NASA Pocket Statistics VASA-TM-111,667 NASA-TM-111667 19960045730

1996 Edition

Foreword

POCKET STATISTICS is published by the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA). Included in each edition is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial and Workforce data.

The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload. For yearly breakdown of charts shown by decade, refer to the issues of POCKET STATISTICS published prior to 1995. Changes or deletions to this book may be made by phone to Ron Hoffman, (202) 358-1596.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION HEADQUARTERS FACILITIES AND LOGISTICS MANAGEMENT Washington, DC 20546

Contents

Section A - Administration and Organization

NASA Organization	A-2
NASA Administrators	A-3
National Aeronautics and Space Act	A-4
NASA Installations	A-7
The Year in Review	A-13

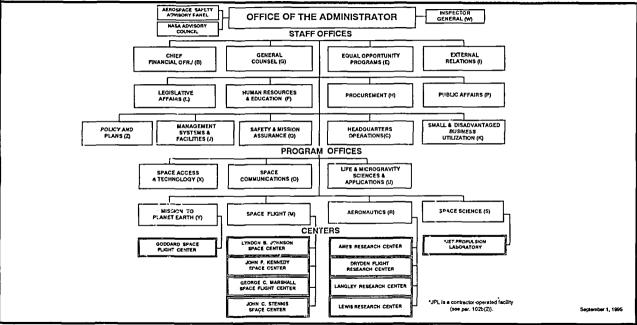
Section B - Space Flight Activity

Launch History	B-2
Current Worldwide Launch Vehicles	B-3
Summary of Announced Launches	B-4
NASA Launches by Vehicle	B-5
Summary of Announced Payloads	B-6
Summary of USA Payloads	B-7
Shuttle Approach and Landing Tests	B-8
Soviet Spacecraft Designations	B-9
NASA Astronauts	B-10
United States Human Space Flight	B-18
Shuttle Payloads and Experiments	B-21
The Planets	B-54
The Solar System	B-55
Planetary Exploration	B-66
Lunar Exploration	B-73
Unofficial Tabulation of CIS (USSR) Payloads	B-79
NASA Major Launch Record	B-81

Section C - Procurement, Funding and Workforce

Contract Awards by State Distribution of NASA Prime Contract Awards Procurement Activity	C-2 C-3 C-4
Contract Awards by Type of Effort Distribution of NASA Procurements	C-5
Principal Contractors	C-6
	C-7
Educational and Nonprofit Institutions	C-10
NASA's Budget Authority in 1994 Dollars	C-13
Financial Summary	C-14
Mission Support Funding	C-17
R&D Funding by Program	C-18
Sci, Aero, & Tech Funding	C-20
R&D Funding by Location	C-22
Human Space Flight Funding	C-23
SpFlt, Ctl, & Data Funding	C-24
CofF Funding	C-25
Personnel Summary	C-27
NASA Civil Service Workforce Employment Trend	C-29
Occupational Summary	C-30
Women Employees	
	C-31
Minority Employees	C-32

Section A


Section B

Section C

Section A

Administration and Organization

NASA Organization Chart

NASA Administrators

	58	59	60	61	62	63	64	65	66	67	68	69	70	71-74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
President				1		1						1									1								I				1		
	Els	enho	we	K	nne	edy		Jo	hns	on			Ni	xon	F	ord		Ca	rter					Rea	agar					B	ush 		C	into	'n
IASA Idministrator																														ļ		1_			
	G	lenr	ian				We	bb				Pai	ne	1	Fletc	her 		Fr	osch				Beg	gs		F	letc	her		Tru	ily 		Go	ldin	
Acting Administrator			Da	der							Pai		Lo				vela																		
				uei							Fai	110						Ce		Lov	eiat				G	ahai			uly						
Deputy Administrator				Dr	yde	n		S	eam	ans	Pai	ne		Lo) W		Lo	vela	ce			Ma	ark	G	irah	am	Mye) 	The	l omp	son				
																												ļ							

Excerpts From The National Aeronautics And Space Act Of 1958, As Amended

AN ACT To provide for research into problems of flight within and outside the Earth's atmosphere, and for other purposes.

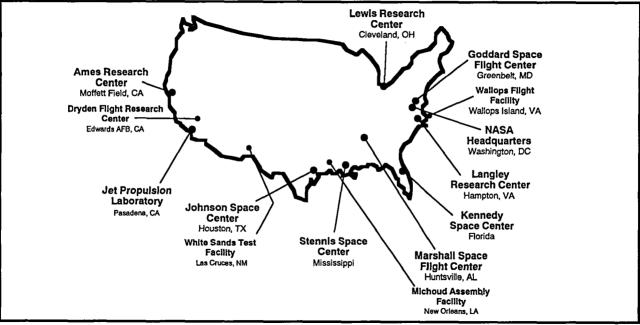
Declaration Of Policy And Purpose

- Sec. 102 (a) The Congress hereby declares that it is the policy of the United States that activities in space should be devoted to peaceful purposes for the benefit of all mankind.
 - (b) The Congress declares that the general welfare and security of the United States require that adequate provision be made for aeronautical and space activities. The Congress further declares that such activities shall be the responsibility of, and shall be directed by, a civilian agency exercising control over aeronautical and space activities sponsored by the United States, except that activities peculiar to or primarily associated with the development of weapons systems, military operations, or the defense of the United States (including the research and development necessary to make effective provision for the defense of the United States) shall be the responsibility of, and shall be directed by, the Department of Defense; and that determination as to which such agency has responsibility for and direction of any such activity shall be made by the President in conformity with section 201(e).
 - (c) The Congress declares that the general welfare of the United States requires that the National Aeronautics and Space Administration (as established by title II of this act) seek and encourage to the maximum extent possible the fullest commercial use of space.

- (d) The aeronautical and space activities of the United States shall be conducted so as to contribute materially to one or more of the following objectives:
 - The expansion of human knowledge of the Earth and of phenomena in the atmosphere and space;
 - (2) The improvement of the usefulness, performance, speed, safety, and efficiency of aeronautical and space vehicles;
 - (3) The development and operation of vehicles capable of carrying instruments, equipment, supplies, and living organisms through space;
 - (4) The establishment of long-range studies of the potential benefits to be gained from, the opportunities for, and the problems involved in the utilization of aeronautical and space activities for peaceful and scientific purposes;
 - (5) The preservation of the role of the United States as a leader in aeronautical and space science and technology and in the application thereof to the conduct of peaceful activities within and outside the atmosphere;
 - (6) The making available to agencies directly concerned with national defense of discoveries that have military value or significance, and the furnishing by such agencies, to the civilian agency established to direct and control nonmilitary aeronautical and space activities, of information as to discoveries which have value or significance to that agency;

Excerpts From The National Aeronautics And Space Act Of 1958, As Amended

Declaration Of Policy And Purpose (Continued)


(7) Cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results thereof, and

The most effective utilization of the scientific and

- (8) engineering resources of the United States, with close cooperation among all interested agencies of the United States in order to avoid unnecessary duplication of effort, facilities, and equipment.
- (e) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed toward ground propulsion systems research and development.
- (f) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed toward the development of advanced automobile propulsion systems.
- (g) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed to assisting in bioengineering research, development, and demonstration programs designed to alleviate and minimize the effects of disability.
- (h) It is the purpose of this Act to carry out and effectuate the policies declared in subsections (a), (b), (c), (d), (e), (f), and (g).

Functions Of The Administration

- Sec. 203 (a) The Administration, in order to carry out the purpose of this Act, shall --
 - (1) plan, direct, and conduct aeronautical and space activities;
 - (2) arrange for participation by the scientific community in planning scientific measurements and observations to be made through use of aeronautical and space vehicles, and conduct or arrange for the conduct of such measurements and observations; and
 - (3) provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.
 - (b) (1) The Administration shall, to the extent of appropriated funds, initiate, support, and carry out such research, development, demonstration, and other related activities in ground propulsion technologies as are provided for in sections 4 through 10 of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976.
 - (2) The Administration shall initiate, support, and carry out such research, development, demonstration, and other related activities in solar heating and cooling technologies (to the extent that funds are appropriated therefor) as are provided for in sections 5, 6 and 9 of the Solar Heating and Cooling Demonstration Act of 1974.

