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A Three-Dimensional Linearized Unsteady Euler

Analysis for Turbomachinery Blade Rows

Summary

A three-dimensional, linearized, Euler analysis is being developed to provide an efficient

unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacous-

tic response characteristics of axial-flow turbomachinery blading. The field equations and

boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows

through a blade row operating within a cylindrical annular duct are presented in this report.

In addition, a numerical model for linearized inviscid unsteady flow, which is based upon an

existing nonlinear, implicit, wave-split, finite volume analysis, is described. The linearized

aerodynamic and numerical models have been implemented into an unsteady flow code,

called LINFLUX. A preliminary version of the LINFLUX code is applied herein to selected,

benchmark, three-dimensional, subsonic, unsteady flows, to illustrate its current capabilities

and to uncover existing problems and deficiencies. The numerical results indicate that good

progress has been made toward the development of a reliable and useful three-dimensional

prediction capability. However, some problems, associated with the implementation of an

unsteady displacement field and numerical errors near solid boundaries, still exist. Also,

accurate far-field conditions must be incorporated into the LINFLUX analysis, so that this

analysis can be applied to unsteady flows driven by arbitrary external aerodynamic excita-

tions. These issues will be addressed in our future work.



1. Introduction

The development of analyses to predict unsteady flows in axial-flow turbomachines is

motivated primarily by the need to predict the aeroelastic (flutter and forced vibration)

and aeroacoustic (sound generation, transmission and reflection) characteristics of the blad-

ing. Accurate and efficient aerodynamic analyses are needed to determine the unsteady

loads that act on the blades and the unsteady pressure responses that persist upstream and

downstream of the blade row, for various sources of excitation. These excitations include

structural (blade) motions and aerodynamic disturbances at inlet and exit that carry energy

towards the blade row. The computational resources required to simulate nonlinear and

viscous unsteady fluid dynamic behavior continues to prohibit the use of such simulations in

detailed aeroelastic or aeroacoustic design studies. Therefore, approximate, e.g., linearized

inviscid, analyses are needed to provide efficient predictions of unsteady aerodynamic re-

sponse phenomena.

Until recently, the linearized analyses available for turbomachinery aeroelastic and aeroa-

coustic applications, have been based on two- and three-dimensional, classical methods

[Whi87, Nam87]. Such methods are very efficient, but are restricted to shock-free flows

through lightly-loaded blade rows. Because of these limitations, unsteady aerodynamic lin-

earizations relative to nonuniform potential mean flows have been developed [Ver93]. Such

analyses account for the effects of real blade geometry, mean blade loading, and operation at

transonic Mach numbers. They have received considerable attention in recent years and are

now being applied in aeroelastic and aeroacoustic design studies. However, more compre-

hensive linearizations are needed to predict three-dimensional unsteady flows in which the

effects of radial velocity and mean swirl are important, and two- and three-dimensional flows

in which strong shocks occur. For such flows, the nonlinear Euler equations are required

to model the nonisentropic and rotational mean or steady background flow and linearized

versions of these equations are required to model the unsteady perturbations.

Thus, much attention is now being given to the development of two- [HC93a, HC93b,

KK93, MV95] and three-dimensional [HL92, HCL93] linearized Euler analyses. As in the

earlier linearizations with respect to potential mean flows, the linearized Euler equations are

developed in the frequency domain for temporally and circumferentially periodic unsteady

excitations, both to remove physical time-dependence from the resulting linear problem and

to limit the computational domain to a single extended blade passage region. Unlike the

earlier linearizations, the linearized Euler equations are solved over a deforming solution do-

main [HC93a, Gi193] so that troublesome extrapolation terms in the blade surface conditions

can be replaced with more tractable source terms in the linearized unsteady field equations.

Also, shock and wake effects are "captured", within a conservative discrete formulation,

rather than "fitted" by imposing shock and wake jump conditions. Finally, because of the

large number of unknowns involved, the discretized linear unsteady equations are solved

iteratively, rather than by direct matrix inversion.

Under the present effort, we have proceeded with the development of a three-dimensional

linearized Euler analysis, which is based on a modern, implicit, flux-split, finite-volume,

numerical model. The three-dimensional unsteady aerodynamic and numerical models have

been formulated in the frequency-domain and implemented into a computer code, called
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LINFLUX. The numerical model and the LINFLUX codeare basedon the high-resolution,
wave-split, finite-volume schemedevelopedby Whitfield, Janus and Simpson [WJS88] for
nonlinear unsteadyflows, and implemented into the turbomachinery analysis,TURBO, by
Janus,Horstman and Whitfield [JHW92]. The waveor flux splitting allowsasharpresolution
of nonlinear shockphenomena--a feature which could facilitate the accurate prediction of
impulsive shockloads with the linearizedanalysisin the future.

A two-dimensionalversionof the LINFLUX analysishasbeenreported in [MV95, VMK95],
wherenumerical results for unsteadyflowsexcited by prescribedblademotions and external
aerodynamic disturbances are provided and comparedwith thoseof the linearized poten-
tial analysis, LINFLO [Ver93]and the nonlinear Euler/Navier-Stokes analysis, NPHASE
[HSR91,SLH+94, AV94]. NPHASE is a two-dimensionalcounterpart of the TURBO anal-
ysis. These comparisonsindicate that the 2D LINFLUX analysisgives accurate response
information for unsteadysubsonicflowsexcitedby bladevibrations and acousticexcitations,
but improvements in the numerical modeling of shocksand blade surfaceboundary condi-
tions will be neededto improve the 2D LINFLUX predictions for unsteady transonic flows
and unsteadyflows excited by vortical gusts.

The main thrust of the present effort hasbeen to provide a three-dimensionalversion
of the LINFLUX analysis. The 3D linearized aerodynamic and numerical formulations are

described in this report. A 3D version of the LINFLUX code has been constructed, based

on these formulations, and applied to predict unsteady flows through relatively simple three-

dimensional blade rows, i.e., a flat plate stator and a three-dimensional rotor that is an

analog of the 10th Standard Cascade [FV93]. We have considered unsteady subsonic flows

excited by blade vibrations and an unsteady flow excited by an acoustic plane wave that

travels in the axial flow direction. We will present the LINFLUX results for these flows, along

with results determined using TURBO, the two-dimensional, classical, linearized analysis of

Smith [Smi72], and the two-dimensional, full-potential based linearization, LINFLO [Ver93].

Our predictions indicate that the current version of the 3D LINFLUX analysis provides

qualitatively reasonable three-dimensional unsteady aerodynamic response information, but

additional work will be needed to improve the predictions for unsteady flows excited by

prescribed blade bending vibrations, and to reduce numerical losses near blade surfaces. In

addition, accurate, three-dimensional, far-field, boundary conditions must be incorporated

into the LINFLUX analysis, both to improve its flutter prediction capabilities and so that

LINFLUX can be applied to unsteady flows driven by arbitrary external aerodynamic exci-

tations. These issues will be addressed in our future work.



