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Abstract

Orbit determination and ephemeris generation or prediction over relatively long elapsed times can be
accomplished with mean elements. The most simple and efficient method for orbit determination, which is also

known as epoch point conversion, performs the conversion of osculating elements to mean elements by iterative
procedures. Previous epoch point conversion methods are restricted to shorter elapsed times with linear

convergence. The new method presented in this paper calculates an analytic initial guess of the unknown mean

elements from a first order theory of secular perturbations and computes a transition matrix with accurate

numerical partials. It thereby eliminates the problem of an inaccurate initial guess and an identity transition
matrix employed by previous methods. With a good initial guess of the unknown mean elements and an

accurate transition matrix, converting osculating elements to mean elements can be accomplished over long
elapsed times with quadratic convergence.

Basic Concepts

This paper presents new methods to solve the following problems:

• A user's propagator requires a mean orbital element set (e.g., NORAD--North American Aerospace
Defense Command two-card element set or any other mean element set) as input but the element set is not
available.

• For ground based radar acquisition and space sensor surveillance, a single osculating state vector of an

object at the current time is available, but the mean elements corresponding to an epoch a few days, weeks

or months earlier are not. If the set of mean elements at an epoch can be computed, then the object can be

identified with respect to a known catalog (e.g. NORAD element set for Resident Space Objects). The
mean elements at an epoch are needed to efficiently provide radar or sensor pointing commands.

The osculating orbital elements represent, in a general sense, the true position and velocity vectors of a satellite,

but are poorly behaved over time as a basis for prediction. The mean orbital elements do not represent the true

position and velocity vectors of a satellite, but are well behaved over time. An orbit described by a set of mean
orbital elements is said to be perturbed or non-Keplerian.

By way of notation all vectors are in bold unless specified. For the sake of simplicity, the osculating elements
and the mean elements are respectively denoted as:

[ --y(t) = [a e i n o_ M] T and y(t) = _ _ t f_ _

where a is the semimajor axis, e is the eccentricity, i is the inclination, _ is the longitude of the ascending

node, co is the argument of perigee and M is the mean anomaly. The six elements ofy(t) or y(t) can be chosen

in a variety of ways and the classical orbital elements are chosen to enhance theoretical understanding. The
singularities of small eccentricity, small inclination or critical inclination do not exist in the conversion of

osculating elements to mean elements, but the reverse is not true. The transformations between classical orbital

elements, y(t), and predicted or true position and velocity vectors, r(t) and v(t), are simple. The transformation
of the mean elements, y(t), to the mean position and velocity vectors, P(t) and V(t), is straightforward, but

the reverse is diffficult. By way of definition, a transformation between vectors is an instantaneous conversion.

A¢om, ersion between vectors involves an elapsed time greater than or equal to zero.
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The ballistic coefficient of a satellite is defined as B = CdoA, where Cdo is the zero drag coefficient, A is the
2m

reference area of the satellite and m is the mass of the satellite. The problem of converting osculating orbital

elements at a final time, t, to mean orbital elements at an initial time, to, can be stated as

Given: B, to, t and y(t)

Find: y( to)

Depending on the perigee altitude of the satellite, previous methods presented by References 1 and 2 that use
iterative procedures, are restricted to a short elapsed time,(t- to). Reference 3, which uses a combination of

Kozai's and Izsak's theories, calculates the difference between the osculating elements and mean elements with

zero elapsed time. The difference, y( to) - y(to), is the very small variation of orbital elements due to short-

periodic perturbations. The method presented in this paper allows the elapsed time to be extended over much
longer intervals. Only the case of non-negative elapsed time, (t - to) > 0, is formulated, however, the method

also holds for negative elapsed time as well.

To understand our approach to solve the above problem, a background on some basic concepts is required. The
state prediction problem for a satellite orbiting about a central body such as the Earth is to find the position and

velocity vectors, r(t) and v(t), at time t that satisfy the vector equation of motion

d2r - P" r + ad (1)
dt2 r3

subject to the given initial conditions r = r0 and v = v 0 at time t = t o. In Equation (1), tt is the gravitational

constant and a d is the total disturbed acceleration vector due to disturbed gravity, atmospheric drag, lunisolar

gravitational attractions, solar radiation pressure, tidal friction, n-body gravitational attractions and thrust. The
first term on the right-hand-side of Equation (1) is the acceleration vector due to central gravity.

