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Abstract

Monte Carlo simulations based on a Spin-1 Ising Model for binary alloys have been used

to investigate the non-equilibrium partition coefficient (kneq) aS a function of solid-liquid

interface velocity and orientation. In simulations of Si with a second component kneq

is greater in the [111] direction than the [100] direction in agreement with experimental

results reported by Aziz el al. The simulated partition coefficient scales with the square

of the step velocity divided by the diffusion coefficient of the secondary component in the

liquid.

Introduction

During rapid solidification of a binary alloy, the solid-liquid interface is not at equi-

librium. The partition (or segregation) coefficient therefore differs from that determined

from the equilibrium phase diagram. Rapid solidification leads to the development of

novel microstructures and compositions not accessible by standard solidification tech-

niques. Rapid solidification may be effected by such techniques as laser melting, splat

cooling or melt atomization.[I, 2] Both analytical and computational models have been

developed for k,,,q. The analytical model most extensively compared with experiment is

due to Aziz.[3, 4] Jackson has investigated this phenomenon using a computational Spin-1

Ising model.[5, 6, 7] In addition, orientational dependence of the partition coefficient of

Bi in Si during rapid solidification was experimentally investigated by Aziz et al.[8]

Simulations of Solidification of Doped Silicon

The probability of an atom going from a liquid to solid is given by: [9]

(1)



_/j is the bond energy between all atom i and an atom j. Tile energy of the bond between

two atoms depends only oil the types of atoms involved, and the relevant phase diagram.

(In this paper the liquid was assumed to be an ideal solution, while the solid was assumed

to be a regular solution.) The possible types of atoms are solid of species a , solid of

species b, liquid of species a, and liquid of species b, which are represented by 'A','B','a',

and 'b' respectively. A_,' is the entropy of fusion, ¢5,i is one when atom i is of type t, ks is

Boltzmann's constant and T is the temperature. Po is a constant that will be determined

if all the probabilities are to sum to one. Alternatively, if one considers the probabilities

to be the likelihood of an event in a particular time interval, Po will determine the time

scale. The probability of an atom going from crystal to liquid is given by:

PisL = Po(_Ai +_SBi)exp -- Ict3T/ (2)

Diffusion is represented by an exchange between a liquid atom of type 'b' with a liquid

atom of type 'a' with the following probability:

Where F is the diffusive jump frequency, Z is the number of nearest neighbors. This will

lead to a diffusion coefficient given by [10]

1,_2
D = _ (l)

2d

where c_ is the jump distance to the nearest neighbor and d is the dimensionality of the

lattice.

Partition Coefficient Determination

Under non-equilibrium conditions the gradient of concentration in the liquid near the

interface can be very large, resulting in a concentration in the liquid that varies in atomic

dimensions. Therefore care must be used in the definition of the segregation coefficient.

A definition of k,_¢q can be based on the solution of the 1-d moving boundary problem:

Ou O (DOU )o-7= 0-7\ - (5)

where the concentration (represented by u) of the solid layer is kneq times the concentration

of the neighboring liquid layer. The equation is differenced where Ax does not approach

zero, but is determined by the atomic lattice spacing. For silicon the (111) spacing of

3.13/_ was chosen. The resulting difference equation is:

u_ +l-u_'- 2AxAt_=_(dtu,_i-(d,+d_Ax)U_+d.u'+,)+(bm__,_b_u:)l/ (6)
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Figure 1: Ising model simulation results for silicon at different tempera.tures. (a) growth rate for the

[100] and [111] growth directions. (b) Step density in the [111] and [100] directions.

The subscripts l, m , and r refer to left middle and right, i is the node number which is

is increasing to the right, and n is the time interval [1 i]. The fluxes can be considered to

be into and out of individual atomic planes. The coefficients to use are given by Table 1

where B stands for the boundary layer, L a liquid Layer, and S the Solid Layer. B(L)

represents the boundary with a liquid layer to its right, (L)L represents a liquid layer with

a liquid layer to its left.

B(L)

L(L)

L(S)
S
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Using this procedure a non-equilibrium partition coefficient can be fit to the Monte Carlo

simulation results ( using the appropriate diffusion coefficient and growth velocity). Fig-

ure 2 shows a comparison of finite difference calculations and Monte Carlo simulations.

Scaling of Monte Carlo Simulation Parameters

The paramaters in the Spin-1 Ising Model are the nearest neighbor bond energies, the

latent heat of fusion at the melting temperature, the diffusive jump frequency F, and the

crystal structure. For the present work a diamond cubic structure with a lattice spacing

of 5.43 A was used. In order for the Ising model to give the proper surface roughening

temperatures, an entropy of fusion greater than the experimental value must be used.