2. Unsteady Flow through a Blade Row

We consider time-dependent adiabatic flow, with negligible body forces, of an inviscid

non-heat conducting perfect gas through a rotating blade row that operates within a sta-

tionary cylindrical annular duct of constant inner, r = rH, and outer, r = rn, radii (see

Figure 2.1). The blade row consists of N distinct blades which rotate about the duct axis

at constant angular velocity ft = f_ee. In the absence of unsteady fluid dynamic forces, the

blades are assumed to be identical in shape, identical in orientation relative to an axisym-

metric inlet flow, and equally spaced around the rotor.

We will analyze this unsteady flow in a coordinate frame that rotates with the blading

in terms of cylindrical (r, 0, _, t) and Cartesian (xl, z2,x3,t) = (_, rsin0, -rcos0, t)

coordinates. Here _ and r measure distance along and radially outward from the duct axis,

respectively, and 0 measures angular distance in the direction opposite to the direction of

rotation, which is assumed to be counterclockwise when looking in the axial flow direction.

To describe flows in which the fluid domain varies with time it is useful to consider two sets

of independent variables, say (x, t) and (_, t). The position vector x(_, t) = _ + 7E(_, t)

describes the instantaneous location of the moving field point, _ refers to the reference or

steady-state position of this point, and 7_(_, t) is the displacement of the point from its

reference position. The displacement field, 7_, is prescribed so that the solution domain

moves with solid boundaries and is stationary far from the blade row.

In the present discussion, all physical variables are dimensionless. Lengths have been

scaled with respect to the reference length L*, time with respect to the ratio L*/V* where V*

is the reference flow speed, velocity with respect to V*, density with respect to a reference

density p*, pressure, with respect to p*(V*) 2 and specific internal energy with respect to

(V') 2. The superscript • refers to a dimensional reference value of a flow variable. The

reference length is the axial blade chord, and the reference fluid density and flow speed are

the inlet freestream, density and axial flow speed at blade midspan, respectively.

For aeroelastic and aeroacoustic applications we are usually interested in a restricted class

of unsteady flows; those in which the unsteady fluctuations can be regarded as perturbations

of a background flow that is steady in the blade row or rotor frame of reference. Thus,

we consider situations in which the background flows far upstream (say _ < __) and far

downstream (_ > _+) from the blade row consist of at most a small steady perturbation

from a steady, axisymmetric, swirling flow. The time-dependent or unsteady fluctuations in

the flow arise from temporally and circumferentially periodic unsteady excitations of small-

amplitude, i.e., prescribed vibratory blade motions and prescribed aerodynamic disturbances

at inlet and exit that carry energy towards the blade row.
We will consider blade motions of the form

7_s,(_,0 + 2rn/N,_,t) = T,,Re{RB(_,O,_)exp[i(wt + ha)l}, _ on B. (2.1)

Here, 7_B, is the displacement of a point on the nth moving blade surface relative to its mean

position; T_ is a rotation matrix, which relates a vector in the reference (n = 0) passage

to its counterpart in the nth passage; n = 0, 1,2,..., N - 1 is a blade number index; N

is the number of blades in the row; Re{ } denotes the real part of { }; RB is the complex

amplitude of the reference blade displacement; w is the (reduced) temporal frequency of the
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Figure 2.1: Rotating axial compressor blade row operating within a cylindrical duct.

blade motion; a is the phase angle between the motions of adjacent blades; and B denotes

mean position of the zeroth (n = 0) or reference blade. The interblade phase angle, or, is

determined by the nodal diameter pattern of the vibratory motion, i.e., cr = 2reND�N, where

ND is the integer count of the number of times a disturbance pattern repeats around the

wheel. The sign of ND is determined by the direction of rotation of the disturbance pattern;

e.g., if ND > 0 the vibratory disturbance pattern moves in the direction of blade rotation,

i.e., the negative 0-direction.

The unsteady flows in the far upstream and far downstream regions are in part, pre-

scribed as a fluid dynamic excitation and, in part, depend upon the interaction between

the fluid and the blading. Typically, an unsteady aerodynamic excitation is represented

as a linear combination of fundamental disturbances that are harmonic in time and in the

circumferential direction. For example, a fundamental pressure excitation is of the form

/)I,Too(X,/) = ne{pl,;oo(,')exp[i(tot_ Jr" toO)+ Xm_]}, _ < _:t: • (2.2)

Here, ibz,_:oo(x, t) is an incident pressure disturbance, i.e., a pressure disturbance that travels

towards the blade row from far upstream (_ _< __) or far downstream (( _> _+), to is the

temporal frequency of the disturbance, and [rn[ is the number of complete disturbance cycles

that occur over one revolution, i.e., in the interval 0 _< 0 < 2rr. The quantities w and m are

prescribed, and p1,:_oo(r) and X,,_ are deternfined fi'om the equations that describe the fluid

motion in the far field. The interblade phase angle, _7, of an incident disturbance is 27rm/N.



3. Nonlinear Aerodynamic Equations

The field equations that govern the unsteady inviscid flow are derived from the conser-

vation laws for mass, momentum and energy, and the thermodynamic relations for a perfect

gas. If we consider a moving control volume, N(t), which is bounded by the control surface

S(x, t) = 0, the conservation laws for the fluid within 1; at time t can be written in column

vector form as
d

fvOdV + fs[ j- OiZx,]n ,dS = fv dV . (3.1)

Here, the symbol - indicates an unsteady flow variable, "_ = (7_1, 7_, 7_) is the relative

velocity of a field point lying on the control surface S, n is the unit outward normal vector

to the control surface, a summation over repeated indices is implied, and the source term on

the right-hand-side of (3.1) accounts for the rotation of the reference frame that is fixed to

the blade row.

The state, I:l, flux, _'j,j = 1, 2, 3, and source term, S, vectors in (3.1) are defined by

gj+l

Oj+,&/O,+ P,%
+

0j+,0,/6",+
+

, g(f:,x)=

0

0

fl2Ulx2 + 2f_U4

f_201x3 - 2g_03

+

(3.2)

where _, 9, ET = E + 1_2/2 and

(3.3)

are the time-dependent fluid density, relative velocity, relative specific total internal energy,

and pressure, respectively. As a convenience, we have expressed the flux vectors _'j as explicit

functions of the state variables Ui, i = 1, 2..., 5, and the source term vector S as an explicit

function of the Ui and the spatial coordinates xi, i = 1, 2, 3.

