Variations on the Davenport Gyroscope Calibration Algorithm
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ABSTRACT

This paper presents a number of variations on the Davenport algorithm for in-flight gyroscope recalibration, or
first-order initial calibration, specifically tailored for use with a minimum amount of satellite telemetry data,
Central to one of the techniques described is the use of onboard integration of gyroscope data together with a
detailed model of scheduled satellite slew profiles. Methods are presented for determining adjustments to either
parameters for the standard linear model (i.e., a drift rate bias vector and/or a scale factor/ alignment
transformation matrix) or individual gyroscope scale parameters, both linear and nonlinear, in cases where the
alignments are well known. The results of applying the methods in an analysis of the temporal evolution and
nonlinear response of the gyroscopes installed on the Hubble Space Telescope following its first servicing mission
are discussed. The two effects, when working coherently, have been found to result in slew errors of almost
1 arcsecond per degree. Procedures for selecting optimal operational gyroscope parameters subject to the
constraint of using a linear model are discussed.

Introduction Although the HST gyroscopes are “fairly stable,” a
Reference 1 presents a derivation of the Davenport performance analysis conducted in September 1995
gyroscope calibration algorithm, which has been (Reference 3) has indicated that in the 18 months
used for the in-flight calibration of gyroscopes for a following the first HST servicing mission, the
number of spacecraft missions, including those of gyroscope response has changed systematically, the
the High Energy Astrophysics Observatories and the errors being most manifest in negative yaw
Hubble Space Telescope (HST). As usually maneuvers wherein systematic errors of roughly
implemented, and, in particular, as implemented for 0.8 arcsecond per degree occur.

the HST mission (Reference 2), the algorithm

assumes that the user has available for use in the Given this recent experience with the HST
calibration process a continuous and complete set of gyroscopes, we have found it desirable to develop
gyroscope data extending from an initial to a final an algorithm that permits recalibration of the
spacecraft attitude (as determined by independent gyroscopes, at least to first order in the change
reference sensors) for an adequately large number of parameters, using a data set that is both much
maneuvers. Empirically, we find that this constraint reduced in volume and readily available during
causes gyroscope scale factor and alignment normal mission operations. We also have found it
calibration to be one of the more labor- and data- useful to extend the algorithm to allow study of both
intensive activities needed in support of mission isolated and nonlinear scale corrections. The
operations. Fortunately, we also have found that the algorithm that we present here requires as input
scale factor and alignment parameters for the from telemetry only the attitude error measurements
gyroscopes used for the HST mission are fairly determined by the onboard computer (OBC)
stable; calibration is usually required only following pointing control subsystem following large vehicle
initial deployment of gyroscopes (i.e., following maneuvers. All other required input can be obtained
HST’s initial deployment in April 1990, activation from the schedule of commanded maneuvers and the
of reserve gyroscopes in response to gyroscope spacecraft  parameters  characterizing  those
failures, and installation of new gyroscopes during mancuvers,

the first HST servicing mission in December 1993).
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The body of this paper is divided into six sections,
excluding this introduction. These include (1) back-
ground on the basics of the Davenport algorithm,
(2) a reformulation taking advantage of OBC inte-
gration of gyroscope data and modeling of planned
maneuver profiles, (3) some comments on the cali-
bration of gyro bias, (4) an extension to both
isolated and nonlinear scale factor corrections, (5) a
discussion of selection of measurement weights to
be used in the algorithms, and (6) an application of
the algorithm to data accumulated for the gyro-
scopes used for the HST mission.

The Davenport gyroscope calibration algorithm, as
well as the variations of it discussed in this paper,
are envisioned as applied in a batch mode least-
squares algorithm. Batch mode processing is strictly
appropriate only if the time scale for collection of
the calibration data is short compared with the time
scale for any variation that may apply to the state
vector parameters. Empirically, in the case of the
gyroscopes used on HST, we have found the scale
factor and alignment parameters sufficiently stable
that a batch mode approach for their calibration is
operationally viable. In cases where this fails to be
true, reformulating the calibration equations
presented here in terms of a Kalman filter (e.g.
Reference 4) should be considered.

Section 1 - Background on the Basics of the
Davenport Algorithm

Reference 1 presents the gyroscope calibration
algorithm that is used in the HST mission for the
calibration of scale factors, alignments, and biases
of the gyroscopes when one or more gyroscopes are
first activated for operational use. The basic
equations are as follows. Consider a satellite gyro
system consisting of N, single-axis gyroscopes. In
response to some angular motion of the satellite, the
output response column matrix of gyro counts, C,
consists of the N, individual gyro readings. The
response vector is translated into a measured angular
velocity, ,,, in the spacecraft frame via

Q, = G,C - D, 1)

where G, is the 3xN, scale factor / alignment matrix,
and D, is the gyro system drift rate bias expressed in
the spacecraft frame. The goal of the algorithm is to
determine correction matrices m and d that may be
applied to G, and D, so that a modified equation (1)
will yield the true angular rate, L, as indicated in
equations (2a) - (2¢).
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G = (I,+m)G, (2a)
D=(,+mD+d (2b)
Q=GC-D = (I,+mQ,-d (2¢)

where I, is the 3x3 identity matrix. Gyroscope
miscalibration information is sampled through any
given maneuver via the error quaternion

Q = QQ.’ ©))

where Q, represents the true vehicle rotation as
determined from reference star measurements, and
Q, represents the vehicle rotation inferred from the
gyroscope measurements. As discussed in
Reference 1, &Q represents a rotation from the
gyro-inferred to the true postmaneuver attitude,
expressed in the premaneuver reference frame. The
information content of 3Q is related to m and d via
the sensitivity equation

y/

I2iT(Q-Q,)d (4a)

n”iT(mQ,-d)d (4b)

where Z is the vector component of 8Q, T is the
matrix that transforms vectors (0 premaneuver
spacecraft coordinates, and the time integral is over
the whole maneuver. Because equation (4b) is
linear in m and d, it can be used as the basis for a
linear least-squares algorithm to provide estimates
for m and d. If a solution for all 12 correction terms
is needed, at least 4 independent “maneuvers” are
required to perform the calibration. The maneuvers
must provide a reasonable sample of pitch, roll, and
yaw variation, as well as an independent sample for
bias determination; the latter is permitted to be a
period of essentially constant attitude.