NASA HEADQUARTERS Washington, DC 20546	Through its research efforts, the center supports military programs, the Space Shuttle and various civil aviation projects. These projects and responsibilities will continue to evolve as NASA's needs change and Ames' capabilities develop.
NASA Headquarters exercises management over the space flight centers, research centers and other installations that constitute the National Aeronautics and Space Administration.	HUGH L DRYDEN FLIGHT RESEARCH CENTER Edwards, CA 93523
Responsibilities of Headquarters cover the determination of programs and projects establishment of policies, procedures and performance criteria; evaluation of progress and the review and analysis of all phases of the aerospace program.	The Dryden Flight Research Center was named after Hugh L. Dryden, an internationally known aeronautical scientist. In 1946, he was appointed NACA's Director of Aeronautical Research, and was responsible for making the center
Management of NASA's research and development programs are the responsibility of program offices which report to and receive overall guidance and direction from an associate administrator.	problems."
AMES RESEARCH CENTER Moffett Field, CA 94035	Dryden acts as the flight research arm of NASA's aeronautics enterprise. Dryden is the "Center of Excellence" for atmospheric flight operations and its primary mission is flight research. Dryden's charter is to research, develop, verify and transfer advanced aeronautics, space, and related technologies.
Ames major program responsibilities are concentrated in computer science and applications, computational and experimental aerodynamics, flight simulation, flight simulation, flight research, hypersonic aircraft, rotorcraft and powered -lift technology, aeronautical and space human factors, life sciences, solar systems exploration, airborne science and applications and infrared astronomy.	Dryden's primary research tools are research aircraft. The center operates approximately 20 flight research aircraft consisting of SR-71s, F-15s. F-16s, F-18s, a B-52 and experimental aircraft types vary greatly, ranging from the SR-71s that fly at speeds of Mach 3 to the Pathfinder solar powered Remothely Piloted Aircraft (RPA) that flies at 25 mph.
Ames is home to more than a dozen major wind tunnels, including the world's largest; several advanced flight simulators; a variety of supercomputers, including some of the world's fastest, and everal unique aircraft both fixed-wing and roto- craftused for aeronautical flight research and for flying laboratories. It also includes a variety of unique facilities for life sciences research.	The center's ground-based facilities complement Dryden's flight research mission and include a highly-developed aircraft flight instrumentation capability; a data analysis facility for processing of flight research data; flight simulators and a test range communications and data transmission capability that links NASA's Western Aeronautical Test Range facilities.

Dryden continues to serve as the "back- up" landing site for the Space Shuttle Orbiters as well as processing the vehicles for ferry flights back to Kennedy Space Center.	The Compton Gamma Ray Observatory, launched in April 1991, also is managed by Goddard. Compton's mission is to study gamma ray emitting objects in the Milky Way galaxy and beyond. Within its first three months of operations, the Energetic Gamma Ray Experiment Telescope, one of four instruments aboard Compton, detected one of the most luminous gamma-ray
GODDARD SPACE FLIGHT CENTER Greenbelt, MD 20771	sources ever seen. The source of this radiation was identified with the variable Quasar 3C279 located in the constellation Virgo, approximately seven billion light years from Earth.
This NASA field center, 10 miles northeast of Washington, DC, has one of the worlds leading groups of scientists, engineers and administrative managers. It has the largest scientific staff of all the NASA centers.	JET PROPULSION LABORATORY Pasadena, CA 91109
With its more than 12,000 civil service and contract employees, including its facility at Wallops Island, VA, the center's work includes research in the Earth and space sciences and the design, fabrication and testing of scientific satellites that survey the Earth and the universe. Goddard also has a leading role in tracking satellites and suborbital space vehicles.	The laboratory is engaged in exploring the Earth and the solar systen with automated spacecraft. In addition to the Pasadena site, JPL manages the Deep Space Communications Complex, a station of the worldwide Deep Space Network (DSN) located at Goldstone, CA, on 40,000 acres of land occupied under permit from the U.S. Army. The DSN allows for spacecraft commun- ications, data acquisition and mission control, and for the study of space with
Because of its versatility, Goddard scientists can develop and support a mission, and Goddard engineers and technicians can design, build and integrate the spacecraft. Goddard also is involved in implementing suborbital programs using small and medium expendable launch vehicles, aircraft, balloons and sounding rockets.	radio science. Current NASA flight projects under JPL management include Galileo, Mars Pathfinder and Mars Global Surveyor, New Millennium, Stardust, TOPEX/ Posedeidon, Ulysses, Voyager and the planned Cassini mission. Major space
Controllers in the Payload Operations Control Center maintain a 24-hour vigil every day of the year for more than a dozen orbiting spacecraft. Spacecraft being watched include Tracking and Data Relay Satellites which serve as vital communications links between orbiting spacecraft and Earth through a Goddard-managed ground terminal in White Sands, NM. One of those spacecraft is the world renowned Hubble Space Telescope which was launched in 1990. Other more recent payloads and	science instruments include the second-generation Wide Field and Planetary Camera-2 for the Hubble Space Telescope, the NASA Scattometer and the Spaceborne Imaging Radar. The laboratory designs flight systems, including complete spacecraft and provides technical direction to contractor organizations.
remain under the watchful eyes of Goddard controllers include: Polar, Rossie X-ray Timing Explorer and the Solar and Heliospheric Observatory.	rohics, biomedical and communications technologies, information and advanced computer systems.

LEWIS RESEARCH CENTER Cleveland, OH 44135

In 1941 the National Advisory Committee for Aeronautics (NACA) established the NASA Lewis Research Center as a flight propulsion laboratory. The Center, which was named for George W. Lewis, NACA's Director of Research from 1924 to 1947, developed an interntional reputtion for its research on jet propulsion systems.

Lewis mission involves aeropropulsion, space power, space communications, electric propulsion and microgravity science, including fluid physics, combustion and materials. In addition, Lewis is a supporting Center for chemical propulsion and expendable launch vehicles.

The Center conducts research for NASA's High -Speed Research Program in the areas of combustor design and enabling propulsion materials; for the Advanced Subsonic Technology Program and is advancing technologies to support advance short take-off and vertical landing aircraft; is managing the Advanced Communications Technology Satellite; and is playing a role in NASA's program to enable more effective access to low Earth orbit and geosynchronous orbit.

The Center has been advancing propulsion technology to enable aircraft to fly faster, farther and higher, and has also focused its research on fuel economy, noise abatement, reliability and reduced pollution.

Facilities at Lewis include a Space Experiments Lab, Zero-Gravity Drop Tower, Aero-Acoustic Propulsion Laboratory, an Icing Research Tunnel, four (4) unique wind tunnels, space tanks, space tanks, chemical rocket thrust stands, and chambers for testing jet engine efficiency.

LANGLEY RESEARCH CENTER Hampton, Va. 23665-5225

Langley's primary mission is basic research in aeronautics and space technology. Major research fields include aerodynamics, materials, structures, flight controls, information systems, acoustics, aeroelasticity, atmospheric sciences and nondestructive evaluation.

Approximately 60 percent of Langley's efforts are in aeronautics, working to improve today's aircraft and to develop concepts and technology for future flight. Over 40 wind tunnels, other unique research facilities and testing techniques aid in the investigation of the full flight range-from general aviation and transport aircraft through hypersonic vehicles.

Langley's goal is to develop technologies to enable aircraft to fly faster, farther, safer and to be more maneuverable, quieter, less expensive to manufacture and mored energy efficient.