We can interchange the order of time differentiation and volume integration in (3.1)

and convert the surface integral to a volume integral by applying Reynolds' transport and

Green's theorems, respectively. Then, after taking the limit of the resulting volume integrals

as l;(t) ---, 0, we arrive at equations that describe the inviscid fluid motion at points within

the fluid domain at which this motion is continuous and differentiable, i.e.,

(3.4)

The foregoing field equations must be supplemented by conditions on the flow at the

blade surfaces and duct walls and conditions at the inflow and outflow boundaries of the

computational domain. Flow tangency conditions, i.e.,

(V-7_).n=0 for x E B, and V-n=0 for r=rH, rD, (3.5)

apply at the moving blade surfaces and at the stationary duct walls, respectively. In addition,

temporally- and circumferentially-averaged values of the total pressure, the total temperature
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and the inlet flow angle are specified as functions of radius at the inflow boundary, and the

circumferentially- and temporally-averaged pressure is specified at the outflow boundary,

consistent with radial equilibrium. The unsteady fluctuations at inlet and exit that carry

energy towards the blade row must also be specified; those that carry energy away from the

blade row must be determined as part of the unsteady solution.

In principle, jump conditions, derived from the integral conservation laws (3.1), should

be imposed at vortex-sheet wake and shock discontinuities. Such conditions are of the form

[Fj-lJ_,jln,j=0 for xEWn or xEShn, (3.6)

where [[ ] denotes the jump in a flow quantity across a surface of discontinuity and 7_. is

the surface velocity. However, the usual procedure in numerical calculations is to solve the

conservative field equations (3.1) over the entire fluid domain in an attempt to "capture"

wake and shock phenomena.



4. Linearized Unsteady Aerodynamic Model

Since the unsteady excitations are assumed to be of small amplitude (e.g., [7_.[ .-_ O(e) <<

1), the unsteady part of the inviscid flow can be approximated as a first-order (in e) per-

turbation of an underlying nonlinear background flow that is steady in the rotating frame

of reference. Also, since the unsteady excitations are harmonic in time and the equations

that govern the first-order flow properties will be linear, these properties will have harmonic

time-dependence. We will take advantage of this feature by introducing frequency-domain

representations for the first-order flow variables, thereby removing explicit physical time

dependence from the resulting linearized unsteady problem.

To determine the small-disturbance equations, we first expand the unsteady state vector,

U, into an asymptotic series of the form

O[x(_, t)] = U(_) + fi[x(X, t), t] + ...= U(X) + Re[u(Yc)exp(iwt)] +... , (4.1)

where the vector U(_) ~ O(1) contains the conservation variables for the steady background

flow at _, the vector fi[x(_, t), t] .._ O(e) contains the conservation variables for the first-order

unsteady flow at x(_, t) = X + "R.(:_, t) = X + Re {R( X ) exp(iwt) ), and the dots refer to higher

order terms. The components of the vector u are the complex amplitudes of the linearized

unsteady conservation variables, i.e.,

u T = [p, $v:_ + pV::1 , fivx2 + pVx2 , #vx3 + pVx3 , pet + pET] (4.2)

where _, V and JET and p, v, and eT are the steady and the complex amplitudes of the

first-order unsteady flow variables, respectively.

The asymptotic expansion (4.1) is based on an independent variable transformation,

(x,t) --* (R,t), suggested by Hall and Clark [HC93a] and by Giles [Gi193]. This transfor-

mation from the instantaneous, x, to the stationary, R, spatial coordinates contains the

information that describes the blade motion and the corresponding field deformation. It

allows linearized unsteady flow solutions to be determined over a fixed domain or grid in

physical space without introducing difficult extrapolation terms into the blade surface con-

ditions. However, source terms, resulting from the grid deformation, appear in the linearized

unsteady field equation.

As a consequence of the assumptions regarding rotor geometry, inlet and exit mean-flow

conditions, and the temporal and circumferential behaviors of the unsteady excitations, the

steady background flow will be periodic from blade-to-blade, and the first-order unsteady

flow will exhibit a phase-lagged, blade-to-blade periodicity. Thus, e.g., we can write

V(_,0 + 2rn/N,_) = T,,V(_,0,_) andv(_,0 + 2_rn/g,_) = T,_v(_,O,_)exp(ina), (4.3)

where the matrix T,_ rotates a velocity vector through n passages. The conditions in (4.3)

allow numerical resolutions of the steady and linearized unsteady flows to be limited to a

single extended blade-passage region, i.e., a region of angular pitch A0 = 2_r/N.

The unsteady flux Fj and source term, S, vectors can be approximated using Taylor

series expansions about the mean flow state, U, and the reference spatial location, z_, i.e.,

0Fj. - - 0S ~

Fj(U) = Fj(U) + -_-u +... and S(U,x) = S(U,_) + _--_u + (7_.. Vx)S + .... (4.4)
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Here 0Fj/0U = {OFiffOUk) and 0S/0U = (OSJOUk} are Jacobian matrices and the sub-

scripts i and k refer to the ith row and kth column, respectively, of these matrices.

We have expressed the nonlinear fluid dynamic equations (3.4) in terms of the indepen-

dent variables x and t. However, the use of dependent variable expansions of the form (4.1)

renders it necessary to express the steady and linearized unsteady equations in terms of the

independent variables _ and t. To within first-order, the transformation relations are

0 IOtl== and 0 IOx = 0 IO  -(On lO  )O (4.5)

The equations that govern the zeroth-order steady and the first-order unsteady flows

are then obtained by substituting the expansions (4.1), (4.4) and (4.5) into the nonlinear

governing equations; equating terms of like power in e; and neglecting terms of second and

higher order in e. This procedure leads to nonlinear and linear variable-coefficient equations,

respectively, for the zeroth- and first-order flows. The variable coefficients that appear in

the linearized equations depend upon the steady background flow.

The differential conservation equation for the steady background flow is

OF ff c3_j = S . (4.6)

In addition, the condition V • n = 0 applies at the blade surfaces (_ E B,), and the duct

walls (r = rH and r = tO), and a periodic condition on U, cf. (4.3), applies upstream and

downstream of the blade row. Circumferentially averaged values of the appropriate mean

flow variables are specified as functions of radius at the inflow and outflow boundaries and

circumferential harmonics of these variables are allowed to evolve to values that are consistent

with a blade row operating within an infinite annular duct.

The field equation that governs the first-harmonic unsteady perturbation can be written

as

+  b-6u} - = u
(4.7)

OR_, ORx. ]0 iw(R_,U)+ F_ ,

where the terms that depend explicitly on the displacement field resulting from the blade

vibration, i.e., on R, are regarded as source terms. The linearized flow tangency conditions

at the moving blade surfaces and the stationary (R = 0) duct walls are given by

v. n = iwR. n + V. V(R. n), for _ E B_ , r = rH and r = r D . (4.8)

In addition, phase-lagged periodicity, cf. (4.3), and analytic far-field conditions must be

imposed. The latter must allow for the prescription of the various unsteady aerodynamic

excitations and permit unsteady disturbances coming from within the solution domain to

pass through the inlet and exit boundaries without reflection.

For a numerical integration of the steady and linearized unsteady boundary value prob-

lems, it is advantageous to regard the state vectors U and u as pseudo time dependent,

i.e., to set U = U('_, r) and u = u(_, r), where r is the pseudo time variable, and in-

clude the terms OU/OT[_ and 0u/0r[_ on the left-hand sides of (4.6) and (4.7), respectively.