Although the information content is unchanged, it is
often more convenient to reexpress Z in terms of an
error vector, {, representing the rotation from the
true postmaneuver attitude to the intended (and
gyro-inferred, assuming closed-loop control) post-
maneuver attitude, i.e., the rotation that the
spacecraft must perform after it determines its post-
maneuver error. The vector { is related to Z and
{m, d} via

{ =-T.'2

SIRTMT(mQ, -d)d )



where 1 represents the maneuver duration time, and
its use as a subscript on T, means that T is to be
evaluated at the maneuver end-time. The matrix 7"
(which equals T) is thus the premaneuver to post-
maneuver reference frame transformation matrix.

Section 2 - Use of OBC Gyro Data Integration
and Model Maneuver Profiles

As discussed in Reference 1, equation (5) is accurate
only to first order in m and d, implying that the
associated least-squares algorithm is intrinsically
iterative. The matrix terms ¢, 7, and Q,, must be
reevaluated on each iteration. Multiple iterations
can only be applied if a complete set of gyroscope
data from throughout each of the calibration
maneuvers is available. In this section we discuss a
procedure that excludes the possibility of multiple
iterations, the gain being a drastic reduction in the
total volume of data required to perform the calibra-
tion. This can be significant if either (1) the sheer
volume of data for frequent, normal calibrations
becomes unwieldy or (2) the standard telemetry
format used does not contain an adequately dense
sampling of gyro data for accurate integration.

If calibration needs are adequately met via a first
order correction, it is possible to implement an
algorithm with drastically lower data requirements.
Integration of the full set of gyroscope data is
required at two points in the use of equation (5):
first in the determination of Q, for the construction
of §, and then in the time integral over (TmQ,).
Ground processing of gyro data to determine Q, can
be eliminated if the spacecraft OBC maintains and
transmits an estimate of the spacecraft attitude based
solely on gyroscope data, at least through the time
period between the accumulation of star sensor data
for pre- and postmaneuver definitive attitude
estimation. Sampling the OBC’s pre- and postma-
neuver attitude estimates then allows construction of
Q, as the connecting eigenvector rotation between
the two. Ground processing of the gyro data for use
in the integral over (Tm£,) can be eliminated if a
sufficiently precise model of the maneuver profile is
available. This follows because, to first order in the
correction terms, equation (5) is unchanged if mSQ,,
is replaced with mQ,, Q, being the planned angular
velocity as a function of time based on spacecraft
design parameters. We make the latter substitution
in what follows.

The simplifications noted in the preceding para-
graph allow the elimination of all ground processing
of the raw gyro data. The elimination of ground
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processing of the reference star data may also be
possible, although this results in a smaller gain. For
many satellites, the OBC generates an attitude error
estimate based upon postmaneuver reference star
measurements and uses this estimate to generate an
error nulling maneuver. If the vehicle attitude is
maintained accurately by the onboard pointing
control system during the periods between maneu-
vers, the postmaneuver error nulling maneuver will
correspond to the error vector { required for our
analysis. If this error vector is included in telem-
etry, no other spacecraft data are required.

We assume finally that each maneuver is a pure
eigenaxis maneuver. This allows the analysis to be
done in a coordinate system, designated here with a
prime (), in which the x"axis is aligned along the
maneuver axis. Expressed in the primed frame,

equation (5) becomes
R =-T7 IT"(mQ’,-d’) dt (6a)
1 0 0
" = [0 cos[6(t)] —sin[6(t)]
0 sin[8(t)] cos[6(t)]
=RTR'=RTK (6b)
m =RmR'=RmR' (6¢c)
d =Rd (6d)
Q,= [wt), 0,0] =RQ, (6e)

where R is the transformation matrix that converts
premaneuver spacecraft coordinates to the prema-
neuver primed frame, 6(t) is the maneuver angle as
a function of time, and ® = d6/dt. The form of o)
will depend upon the total maneuver angle, ®, and
design parameters governing the execution of
maneuvers. To first order, R may be based on the
planned maneuver quaternion, Q,. The eigenvector
and rotation angle set, {r, @), defining the quater-
nion representation of R is constructed from the
spacecraft frame Q, eigenvector, 1, and the space-
craft frame standard unit vectors, (x, y, z}, using

r = (xxn)/Ixxnl

( 'Y'fl; + mz) / (nz2 + Tl;z)m (73)

cos'(x-m) = cos'(n,) (Tb)

S
1



The simple forms of equations (6b) and (6¢) allow
equation (6a) to be reexpressed as

R(20) = -T7 [K,[m], - K,d') (8a)
K, 0 O

K ={0 K, K, (8b)
0 K, K,

K, =Jadt (8¢)

K, = Jcos(8) o dt (8d)

K, = |sin(8) o dt (8e)

where [m’], indicates the column matrix formed
from the first column of m’. Note that the elements
of K, are analytic, i.e., K, =0, K, =sin(8), and
K, = [1-cos(®)], whereas K, is equal to the
maneuver duration, T. The functional form of 6(t)
enters only viaK_ and K ..