Researchers are studying improved flight control systems to aid aircraft in operating more efficiently in all kinds of weather and in crowded terminal airways.

Langley is lead center for management of the agency's technology development program for the future High Speed Civil Transport program. Langley will manage high-speed technology in areas of aerodynamic performance, airframe materials and structures, the flight deck and airframe systems integration. Improvements in supersonic (Mach 1-5) engine performance, fabrication of composite materials and laminar flow airfoil technology are sprawning a new era in long-distance air travel. Passengers in the next century will benefit from current research programs at Langley.

NASA Installations	A-9
LYNDON B. JOHNSON SPACE CENTER Houston, TX 77058	motion base simulator, a duplicate of the Orbiter flight deck, recreates the sights, sounds and feel of launch and entry. The fixed base simulator provides training for on-orbit activities.
JSC manages the selection and training of astronauts for Soace Shuttle and future Space Station missions. All U.S. human space flights, from launch to landing, are controlled from the Mission Control Center at JSC. A new flight control Center at JSC. A new flight control facility came on line in 1995 and will replace the historic control rooms used since the Gemini program.	The Weightless Environment Training Facility is a large water tank that uses neutral buoyancy to help astronauts practice for spacewalks. This facility will soon be augmented by a much larger Neutral Buoyancy Laboratory which will hold major Space Station components.
JSC manages a fleet of specialized aircraft at Ellington Field, located about seven miles north of the Center, used in training Shuttle pilot astronauts and for micro- gravity research. JSC also operates the White Sands Missile Range at Las Cruces, MN. WSTF tests Shuttle propulsion systems, powers systems and materials. JSC is NASA's lead center for life science research, working with medical researchers around the country to study the effects of spaceflight on astronauts and to develop countermeasures that also have applications on Earth. JSC is teaming with researchers from academia and the private sector to form a Bio-	JOHN F, KENNEDY SPACE CENTER Kennedy Space Center, FL 32899 The Kennedy Space Center was established in the early 1960s as the launch site for the Apollo lunar landing missions. KSC pioneered the mobile launch technique in which space vehicles are built up inside protective structures and moved to their launch pads a short time before launch, reducing their exposure to the corrosive sea shore environment to a minimum. After the Apollo program was concluded in 1972, KSC's Complex 39 was used for the launch of four Skylab missions and for the Apollo spacecraft used in the
medical Science Institute, a worldclass life science research center for human space flight located in the Houston area.	Apollo-Soyuz Test Project.
Many of the facilities at JSC contain equipment unique to human space flight programs. Asxtronauts use the Mockup and Integration Laboratory to become familiar with the Shuttle and Space Station crew environments, to practice emergency procedures, and to rehearse on-orbit tasks. The Manipulator Development Facility employs a hydraulic robotic arm to allow astronauts to practice the program on a phil groupment required at Chuttle's robotic arm during the program.	1970s. The shuttle era began with the launch of the STS-1 mission on April 12, 1981. Since then, mor than 60 Shuttle missions have been launched and the current forecast calls for the launch of approximately seven missions per year from KSC's twin pads.
practice the precise on-orbit movements required of Shuttle's robotic arm during payload deployment and spacewalks. Space Shuttle simulators provide realistic training for all phases of flight. The	KSC is NASA's prime center for the test, checkout and launch of payloads and space vehicles. This includes launch of manned vehicles at KSC and oversight of NASA missions launched on unmanned vehicles from Cape Canaveral Air Station, FL, and Vandenberg Air Force Base (VAFB) in California.

The center is responsible for the assembly, checkout and launch of Space Shuttle vehicles and their payloads, landing operations and turn-around of Shuttle Orbiters between missions. KSC also is responsible for the operation of the KSC Vandenberg Launch Site Resident Office located at VAFB.	Marshall is a manager of scientific payloads and experiments to be flown aboard the Shuttle. Many of these payloads to be flown in Spacelab, a reusable, modular research facility carried in the Shuttle's cargo bay. The center also operates NASA's Spacelab Mission Operations Control Center, from which all NASA Spacelab missions are controlled.
GEORGE C. MARSHALL SPACE FLIGHT CENTER Marshall Space Flight Center, AL 35812	To prepare astronauts for Spacelab missions, the center also operates a Payload Crew Training Complex. Here, science astronauts train in Shuttle and Spacelab
Marshall is NASA's lead center for space transportation systems development and is the agency's center of excellence for space propulsion. Marshall is also NASA's lead center for microgravity, specializing in materials science and biotechnology research.	simulators to conduct the research they will perform in space. A designated NASA center of excellence in space opitcal systems, Marshall is managing the Advanced X-ray Astrophysics Facility, a major astronomy observatory that will provide scientists with roughly a ten-fold improvements in
Marshall led the development of the main propulsion system for the Space Shuttle and for each flight provides the main engines, the external tank that carries liquid oxygen and liquid hydrogen for those engines, and the solid rocket boosters that, together with the engines, lift the Shuttle into orbit.	resolving power over previous X-ray telescopes. The center previously managed development and initial checkout of the Hubble Space Telescope which is now relaying a wealth of new knowledge about the universe from distant galaxies to neighboring planets.
Adiditionally, Marshall is managing development of the super lightweight External Tank, planned to replace the current external tank in 1997. It is beign fabricated of aluminum alloys and incorporates an orthogrid design for the panels that together make the tank 8,000 pounds lighter than the current configuration.	Other work assigned to Marshall includes the International Space Welding Experiment being jointly developed with Ukraine. Scheduled to fly aboard the Space Shuttle, the experiment will test a Ukranian Universal hand Tool electron beam welding system as a potential technology for contingency space repairs.
Marshall is NASA's host center for the Reusable Launch Vehicle (RLV) technology program, a partnership among NASA, the United States Air Force and private	JOHN C. STENNIS SPACE CENTER Stennis Space Center, MS 39529
industry to conduct cutting-edge research needed to develop a new generation of single-stage-to-orbit launch vehicles. It includes the X-33 advanced technology demonstrator, the X-34 small technology vehicle, and the Delta Clipper- Experimental Advanced (DC-XA) single-stage rocket.	NASA's John C. Stennis Space Center (SSC), located near the Mississippi Gulf Coast, is NASA's primary center for testing and flight certifying large rocket propulsion systems for the Space Shuttle and future generations of space

vehicles. Because of its important role in engine testing for more than three decades, Stennis Space Center has been designated NASA's Center of Excellence for rocket propulsion testing. SSC will be responsible for the Agency's rocket propulsion test programs. The center is a unique test facility and is available to support the national interest in propulsion systems development testing. Additionally, the center has developed into a scientific community actively engages in research and development programs involving space, oceans and Earth.

Since 1975, SSC's primary mission has been the testing of Space Shuttle Main Engines to include research and development testing and flight acceptance testing. Static testing is conducted on the same concrete and steel stands used from 1966 to 1970 to captive-lire all first and second stages of the Saturn V rocket used in the Apollo manned lunar landing and Skylab programs.

Stennis Space Center is working toward testing advances space propulsion hardware for future vehicles. Preparations are under way at Stennis for testing associated with the Reusable Launch Vehicle and Evolved Expendable Launch Vehicle programs. These two new programs are being designed by the aerospace industry, which is working with NASA and the Department of Defense to make space launch more accesible and affordable.

WALLOPS FLIGHT FACILITY Wallops Island, VA 23337

Wallops Flight Facility, a part of the Goddard Space Flight Center, is one of the oldest launch sites in the world. Established in 1945, the facility covers 6,166 acres, including about 1,100 acres of marshland, in three separate areas of marshland, in three separate areas of Virginia's Eastern Shore.

Wallops manages and implements NASA's sounding rocket program which uses solid-fueled launch vehicles to accomplish approximately 30 scientific, suborbital nissions each year. Launches are conducted at Wallops and other ranges worldwide.