This allows conventional time-marching algorithms to be used to converge solutionsfor the

steady and the complex amplitudes of the unsteady conservation variablesto steady-state

values. Also,for a finite-volumecalculation,the integralforms of (4.6)and (4.7)are required.

These may be found by a direct integrationof (4.6)and (4.7)over a fixed volume, V, and

bounding controlsurface,S(_), in referencephysical space, or by a directapplicationof the

small-unsteady-disturbance approximations to the integralequation (3.1).

Ifwe include the pseudo-time derivativeterms on the lefthand sides,the integralcon-

servation equations for the steady background and the first-harmonicunsteady flows have

the form

and

udV
[OFj _ OS

(4.9)

: (R',S)- (4.10)

+o- j - ]
To determine unsteady flows excited by prescribed blade motions, the displacement field,

R(_) in (4.10), must be prescribed throughout the solution domain, i.e., a single, extended,

blade-passage region of finite axial extent. This field should be defined so that the deforming

physical solution domain conforms to the motions of the blades, i.e., a field point on a moving

blade surface should have the same :_-coordinate for all time. Throughout the remainder

of the computational domain, the displacement field can be defined in whatever manner is

most convenient for implementing the flow boundary conditions. In the present study, R(:_)

is determined as a solution of Laplace's equation, V_R = 0, subject to Dirichlet boundary

conditions at the blade surfaces (i.e., R(_) = RB,(_) for Yc E Bn), the duct wails (R(_) = 0

for f = rn, rD), and in the far field (R(_) = 0 for _ < _:), and phase-lagged, blade-to-

blade, periodictity conditions [i.e., R(e,O + 2r/g,_) = TiR(e,O,_)exp(ia)] upstream and

downstream of the blade row.

_f
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5. Numerical Model for the Linearized Equations

The field equations that govern the nonlinear steady and the first-harmonic, linearized,

unsteady flows through a blade row rotating at constant angular velocity _ have been given

in differential form, as equations (4.6) and (4.7), respectively, and in integral form, with

pseudo time dependence added, as equations (4.9) and (4.10). The unsteady equation has

been written in a conservation form in which the terms that depend explicitly on the blade

motion, i.e., on R, are regarded as known source terms. The steady and linearized unsteady

field equations must be solved, in sequence, subject to appropriate boundary conditions at

the blade surfaces and the duct walls, and at the blade-to-blade periodic boundaries and the

inflow and outflow boundaries of the computational domain, as described in §4.

We proceed to describe the numerical procedures developed to resolve linearized, har-

monic, unsteady flows. These procedures are based on those used in the nonlinear unsteady

analysis TURBO, and have been implemented into an unsteady flow code called LINFLUX.

TURBO is an implicit, flux-split, cell-centered, finite-volume analysis that can be used to

predict three-dimensional, nonlinear, inviscid and viscous, unsteady flows through blade

rows. A detailed description can be found in [JHW92]. Also, an excellent description of

the basic numerical method underlying TURBO and its two-dimensional counterpart, called

NPHASE, can be found in [SLH+94]. The TURBO analysis is applied in the present study

to provide the steady background flow information needed for a linearized inviscid analysis.

The computational mesh used in the TURBO and LINFLUX analyses is a sheared H-

mesh, typically generated using the TIGER grid generation package [SS91]. This structured

mesh defines a curvilinear coordinate system, the boundaries of which lie along the bound-

aries of the physical domain, such that there is a one-to-one correspondence from points, _,

in the physical domain to points, o_, in a rectangular computational domain, where the grid

is uniform and orthogonal.

For a finite volume discretization, the geometrical properties of the mesh cells in physical

space are required. These properties are computed from the locations of the cell vertices

in physical space. The mesh points in physical space define the eight vertices of the non-

overlapping hexahedral cells which fill the physical solution domain. Cell faces are surfaces

of constant computational coordinate, so that each cell is bounded by the six surfaces, say

al = 1-1/2,1+1/2 and a2 = J-1/2, J + l/2 and o_3 = K-1/2, K + l/2. The connectivity

of the cells is thus known from the computational coordinates, with neighboring cells given by

changing a computational coordinate by one. Because of the transformation (x, t) ---, (_, t),

the geometric terms required to define the spatial discretization are independent of time.

This means that the mean cell volumes and face areas are used in computing the linearized

unsteady flow.

5.1 Finite Volume Equations

Let the symbol ^ refer to a quantity expressed in terms of the mean cell geometry, i.e., in

terms of v_, the mean cell volume, or Ajk, the mean area of the constant _j cell face projected

in the xk direction. Then, the finite-volume spatial discretization of the linearized unsteady

11



equation (4.10) canbe written as

(5.1)

where

(5.2)

In equations (5.1) and (5.2), U, u, and S represent average values of the physical state and

source term vectors over the mean cell volume, the vectors _'j and i'j are the steady and

unsteady perturbation fluxes, respectively, across a constant cr_ face, f] is the unsteady flux

across the constant aj face associated with the deformation field, R, and f is the residual of

the first-harmonic unsteady equation. The steady quantities 0, A_k, U, Fj(U) and S(U) are

regarded as known in the unsteady analysis. The operator _ in (5.1) represents the difference,

in the aj-direction, across adjacent cell interfaces, e.g., _j( )]j = ( )j,J+_/2 - ( )j,J-_/2,

where J is a cell index, the J 4- 1/2 are the corresponding cell-face indices, and the repeated

j index implies summation over all computational coordinate directions, so that the term

(*if_)j is the net flux through the Jth cell.

The linearized perturbation equation contains source terms that arise because this equa-

tion has been expressed in terms of the reference spatial coordinates, _. The source terms

depend on known steady flow properties and on the prescribed displacement field, R(:_).

They are associated with changes in cell volume, cell face area, and cell radial location. The

volume source term is given by --iw(A_)U + (Ate)S, where ?tO = _j(AjkRzk)is the complex

amplitude of the first-harmonic perturbation in the cell volume. The cell, face-area, source

term, _d, is defined in equation (5.2), and accounts for the mean flux through the moving

cell faces. The complex amplitudes of the first-harmonic perturbations in the projected face

areas, ajk, are computed using first order expansions in R for the area of a cell face. The

swept volume is given by _j = iwftjkR_ k. In evaluating At_ and v_j the R_ k are taken to

be the average displacements over a cell face. The remaining grid deformation source term,

_(R. V_)S, where R is based on the average displacement of the cell vertices, accounts for

changes in radial location.