If a d is zero, then Equation (1) can be solved analytically by one of Kepler's methods and the osculating

elements (a, e, i, _ o_)describing the size, shape and orientation of the satellite orbit remain constant in time.
The osculating mean anomaly, M, defines the angular position of the satellite in its orbit with respect to time.
For a typical non-thrusting, near-Earth satellite between the theoretical atmospheric altitude of 91 km (300,000

fi) and a 12-hour orbit altitude of approximately 20,000 km, the disturbed acceleration vector, a_, is due

mainly to the Earth zonal gravitational harmonics, J2, J3 and J4, and atmospheric drag. Lunisolar

gravitational attractions and solar radiation pressure, whose effects may be formulated similar to atmospheric

drag, are neglected in this study. The orbital elements affected by the disturbed acceleration vector, a_, are

defined as the osculating elements, y(t). [Strictly speaking the osculating elements are affected by gl d .] The

disturbed accelerations of a d cause secular, short-periodic and long-periodic variations in the classical orbital

elements (a, e, i, f_, o), M). Short periods are on the order of time of one satellite passage around the Earth.

Long periods are on the order of time of one complete perigee passage around the Earth. If the periodic effects
are removed, then the new orbital elements are defined as mean elements, y(t). That is, the mean elements are

affected only by secular perturbations.

Periodic variations occur in all osculating elements and are induced by all zonal gravitational harmonics.

However, the variations in osculating elements induced by periodic perturbations are much smaller than those
induced by secular perturbations as the elapsed time increases. The variations in osculating elements induced
by secular perturbations are constant or non-periodic, and only even zonal gravitational harmonics and
atmospheric drag give rise to secular effects. Atmospheric drag can be a significant part of the secular

perturbations if the perigee altitude of a typical satellite orbit is less than 500 km. In summary:
• Secular perturbations >> Periodic perturbations (for long elapsed time)

• Secular perturbations = Disturbed acceleration due to gravity (J2 and J4)

and Drag (perigee altitude < 500 kin)
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1 to 6 show the variations of the osculating elements due to the disturbed acceleration vector, a_, for aFigures

non-thrusting Low Earth Orbit satellite with a perigee altitude of approximately 200 km. Osculating elements
are computed by four methods: numerical integration, two NORAD propagators (SGP and SGP4) and a first
order theory of secular perturbations. The osculating elements predicted by the first order theory of secular
perturbations are depicted by the thick solid line As shown in Figures 1 to 3, the first order secular effects on
the osculating elements a, e and i are almost negligible and are induced only by drag, and therefore the

averaged time derivatives --_ttav' d_t and --d_ are almost zero (the thick solid lines are almost horizontal)
av av

The mean elements, y(to), are the initial values of osculating elements at time to -- 0 on the thick solid line.

The solutions computed by numerical integration, SGP and SGP4, are depicted respectively by the thin solid
line, the triangle and the square

As shown in Figures 4 to 6, the secular effects on the osculating elements _, o and M are significant and are

-_- av aM[induced by both gravity and drag. The averaged time derivatives d.Q do and _ are almost constant
) _ av av

to first order even if the time dependent contributions due to drag are included. At 200 km altitude, the
disturbed acceleration due to J2 is at least one or two orders of magnitude greater than that due to J4. It is well

known in general perturbations theory that the osculating elements (a, e, i, _, o) are "slow" variables and that

Y,v 1 °°1d_ and _M is a "fast" variable. This implies that aM is much greater than --_ av av' If the elapsed time,

aM I , must be included for a typical Low

!

(t- to), is long, then the averaged time derivative due to drag, _.drag

Earth Orbit satellite with a perigee altitude of 200 km even though References 4 to 6 and many excellent
textb_ks have recommended otherwise.

Since the satellite orbit of this example is almost circular, the first order estimates of the osculating eccentricity
and argument of perigee are not equal to their averaged values during the two periods of the satellite orbit as
shown in Figures 2 and 5. However, the first order estimates of the other osculating elements are very close to
the averaged values of the osculating elements as predicted by the NORAD propagator SGP.

Ifa NORAD propagator is used, then the mean mean motion, _', which replaces _" of y(t), must be carefully

computed. The osculating mean motion, n, is determined from the equation: _ = n2a 3. If the elapsed time is

short (less than a day), the errors arising from interchanging the osculating mean motion and mean mean
motion are negligible. If the elapsed time is long (on the order of days), the mean mean motion, _', must be

used in evaluating the averaged time derivatives (except for initialization). It should be clear that p. _ _2 _3.