Wallops manages and coordinates NASA's Scientific Balloon Program using thin-film, helium-filled balloons to provide approximately 30 scientific missisons each year. Launches are conducted at Palestine, TX, Ft. Sumner, NM, and sites throughout the world.

Wallops supports NASA, the Department of Defense and other agencies in aeronautical research. Approximately 150-200 test operations, concentrating on aircraft/airport interface and aircraft operating problems research, are conducted each year at the research airport.

The Year in Review

Shuttle-MIR Dockings Highlight NASA Achievement in 1995

Building on the seeds of a new partnership, cooperative efforts between the American and Russian space programs flowered in 1995, highlighting busy year for NASA.

In quick succession, several crucial milestones were achieved in the first phase of a joint U.S.-Russian program that will culiminate in construction of the International Space Station over the next seven years. Those and other developments during the year are summarized in the following compilattion of the top NASA stories for 1995.

U.S. Russian Partnership Advances

The year began with an orbital rendezvous between Shuttle Discovery and the Mir space station in February, and was followed in March by the launch of U.S. astronaut Norman Thagard for a record stay aboard the Russian space laboratory. In June, on the one hundredth U.S. human space flight, the Shuttle Atlantis docked with Mir and returned Thagard and two cosmonauts to Earth. Atlantis returned in November, this time leaving a permanent docking module attached to the Mir. Three more Shuttle-Mir docking flights are planned for 1996, and two are planned for 1997 -- the year space station construction begins.

Galileo Orbitor and Probe Arrive at Jupiter

After a busy year, the Galileo mission to Jupiter saved its best performance for late in 1995. In March, NASA sent the Galileo atmospheric probe a wakeup call, its first contact from Earth in 27 months. On July 13, packed like an interplanetary paratrooper, the atmospheric probe sprang loose from the main Galileo spacecraft, beginning a long, five month free fall to Jupiter. On Dec. 7, after nearly 20 years of planning and antici-pation, the mission became the first to orbit an outer planet and the first to send a probe into one of their primordial atmospheres. Scientists will present initial findings from the probe in Dec. 19 press conference, and the first photos form Galileo will arrive back at Earth in July, 1996.

Hubble Space Telescope Discoveries Continue to Amaze

Even by its own high standards, 1995 was another year of amazing discoveries from the Hubble Space Telescope. During the year, Hubble discovered a long-sought belt of as many as 200 million comets encircling the icy fringes of the Solar System. The region is thought to be the source of the comet that struck Jupiter in July 1994. The telescope chatted the emergence of a new great dark spot on Neptune, detected an extremely tenuous atmosphere of molecular oxygen on Jupiter's moon Europa, and discovered recently shattered moons of Saturn. Hubble also amazed with views of the birth process of stars, and helped confirm the detection of an elusive celestial object--not quite a star and not quite a planet--known as

NASA Begins Restructuring to Meet Budget Guidelines

In order to meet a projected \$5 billion in budget cuts by the end of the decade, NASA teams worked intensively in 1995 on a series of internal reviews that would restructure the Agency in general and the Space Shuttle program in particular. One of the most important management changes being made by NASA is the identification of specific

The Year in Review

missions and areas of excellence for each of he NASA centers. NASA also began studying the transition of some programs expressions of interest from industry, NASA in November announced it will pursue a non-competitive contract with United Space Alliance to eventually assume responsibility for Space Shuttle operations.

Old and New Space Science Missions Chart the Cosmos

Space science missions returned a wealth of data in 1995 while NASA accelerated the transition from large-scale programs to quick, low cost missions that will begin returning data later this decade. In February, NASA selected the Lunar Prospector for a \$59 million mission to map the chemical composition and magnetic and gravity fields of the Moon beginning in 1997. That probe, along with Stardust, a comet sample return mission, were picked as the third and fourth flights in NASA's new Discovery program. Stardust will fly within 62 miles of Comet Wild-2 in 2004, capture dust samples and return them to earth in 2006. In March 1995, the Ulysses probe passed within 124 million miles of the sun and discoverd differences in the speed of the wind flowing out from the Sun at different solar latitudes. Also in March astronomers using an instrument on the Astro-2 observatory, which flew aboard the Shuttle Endeavour, made the first definitive detection of one of the two original building blocks of the Universe -- the element helium created in the Big Bang. Also in 1995, NASA ceased communications with Pioneer 11 after nearly 22 years of exploration. Pioneer 11, carrying an engraved gold plaque bearing messages from Earth, will pass near the star Lambda Aquila in about four million years.

Fast-Track Reusable Launch Vehicle Program Progresses

NASA continued work in 1995 on development of the first new major U.S. launch vehicles in 20 years with its Reusable Launch Vehicle program. Industry proposals

for development of X-33 and X-34 were issued in January. In March, reflecting a "fast-track" approach, three companies were selected to enter negotiations on the X-33, and one company was selected for negotiations on the X-34. By the end of the month, all four companies had signed agreements for joint government-industry development of the vehicle designs. The work is geared to supporting a decision no later than next December, to proceed with sub-scale demonstrations to prove the concept of single-stage-to-orbit capability. In July, the U.S. Air Force transferred the McDonnell Douglas Delta Clipper, or DC-X, to NASA for continued flight testing. Renamed the DC-XA (for Advanced), the vehicle will be modified to test key technologies from the X-33/X-34 programs beginning in 1996.

Space Station Continues On Schedule, On Budget for First Launch in 1997

The International Space Station program passed a series of major milestones in 1995 as it continued on track for launch of its first component in November 1997. During 1995, NASA and Boeing's Defense and Space Group finished negotiations and signed a \$5.63 billion contract for design and development of the station. The contract extends to June 2003. NASA and the Russian Space Agency agreed on terms for providing the first station element, the Functional Energy Block being built in Russia under a \$190 million contract. Also during the year, the exterior structure of the first U.S. pressurized station module was completed in September. The station's environmental control capability passed a major test in 1995 with the demonstration that its water puffication system can successfully screen out live viruses. The program continued to demonstrate widespread bipartisan support in Congress by wide vote margins in both the House and Senate.

The Year in Review

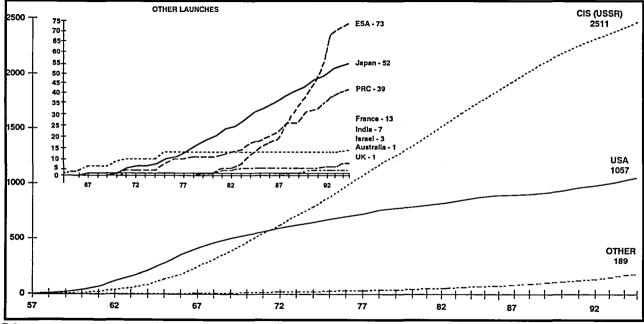
Mission to Planet Earth

The Agency's environmental studies received strong support in 1995 from the National Academy of Sciences. In September, the academy's Board on Sustained Development endorsed the Mission to Planet Earth science plan, saying it would help provide "a sound, scientifically based assessment of the current state of the earth's environment." Continuing the development of the Earth Observing System, the centerpiece of Mission to Planet Earth, NASA dsigned a contract with TRW, Inc., to build the second and third spacecraft in the series. The most notable scientific development in the program came with the announcement by NASA and other scientists that our knowledge of El Ninos had become sophisticated enough to predict them up to a year in advance. Phase I of Mission to Planet Earth passed another milestone with the mission has provided scientists with the first global picture of sea-level change and with important data on El Nino.