The multiplication of T’ into K, and K, in equa-
tion (8a), together with an application of the sine
and cosine laws for two angle sums, produces

R (2 C) = - [K*l [m']| = K*u d’] (93)
K, 0 0
K* =|0 K* K* (9b)

0 -K*, K=*,

K*, = [cos(8-0) o dt (9¢)

K*, = [sin(®-0) o dt (9d)

Because K, depends only on © and not the form of
0(t), it can be shown that K* = K;'. This
relationship holds for K*, as well (actually, for all k)
if o(t) is an even function of time about the
maneuver midpoint. This constraint, which is fairly
standard for spacecraft maneuver profiles, also
yields the following convenient equations for K,
and K, (expressed for general k):

K, = cos(8/2) F(®) (10a)
K, = sin(6/2) F(©) (10b)
F.(8) = [cos [6(1) - 8/2] " dt (10c)

We now need to transform equation (9a) back into
the spacecraft frame so as to have { related to m and
d rather than to m’ and d’. Defining m as the 9-by-1
column matrix [[m},", {m],", (m],]" and using equa-
tions (6b) and (6¢), we can rewrite equation (9a) as

20 =-RK*Bm +R K*Rd (11a)

B i j+}o-1) = le Rln (1 lb)
where equation (11b) defines the elements of the
3-by-9 matrix B. Equation (11a) is our new least-
squares algorithm sensitivity equation. Its use
removes the need for an integration of the gyro
telemetry data. The only required time integrations
are for K* and K*_, or, more simply, F,(8) if the
symmetry constraint on oxt) is applied. Appexdix A
presents a specific, fairly common maneuver profile
usable in the latter evaluation.

Section 3 - Bias-Only Calibration Assuming Fixed
Scale and Alignment

We consider now the application of the algorithm of
Section 2 to a bias-only calibration. This begins
with the constraining assumption m = 0. This
constraint is reasonable for many operational
scenarios; empirically, it has been found that
spacecraft gyro biases can change significantly
within as little as a single day, whereas time scales
for scale factor and alignment are considerably
longer. For this situation, equation (11a) reduces to

2{ = R"K*,Rd (12)

Two data gathering scenarios are of possible interest
for this calibration. For the first scenario, the
spacecraft is held at constant, or nearly constant,
attitude over the time period of interest. “Nearly
constant” in this context means that the magnitude
of any net maneuver angle must be smaller than the
product 8dAt, where 3d is the maximum permitted
error in the estimate for d, and At is the time period
between two reference attitude measurements.  For
this case, [R" K* R] reduces to LAt, and equa-
tion (12) becomes

d=2C/At (13)

We have used At rather than T here because there is
no scheduled or executed maneuver for which we
can evaluate 1(®). The vector { may be constructed
from separate initial and final reference star
measurements or from an OBC-determined attitude



error at the end of the time period if the spacecraft
applied an attitude correction at the start of the
period. In the latter case, care must be taken to
ensure that the onboard attitude propagation across
the time period involved the use of gyroscope data
only, i.e.,, no control-law feedback based on
reference star data.

The second data gathering scenario uses the proce-
dures outlined in Section 2 applied to equation (12).
The potential operational advantage of using this
approach arises if a set of dual mode gyroscopes,
i.e., sensors with high-rate and low-rate modes, is
being used -- the high-rate mode being used during
large maneuvers to allow greater dynamic range,
and ‘the low-rate mode during periods of near-
constant attitude to allow greater precision. For
such gyroscopes, equation (13) can be used to
calibrate the high-rate mode bias only if the gyro-
scopes are commanded to remain in high-rate mode
during the calibration period, implying that
dedicated spacecraft time would be required for the
calibration. In contrast, the use of equation (12)
would allow relatively frequent high-rate mode bias
calibrations based on serendipitous maneuvers.

A caveat pertains here -- one of relevance to the
next section. An estimate of the bias based on equa-
tion (12) applied to a single maneuver may fail to be
good if the estimate for the scale factor / alignment
matrix G is insufficiently accurate, because of either
poor initial calibration or an actual change in the
gyroscope parameters since the time of calibration.
The effect of errors in estimates for linear scale
factors would tend to cancel each other in the
estimate for d if the least-squares fit is performed
using an ensemble of randomly directed maneuvers
or paired sets of oppositely directed maneuvers.
Taking advantage of this fact to reduce the influence
of possible scale factor errors may be desirable.

Section 4 - Isolated and Nonlinear Scale Factor
Calibration

The original Davenport algorithm combines the
observable aspects of alignment and scale factor
changes into the single change matrix m. It also
assumes that gyroscope response is purely linear.
We have found it useful to be able to study the
indiviual gyroscope response curves, with respect to
both nonlinear corrections as well as temporal
variations of the dominant (i.e., linear) terms. In
this section we discuss an extension of the algorithm
presented in Section 2 designed for this purpose.
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To keep the initial discussion simple, we will
assume that the state vector for our problem is
restricted to scale factor adjustments. Specifically,
we assume that the gyro alignments are well known
and fixed, and that the adjustment to the operational
drift rate bias is restricted to that associated with
scale factor corrections (i.e., the “mD,” term in
equation (2b)), with no intrinsic bias changes
permitted (i.e., no d term in the state vector). We
will relax both of these simplifications eventually.
We will, however, not autempt to model ongoing
temporal changes in the drift rate bias that occur
during the time period over which the calibration
data are accumulated. Given that bias changes
occur relatively rapidly and are likely to be signif-
icant over the data accumulation time period, this
last simplification may at first glance seem inappro-
priate. If, however, a good estimate of the changing
bias vector associated with the operational align-
ment and scale calibration is maintained throughout
the period of data accumulation (using the methods
of Section 3), the effect of the bias will have been
removed on an ongoing basis. From this perspec-
tive, we see that we are not actually neglecting the
changing bias; rather, the bias effects have been
precorrected as part of ongoing operations.