From general perturbations theory, the osculating elements and the mean elements have a first order secular
relationship given by

dYI ('_)y(t) = y(t o) + -_- (t- to)
av

where the averaged time derivatives valid between to and t, are defined as

dyI 1 2, dy 1 2_
"&-,v[ = _ ! --_- dM = _2x _o (1-ec°sE)dY dEdt (3)

The instantaneous time derivative, -_ty , can be obtained from Lagrange'sand E is the eccentric anomaly.

dYI which are not difficult to obtain, are

I

planetary equations for secular perturbations. Analytic solutions of _-,av'

relatively accurate except for Low Earth Orbit satellites. If the elapsed time is long and the disturbed
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acceleration due to drag is significant (e.g. for a Low Earth Orbit satellite), then the analytic averaged time

derivatives of the semimajor axis and eccentricity can be an order of magnitude in error with respect to their

numerically integrated values. This can happen even ff the elapsed time is less than one period for some
satellite orbits.

From Reference 7, the averaged time

perturbations are given by

=o
=o

gritty

dd_ =0
_ty

16_ 2 t_ /

gravity "_ 5J 4r2 [(4- 7sin 2 i_(2 + 332 _]

16-:p2Ix /x q

derivatives due to the disturbed gravity (J2 and J4) for secular

(4)

(5)

(6)

(7)

_--_-_tgravity - 3nJ2r2 [4-Ssin2_]_p2

+ 9nj2r4 [10sin2 i(76-89sin2 i)+_2(56- 36sin2 i-45sin401384-----------_ (8)

15n J4r4 [(16-62 sin2 i+49sin4 i)+_2 (18-63sin2 [+ 189 sin4 i)]
32_ 4 4

d--_t gravity = n 3 n° J2 r2(l- e2)1/2 [2- 3sin2 i]
+ 4_2

2 4 / 2 \1/2

9nJ2re [1-e ) [ [ ] [ a]][sin2 io/100-131sin2 ]_+_2/20-98sin2 i+67sin 4-_] (9)
4 96__p4

4 / 2 \1/2

45nJ4re [l-e ) [_2 (8_ 40sin2 i + 35 sin4 ]) ]
128-_p4

where _ = _(1-32). In satellite state prediction, an accurate solution must always be computed numerically.

Therefore, the averaged time derivatives due to drag should be integrated numerically for the semimajor axis

and eccentricity. From References 8, the averaged time derivatives due to drag for secular perturbations are

given by

_[ drag = -2Bna2[l? pQp(l+ccosg)I_l `_COSE) dE] (10)L'_o -e_osE)

de = -2B_ I PQl Q2 ](l-_cosE) dE (11)
drag 0

di = 0 (12)
_d_g
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_-o
drag

do) = 0

_[ = "-no-to)
drag 2

da

4_ _ (t- to)
drag

(13)

(14)

(15)

where the rotating Earth factors are:

Qo = c°e cosl _J_- Ez

(1-_ cosE)
QI = 1 - Qo

(1+_ cosE)

Q2 = cosE Q0 (1_ _cosE) (2 cosE_ e _ e cos2 E)
2(1-e 2 )

and coc is the constant scalar Earth rotational rate and p is the intantaneous density at a reference altitude with

respect to the mean anomaly E.

The drag-induced averaged time derivatives of inclination, longitude of the ascending node and argument of

perigee are normally much smaller than those of their gravity counterparts, and therefore are neglected. The

averaged second time derivatives of the semimajor axis and eccentricity are at least three orders of magnitudes

less than the averaged time derivatives and therefore are also neglected.

Since the disturbed accelerations are additive, the averaged time derivatives of the osculating elements y(t) due

to secular perturbations are the sum of the gravity and drag components. Substituting the averaged time

derivatives of Equations (4) through (15) into Equation (2) and rearranging, a good initial guess of the

unknown mean elements y(to) at time t o is given by

_(to) I a(t) ]

_( t o) [ e(t) /

i(to) i(t) /

_(t,) = /

_(to) I co(t)]

.M(to) j .M(t)J

_tt drag(t - to)

d-d-_t (t - to)
drag

0

(_---_t2gravity__ ) (t - to)

(dco ) (t- to)
dt gravity

dM +dM
(d--_t _.avity --_---drag )(t- t o)

(16)