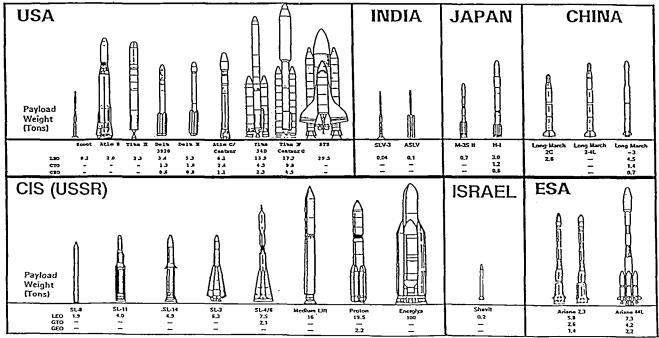
Technology for Safer Skies Highlights NASA Aeronautics Work

NASA research in aeronautics continued to pay dividends for air travelers in 1995. In February, a new air traffic management system began operating at the Denver International Airport. The system helps manage flow of aircraft into the airport, and is also being tested at the Dallas/Fort Worth airport. Ultimately, such a system could save airlines billions of dollars by reducing dalays and saving fuel. During the year, NASA joined with the Federal Aviation Administration in two major initiatives -- a comprehensive human factors research program designed to improve commercial aviation safety, and a tests on a laminar flow control would be a major breakthrough in aviation. In August, former astronaunt and Dryden Flight Research Center pilot Gordon Fullerton successfully landed an MD-11 jet transport using only engine power for control in a demonstration of techniques which might be used in the event of a hydraulic system failure. The techniques were developed after the crash of a DC-10 in Sioux City, IA, in 1989.

Advanced Technologies Provide New Possibilities for Medical Treatment


NASA research continued to provide new avenues for medical science in 1995. In February, NASA, Stanford University and a small business teamed to develop a device that can directly measure the stiffness of long human bones by measuring the response to vibration. In March, NASA began testing two diagnostic devices able to measure pressure inside the head without penetrating the skull or skin. In September, NASA signed a Spacec Act agreement with the Collins Clinic in Slidell, LA, to redesign the obstetrical forceps used to properly position an infant in a mother's womb prior to delivery. The NASA research will seek to identify a suitable composite material for the forceps, as well as instrumentation that will enable a physician to know how much force is being applied during procedures.

Section B


Space Flight Activity

...

Launch History (Cumulative)

Current Worldwide Launch Vehicles

Summary of Announced Launches

			Worldwide	Launches							
	1957-1959	1960-1969	1970-1979	1980-1989	1990	1991	1992	1993	1994	1995	ΤΟΤΑ
Australia		1	0	0	0	0	0	0	0	0	1
CIS (USSR)	6	378	866	931	75	59	54	49	48	45	2511
DODÍ	11	284	114	54	10	8	10	8	12	10	524
ESA	-		1	29	5	7	9	9	5	5	7
France		4	6	0	0	0	0	0	0	0	10
India	-			3	0	0	1	0	2	1	
Israel		-		1	1	0	0	0	0	1	:
Japan			15	23	3	2	3	1	2	3	52
NÁSA	7	187	151	96	8	8	13	12	11	8	50
PRC		•	8	15	5	1	3	1	5	1	39
United Kingdom			1	0	0	0	0	0	0	0	1
US Commercial				1	9	1	2	3	4	4	24
TOTAL	24	854	1162	1155	116	86	95	83	89	78	3743
			NASA Lau	unches							
	1957-1959	1960-1969	1970-1979	1980-1989	1990	1991	1992	1993	1994	1995	тота
NASA	7	149		37	6	6	11	11	10	9	30
Cooperative		13	17	2	1	Ō	1	1	1	1	3
DOD		2	9	17	1	1	1	ò	ó	ò	
USA		20	37	35	o	1	o	õ	ō	ŏ	g
Foreign		3	31	5	ō	Ó	ō	ŏ	ō	Ŏ	3
TOTAL	7	187	151	96	8	8	13	12	11	10	50

NASA Launches By Vehicle

	1957-1959	1960-1969	1970-1979	1980-1989	1990	1991	1992	1993	1994	1995	ΤΟΤΑ
Atlas		7	0	0	o	0	0	0	o	0	7
Atlas Agena	-	29	0	ō	ò	0	0	0	0	ō	29
Atlas E/F			3	6	Ó	1	0	1	2	3	16
Atlas Centaur		17	27	16	1	0	0	1	٥	ō	61
Atlas II S/A							-	1	0	4	5
Delta		49	74	31	o	0	2	1	2	3	162
Juno II	3	2	0	0	0	0	0	0	0	0	5
Saturn I		6	0	0	0	0	0	0	0	0	6
Saturn IB		3	4	0	0	0	0	0	0	0	7
Saturn V	-	7	6	0	Ó	0	0	0	0	Ō	13
Scout		24	28	11	1	1	2	1	ō	õ	68
Shuttle			-	31	6	6	8	7	7	7	72
Thor Able	2	2	0	0	ō	0	0	0	Ó	Ó	4
Thor Agena		10	2	Ō	ō	ō	ō	Ō	Ō	õ	12
Thor Delta		20	0	1	Ó	Ó	0	0	Ó	õ	21
Titan II		11	õ	ò	ō	ō	ō	Ō	Ď	ō	11
Titan III	-						1	Ō	õ	ō	1
Titan Centaur			7	0	0	0	ò	0	Ō	ō	7
Vanguard	2	0	0	0	Ō	0	0	0	0	Ŏ	2
TOTAL	7	181	151	96	8	8	13	12	11	17	510

Summary of Announced Payloads

	1957-1959	1960-1969	1970-1979	1980-1989	1990	1991	1992	1993	1994	1995	TOTA
Argentina		-	-		1	0	0	0	0	0	
AsiaSat	-				1	0	0	0	0	0	
ASCO	-			2	0	0	0	0	0	0	
Australia		1	1	3	0	0	2	Ó	1	ō	
Brazil				2	1	0	0	1	1	Ō	
Canada			4	5	0	2	1	ò	ò	1	1
China			8	16	5	1	2	1	5	1	ŝ
CIS(USSR)	6	399	1028	1132	96	101	77	59	64	45	300
Cooperative *		14	23	4	3	5	3	1	1	1	ŧ
Czechoslovakia		0	1	1	0	0	ò	ò	ò	1	
ESA		2	5	14	1	4	1	2	t	2	3
France	-	4	14	5	2	6	3	2	Ó	3	3
Germany			3	7	1	1	1	0	2	1	1
ndia	-		1	9	1	1	2	1	2	1	1
ndonesia			1	3	1	0	1	ò	ō	Ó	
nMarSat			2		1	0	1	Ó	Ó	ō	
srael				1	1	0	0	0	Ó	1	
taly			1		0	1	0	2	0	0	
Japan			18	26	7	2	з	1	4	2	6
Korea							1	1	0	1	
Luxembourg								1	0	1	
Mexico				2	0	0	0	1	1	0	
NATO			5	1	0	1	0	1	0	·0	1
Pakistan					1	0	0	0	0	0	
PanAmSat				1	0	0	0	0	0	0	
Saudi Arabia							1	0	0	0	
Spain					••		1	1	0	1	:
Sweden				2	0	0	1	0	0	1	4
United Kingdom		1	6	4	5	2	0	0	0	0	18
United States *	18	614	247	191	31	30	27	29	27	24	1238
TOTAL	24	1035	1366	1431	159	157	128	104	109	87	460
* Separate Bre	akdown Follows										