To allow for nonlinear scale effects, we assume a
model for gyroscope responsivity of the form
C =S51Q, + Xs,8(Q,,)] (14)
where subscript n indicates the nth gyroscope, C, is
the resultant gyro reading, S, is the nominal (or
current best estimated) gyro scale factor, Q,_, is the
spacecraft angular rate projected onto the gyro input
axis, and the summation over k represents a set of
small corrections to the predominantly linear
relationship between Q__and C,. The parameters s,
are correction coefficients applied to the functions
£(Q,.). The latter can be any convenient set of
functions, subject only to the constraint that the
same set of functions be used for all of the
gyroscopes. To minimize the eventual size of the
least-squares state vector, the functions should be
selected so that a good fit can be found with as few
correction functions as possible. For our HST
analysis, we have found it convenient to use two:
£,(8)=Q and g,(Q) =g (Q)=I1Ql. In this model,
s, represents an average linear correction, and s,
represents the difference between scale factors for

positive and negative maneuvers.



We assume next that an acceptably accurate inverse
to equation (14) can be written in the form

Q,, =CSS, + £o,8(CSS) (15)

In principle, each o, is a function of the full set
{S,1» Syp» ---}. However, if the sum ¥s,g,(Q,.) and
all of its individual terms are small relative to €2,,,
and if the correction functions g, vary continuously,
then o, = -s, to first order in the correction terms
for all n and k values. We will be using this
approximation in what follows.

For notational compactness, equation (14) can be
rewritten as

C=S8(AQ + X5 [*(AQ)) (16)

where C is a N,-by-1 column matrix (the C’s), S
and s, are N -by-N, diagonal matrices (the S,’s and
s.'S), A is the N -by-3 matrix of gyro input axis unit
direction vectors, and the symbol [*] is defined
such that

[* V] = [8V), VD), - &VIT amn

for any N-by-1 column matrix V. We also need a
matrix version of equation (15) that gives Q,, as a
function of C. If N, exceeds 3, our equation must
include a weighting scheme for how the gyro data
are to be combined in forming Q,. We use the
following equation:

Q, = [A'AI'ATQ,

R(S'C+Zo [*E'ON) (18)

where Q_ is the N -by-1 matrix formed from the
various Q,, estimates, X = [A"A]'A, and o, is an
N,-by-N, diagonal matrix (the o,’s). By using
equation (18) as the mechanism for constructing £2,,
from C, we have selected a convention whereby
equal weight is given to each of the components of
Q.. This is a change from the more typical
convention in constructing the matrix G, for
equation (1) whereby equal weight is given to each
component of C.

At this point we should clarify notation a bit in
preparation for constructing the least-squares
algorithm for a recalibration of the s, coefficients.
Equation (16) should be viewed as applying the
true s, values; it represents the actual response of

the sensors. In contrast, equation (18) represents the
users interpretation of the counts; thus the ¢, are
functions of (8, Sy .-}, Where the subscript 0
indicates current estimate. The “small correction
terms” approximation thus leads to o, = -s,,. The
least-squares state vector will be the set { s, } for
all n and k, where 8s,, =5, - S, 0

To proceed with a formulation of an extended least-
squares algorithm based on equation (4a), we
require an expression for (Q -, ) linear in the
correction terms &s,. Combining equations (16) and
(18) yields

Q, = X {AQ +ZIs [*AQ]
+Z0,[* AQ+Zs [AQ)D])  (19)

The assumptions that the g, functions vary
continuously and that all of the s, and o, elements
are small imply that terms of the form
o, [* (AQ + Z 5, [(FAQ])] are equal to g, [* AQ] to
first order. Using this simplification and setting
O, = - §,, yields

(Q-Q,) = -RX (5[ AQ)) (20)

To be able to follow our analytic maneuver model
approach as developed in Section 2, we insert equa-
tion (20) into equation (4a) and apply appropriate
transformations to the “primed” reference frame.
The resulting sensitivity equation is

20 = BT | T"(RRX(3s, [* [ARIQTDdt
= R'ITIT RR[* [0AR"],])dt}(Ss, ] (21)

where [* [w4R"]], indicates a diagonal matrix
formed from the elements of [** [wAR"],], and [3s,].
indicates the column matrix formed from the
diagonal elements of 3s, (recall that s, is a diagonal
matrix). If we impose the additional constraint on
each g that it satisfy the commutivity relation
g,(ab) = g (a)g,(b), equation (21) can be written in
the convenient form

20 =RIK*, (RR [* [ART),)) [8s).  (22)

where the K*, matrices are defined analogously to
the K*, matrices discussed in Section 2, with g (w)
replacing o in defining the required components.
For the case of (g,(Q)=Q; g,(Q)=g(Q)=1Ql},
equation (22) becomes



20 = R'K* R X ([[AR"]], [3s,].
+ ["[AR]], [8s.].) (23)
where the symbol "] in the last term implies that
the absolute value operation is applied to all of the
elements of [AR"],. The K* matrix applies to the
last term with no adjustments because ® is by
definition positive in the primed reference frame.