The field equation (5.1) must be solved subject to the conditions imposed at the bound-

aries of the computational domain. Flow tangency conditions, cf. (4.8), apply at the blade

surfaces and the duct walls, a phase-lagged, periodicity condition, cf. (4.3), is applied at the

blade-to-blade periodic boundaries and analytic far-field conditions are applied at the inflow

and outflow boundaries. The far-field conditions must allow for the prescription of external

aerodynamic disturbances and permit unsteady disturbance waves coming from within the

solution domain to pass through the inflow and outflow boundaries without reflection. The

far-field conditions currently used in LINFLUX are based on one-dimensional characteristic

theory. This severely limits the external aerodynamic excitations that can be considered to

those occurring at near zero interblade phase angle, and relies on the dissipative nature of

an axially stretched mesh to damp oblique outgoing disturbances.
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Pseudo-Time Marching Procedure

A pseudo-time marching technique is used to converge successive estimates for the com-

plex amplitudes of the unsteady conservation variables to constant or "steady-state" values.

For this purpose, the pseudo time derivative in (5.1) is approximated using a first-order

accurate, two-point, backward, difference approximation. In particular, we set

6Au" = _/.,+1 , (5.3)

where the superscript n refers to the current or nth pseudo time level, (_ = 0/At, Au n =

(u "+1 -- u n) is a pseudo-time update to the state vector, and the norm IIAu'_ll is expected

to approach zero with increasing n. Equation (5.3) is used to determine the state vector

u "+1 at the (n + 1)th time step in terms of the state vector at the previous time step, and

unsteady residual,/., at the (n + 1)th time step. The unsteady residual is a linear function

of the state vector u.

After expanding the residual,/.,+1, about the nth time level, we can write the discretized

unsteady field equation as

(01+Ou ] -u") = (5.4)

where/.n is defined in (5.1), and the change in the residual due to the pseudo-time update

is given by

0u ZXu-= i 0Zxun + [ 0uI - 0 0u (5.5)

It follows from (5.3)-(5.5) that the pseudo-time update formula can be expressed in the form

O+iw_-O-_ Au"+6j -_Au ]=-0 iw--_

where s is the grid deformation source term.

5.2 Evaluation of Flux Terms

In this and the following subsections we will describe the spatial discretizations that are

used to approximate the flux terms on the left- and right-hand sides of equation (5.6) and the

pseudo-time integration used to solve this equation. To simp!ify these descriptions, we will
consider a "one-dimensional flow" in which F i = _" and fj = f axe the steady and unsteady

flux vectors in the aj = a computational coordinate direction. The subscript J will refer to

the cell volume bounded by the constant a-surfaces at J + 1/2 and J - 1/2. The extensions

of the equations that follow to three-dimensional flows is straightforward conceptually, but

involves the use of considerable and tedious nomenclature.
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Interracial Fluxes

A cell-centered finite-volume discretization requires that the fluxes at cell surfaces be

computed in terms of the values of the state vector in the neighboring cell volumes. In the

TURBO and LINFLUX analyses, a flux splitting technique is applied in which the flux at a

cell interface is computed in terms of a flux Jacobian matrix representing the local interface

conditions and the values of the state vector in the cell volumes adjacent to the interface.

The eigenvalues of the flux Jacobian matrix are used to determine which characteristic modes

are taken into account, thus controlling the direction of spatial differencing. This technique

results in first-order spatial accuracy. Higher order accuracy is achieved by adding corrective

fluxes to the first-order discrete approximations for the interfacial fluxes.

The flux splitting is based on a similarity transformation and an eigenvalue decomposition

of the physical flux Jacobian matrix, 0F/0U, into matrices that account for right (+) and

left (-) traveling disturbances. Thus, the flux vector, f, is split according to

aF (aF + aF- )f=_'-_u= \--_+_ u=T(A ++A)- T-'u
(5.7)

with the (+) terms being determined using information from the negative coordinate di-

rection and the (-) terms, using information from the positive coordinate direction. The

matrices T and T -1 contain the right and left eigenvectors, respectively, of 0F/cOU, A is

the diagonal matrix of eigenvalues, and A + and A- are diagonal matrices containing the

positive (+) and negative (-) eigenvalues, respectively. The sign of the wave speed (i.e., +

or -) determines the direction in which spatial differencing is applied.

In the TURBO analysis, two methods are applied to evaluate surface fluxes. One is the

flux vector splitting scheme proposed by Steger and Warming [SW81]; the other, the flux

difference splitting scheme proposed by Roe [Roe81]. The former is applied to evaluate the

left-hand-side flux terms in (5.6); the latter, to evaluate those on the right-hand side. Flux

vector splitting is used in the nonlinear analysis, because the resulting flux Jacobians are

easier to compute than those resulting from flux difference splitting. However, in LINFLUX,

flux difference splitting is used to evaluate the flux terms on both sides of the linear unsteady

equation. This is leasable because the steady flux Jacobian matrices must only be computed

once, and it has been found to improve the convergence rates of linear unsteady solutions.

In the flux difference splitting approach, the flux, fJ+l/2, at the J + 1/2 cell interface is

constructed from the flux in the cell to the left (J) or right (J + 1) of the interface plus the

flux due to waves approaching the interface due to the change in the state vector across the

interface. In the present implementation, we have chosen to evaluate the flux vector, f J+1/2,

based on t'(uj), and disturbances traveling to the left, i.e., at negative wave velocity. This

results an approximate expression for the unsteady flux at the J + 1/2 interface of the form

(I)b+,/2 = _--_u _ f(u.r)la+l/2 + _ (u.,+l - u j),
J+1/2 u=u_.U_

(5.8)

where t'(uj)lj+l/2 is a flux based on the state vector in the Jth cell, the area used in calcu-

lating the flux terms on the right-hand side of (5.8) is that at the J + 1/2 interface, and the
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ttRo_ is based on Uj and UJ+I and defined using the relations:intermediate state vector, "-'J+1/2,

-Roe
P J+1�2 -- V/'_JPJ+ 1 '

Roe V/_ _ J "_- _ J't'l

VJ+l/2 = V_ q-

and (5.9)
vf_ET,J "{'- p_'-_ET,J+I

The flux, f'J+1/2, in (5.8) could have been constructed from f(uJ+l)lJ+V2 and the distur-

bances traveling at positive wave velocity, or from an average value of the flux vectors in the

neighboring cells and an average of the disturbances traveling at positive and negative wave

velocities.

The discrete approximation (5.8) is first-order accurate, since the interfacial fluxes are

based only upon information from adjacent cells. Higher order spatial accuracy can be

achieved by adding corrective fluxes, which bring in information from additional neighboring

cells. In TURBO, flux limiters are used in conjunction with the corrective fluxes to control

the dispersive errors that occur near shocks and stagnation points. Such limiters have not

yet been incorporated into the LINFLUX analysis.

The corrective perturbation flux at the J + 1/2 interface is comprised of right traveling

waves at the upstream interface (J - 1/2) of the adjacent upstream cell (J) and left traveling

waves at the downstream interface (J + 3/2) of the adjacent downstream cell (J + 1). These

waves are approximated using the Roe-averaged flux Jacobian matrix at the J+ 1/2 interface.

Thus, the enhanced approximation to the perturbation flux is given by

(I)-alk"_ (UJ+ 1 --UJ)

f(uJ)lj+l/2 "]- "_ U=UI)_ell2

(5.10)

and results in second order spatial accuracy.