The mean elements _, _, i- and _" in the averaged time derivatives of Equations (4) through (15) are initially

replaced by the respective osculating elements to start the initial guess process of Equation (16). Fortunately,

the variations of these mean elements are normally slow. Now, given B, to, t and y(t), the right-hand-side of

Equation (16) can be computed to give a good initial guess of the unknown mean elements y( to) at time to.
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Methodsfor ConvertingMeanElementstoOsculatingElements

A method of general perturbations for satellite theory seeks the solution of Equation (1) by series expansion and

term-by-term analytic integration of the disturbed acceleration. General perturbations methods circumvent

numerical integration but must initiate with mean elements. The NORAD element set propagators, which are

general perturbations methods, start with a given mean vector, y( to) = (no,eo,io,t'_,coo,Mo) at a given

epoch time, t0. The given mean mean motion, no, can be converted to the mean semimajor axis, ao, as

described in Reference 9. Reference 10 documented five NORAD models for propagating Resident Space
Objects (RSO) and satellites around the Earth. The Simplified General Perturbations (SGP) model, which

contains most of the first order gravitational terms as described in References 11 and 12, computes the drag

terms as linear functions of time. The SGP4 model, which uses the gravitational model of References 13 and
14, calculates the drag terms by a power density function of the atmosphere. The SGP4 model is customarily

used for near-Earth satellites. A space object is classified by HORAD as near-Earth if its period is less than 225

minutes; it is classified as deep-space otherwise. The SDP4 model, which includes the gravitational terms due

to third-body effects of the Sun and Moon and the Earth sectorial and tesseral harmonics, is an extension of

SGP4 for deep-space objects. The SGP8 model is an extension of SGP4 with the same gravitational and drag

models, but predicts state vectors more accurately especially when the satellite altitude is under 200 km. The

SDP8 model is an extension of SGP8 and SDP4 for deep-space objects. The two higher order propagators,

SGP8 and SDP8 were briefly considered as replacements for the SGP4 and SDP4, but the increased

computational time and only slight improvement in state prediction accuracy have discouraged the changeover

until the present time.

New and improved versions of SGP4 and SDP4 may be obtained directly from NORAD. However, using a

UNIX workstation which is linked to Internet, a version of the five NORAD propagators (SGP, SGP4, SDP4,

SGP8 and SDPS) can be downloaded from a computer at the Air Force Institute of Technology. The

comprehensive instructions of Reference l0 and all the necessary algorithms downloaded from Internet do not

guarantee that the reader can use the NORAD propagators immediately. Reference 9 discusses the problems
and solutions.

The NORAD propagators were developed from the satellite theories of Kozai and Brouwer to propagate mean

elements to osculating elements. Other mean element to osculating element propagators such as those

described in References 16 and 17 will not be considered since their improvements in computational speed,

memory storage and state vector accuracy are insignificant for our purpose. A method of converting osculating
elements to mean elements requires a "forward" propagator which converts mean elements to osculating

elements. Figures 1 to 6 show that the predicted osculating elements propagated by SGP are closer to those

predicted by the first order theory of secular perturbations (the thick solid line) for most satellite orbits. If the

- = _ are can
forward propagator is SGP, then _ = 3_ and ii 5h da

J I

required and be

2 4_ drag 6 12_ dt Idrag

h
is required, then d__ needs to be computed. If the

computed from Equation (10). If an accurate _ dt2[drag

forward propagator is SGP4 or SDP4, then B:w 4 = 6378137.0 K Po B, where 2 > K > 1 is a constant

related to the density model used to calculate Po at the altitude of 120 km. The units of Po and B are

respectively kg/m 3 and m 2 /kg. As a concrete example, a SGP or NORAD propagator has been chosen as

the forward propagator in this paper even though the choice is arbitrary.

The NORAD element set propagators all start with a given mean vector, y(to), and their output is the

predicted position and velocity vectors, r(t) and v(t), which can then be transformed to the osculating elements,

y(t). Osculating elements are the ones that are usually available and the reconstruction of mean elements must

begin with osculating elements.
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PreviousMethodsfor ConvertingOsculatingElementstoMeanElements(Ref.1 to 3)

A method for converting osculating elements to mean elements which uses a transition matrix

[ Oy(t) ] (17)T = 8 _( t0)

for the equation

By(t) = T by(to) (18)

is known as a method of differential corrections or a transition matrix algorithm in applied optimal control

theory. A transition matrix algorithm usually begins with a guessed nominal y(to) at time to, and then

propagates forward to a nominal y(t) at time t, which in turn gives By(t). Therefore the differential corrections

at time to is

by(t0) = T -1 By(t) (19)

using Equation (18). In practice, accurate transition matrices are computed numerically. Chapter 7 of

Reference 18 provides the algorithm to numerically compute a transition matrix such as that of Equation (17).