For each maneuver used in the calibration process,
equation (22) provides three linear equations in the
Nk, unknowns {8s,}. To get proper visibility for
accurately measuring all of the (3s,) elements, a
range of both positive and negative maneuvers in all
of the pitch, roll, and yaw directions must be
sampled. With an appropriately large number of
maneuvers sampled, equation (22) can be used as
the basis for a standard least-squares algorithm to
determine estimates for the correction terms.

As with the original Davenport approach to the
calibration problem, adjustments to the scale factor
calibration imply an associated adjustment to the
current estimate for the drift rate bias vector. In
equation (2b) this adjustment is represented by the
quantity mD,. The analogous correction for the
derivation in this section, which we will here call d,,
is given by
ds = 'RZ{&:[‘.ADn]] (24)

which follows from equation (20) by replacing
€ - Q,)) with d, on the left-hand-side and Q with
D, on the right-hand-side. The D, value to be

inserted into the equations is the most recent value
determined for operational use.

Equation (22) can be generalized to allow for
alignment and/or bias adjustments within the
calibration state vector. This is done by simply
combining equations (1la) and (22), with the
restriction that the summation over k exclude the
linear scale factor corrections, i.e.,

20 =-KK*Bm +RKK*,Rd
+ RTZK*“ (R x.;p [‘ ) [AoRTL]n ) [&gt]c (25)

with the set {8s,} restricted to nonlinear terms. The

0 subscript on X, and A, indicates that the current
estimate for the gyro alignments is used in construc-
ting the nonlinear correction coefficients. After the
calibration set {m, d, {8s,}} has been determined,
equations (26a) - (26d) can be used to calculate Q.
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Q=(GC-D)

- R, E{(5,+8)[" 4,(GC-D)]} (26a)
G=(U+mG, (26b)
D=W,+mD, +d

-R, X (8, ["AD,]} (26¢)
G,= X,§" (26d)

Although straightforward to use as the basis for a
least-squares algorithm (i.e., to solve for the state
vector (m,d, {3s,})} given an error set {}),
equation (25) is somewhat unaesthetic in that it
mixes a set of parameters pertaining to the com-
bined gyro system (i.e., {m, d}) with another set
pertaining to the individual gyroscopes (i.e., {8s,}).
For elegance in presentation and to support
engineering analysis of individual gyro behavior,
having a state vector consisting solely of specific
parameters of the individual gyros would be
desirable. Equation (25) could be so recast if we
were dealing only with sets of three gyros.
However, for gyro sets containing more than three
gyros, the parameter set {m, d} captures all of the
functionally observable information available in the
maneuver measurements. (Of course, if the full set
of gyro data is available, the data can be processed
for each combination of three gyros and the indivi-
dual gyro parameters extracted, but this defeats the
processing simplifications discussed herein.)

This point concerning observability raises a ques-
tion: for how many gyroscopes can unique scale
factor information be obtained when equation (22) is
applied together with the constraint of fixed gyro
alignments? This question may be readily answered
for the case where the state vector is restricted to
linear scale corrections, i.e., 8s,. In this case, the &s,
matrix transforms to an equivalent m matrix via
m=-K38 A =-[A'A]'[A" &, A) 27

Both [A"A] and [A" 85, A] can be shown to be
3-by-3 symmetric matrices, implying that the
product [A"A]'[A" &, A] is as well. The change
matrix m therefore has only six independent
elements, from which we conclude that the
techniques of this section can provide independent
scale parameter corrections for at most six gyro-
scopes. (“At most” applies because any coaligned
gyroscopes will have degenerate corrections
irrespective of the total number).



Section 5 - Least-Squares Solution and Weight
Matrix Specification
For completeness, we present in this section a few
points pertaining to the selection of weights to be
applied to the input measurements. As discussed in
many references on least-squares algorithms (e.g.,
Reference 4), the solution for the batch linear least-
squares problem associated with a matrix equation
H X =Y can generally be written as
X=HWH+W) (HWY+W,X,) (28)
For our problem, X (the state vector) will be some
combination of m, d, and/or (8s,}, Y is [L,", ..., &1
for N maneuvers, H is a matrix of state vector multi-
plying elements constructed from appropriate pieces
of equation (25), W is a 3N-by-3N weight matrix for
the error measurements (the elements of Y), and W,
is a weight matrix associated with the a priori state
vector estimate, X,. For our problem, because the
state vector consists of differential changes from the
previous best estimate, we set X, = 0.  Our only
remaining concern, therefore, is to establish
reasonable estimates for W and W,.

Ofien it is both convenient and reasonable to simply
set W to 1,, and W, to 0. (We used this approach in
our analysis of the HST maneuver data and have
found it operationally acceptable.) Implicit in the
approach are the following five assumptions: (1) the
state vector correction terms are fairly stable over
the time period of data collection, (2) the degree of
correlation between measurement error components
is fairly small, (3) the expected error component
magnitudes are all approximately the same, (4) the
data set spans the domain of state vector sensitivity
sufficiently well that observability is not a problem,
and (5) a sufficiently extensive data set has been
accumulated that neglect of a priori information
does not undermine operations. The first three
points relate to setting W to 1,,, whereas the last two
relate to setting W, to 0.