Right- and Left-Hand-Side Flux Terms

Once the interracial fluxes have been computed, they are spatially differenced to compute

the flux terms that appear on the right- and left-hand sides of the unsteady equation (5.6).

The difference expression for the net unsteady flux through the Jth control volume is

_t J _ fJ+l/2 - b-,/2 , (5.11)

and the second-order discrete approximation in (5.10) is used to evaluate the interfacial

fluxes on the right-hand side of (5.11). The left-hand side flux term in (5.6) represents the
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changein the net unsteady flux due to the pseudotime update. It is evaluated using the
first-order accurate flux differencesplitting approximation in (5.8), i.e.,

0i_ 0_ -
_j ("_AU)]j _-' t(AUJ) j+l/2-_- -_[U=UR_.,,_ (f_'uJ+l - AuJ)

0} I- (Auj - Auj_l) ,
- i'(Au's-1)lJ-'/1 _ tl=Ta_=_.,_/_

(5.12)

where f(Auj)lg+l/2 = gF/0Ulu=u_ A.s+l/iAu3 = (vGF/ v0U)j,j+i/iAuj. Thus, when ex-

pressing flux Jacobians with two subscripts, the first subscript refers to the cell where the

state vector is evaluated and the second refers to the cell face where the area is evaluated.

5.3 Pseudo-Time Integration

The linearized unsteady equation (5.6) is discretized, as outlined above, leading to a

linear system of algebraic equations. In this discretization, the flux terms on both the left-

and right-hand-sides of equation (5.6) are computed using flux difference splitting and the

approximations to the flux terms on the right-hand-side are corrected for higher order spatial

accuracy. The resulting system of algebraic equations is solved at each pseudo-time step using

an iteration procedure in which the left-hand side matrix is decomposed into diagonal and

off-diagonal, positive and negative, submatrices. Symmetric Gauss-Seidel (SGS) iterations

[WT91] are then applied to solve the decomposed, discretized, time-stepping equation.

The pseudo-time stepping equation is thus expressed in the form

(ElI+_u0_lu=u:) Au_=D'sAu_-M+_Au_ l+MJ+_Au_+_=-_)-- '
(5.13)

where the D submatrix contains the diagonal elements of the original matrix, and the M + and

M- submatrices contain the off-diagonal elements in the negative and positive computational

coordinate directions, respectively. Based on the flux difference splitting scheme given in

(5.12), these matrices are given by

Dj as + b-U
= (_ + iw_)I- _--_ ls=u_

J,J..}-l /2

(i)-oF OF - and Mj+ 1 = _ cs=lsB?_ll2 ,M+-I = b--U J-,,J-1/2 b-U .=_.;.
(5.14)

where the d subscript refers to the dth cell, the d -}- 1/2 subscripts refer to the right and left

interfaces of this cell, and d - 1 refers to the adjacent upstream cell.
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Introducing 1 as the Gauss-Seidel iteration index, the iteration formula for the linearized

unsteady equation has the form

DjAu_ - M+_IAu__I = -Mj+IAu_/-_I - r_

DjAu_ + Ms+_Au_+ _ = M+__Au___ - r_,

(5.15)

where 1 = 1,2,..., L, u._ = u_., Au._ = u 3 - u._, Au_ = u S -- u._, and ujz ._ u_. +1. The

first SGS iteration is over negative grid indices and the second iteration is over positive grid

indices. The iteration procedure is thus an LU decomposition of the pseudo-time update

matrix, with forward and backward substitution. Once the pseudo-time solutions converge to

a steady state, i.e., I li'll --* 0, any error introduced by the iteration scheme (5.15) vanishes.

Only the discretization errors in the residual calculation of equation (5.1) remain. The

current LINFLUX implementation uses explicit boundary conditions, which are incorporated

into the LU-SGS iteration procedure, so that the boundary conditions are imposed in a

semi-implicit manner. This boundary condition treatment has been found to yield better

convergence properties than a purely explicit implementation.
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6. Numerical Results

Unsteady aerodynamic response predictions will be presented for three-dimensional flows

through a flat-plate stator and a real-blade rotor based on the Tenth Standard Cascade

Configuration [FV93], to demonstrate the current status of the LINFLUX code. In each

case, the blade row consists of 24 airfoils, operates within a cylindrical annular duct with

an inner radius vH = 3.39 and an outer radius rn = 4.24, there is no clearance between the

blades and the outer duct wall, and the steady background flow at inlet is uniform relative

to a space-fixed or inertial reference frame.

We will consider unsteady flows that are excited by prescribed single-degree-of-freedom

(SDOF), harmonic, blade motions (see Figure 6.1). The latter occur at unit frequency

(ca = 1) and with constant phase angle _r between the motions of adjacent blades. The blade

motions to be considered are pure translations normal to the blade chords (bending) and

pure rotations about axes at the blade midchords (torsion). These motions [see (2.1)] are

defined by RB = he= and RB(_B) = ,v x (XB -- _P), respectively, where h and cr are the

complex amplitudes of the bending and torsional vibrations, n is a unit normal to the blade

chord plane, and _B -- _P is the distance between a point, _¢s, on the mean reference blade

surface and the point, :_p, at the same radius, on the mean position of the torsional axis. To

allow a convenient comparison between LINFLUX predictions and those of two-dimensionai

unsteady flow codes, we have assumed that the complex amplitudes of the vibratory blade

motions are constant along the span. In addition to the flows excited by blade vibration,

we will also consider an unsteady flow through the rotor blade row that is excited by an

acoustic plane wave that travels through the duct in the axial flow direction.

In addition to the LINFLUX results given below, for purposes of comparison, we will

present nonlinear response predictions based on the TURBO analysis, and linear response

predictions based on the two-dimensional classical analysis of Smith [Smi72] and on the two-

dimensional LINFLO analysis [Ver93]. In the Smith analysis, the unsteady flow is regarded as

a small perturbation of uniform stream; in LINFLO, as a small perturbation of a nonlinear

potential steady background flow. The TURBO analysis has been used to provide the

steady background flow information for the LINFLUX real blade calculations. The steady

full-potential analysis CASPOF [Cas83] has been used to provide this information for the

LINFLO calculations. Accurate far-field conditions have not yet been incorporated into the

TURBO or LINFLUX codes; therefore, at present, these analyses can only be applied to

flows excited by blade vibrations or external aerodynamic disturbances that travel axially.