Reference 19 describes the technique of accurate numerical partials.

Reference 1 suggests an iterative procedure by using the given osculating elements y(t) as the initial guess of

the mean elements y(to) and assuming an identity transition matrix. That is, the averaged time derivatives of

Equation (16) are zero for any elapsed time and Equation (19) is reduced to

by( to) = 6y(t) (20)

since T = I. If the elapsed time is less than one day, this iterativ¢ procedure may convert y(t) to y(to) for some

Low Earth Orbits. This method converges linearly at best. If the elapsed time is greater than a day, this
method fails for most Low Earth Orbits. The cause of failure is a combination of:

• The neglected drag terms for semimajor axis, eccentricity and mean anomaly are not small.

• The identity matrix is a poor approximation to the transition matrix and Equation (20) is not valid.

Recalling that the problem is to find y(to) given B, to, t and y(t). The iterative procedures of Reference 1

may be summarized as follows:

1. Let the initial guess of the mean elements at the given time to be the same as the given osculating

elements, y(t). That is

yk(t0) = Y(t)

where k is the iteration number (k = 0 at this point).

2. Propagate forward (using a SGP propagator) from Yk (to) to xk (t) and then transform x k (t) to

Yk (t). The difference in osculating elements at time t is

6y(t) = y(t) - Yk(t) = by(t0)

using Equation (20).

3. Compute the new guess of the mean elements at time to as

Yk+l(t0) = Yk(to) + by(t0)

For 6y = I Y(t) - Yk(t) I > 10-1° , then procedure 2 is repeated with the new guess

Yk+l (to); otherwise the desired mean elements at time to is

Y(to) = Yk+!(t0)

References 2 and 3 are transformations between osculating and mean elements with t = to. Reference 2 is an

iterative method that uses the Frazer elements (position and velocity vectors and their variations), includes the

short- and long-periodic perturbations. Reference 3, which uses a combination of Kozai's and Izsak's theories,

calculates the difference between the osculating elements and mean elements only due to short-periodic

perturbations. The methods of these two references are only instantaneous conversions or transformations, and

therefore are not described in this paper.
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A NewMethodforConvertingOsculatingElementstoMeanElements

Thismethodusesagoodinitialguessderivedfromafirstordertheoryofsecularperturbationsandatransition
matrix computed by accurate numerical partials. As shown in Figures 1 to 6, the osculating elements computed

from a first order theory of secular perturbations (the thick solid straight line) behave linearly with respect to
time and are close to the average values of the SGP solutions. This implies that the initial guess of the mean

elements computed from Equation (16) will be close to the desired mean elements, y(to), at time t0. A

traditional transition matrix algorithm requires 7 forward propagations (1 nominal and 6 neighboring

trajectories). The stepsize hi is usually set to 10 -6 of the im mean element; this may be too small for

eccentricity but too large for the semimajor axis. The transition matrix algorithm based on accurate numerical

partials requires 25 forward propagations (1 nominal and 24 neighboring trajectories). The iterative procedures

of this method may be summarized as follows:

.

.

.

.

.

Compute the averaged time derivatives of Equation (4) to (15). Let the given osculating elements, y(t),

be Y, then the initial estimate of the mean semimajor axis, mean eccentricity, mean inclination and

mean mean motion are given by:
. I

= a(t) - _-.-_--4. (t-to)
Otl drag

_.de (t - to)
dt drag

= e(t) -

] = i(t)

fi = n(t)

where the empirical constant ;_ is 0.5 for Low Earth Orbits and zero otherwise.

Initialize --n and h for the forward propagator SGP and the initial guess of the mean mean anomaly,
2 6

-- da[ of Equation (10), thenM, by numerically integrating _- drag

ii _ 5fi _drag"6 12_ da If the forward propagator is SGP4 or SDP4, then B:w 4fl 3_ d_t and
2 = 4] __drag

is required.