If any of the conditions indicated in the previous
paragraph are significantly violated, a more
sophisticated weighting scheme is required. We
present here a method for specifying W that retains
assumption 1, eliminates assumption 3, and replaces
assumption 2 with a less restrictive one (called 2a)
that the measurement errors associated with each
maneuver are uncorrelated with those of all others.
We will not consider the possible advantages of a
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nonzero W,. Assumptions 1 and 2a allow W to be
expressed as a block diagonal matrix, with each
block being a 3-by-3 matrix, w, associated with a
specific maneuver. Given the block diagonal form,
each w can be written as (p,+p,)', where p, is the
covariance associated with reference attitude errors,
and p, is the covariance associated with random
gyro errors. The attitude covariance matrix is given
by S
=T pT: + p, (29)
where p, and p, are the initial and final attitude
covariance matrices in the instantaneous spacecraft
frame, and T, is as used in equation (5). Refer-
ence 5 specifies an equation for attitude covariance
matrices such as p, and p. This equation, which
depends upon the reference star distribution and the
measurement and catalog errors for each star, is
Pu = 07 I, - X /)V VT’ 30)

where o’=[Z0,”]", 0, is the root-mean-square
combined measurement and catalog error for the jth
star, V| is the jth star vector expressed in the space-
craft frame, and the sums are over all observations.
This expression can be simplified for processing
purposes in the case of observations from a number
of well-separated star sensors with fairly narrow
fields-of-view (narrow relative to the field-of-view
separations). In this case, each V, can be replaced
with the boresight direction vector for the jth sensor
expressed in spacecraft coordinates, with o then
indicating typical error size for that sensor. This
substitution eliminates ground processing of the
reference star data.

A reasonable, albeit heuristic, model for the
covariance associated with gyro errors is
po=Llc) 7T +0,'6"] a3n
where o, is the typical single-axis standard
deviation of the gyro drift rate bias, and G, is the
typical scale factor/alignment maneuver error.
Equation (31) does not attempt to model the physi-
cal mechanism that produces gyro noise, but rather
requires the user to provide parameters o, and G,
based on typical spacecraft performance.
Empirically, for the HST gyroscopes working as a
set, we find g, ~0.01 arcsecond per second and

o, ~ 0.2 arcsecond per degree.



Section 6 - HST Gyroscope Behavior

The HST gyroscope system comprises three rate
gyro assemblies (RGAs) manufactured by
AlliedSignal Government Electronic Systems. Each
RGA consists of two single-degree-of-freedom,
dual-mode, rate integrating, mechanical gyroscopes.
The high-rate mode has a range of +1800 degrees
per hour and a resolution of 7.5 milliarcseconds per
40-hertz sample; the low-rate mode has a range of
+20 degrees per hour and a resolution of
0.125 milliarcsecond per 40-hertz sample. The gyro
alignments are such that any three can be used to
completely sample rotations of the spacecraft. The
onboard system is configured to nominally use four
gyroscopes simultaneously, keeping the remaining
two as backups.

RGA units 2 and 3 (those housing gyros 3, 4, 5,
and 6) were replaced in December 1993 during the
first HST servicing mission. All six gyroscopes
were activated for the servicing mission and early
on-orbit verification and calibration phase. The
iterative calibration procedure described in
References 1 and 6 was followed until convergence
was achieved. Thereafter, the two gyros in RGA
unit 1 were deactivated, leaving HST operating with
four new, freshly calibrated gyroscopes. The active
gyros are mounted with input-axis unit vectors of
approximately (+0.586, 0.617, -0.525), with the
sign sense for the first two components being
(--, ++, -+, +-), for gyros 3, 4, 5, and 6, respectively.
The symmetry of these vectors about the yaw axis is
significant for understanding the specific mani-
festation of an observed growing scale error.

As is typical with spacecraft gyroscopes, the biases
vary fairly rapidly. For the HST gyroscopes, the
change in the drift rate bias for both high- and low-
rate modes has been found to be about 7 arcseconds
per hour per day. The temporal variation of the
high-rate mode drift bias vector (i.e., as measured in
vehicle space) has been found to track the low-rate
mode vector variations quite closely. This allowed
implementation of an operational procedure
whereby only the low-rate mode bias is measured
frequently, based on data accumulated during
science pointing with the spacecraft pointing control
system locked on fine guidance sensor guide stars.
The high-rate mode bias is then determined from the
low-rate mode bias via an additive offset, which is
monitored for constancy once every 4 to 6 weeks.
The algorithm used for monitoring the offset had
been, until recently, essentially that discussed in
Section 3 in association with equation (13). The
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spacecraft pointing control system is commanded to
place the gyroscopes in high-rate mode while
maintaining a constant attitude for approximately
one orbit (about 95 minutes). Fixed-head star
tracker star measurements are obtained at the begin-
ning and end of this constant attitude period and
used to determine the true attitude change.

In HST operations, most large maneuvers are pre-
dominantly about the yaw axis. The predominant
symptom of the scale factor problem discovered in
August 1995 was a substantially larger postslew
pointing error for negative yaw maneuvers than for
positive yaw maneuvers. Upon examining the
quantity E = (20 1/®) for maneuvers between the
time of the first servicing mission and August 1995
with Im, 1> 0.9 and © > 90 degrees, we found that
although the average value of E for positive yaw
maneuvers stayed near zero, its value for negative
yaw maneuvers was fairly well fit by the curve

E=02+06(1-¢")
arcseconds per degree (32a)

T = 6 months (32b)
The sense of the error for negative yaw maneuvers
was such that the spacecraft fell short of its intended
destination. The random scatter for E is about
0.3 arcsecond per degree (36).

The analysis techniques described in this paper were
developed to study the temporal change that was
seen to have occurred in the HST RGAs. As part of
our study, we have come to realize that the effects
of gyroscope nonlinearities are as important as the
temporal changes that precipitated the study. We
applied our analysis to a combined set of
83 maneuvers collected in August 1994 and August
1995. (Our data indicate that the scale factors had
stopped changing by August 1994.) For some of our
analysis runs, we also included a 1-hour period of
constant attitude. We find that studying the fit
residuals associated with the constant attitude period
is important for constructing a high-fidelity model
of gyroscope response. The results of our analysis
are specified below.