The TURBO nonlinear steady and unsteady solutions and the LINFLUX linearized un-

steady solutions have been determined on H-type meshes. The grid generated with the

TIGER grid generator [SS91] for the subsonic calculations, reported below, consists of 141

axial, 41 tangential and 9 radial surfaces (44,800 cells). For the flows excited by blade mo-

tions, this grid was stretched axially and extended to 5 axial chords upstream and to 9 axial

chords downstream from the blade row to dissipate oblique outgoing waves. For the rotor

flow excited by the planar acoustic excitation, the mesh extended two axial chords upstream

and one axial chord downstream of the blade row. The axial grid distribution is clustered

near blade leading and trailing edges, the circumferential grid distribution is clustered near

blade surfaces, and the radial grid distribution is uniform.
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Figure 6.1: 3D Tenth Standard Configuration undergoing an exaggerated torsional motion

(ah,,b = 0 deg, atip = 45 deg). The rotor consists of 24 NACA 5506 airfoils staggered at 45

deg. The nodal diameter of the blade motion is 6, which results in an interblade phase angle

of 90 deg. The outer casing has been eliminated from the figure for clarity.

The full potential steady and the LINFLO linearized unsteady solutions were determined

on composite meshes consisting of local C-meshes embedded in global H-meshes. The H-

and C-meshes used with LINFLO consisted of 155 axial and 41 tangential lines and 101

radial and 21 circumferential lines, respectively. Coarser meshes were used for the CASPOF

calculations. Since analytic, two-dimensional, far-field conditions are applied, the H-meshes

extended only one axial chord upstream and downstream from the blade row.

The numerical solutions reported herein were determined on an IBM-390 Workstation.
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The TURBO steady subsonicsolutions required 13 CPU hours. The TURBO unsteady
calculations werestarted from the appropriate steady solution and required 18 CPU hours
perbladepassage.The numberof bladepassagesincludedin a nonlinearunsteadycalculation
dependsupon the interblade phaseangle. For example,if a = 60 deg, six passages are needed.

The TURBO calculations were performed using 500 time-steps per cycle of unsteady motion,

4 iterative refinements, involving Newton and symmetric Gauss-Siedel iterations, per time

step, and three cycles of motion were used to converge the nonlinear inviscid solutions to a

periodic state. The LINFLUX linearized unsteady calculations required 2 1/2 CPU hours.

They were performed using 2000 pseudo time steps and 2 SGS iterations per pseudo time

step.

6.1 Flat-Plate Stator

The flat plate stator consists of 24 unstaggered blades. The inlet flow is axial and uniform,

with Mab_,-o¢ = Mrel,-_o = 0.5, where the subscripts refer to the absolute and relative inlet

freestream conditions. This geometry and flow condition were chosen as a first LINFLUX

test case both because of its simplicity and to allow meaningful comparisons of LINFLUX

predictions with those of the two-dimensional, semi-analytic analysis of Smith [Smi72].

The 3D LINFLUX and the 2D Smith analyses were applied to predict unsteady flows

produced by SDOF bending and torsional blade vibrations. These motions occur at unit

amplitude, at unit reduced frequency, and at interblade phase angles, a = 360 ND/N deg,

ranging from 0 to 180 deg in increments of 15 deg, i.e., ND = 0,1,2,..., 12. Results

for in- (a = 0 deg) and out-of-phase (a = 180 deg) blade motions are shown in Figure 6.2,

where the LINFLUX and semi-analytic predictions are given for the real (in-phase with

blade displacement) and imaginary (out-of-phase with blade displacement) components of

the unsteady pressure jump across a blade surface, _] = Plower -- Puppet, at midspan (r/rD =

0.9). The results of the two analyses are in excellent agreement for the in-phase blade

motions, in good agreement for the out-of-phase torsional vibration; but, they are in poor

agreement for the out-of-phase bending motion.

The predictions for the unsteady pressure jumps across the flat-plate blades undergoing

torsional blade vibrations at a = 15 ND deg, ND = 0, 1,2,..., 12, indicate that the LIN-

FLUX and Smith results are in good agreement over this range of interblade phase angles.

However, the corresponding predictions for bending vibrations are in good agreement only

for low values of a. We have conducted a detailed investigation of the LINFLUX solu-

tions for the bending motions and a careful examination of the LINFLUX coding. At this

point, we have not uncovered the cause for the discrepancies between the LINFLUX and the

semi-analytic results. As a result, we will continue to address this issue in our future work.
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Figure 6.2: Unsteady pressure difference distributions, as predicted by the 3D LINFLUX

and the 2D Smith analyses, at mid-span of the flat-plate stator with blades vibrating at unit

amplitude and unit reduced frequency: (a) torsion about midchord at a = 0 deg, (b) torsion

about midchord at a = 180 deg, (c) bending at a = 0 deg, (d) bending at a = 180 deg.

6.2 3D Tenth Standard Configuration

This rotor consists of 24 NACA 5506 airfoils staggered at an angle, O, of 45 deg (see

Figure 6.1). The absolute inlet Mach number M_b_,-_o is 0.402 and the rotational speed is

1121 = 0.214. This geometry and flow condition were chosen to match the subsonic Tenth

Standard Configuration at mid span, i.e., Mrel,-oo = 0.7, f_rcl,-¢¢ = 55 deg and G = 1.0 at

r/rD = 0.9, where M_l,-_o and Ft_l,-oo are the relative inlet Mach number and flow angle,

and G is the circumferential blade spacing. The steady, surface, Mach number distributions

predicted by the TURBO and CASPOF (at r/rD "- 0.9) analyses are shown in Figure 6.3.
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Figure 6.3: Relative surface Mach number distributions for the Tenth Standard Configuration

(M_b,,-oo = 0.402, 1121 = 0.214): (a) TURBO predictions; (b) TURBO and CASPOF

predictions at midspan.
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Figure 6.4: Local work per cycle distributions and global works per cycle, as predicted by the

3D LINFLUX and TURBO analyses, for the subsonic Tenth Standard Configuration with

blades undergoing in- and out-of-phase torsional vibrations about midchord at a reduced

frequency w = 1.

Blade Vibration

The linearized (LINFLUX) and nonlinear (TURBO) analyses were applied to predict the

local (we) and global (Wc) work per cycle responses to blades vibrating in torsion about

midchord with an amplitude, [cz[, of 1 degree along the entire span, a reduced frequency, w,

of 1.0, and interblade phase angles, a, of 0 deg and 180 deg. The local and global works per

cycle are given by

WC(_B) =-w -1J_[6+2_ ~p_ ¢O_s_ " [dABIdA8d(wt) and Wc =/As wc(Yc)dAs, (6.1)
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Figure 6.5: Local work per cycle distributions at blade midspan, as predicted by the 3D

LINFLUX and TURBO analyses and the 2D LINFLO analysis, for the subsonic 3D Tenth

Standard Configuration with blades oscillating at unit reduced frequency: (a) torsion about

midchord, a = 0 deg; (b) torsion about midchord, a = 180 deg; (c) bending, a = 0 deg; (d)

bending, a = 180 deg.
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where the subscripts B and B refer to the instantaneous and the mean blade surfaces, re-

spectively, and dA is a directed differential surface area. For small amplitude blade motions

WC(_B) _ -rlm{(PdaB + pdAB). R_/ IdABI}, (6.2)

where Im{ } denotes the imaginary part of { } and daB ,-_ dAB - dAB.