Compute the nominal mean elements y*( t o) guess from Equation (16) and then propagate forward to

t giving the nominal osculating elements y*(t)

Compute the nominal differential correction of osculating elements at t as

15y(t) = Y - y*(t)

[8 y (t) 1 by accurate numerical partials.Compute the transition matrix, T = 8 y ( t 0)
-1

Propagate forward by a SGP propagator 6 times in the neighborhood of the nominal trajectory (step
3) using

Y(to) = y*(to) + 6Y(to)

For the i th neighboring trajectory ( i = 1, 2 .... 6 ), four "neighboring" neighboring trajectories are

computed from 4 stepsizes of hi hi phi and phi The corresponding 4 osculating elements
2' 2' 2 2 "

computed by a SGP propagator at time t are Yl, Y2, Y3 and Y4" The partial derivatives of the ith

column of T is given by
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.

8 y(t) (Y3- Y4)-p3(yl- Y2)

The 6 x 6 transition matrix can be approximated as

[ _y(t)] [_gy(t) _gy(t) cgy(t) 1T = 8 _(to) = 8 yi(to) 8 Y2(to) 8 Yn(to)

In computing T, 24 propagation by the forward propagator SGP are required. A good choice of p is

1/2 and that of the stepsize h i is 10 -4 of each mean element.

Update the nominal y*(to) at to as

y*(tO)lnew = y*(t0)lold + T -1 By( t)

Step 3 to 6 are repeated until the magnitude of 6y(t) is reduced to an acceptably small value (10-12).

Examples

Two examples are given to illustrate the performance of the new method for satellites at a Low Earth Orbit and

a High Earth Orbit. Using a first order theory of secular perturbations, the initial guess of the slow variables,

(_, _, i, f2, _" ), can be estimated in the vicinity of their unknown values at time to . If the initial guess of the

fast variable, M, can be predicted to within approximately 30 degrees of its unknown value, then convergence

is fast. This is not a problem for almost any satellite orbit if the elapsed time is less than one day.

The variations of the osculating mean anomaly, M, at time t for the example Low Earth Orbit satellite are

shown in Figures 6. The initial guess of M at time to is related to M at time t by Equation (16). For short

elapsed times, the 30 degree requirement can be satisfied easily. The primary reason is that the unknown mean
semimajor axis, a, has changed only slightly in a short elapsed time, and as a consequence the effects on the

terms due to _ and _ are small. The right-hand-side of Equation (16)can then be computed
Otl gravity °II drag

quite accurately giving a good initial guess of M.

In the following examples, first we assumed to know the mean elements, y(to) , at time to, and then we used a

forward propagator (SGP4 for Example 1 and SDP4 for Example 2) to get the osculating elements, y(t), at time

t. In what follows, we discard the mean elements, y(to), and no knowledge of the mean elements at time to

will be used. The problem is:

Given B, to, t and y(t); retrieve y(to).

Example I

The mean elements, y(to), at time to are taken out of the SGP4 example of Reference 10 with minor

adjustments for double precision computation. Also the ballistic coefficient, B, is replaced by that of the

LANDSAT-D. The osculating elements, y(t), at time t

from Equation (18).

Given: Cdo =2.0, A = 12.2778 meter 2, m= 1710.0

to= o.0, t= 0, 1, 5 days

are computed by using SGP4 with B:gp4 computed

kg, B = CdOA = 0.00718 meter2
2m kg
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y(O day) =

"6641.774062"

.0096661858

72.85385095

115.9622955

59.40458042

103.8371428

y(l day) =

"6633.640850"

.0083375605

72.85513567

113.4116703

56.77943987

130.9131346

, y(5 days)=

"6589.666059"

.0053578232

72.84433117

103.0554340

54.07490762

349.1054119

Following the procedures 1 to 3 of the new method, the initial guesses of the nominal mean elements, y*(to),

at time to for the cases of t = 0, 5

Y* ( t°)l o day =

Comparison of results:

,

"664L7740"

.00966618

72.853850

115.96229 '

59.404580

103.83714

Y*(to) I day

days are computed as:

6638.4631"

00869400

72.855135

115.97053

59.232901

105.09619

6641.9257

.00834486

72.844331

115.93401

66.308201

138.72967

Method of Reference 1 (Walter) New Method (Der&Danchiek)

Days from t o # of iterations # of SGP4 calls 7 # of iterations # of SGP4 calls 25

required: N l N ! required: N 2 N 2

0 12 84 3 75

1 40 280 3 75

5 not converged -- 4 100

Found: The mean elements, Y(to),at time to forthecases of t = 0,

6637.68397

.0086731

72.84350

Y(t°)= 115.9689

52.69880

110.5714

1, 5 days"