(1) To study the change in average linear scale
relative to the original post-servicing-mission cali-
bration, we performed a fit using the high mode bias
offset vector and gyro frame linear scale factors as
our state vector. The best fit values for this case are
given in equations (33a) and (33b).



= [-1.8x10% 3.4x10% -7.7x10°]"
+ 1%10? arcsecond per second  (33a)

d oerer

[8s,). = [5.7x10% 4.2x10°%,

8.4x10°, 1.74x10°T" +1x10°  (33b)
As will be discussed shortly, the bias offset adjust-
ment is that required to compensate for gyroscope
nonlinearities, the “true” bias at constant attitude
already having been ecliminated by the standard
operational procedures. The [8s,]. elements repre-
sent the average change in the high-rate mode scale
factors. The sign sense indicates that the gyros have
become more sensitive (more counts per degree of
actual slew). The largest single change, that for
gyro 6, corresponds to an error of 56 arcseconds for
a 90-degree slew about the input axis.

(2) Because of the difference in response for
positive and negative slews, together with the fact
that the bias determination procedure had been
tuned to work accurately at zero angular rate, it
seemed likely that some scale.nonlinearity was
involved. Taking d = 0 as a constraint effectively
imposed by the operational procedures, we
investigated potential nonlinearities by solving for a
state vector consisting of [8s,]. and [8s,].. The best-
fit results in this case are

(8s,). = [6.0x10°%,2.9x10°,

1.27x10*, 1.48x10*J" + 1x10° (34a)
[3s,). = [0.8x10%, 6.1x10°,
1.95x10*, 7.8x10°]" "+ 1x10° (34b)

Comparing the nonlinear correction values with the
average change values indicated for the first case,
we see that the error associated with not taking the
nonlinear effect into account can be as large as the
temporal change. We also determined fit param-
eters for two other cases, one including d in the state
vector and another using g,(Q) = Q’ rather than 1QI.
The former showed a slight reduction in the fit
residuals, whereas the latter showed a slight increase
in the fit residuals; the changes in residuals in both
cases were insignificant.

Given our findings regarding scale factor non-
linearities, the spacecraft pointing control logic
should ideally include compensation for this effect
when estimating spacecraft angular rates. Although
the HST pointing control system does not model
scale factor nonlinearities, we can compensate to a
significant degree for the nonlinearities by allowing
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the low-to-high bias offset to absorb the average
effect of the gyroscope nonlinearities as weighted by
the actual distribution of maneuvers scheduled for
the HST mission. This is effectively what happens
with the fit procedure associated with equa-
tion (33a). The large negative third component for
the bias in equation (33a) is associated with the
positive sign of the components of [ds,]. in equa-
tion (34b), together with the fact that gyros 3 - 6 are,
on average, pointing along the negative yaw axis.
This weighting for mission maneuver distribution
will also affect the estimated average scale factors,
as can be seen by comparing equations (33b) and
(34a). Empirically, it appears that adequate HST
mission performance is achieved with this approach
during normal operations. We note, however, that
this approach does not give optimized performance
for high-rate mode, inertial hold conditions, the
implied spurious drift being about 300 arcseconds
per hour.

Using the bias vector to absorb the average effect of
gyroscope nonlinearities weighted according to the
profile of mission maneuvers could be problematic
for spacecraft that use single-mode gyroscopes. For
such spacecraft, science operations would likely
require the bias vector to be selected so that pointing
performance is optimized with respect to constant
attitude periods. Adjusting the bias to improve
maneuver performance is therefore not an option.
Mission engineers designing the pointing control
and sensor calibration algorithms for such missions
should consider including compensation for gyro-
scope nonlinearities, particularly if slewing accura-
cies better than 1 arcsecond per degree are required.

(3) As part of our analysis of the HST gyroscope
changes, we also considered the possibility that the
changes were associated with the gyroscope
alignment matrix. We therefore performed a fit for
a scale factor/alignment correction matrix (m)
together with a bias adjustment (d) based on
equation (11a). We found that including the
alignment adjustments did not significantly improve
the residuals relative to those associated with the fit
restricted to state vector (d, [3s,]).}. We specifically
found that the alignment terms did not allow us to
simultaneously obtain improved residuals for the
maneuver data while maintaining small residuals for
the constant attitude data. Our results are consistent
with there being no significant change in the
gyroscope alignments during the 18 months
following the first HST servicing mission.



Conclusions

This paper has presented a number of variations on
the Davenport algorithm for gyroscope calibration
specifically designed to (1) allow analysis with a
drastically restricted quantity of telemetry data and
(2) extend the state vector domain to allow study of
both isolated and nonlinear scale factor corrections.
We have applied the techniques to data obtained
during normal operations of HST as part of a study
of temporal variations of the HST gyroscope scale
factors. We have found that the HST replacement
gyroscopes experienced significant change over the
first 6 to 8 months following the first HST servicing
mission, the largest individual change corresponding
to an error in estimated projected rate about the
input axis of about 56 arcseconds per 90 degrees.
We have found scale factor nonlinearities that, when
characterized as differences between scale factors
associated with positive and negative rotations, are
as large as 2 parts in 10000, i.c., about 65 arc-
seconds per 90 degrees. For spacecraft, such as
HST, that use dual-mode gyroscopes, the effects of
the nonlinearities can be accommodated to a
significant degree via adjustments to the high-rate
mode drift rate bias vector. This approach may be
inadequate for missions using single-mode gyro-
scopes. Finally, we find, to within the accuracy of
our data set, that no significant changes have
occurred to the gyroscope alignments during the
first 18 months following the servicing mission.