The results are shown in Figure 6.4 where the local work per cycle responses are given for

r/rD = 0.8, 0.85, 0.9, 0.95 and 1.0. The TURBO and LINFLUX predictions are generally in

good agreement, except for those on the suction surface, at the outer span of the blade, from
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approximately 70% of axial chord to the trailing edge. The LINFLUX and TURBO predic-
tions should be nearly identical, since LINFLUX is a derivative of TURBO and nonlinear
effectsshould be small for the motions considered. The differencesbetween the nonlinear
and linear results in Figure 6.4 areprobably due to the sensitivity of the linearized analysis
to any errors that arepresentin the nonlinear solution for the steadybackgroundflow near
blade surfaces,where numerical lossestend to be high and grow with distance along the
blades.Similar errorswerepresentin 2D LINFLUX predictions [VMK95, MV95], and were
reducedby decreasingthe normal grid spacingnear a blade surface.Steadypredictions can
often be improved by altering the computational mesh, but a better solution would be to
implement more accurateapproximationsof the surfaceboundary-conditions into both the
TURBO and LINFLUX analyses.

LINFLUX, TURBO, and 2D LINFLO predictions for the local work per cycle responses
at midspan, to bladesundergoingpure torsional vibrations about their midchordsand pure
bending vibrations, are shownin Figure 6.5 for a = 0 deg and a = 180 deg. The torsional

and bending amplitudes are constant along the entire span and were set at 1 deg and at 1%

of blade chord, respectively, for the nonlinear calculation. The various response predictions

for the in- and out-of-phase torsional vibrations are in reasonably good agreement, except

for the LINFLUX predictions near the blade trailing edge. The results for in-phase bending

show similar qualitative behaviors, but significant quantitative differences over the entire

blade. The TURBO and LINFLO results for out-of-phase bending are in fair agreement, but

the LINFLUX results differ substantially from those of the other analyses. This is consistent

with the behavior observed for the fiat-plate stator predictions.

Acoustic Excitation

As a final example, we consider the interaction of an acoustic plane wave that travels in
the axial direction with the subsonic 3D Tenth Standard Cascade. The acoustic disturbance

occurs at unit amplitude with pI,-_ = (1,0), unit frequency and zero interblade phase

angle. The results of the 3D LINFLUX analysis for the unsteady surface pressures acting

on each blade and those of the LINFLUX and the 2D LINFLO analyses for the unsteady

surface pressures acting at blade midspan, r/rD = 0.9, are shown in Figures 6.6 and 6.7,

respectively. The LINFLUX results in Figure 6.6 show a reasonable variation with radius,

and those in Figure 6.7 are in good agreement with the LINFLO predictions. Contours of the

in-phase component of the unsteady pressure at r/rD -'- 0.9, as predicted by the LINFLUX

and LINFLO analyses, are shown in Figure 6.8. Again the results of the two analyses are

seen to be in good agreement. We should note that, because of three-dimensionai effects,

the LINFLUX and LINFLO results are not expected to be in perfect agreement for the 3D

Tenth Standard Configuration, even for the simple flows considered in this report.
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Figure 6.6: Unsteady surface pressure distributions, as predicted by the 3D LINFLUX anal-

ysis, due to the interaction between an acoustic excitation from upstream, with pI,-o_ =

(1,0), w = 1, and a = 0 deg, and the subsonic 3D Tenth Standard Configuration.
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Figure 6.7: Unsteady surface pressure distributions at midspan, as predicted by the 3D

LINFLUX and the 2D LINFLO analyses, due to the interaction between an acoustic dis-

turbance from upstream, with pz,-_ = (1, 0), w = 1, and a = 0 deg, and the subsonic 3D

Tenth Standard Configuration.
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(1,0), w = 1, and cr = 0 deg, and the subsonic 3D Tenth Standard Configuration: (a)

LINFLO calculation; (b) LINFLUX calculation.
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7. Concluding Remarks

A linearized unsteady aerodynamic analysis is being developed for turbomachinery aeroe-

lastic and aeroacoustic design applications. This analysis, called LINFLUX, is based on the

Euler equations of fluid motion and the implicit, flux-split, finite-volume scheme used in the

nonlinear unsteady analysis, TURBO [JHW92]. To date, the effort has been focused on for-

mulating the linearized inviscid unsteady aerodynamic and numerical models and on imple-

menting these models, first, into a two-dimensional code, and then into a three-dimensional

code. The two-dimensional analysis and its application to unsteady subsonic and transonic

flows is described in [VMK95, MV95]. The first applications of the 3D LINFLUX analysis

to very simple, benchmark, unsteady flows have been described in this report.

We have applied the 3D LINFLUX analysis to unsteady subsonic flows through a flat plate

stator and a "real" blade rotor, which is a three dimensional version of the 10th Standard

Cascade Configuration. The unsteady flows are excited by prescribed blade vibrations, and,

in one example, an acoustic plane wave that travels in the axial flow direction. In each case,

the LINFLUX predictions have been compared with predictions based on previous analyses.

The results of this study indicate that the current version of the 3D LINFLUX analysis gives

accurate aerodynamic response information for unsteady subsonic flows excited by torsional

blade vibrations, in-phase bending vibrations, and planar acoustic excitations. However,

there is an error in the existing code (cf. Figures 6.2d and 6.5d) that must be located and

corrected before reliable response predictions can be determined for flows excited by bending

vibrations at non-zero interblade phase angles. Additional work is also needed (cf. Figure 6.5)

to ensure that the TURBO and LINFLUX analyses give nearly identical response predictions

for unsteady flows driven by small-amplitude excitations.

Based upon our earlier 2D work, we also note that improvements will be needed in

the LINFLUX analyses to accurately predict unsteady transonic flows and unsteady flows

excited by vortical gusts. In particular, the shock modeling used in LINFLUX must be

improved, so that LINFLUX and its nonlinear counterpart, TURBO, provide consistent

response information in the vicinities of shocks. Also, the surface boundary conditions used

in both codes should be improved to reduce numerical losses and to allow more accurate

descriptions of unsteady vortical behaviors near blade surfaces. The latter may require the

implementation of higher-order surface boundary conditions into the nonlinear and linearized

codes.

The TURBO and LINFLUX analyses are being developed to provide useful nonlinear and

linearized unsteady aerodynamic analyses for three-dimensional flows in which the effects of

radial flow and mean swirl are important. For this purpose, accurate far-field conditions

must be implemented. Thus, in a follow-on effort, work will be directed towards establish-

ing and implementing appropriate far-field conditions for three-dimensional unsteady flows.

Such conditions will preclude the need for using axially-stretched meshes in blade flutter

calculations and allow the consideration of unsteady flows excited by arbitrary external

aerodynamic excitations. The 3D LINFLUX code development effort is being continued un-

der Contract NAS3-26618, where the emphasis is being placed on predicting the aeroacoustic

responses of blade rows to external aerodynamic excitations. Work to improve the current

flutter prediction capabilities of LINFLUX will also continue under this Contract.
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