The value for AS/kB used in the simulations was 6. Interpretation of the results depends
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Figure 2: The initial concentration profile was the same for all simulations. Concentration profiles of

the solid were all convoluted with a Gaussian before comparison (convoluted profiles shown). Both series

of MC simulations were in the [111] direction with 9t = 10 and a temperature of L450 K. The parameters

for the finite difference run were D = 2xlO-%m2/s, a velocity of 14.4 re�s, kneq value of 0.32, and a grid

spacing of 3.13 _. In this case only the value of k, eq was used as a free parameter for fitting the finite

difference run to the lsing model simulation results.

on Po in equations 1,2 and 3. By matching the growth velocity in the-simulations to

experimental growth velocities it was found the time scale could be changed to seconds

by setting Po _ 9x10 'z. ( A single value for Po was found by fitting experimental data at

1550 K. In general Po should account for a temperature dependent arrival rate at steps.)
F is defined to be:

V =_Ro (7)

where R_ isthe arrivalrate at a step, and _ isa parameter which can be adjusted to

match diffusiondata. For data chosen equation I simplifiesto:

= Po Xp(-AS/}s) (S)

Using equation 4 for diamond cubic and a value of 10 for _, which is reasonable on the

basis of atomic considerations [12], we have:

D- _tR_a2 _R_a°2- ,_ 2xlO-4cm2/s (9)
6 32

Results and Discussion

Figure 1 (a) shows simulation results for growth of silicon in the [111] and [100] directions.

The line for the [111] direction should come in vertically to the melting point of silicon since

the surface is smooth. Figure 1 (b) shows the step density as a function of undercooling
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Figure 3: lsing model simulations for the diamond cubic structure in the [11 l] and [100] directions with

gt = 10. A horizontal line is drawn at keq = .001. (a) kn_q as a function of normalized velocity. (b) k._q

as a function of normalized step velocity.

for the (111) and (100) faces. The step density is defined to be the number of liquid

atoms at the interface with at least half their bonds to solid neighbors divided by the

cross-sectional area of the interface. Figure 2 is an example fitting of a finite difference

run to Monte Carlo simulations. Spurious peaks found in the average of two Ising model

simulations is not found in the average of ten runs. Figure 3 gives results for k,_q as a

function of normalized growth velocity in the [111] and [100] directions. At 7 rn/._ the

Ising model simulations result in a factor of approximately 2. Aziz et al. found that this

ratio was about 5 at 1.7 m/s and about 3 at 5 m/.s I81. The ratio _:neq(lll)/kneq(lO0} found

by experiment and simulation are in reasonable agreement. Figure 3 (b) plots the data

for both k,_q(lll) and k,_,q(loo} versus the normalized step velocity. (The normalized step

velocity is the normalized growth velocity divided by the density of steps.) The results

for both growth directions fall on a single curve when k,_q is plotted as a function of step

velocity.

Conclusions

The Monte Carlo simulations suggest that the determining factor in solute trapping is

the step velocity at the interface. The Spin-1 /sing model predicts greater incorporation

of an impurity in Si with k, o = .001 on the (111) face than the (100) face for the same

growth velocity. The magnitude of the effect is in reasonable agreement with experimental
results.

Acknowledgement

This work was supported by NASA Contract Number NAG8-944.



References

[1] P. Duwez, R.H. Willens, and W. Klement Jr. Applied Physics 31, 1136 (1960).

[2] D. Beck, S.M. Copley, and M. Bass. Metall. Trans. A 13, 1879 (1982).

[3] M.J. Aziz, J.Y. Tsao, M.O. Thompson, P.S. Peercy, and C.W. White. Phys. Retd.

Lett. 56, 2489 (1986).

[4] M.J. Aziz and T. Kaplan. Acta Metall. 36, 2335 (1988).

[5] K.A. ,Jackson, G.H. Gilmer, D.E. Temkin, J.D. Weinberg, and K. Beatty. JourT_al of

Crystal Growth 128(1-4), 127-138 (1993).

[6] K.A. Jackson, G.H. Gilmer, and D.E. Temkin. Phys. Rev. Lett. 75(13), 2530 (1995).

[7] K.A. Jackson, G.H. Gilmer, D.E. Temkin, and K.M. Beatty. JourT_al of Crystal

Growth to be published (1995).

[8] M.J. Aziz and C.W. White. Phys. Rev. Left. 57(21), 2675 (1986).

[9] G.H. Gihner. Mater. Sci. En 9. 65, 15 (1984).

[10] P. Shewmon. Diffusion in Solids 2nd ed. Minerals Metals and Materials Society

(1989).

[11] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes

in C 2nd ed. Cambridge University Press (1992).

[12] M.H. Grabow, G.H. Gilmer, and A.F. Bakker. MRS Symposium Proceedings 141,

349 (1989).