The work reported in this article was supported in
part by National Aeronautics and Space Adminis-
tration (NASA) contracts NAS 5-31500 and NAS
5-31000, which enable Computer Sciences
Corporation and AlliedSignal Technical Services
Corporation to provide systems engineering,
analysis, and operations support to NASA’s
Goddard Space Flight Center.

Appendix - Model Maneuver Profile

In this appendix we present the details of one fairly
common maneuver model. In addition to the total
maneuver angle, the model uses three input
parameters characterizing the spacecraft’s maneuver
execution algorithm. These parameters can be
selected as the maximum jerk magnitude (J,), the
jerk pulse duration (8), and the maximum angular
velocity magnitude (@y,). The maneuver profile is
symmetric about the midtime (1/2); it is therefore
sufficient to construct the maneuver profile through
that time. Throughout the maneuver, the angle (6),
rate (@), and acceleration (a) are continuous, and the
jerk (the third time derivative of 9) takes on one of
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three values: J, 0, or -J. The maneuver through its
midpoint is composed of two, three, or four
segments, depending upon the value of ®. The con-
struction for each solution type is presented below.

Operationally, three auxiliary paramefers are first
calculated from the three input parameters:

€ = @ /] 8 -6 (A.la)
8, =28 (A.1b)
8, = 6, ([(e.° +38,)/25] +1)  (A.lo)

These three equations will be derived below. The
determination of whether a two-, three-, or four-
segment half-maneuver pertains depends upon
where © falls relative to ©, and 8,; a two-segment
solution pertains for © in the range [0,8,], a three-
segment solution for the range [6,,8,], and a four-
segment solution for [6,,n].

Two-segment solution

The two-segment solution assumes that the jerk is
equal to some positive value J for a time period §
and equal to -J for a subsequent equal period. The
functions a(t), «(t), and 6(t) are each required to be
continuous through the point of discontinuous jerk.
The angular velocity reaches its maximum value at
exactly the midpoint of the maneuver, ie., at
72=23. The solution for the two segments is
specified below.

Segment 1: 0<t<3d

iy =17 (J yet unknown) (A.2a)
a(t) = Jt (A.2b)
o) = 12]¢ (A.2¢c)
6w = 1/61¢ (A.2d)
Segment2: 8§<1<28

vy = I (A.2e)
ait) = J&-J(-9 (A.2f)
ot) = 12I8 +J8(t-8§)

- 1/2J(t- 8y (A2g)
oty = 1/618 + 1218 (t-9)

+1/2J8(-8) - 1/6J(t-8)° (A.2h)

The unknown J is determined by the requirement
that 6(/2) = ©/2. Substituting t = 28 in equation
(A.2h) yields

8/28

J = (A.2i)



The two-segment solution applies until equa-
tion (A.2i) produces a value of J greater than J.
This gives the limiting angle ©,, indicated in
equation (A.1b).

Three-segment solution

For maneuvers with angle ® exceeding 8,, the two
periods of constant jerk are separated by a period of
zero jerk, of duration € (to be determined). For
convenience, let us define a time point A = &+€.
The solution for the three segments is specified
below.

Segment 1: 0<t<d

w = I, (A.3a)
at) = It (A.3b)
ot = 127,¢ (A3c)
o = 1610 (A3d)

Segment2: d<t<A

) = 0 (A.3e)
a(t) = 1.8 (A.3f)
ot) = 1218 +J,8(-9) (A3g)
o = 1/6]1 8 + 121, 8 (-9
+1271.8(@-9)° (A.3h)
Segment 3: A<t<A+d
w = -, (A.3i)
a) = 1o - I (t-4A) (A3)
o) = 1218 +3,8¢e + 1, 8(t-A)
- 121, A (A3K)
ow = 1618 + 12). 8¢ +12], 3¢

+12) 8 (t-A)+J,de(t-4)
+121_ 8(t-A) -1/6 1 (t-A) (A3))

The unknown € is determined by the requirement
that 6(7/2) = ©/2. Substituting t = A+ in equation
(A.3]) yields the quadratic equation

e +38e-20©/0,-1)=0 (A.3m)
the solution for which is
e =328{[1+89(8/0, - 1" - 1}
=128{[1+86/8])" - 3} (A.3n)

The three-segment solution applies until equa-
tion (A.3k), combined with equation (A.3n), pro-
duces a value of o greater than @,. The maximum
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permitted value of € can be found by setting 1) in
equation (A.3k) to @, at t = 28+¢. This results in

€. =0, /J.0-9d (A30)
Note that for the progression of solutions to be
consistent, we require o, 2 Jm82. The maximum
maneuver angle permitted for the three-segment

model can be found by substituting €., for € in
equation (A.3m); the result is equation (A.1c).

Four-segment solution

For maneuvers with angle 8 exceeding ©,, the third
segment is followed by a period of constant angular
rate at the maximum permitted value. This fourth
segment lasts until the maneuver reaches the half-
way point, i.e., until 6(t) = 8/2. The result is that
the maneuver profile for the first three segments is
the same as that appropriate for a three-segment
solution with £ = €__, and during the fourth segment
it is given by

v = 0 (A.4a)
a = 0 (A.4b)
o) = o, (Adc)
0() = 8,2 +, [t-(28+€,,)] (A4d)

The total maneuver duration in this case is
determined by the requirement that 6(1/2) = 6/2.
Thus, 1 is given in this case by

12 = (8-8)2a, + (25+,,) (Ade)
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