One reason to change the ballistic coefficient from that of Reference 10 is to investigate how close the new

method works during the satellite orbital decay. Using the lifetime equation of Reference 4, this satellite has a

lifetime of approximately 9000 minutes or a little over six days from time to . Numerical integration shows

that the lifetime is approximately 10 days from time to . After 5 days, the perigee altitude of the satellite is

close to 150 km and the state vectors predicted by the SGP4 propagator become inaccurate. Nevertheless, the

new method converges very close to y( t o) in the last few days before satellite re-entry.

Example 2

The mean elements, y(to), at time to are constructed from a Molniya orbit with perigee altitude of 500 km

and apogee altitude of 40000 km. Critical inclination (63.4 degrees) is chosen for this HEO to demostrate that

there is no singularity at any inclination for the conversion from osculating elements to mean elements. The

ballistic coefficient, B, which is not important for this HEO, is chosen to be the same as that of example 1. The

osculating elements, y(t), at time t are computed by using the SDP4 propagator. The effect of drag is

negligible on this HEO satellite.
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Given: Cdo=2.0,

to= 0.0, t= 10,

y(lO days)=

A = 12.2778 meter 2, m = 1710.0 kg, B

days

y(lO0 days) =

100, 200

-26626.70165-

.7415398328

63.455498451

118.5145116 '

.0695130482

137.6237041

"26630.49652"

.7364330943

63.36886054

105.0926980

4435084366

77.71324416

Cd0A

2m
= 0.00718

meter 2

kg

y(2OOdays) =

"26626.65222"

.7323070455

63.72013696

90.19640476

.7794822322

26.78924405

Following the procedures 1 to 3 of the new method, the initial guesses of the nominal mean elements, y*(to) ,

attime % forthecases of t = 10,

26626.798

74154077

I 63.455498y*(to) =
10da_ 119.93263

.07822485

144.12848

100, 200 days are computed as:

"26630.570

.73643493

63.368860, y*(t o) =
100da_ 119.43259

.43299544

158.12109

26626.686"

73230790

63.720136

117.80345

1.5247843

156.05599

Comparison of results:

Method of Reference 1 (Walter) New Method (Der&Danchick)

Days from t o # of iterations # of SDP4 calls 7 # of iterations # of SDP4 calls 25

(days) required: N 1 N 1 required: N 2 N 2

10 13 91 3 75

100 20 140 4 100

200 not conversed --- 7 175

Found: The mean elements, Y(t0),attime to forthe cases of t = 10,

26626.96632"

.7416966

63.33610

Y(t°) = 120.0032

.0077000

143.8417

100, 200 days"

Conclusions

• If the constants given in the data block of the five NORAD propagators are defined in double precision,

then the osculating state vectors can be predicted much more accurately especially for satellite orbits

without the influence of atmospheric drag. With this simple modification, the five NORAD propagators

can be used as forward propagators for the conversion of osculating elements to mean elements.

• The method presented by this paper achieves quadratic convergence due to accurate numerical partials. It

has uniformly good performance over the three test cases, succeeds where the Reference 1 method failed,

and is generally more computationally efficient.
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• For Low Earth Orbits (the example described by Figures 1 to 6), the initial guess of the fast changing mean

mean anomaly, M, at time to must include the term computed from the averaged time derivative due to

drag. In this case, the conversion of osculating elements to mean elements can be extended from an
elapsed time of one clay to the last few days before satellite re-entry

• For High Earth Orbits, the initial guess of the fast changing mean mean anomaly, M, at time to can be

predicted accurately even for long elapsed times. In this case, the elapsed time for the conversion of
osculating elements to mean elements can be extended to months.

• For Geosynchronous Earth Orbits (results not included in this paper), the initial guess of the fast changing

mean mean anomaly, M, at time to can also be predicted accurately even for long elapsed times. In this

case, the elapsed time for the conversion of osculating elements to mean elements can be extended to years.
• The determination of mean orbital elements can be radically streamlined with the new method and made

applicable for mean elements orbit determination with observations made by heterogeneous sensor types
over long spans of elapsed time.
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Figure 1. Effects of gravity and drag on semimajor axis for 2 Low Earth orbits
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Figure 2. Effecfs of gravity and drag on eccentricity for 2 Low Earth Orbits
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