that the
changes were associated with the gyroscope
alignment matrix. We therefore performed a fit for
a scale factor/alignment correction matrix (m)
together with a bias adjustment (d) based on
equation (lla). We found that including the
alignment adjustments did not significantly improve
the residuals relative to those associated with the fit

restricted to state vector {d, [Ss,]c}. We specifically
found that the alignment terms did not allow us to
simultaneously obtain improved residuals for the
maneuver data while maintaining small residuals for
the constant attitude data. Our results are consistent

with there being no significant change in the

gyroscope alignments during the 18 months
following the first HST servicing mission.
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Conclusions

This paper has presented a number of variations on

the Davenport algorithm for gyroscope calibration
specifically designed to (1) allow analysis with a

drastically restricted quantity of telemetry data and

(2) extend the state vector domain to allow study of
both isolated and nonlinear scale factor corrections.

We have applied the techniques to data obtained

during normal operations of HST as part of a study

of temporal variations of the HST gyroscope scale

factors. We have found that the HST replacement

gyroscopes experienced significant change over the

first 6 to 8 months following the first HST servicing

mission, the largest individual change corresponding

to an error in estimated projected rate about the

input axis of about 56 arcseconds per 90 degrees.
We have found scale factor nonlinearities that, when
characterized as differences between scale factors

associated with positive and negative rotations, are

as large as 2 parts in 10000, i.e., about 65 arc-

seconds per 90 degrees. For spacecraft, such as

HST, that use dual-mode gyroscopes, the effects of
the nonlinearities can be accommodated to a

significant degree via adjustments to the high-rate

mode drift rate bias vector. This approach may be

inadequate for missions using single-mode gyro-

scopes. Finally, we find, to within the accuracy of

our data set, that no significant changes have
occurred to the gyroscope alignments during the

first 18 months following the servicing mission.
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Appendix - Model Maneuver Profile

In this appendix we present the details of one fairly
common maneuver model. In addition to the total

maneuver angle, the model uses three input

parameters characterizing the spacecraft's maneuver

execution algorithm. These parameters can be

selected as the maximum jerk magnitude (Jm), the
jerk pulse duration (3), and the maximum angular

velocity magnitude (O_m). The maneuver profile is
symmetric about the midtime ('_/2); it is therefore

sufficient to construct the maneuver profile through

that time. Throughout the maneuver, the angle (0),
rate (co), and acceleration (a) are continuous, and the

jerk (the third time derivative of 0) takes on one of

three values: J, 0, or -J. The maneuver through its
midpoint is composed of two, three, or four

segments, depending upon the value of O. The con-

struction for each solution type is presented below.

Operationally, three auxiliary parameters are first
calculated from the three input parameters:

£=_ = 0)=/Jm3 - 3 (A.la)

O, = 2 J= 33 (A. 1b)

Ob = O,{[(e_ _ +3_,_)/23 _] +1} (A. lc)

These three equations will be derived below. The

determination of whether a two-, three-, or four-

segment half-maneuver pertains depends upon

where O falls relative to O, and Oh; a two-segment

solution pertains for O in the range [0,Oa] , a three-
segment solution for the range [O,,Ob], and a four-

segment solution for [O_,Tt].

Two-segment solution

The two-segment solution assumes that the jerk is

equal to some positive value J for a time period 3

and equal to -J for a subsequent equal period. The

functions a(t), _t), and 0(t) are each required to be

continuous through the point of discontinuous jerk.
The angular velocity reaches its maximum value at

exactly the midpoint of the maneuver, i.e., at

'72 =23. The solution for the two segments is
specified below.

Segment 1:0 < t < 3

J(t) = J (J yet unknown) (A.2a)

a(t) = J t (A.2b)

_t) = 1/2 J t2 (A.2c)

o(t) = 1/6 3 t' (A.2d)

Segment 2:8 < t < 23

J(t) = -J (A.2e)
a(0 = J _ - J (t- 3) (A.2f)
o_(t) = 1/2J_ 2 +J3(t-3)

- 1/2 J (t- 3) 2 (A.2g)
0(t) = 1/6J33 + 1/2 J 32(t - 3)

+ 1/2J3(t-3) 2 - 1/6J(t-3) 3 (A.2h)

The unknown J is determined by the requirement

that 0(x/2) = 0/2. Substituting t = 23 in equation
(A.2h) yields

J = O / 25' (A.2i)
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The two-segment solution applies until equa-

tion (A.2i) produces a value of J greater than J=.

This gives the limiting angle O,, indicated in

equation (A. lb).

Three-segment solution
For maneuvers with angle O exceeding O,, the two

periods of constant jerk are separated by a period of

zero jerk, of duration e (to be determined). For
convenience, let us define a time point A = 6+e.

The solution for the three segments is specified

below.

Segment 1: 0< t< 5

J(t) = Jm (A.3a)
a(t) = Jmt (A.3b)
_t) = 1/2 J. t_ (A.3c)

0(t) = 1/6 Jmt' (A.3d)

Segment 2:5 < t < A

permitted value of e can be found by setting t0(t) in

equation (A.3k) to tomat t = 26+e. This results in

em_ = 03=]J=5 - 5 (A.3o)

Note that for the progression of solutions to be

consistent, we require 0_ > J=52. The maximum

maneuver angle permitted for the three-segment

model can be found by substituting e_ for e in

equation (A.3m); the result is equation (A.lc).

Four-segment solution
For maneuvers with angle O exceeding Oh, the third

segment is followed by a period of constant angular
rate at the maximum permitted value. This fourth

segment lasts until the maneuver reaches the half-

way point, i.e., until 0(t) = 0/2. The result is that
the maneuver profile for the first three segments is

the same as that appropriate for a three-segment

solution with e = e_, and during the fourth segment

it is given by

J(t) = 0 (A.3e) J(t) = 0 (A.4a)

a(t) = J=5 (A.3f) a(t) = 0 (A.4b)

t0(t) = 1/2 J= 5' + J, 5 (t - 5) (A.3g) _t) = to= (A.4c)

0(t) = 1/6 J= 53 + 1/2 J,_5a (t- 5) 0(t) = OJ2 + t_ [t- (2_,_)1 (A.4d)

+ 1/2 J= 5 (t- 5)' (A.3h)
The total maneuver duration in this case is

Segment 3: A < t < A+6 determined by the requirement that 0(x/2) = 0/2.
Thus, "cis given in this case by

J(t) = -J® (A.3i)

a(t) = Jm5 - J=(t- A) (A.3j)

to(t) = 1/2Jm 5a +JmSE + J=5(t-A)

- 1/2 J=(t - A)' (A.3k)

0(t) = 1/6J_5' + 1/2J=5'e + 1/2J.Se 2

+ 1/2 J=52 (t- A) + J=Se (t- A)

+ 1/2 Jm5 (t - A) z - 1/6 J=(t - A)' (A.31)

The unknown e is determined by the requirement

that 0(x/2) = 0/2. Substituting t = A+6 in equation

(A.31) yields the quadratic equation

ea + 35e - 25 _(O/O.- 1) = 0 (A.3m)

the solution for which is

e = 3/25 {[ 1 + 8/9 (OtO, - 1)1 'a - 1}

= 1[2 5 {[ 1 + 8 0/0,] la - 3} (A.3n)

The three-segment solution applies until equa-

tion (A.3k), combined with equation (A.3n), pro-

duces a value of ta greater than ok. The maximum

x12 = (@-@b)/2to= + (2_-em) (A.4e)
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