Summary of USA Payloads

1957-1959	1960-1969	U.S. Payloads 1970-1979	1980-1989	1990	1991	1992	1993	1994	1995	TOTAL
	<u> </u>	3			_	_	0			5
	4	ō	1	ō	ŏ	õ	Ť	õ	ŏ	6
		-	i	ŏ	1	ñ	ò	õ	ŏ	2
	a	21	15	2	÷	3	Ť	ĭ	ň	53
11	437			16	15		10	- 11		747
	407	140	6	1	13					6
			7				1		-	13
7	165	67	40	<u>+</u>	-					339
<u>'</u>			49		4		1	4	10	333
	3		4		Å	-	ż			
		3	7	1	Ň	-	ň	ň	ň	11
		5	1		Ň	ň	Ň	ň	ň	
		3	4	'n	Ň	ň	Ň	ň	•	ě
18	614		101			27	25	24	<u> </u>	1230
10	014		131	51	50	21	25	24	£1	1200
1957-1959	1960-1969	1970-1979	1980-1989	1990	1991	1992	1993	1994	1995	TOTAL
	3	2	0	0		0		0	0	5
				2		ō	ŏ	1	ō	5
	2	4	٥	ō	1	ò	2	Ó	1	10
	1	3	2	ŏ	ò	Ť	ō	ō	ò	7
		2	ō	ō	ŏ	ó	õ	õ	ō	2
	1	3	õ	1		õ	õ	1	ō	6
	2	2	Ĩ	ó	ŏ	1	õ	ó	ñ	6
		-			_	i	õ	ō	1	2
	••	1	1	0	0	ò	õ	ō	ó	2
	-	2	ò	ň	ĭ	-	ĭ	1	ň	6
	2	1	ŏ	ŏ	ò		ä	ò	ò	3
••	-	-	5	-	-	-	-	-	1	ĩ
		1	0	0	0	ō	0	ō	'n	
						•				
	3	2	õ	0	4	0	- i	0	0	6
	1957-1959 	4 9 11 437 	1957-1959 1960-1969 1970-1979 3 4 0 9 21 11 437 140 9 10 9 10 7 155 67 9 10 3 3 18 614 247 Cooperative Payloads 1957-1959 1960-1969	1957-1959 1960-1969 1970-1979 1980-1989 - 3 0 4 0 1 9 21 15 11 437 140 86 - - 6 - - 7 7 155 67 49 9 10 11 9 10 11 - - 1 9 10 11 - - 1 - 3 7 - - 4 - 3 3 18 614 247 191 Cooperative Payloads 1980-1989 1980-1989	1957-1959 1960-1969 1970-1979 1980-1989 1990 3 0 2 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 9 21 15 2 11 15 2 11 437 140 86 16 16 1 16 7 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Shuttle Approach and Landing Tests

Flight	Flight Date	Weight (kg) Description of Flight
Captive Inert Flight 1	Feb 18, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to Shuttle Carrier Aircraft (SCA) to evaluate low speed performance and handling qualities of Orbiter/SCA combination. SCA Crew: Fitzhugh L. Futton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 2 hours 10 minutes.
Captive Inert Flight 2	Feb 22, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to demonstrate flutter free envelope. SCA Crew: Fitzhugh L. Futton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Filght Time: 3 hours 15 minutes.
Captive Inert Flight 3	Feb 25, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to complete flutter and stability testing. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 2 hours 30 minutes.
Captive Inert Flight 4	Feb 28, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to evaluate configuration variables. SCA Crew: Fitzhugh L. Futton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 2 hours 11 minutes.
Captive Inert Flight 5	Mar 2, 1977	65,142.0	Unmanned inert Orbiter (Enterprise) mated to SCA to evaluate maneuver performance and procedures. SCA Crew: Fitzhugh L. Futton, Jr., A. J. Roy, Vic Horton, and Skip Guidry. Flight Time: 1 hour 40 minutes.
Captive Active Flight 1A	Jun 18, 1977	68,462.3	First manned captive active flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned active Orbiter (Enterprise) mated to SCA for initial performance checks of Orbiter Flight Control System. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 56 minutes.
Captive Active Flight 1	Jun 28, 1977	68,462.3	Manned captive active flight with Joe H. Engle and Richard H. Truly, Manned active Orbiter (Enterprise) mated to SCA to verify conditions in preparation for free flight. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 1 hour 3 minutes.
Captive Active Flight 3	Jul 26, 1977	68,462.3	Manned captive active flight with Fred W. Haise, Jr. and C. Gordon Futlerton, Jr. Manned active Orbiter (Enterprise) mated to SCA to verify conditions in preparation for free flight. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 59 minutes.
Free Flight 1	Aug 12, 1977	68,039.6	First manned free flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned Orbiter (Enterprise) with tailcone on, released from SCA to verify handling qualities of Orbiter. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 53 minutes 51 seconds.
Free Flight 2	Sep 13, 1977	68,039.6	Manned free flight with Joe H. Engle and Richard H. Truly. Manned Orbiter (Enterprise) released from SCA to verify characteristics of Orbiter. SCA Crew: Fitzhugh L. Futton, Jr. and Thomas C. McMurtry. Flight Time: 54 minutes 55 seconds
Free Flight 3	Sep 23, 1977	68,402.4	Manned free flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned Orbiter (Enterprise) released from SCA to evaluate Orbiter handling characteristics. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 51 minutes 12 seconds.
Free Flight 4	Oct 12, 1977	68,817.5	Manned free flight with Joe H. Engle and Richard H. Truly. Manned Orbiter (Enterprise) with tailcone off and three simulated engine bells installed, released from SCA to evaluate Orbiter handling characteristics. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 1 hour 7 minutes 48 seconds.
Free Flight 5	Oct 26, 1977	68,825.2	Manned free flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned Orbiter (Enterprise) with tailcone off, released from SCA to evaluate performance of landing gear on paved runway. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 54 minutes 42 seconds.

CIS (USSR) Spacecraft Designations

The Union of Soviet Socialist Republics (USSR) became the Confederation of	of Independent States (CIS) on December 25, 1991.
ALMAZ: Study geology, cartography, oceanography, ecology, and agriculture.	OKEAN: Oceanographic satellite to monitor ice conditions.
BURAN (Snowstorm): Reusable orbital space shuttle.	PHOBOS: International project to study Mars and its moon Phobos.
COSMOS: Designation given to many different activities in space.	PION: Scientific satellite for research of the upper atmosphere.
EKRAN (Screen): Geosynchronous comsat for TV services.	POLYOT: Maneuverable satellite capable of changing orbits.
ELEKTRON: Dual satellites to study the radiation belts.	PROGNOZ (Forecast): Scientific interplanetary satellite.
FOTON: Scientific satellite to continue space materials studies.	PROGRESS: Unmanned cargo flight to resupply manned space stations.
GAMMA: Radiation detection satellite.	PROTON: Scientific satellite to investigate the nature of Cosmic Rays.
GORIZONT (Horizon): Geosynchronous comsat for international relay.	RADIO: Small radio relay satellite for use by amateurs.
GRANAT: Astrophysical orbital observatory.	RADUGA (Rainbow): Geosynchronous comsat for telephone, telegraph, and
INFORMATOR: Collect and transmit information for the Ministry of Geology.	domestic TV.
INTERCOSMOS: International scientific satellite.	RESURS: Earth resources satellite.
ISKRA: Amateur radio satellite.	SALYUT: Manned scientific space station in Earth orbit.
KRISTALL: Module carrying technical and biomedical instruments to MIR.	SOYUZ (Union): Manned spacecraft for flight in Earth orbit.
KVANT: MIR space station astrophysics module.	SPUTNIK: Early series of satellites to develop manned spaceflight.
LUNA: Lunar exploration spacecraft.	VEGA: Two spacecraft international project to study Venus and Halley's Cornet.
MARS: Spacecraft to explore the planet Mars.	VENERA: Spacecraft to explore the planet Venus.
METEOR: Polar orbiting meteorological satellite.	VOSKHOD: Modified Vostok capsule for two and three Cosmonauts.
MIR (Peace): Advanced manned scientific space station in Earth orbit.	VOSTOK (East): First manned capsule; placed six Cosmonauts in orbit.
MOLNIYA (Lightning): Part of the domestic communications satellite system.	ZOND: Automatic spacecraft development tests. Zond 5 was the first
NADEZHDA: Navigation satellite.	spacecraft to make a circumlunar flight and return safely to Earth.

Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Filghttime (hr:min: Sec)	Name :	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Filghttime (hr:min: Sec)
Acton, Loren W., PhD Adamson, James C. LLCol	Civ USA	STS-51F STS-28	PS MS	190:45:26 121:00:08		190:45:26 334:22:35	Bean, Alan F., Capt	USN Ret	Apollo 12	LMP Cdr	244:36:24 1416:11:09	*07:45 02:45	1666:47:33
Adamson, James C. LLCCI	uch	STS-43	MS	213:22:27		004.22.00			Skylab 3			02:45	789:20:37
Akers, Thomas D. Maj	USAF	STS-41	MS	98:10:03		671:26:16	Blaha, John E., Col	USAF	STS-29 STS-33	Pit Pit	119:38:52 120:06:46		789:20:37
Akers, Inomas D. Maj		STS-49	MS	213:17:38	16:14	071.20.10			STS-33	Cdr	213:22:27		
		STS-61	MS	259:58:35	13:25				STS-43	Cdr	336:12:32		
Aldrin, Edwin E., Jr., Col.	LISAE Bet	Gemini 12	Ptt	94:34:31	05:37	289:53:06	Bluford, Guion S., Col	USAF	STS-8	MS	145:08:43		688:36:38
Addin, Edwin E., St., Col.	00/1/10	Apollo 11	IMP	195:18:35	*02:15	200.00.00	Bruford, Guion S., Col	0.544	STS-61A	MS	168:44:51		000.30.30
Allen, Andrew M., Maj.	USAF	STS-46	Pit	191:16:07		526:32:48			STS-39	MS	199:23:17		
	-	STS-62	Pit	335:16:41					STS-53	MS	175:19:47		
Allen, Joseph P. PhD	Civ	STS-5	MS	122:14:26		313:59:22	Bobko, Karol J., Col	USAF	STS-6	Pit	120:23:42		386:03:43
		STS-51A	MS	191:44:56	12:14			- Cur	STS-51D	Cdr	167:55:23		
Al-Saud, Salman	Civ	STS-51G	PS	169:38:52		169:38:52			STS-51J	Cdr	97:44:38		
Anders, William A., B. Gen.	USAF	Apollo 8	LMP	147:00:42		206:00:01	Bolden, Charles F., Col	USMC	STS 61-C	Pit	146:03:51		680:39:23
Apt, Jerome PhD	Civ	STS-37	MB	143:32:45	10:49	603:52:38			STS-31	Pit	121:16:06		
••		STS-47	MS	190:30:23					STS-45	Cdr	214:10:24		
		STS-59	MS	269:49:30					STS-60	Cdr	199:09:02		
Armstrong, Neil	Civ	Gemini 8	Cdr	10:41:26		206:00:01	Bondar, Roberta L., PhD	Civ	STS-42	FS	193:15:43		193:15:43
		Apollo 11	Cdr	195:18:35	*02:32		Borman, Frank, Col.	USAF Ret		Cdr	330:35:01		477:36:13
Bagian, James P. MD	Civ	STS-29	MS	119:38:52		337:54:06			Apollo 8	Cdr	147:00:42		
•		STS-40	MS	218:15:14			Bowersox, Kenneth D., Lt. Co	fr.USN	STS-50	Pit	331:30:04		973:21:56
Baker, Ellen S., MD	Civ	STS-34	MS	119:39:20		664:32:33			STS-61	Pit	259:58:35		
		STS-50	MG	331:30:04			ł		STS-73	Cdr	381:53:17		
		STS-71	MS	235:23:09			Brand, Vance D.	Civ	Apollo Soy	UZ CMP	217:28:23		746:03:51
Baker, Michael A. Capt	USN	STS-43	Pit	213:22:27		720:04:48			STS-5	Cdr	122:14:26		
		STS-52	Pit	236:56:13			1		STS-41B	Cdr	191:15:55		
		STS-68	Cdr	269:46:08					STS-35	Cdr	215:05:07		
Bartoe, John-David F., PhD	Civ	STS-51F	PS	190:45:26		190:45:26	Brandenstein, Daniel C., Cap	USN	STS-8	Pit	145:08:43		789:05:50
Baudry, Patrick, Lt. Col.	FAF	STS-51G	PS	169:38:52		169:38:52	1		STS-51G	Cdr	169:38:52		
									STS-32	Cdr	261:00:37		
									STS-49	Cdr	213:17:38		
Í		*Lunar	Surface E	/A					** Suborbit	al Flight			

Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flighttime (hr:min: Sec)	Name S	ervice	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flighttime (hr:min: Sec)
Bridges, Roy D., Col	USAF	STS-51-F	Ptt	190:45:26		190:45:26	Chilton, Kevin P., Lt. Col.	USAF	STS-49	Pit	213:17:38		482:34:08
Brown, Curtis L.		STS-47	Pit	190:30:23		453:02:25			STS-59	Pit	269:49:30		
		STS-66	Pit	262:32:02			Cleave, Mary L., PhD	Civ	STS-61B	MS	165:04:49		262:00:52
Brown, Mark F., Lt. Col	USAF	STS-28	MS	121:00:08		249:27:51			STS-30	MS	96:56:28		
		STS-48	MS	128:27:51			Clervoy, Jean Francois, MD	Civ	STS-66	MS	262:32:02		262:32:02
Buchli, James F., Col	LISMC	STS-51C	MS	73:33:23		490:24:57	Clifford, M. Richard Lt. Col.	USA	STS-53	MS	175:19:47		445:09:17
		STS-61A	MS	168:44:51					STS-59	MS	269:49:30		
		STS-29	MS	119:38:52			Coats, Michael L., Capt.	USN	STS-41D	Pit	144:56:04		463:58:13
		STS-48	MS	128:27:51					STS-29	Cdr	119:38:52		
Budarin, Nikolai M.	CIS .	STS-71	FE	235:23:09		235:23:09			STS-39	Cdr	199:23:17		
Bursch, Daniel W. Cdr	USN	STS-51	MS	236:11:11		505:21:19	Cockrell, Kenneth	Civ	STS-56	MS	222:08:16		482:38:12
		STS-68	MS	269:46:08					STS-69	Pit	260:29:56		
Cabana, Robert D., Lt. Col.	USMC	STS-41	Pit	98:10:03		626:57:14	Coleman, Catherine, Capt, Ph	D USAF	STS-73	MS	381:53:17		381:53:17
		STS-53	Pit	175:19:47			Collins, Michael, M. Gen	USAF	Gemini 10		70:46:39	01:30	266:05:14
		STS-65	Cdr	353:55:00					Apollo 11	QVP	195:18:35		
Cameron, Kenneth D. Col.	USMC	STS-37	Pit	143:32:45		562:12:43	Collins, Eileen M., Lt Col	USAF	STS-63	Pit	196:29:36		196:29:36
		STS-56	Cdr	222:08:16			Conrad, Charles (Pete), Capt	USN Ret	Gemini 5	Pit	190:55:14		1179:38:35
		STS-74	Cdr	196:31:42					Gemini 11	Cdr	71:17:08		
Carpenter, M. Scott, Cdr.	USN Ret		Cdr	4:56:05		4:56:05			Apollo 12		244:36:24	*07:45	
Carr, Gerald P., Col	USMC Rel			2016:01:16	15:48				Skylab 2	Cdr	672:49:49	05:51	
Carter, Manley, Cdr.	USN	STS-33	MS	120:06:46		120:06:46	Cooper, L. Gordon, Jr., Col.	USAF Re		Pit	34:19:49		225:15:03
Casper, John H., Col	USAF	STS-36	Pit	106:18:22		585:13:22			Gemini 5	Cdr	190:55:14		
		STS-54 STS-62	Cdr	143:38:19			Covey, Richard O., Col	USAF	STS-511	Plt	170:17:42		645:10:05
Outline Outline I	0	STS-62 STS-61C	Cdr PS	335:16:41		146:03:51			STS-26	Plt	97:00:11		
Cenker, Robert J.	Civ USN Ret	Gemini 9A	PS	146:03:51 72:20:50	00.00	566:16:12			STS-38	Cdr	117:54:27		
Cernan, Eugene A., Capt.	USNIHEL	Apolio 10	UMP	192:03:23	02:08	500:16:12			STS-61	Cdr	259:58:35		
				301:51:59	+22:04								
Ohana Dias Smaltin D. Dha). Civ	Apollo 17 STS-61C	Cdr	146:03:51	-22:04	656:08:40							
Chang-Diaz, Franklin R., PhD		STS-61C	MS MS	119:39:20		050.08;40							
		STS-46	MS	191:16:07									
		STS-60	MS	199:09:22									
Chiao, Leroy, PhD	Civ	STS-65	MS	353:55:00		353:55:00							
Cisao, Leioy, PhD	Cir	313-03	MJ	553,55,00					Suborbital	rught			_

Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flighttime (hr:min: Sec)	Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA _(hr:min)	Total Flighttime (hr:min: Sec)
Creighton, John O., Capt	USN	STS-51G STS-36	Pit Cdr	169:38:52 106:18:22		404:24:05	Fabian, John M. Col.	USAF	STS-7 STS-51G	MS MS	146:23:59 169:38:52		316:02:51
		STS-48	Cdr	128:27:51			Fettman, Martin J., Dr.	Civ	STS-58	PS	336:12:32		336:12:32
Crippen, Robert L, Capt	USN	STS-1	Pit	54:20:53		565;48:32	Fisher, Anna L., MD	Civ	STS-51A	MS	191:44:56		191:44:56
		STS-7	Cdr	146:23:59			Fisher, William F., MD	Civ	STS-51	MS	170:17:42	11:51	170:17:42
		STS-41C	Cdr	167:40:07			Foale, C. Michael, PhD	Civ	STS-45	MS	214:10:24		632:48:16
		STS-41G	Cdr	197:23:33					STS-56	MS	222:08:16		
Culbertson, Frank L., Capt,	LISN	STS-38	Pit	117:54:27		354:05:38			STS-63	MS	196:29:36		
		STS-51	Cdr	236:11:11			Frimout, Dirk D., PhD	Civ	STS-45	PS	214:10:24		214:10:24
Cunningham, Walter	Civ	Apollo 7	LMP	260:09:03		260:09:03	Fullerton, C. Gordon, Col.	USAF	STS-3	Ptt	192:04:46		382:50:12
Currie, Nancy J., Mat	USA	STS-70	MG	214:21:09		214:21:09			STS-51F	Cdr	190:45:26		
Davis, N. Jan, PhD	Civ	STS-47 STS-60	MS MS	190:30:23 199:09:22	:		Furrer, Reinhard, PhD	Civ	STS-61A	PS	168:44:51		168:44:51
Delucas, Lawrence J., PhD	Civ	STS-50	FS	331:30:04		331:30:04	Gaffney, F. Drew Dr.	Civ	STS-40	PS	218:15:14		218:15:14
Dezhurov, Vladimir, Lt Col	as	STS-71	Cdr	235:23:09		235:23:09	Gardner, Dale A.,	USN	STS-8	MS	145:08:43		336:53:39
Duffy, Brian K., Lt. Col. USA	F	STS-45	Plt	214:10:24		45:55:18			STS-51A	MS	191:44:56	12:14	
		STS-57	Pit	239:44:54			Gardner, Guy S., Lt. Col.	USAF	STS-27	Plt	105:05:37		320:10:44
Duke, Charles M., B. Gen.	USAF	Apollo 16	LMP	265:51:05	*20:	4 *265:51:05	Garn, E. J. "Jake"	Civ	8 1 8-310	F	767:85:23		167:55:23
Dunbar, Bonnie J., PhD	Civ	STS-61A	MS	168:44:51		976:40:04	Garneau, Marc, PhD	Civ	STS-41G	PS	197:23:33		197:23:33
		STS-32	MS	261:00:37			Garriott, Owen K., PhD	Civ	Skylab 3		1416:11:09	13:44	1663:58:3
		STS-50	MS	331:30:04					STS-9	MS	247:47:24		
		STS-71	MS	235:23:09									
Durrance, Samuel T., PhD	Civ	STS-35	PS	215:05:07		614:14:54							
		STS-67	PS	399:09:47									
Eisele, Donn F., Col.	USAF R	et Apollo 7	CMP	260:09:03		260:09:03							
England, Anthony W., PhD	Civ	STS-51F	MS	190:45:26		190:45:26							
Engle, Joe H., Col	USAF	STS-2 STS-5I	Cdr Cdr	54:13:12 170:17:42		244:30:54							
Evans, Ronald R., Capt	USN Flet	Apolio 17	OMP	301:51:59	01:06	301:51:59							
	*Lunar S	Surface EVA						++ sut	orbital Fligh	rt .			

.

Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min	Total Flighttime) (hr:min: Sec)	Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Filghttime (hr:min: Sec
Gemar, Charles D., Lt. Col	USA	STS-38	MS	117:54:27		781:38:59	Haise, Fred W.	Civ	Apollo 13	LMP	142:54:41		142:54:41
		STS-48	MS	128:27:51			Hammond, L. Blaine, Jr. Col	USAF		Pit	199:26:17		462:16:14
		STS-62	MS	335:16:41			[STS-64	Pit	262:49:57		
Gernhardt, Michael L. PhD		STS-69	MS	260:29:56		260:29:56	Harbaugh, Gregory J.	Civ	STS-39	MS	199:26:17		578:27:45
Gibson, Edward G., PhD	Civ	Skylab 4	Plt	2016:01:16	15:20	2016:01:16			STS-54	MS	143:38:19		
Gibson, Robert L., Cdr.	USN	STS-41B	Pit	191:15:55		868:18:55			STS-71	MS	235:23:09		
		STS-61C	Cdr	146:03:51			Harris, Bernard, Jr., Dr.	Civ	STS-55	MS	239:39:59		9:09:35
		STS-27	Cdr	105:05:37					STS-63	MS	196:29;36		
		STS-47	Cdr	190:30:23			Hart, Terry J	Civ	STS-41C	MS	167:40:07		167:40:07
		STS-71	Cdr	235:23:09			Hartsfield, Henry W.	USAFRet		Pit	169:09:3		482:50:26
Glenn, John H., Jr., Col		Friendship 7		4:55:23		4:55:23			STS-41D	Cdr	144:56:0		
Godwin, Linda M. PhD	Civ	STS-37	MS	143:32:45		413:22:15			STS-61A	Cdr	168:44:5		
		STS-59	PC	269:49:30			Hauck, Frederick H., Capt	USN	STS-7	Ptt	146:23:5	9	435:09:06
Gordon, Richard F., Jr., Capt.	USN Ret	Gemini 11	Pit	71:17:08	01:57	315:53:32			STS-51A	Cdr	191:44:5	6	
		Apollo 12	CMP	244:36:24					STS-26	Cdr	97:00:11		
Grabe, Ronald J., Col	USAF	STS-51J	Pit	97:44:38		627:41:40	Hawley, Steven A., Ph	Civ	STS-41D	MS	144:56:04		412:16:01
		STS-30	Pit	96:56:28			1		STS-61C	MS	146:03:5	1	
		STS-42	Cdr	193:15:43			1		STS-31	MS	121:16:0	6	
		STS-57	Cdr	239:44:54			Hennen, Thomas J.	USA	STS-44	PS	166:52:2	7	166:52:27
Gregory, Frederick D., Col	USAF	STS-51B	Pit	168:08:46		455:07:59	Helms, Susan, Maj.	USAF		MŚ	143:38:1		406:28:16
		STS-33	Cdr	120:06:46					STS-64	MS	262:49:57	,	
		STS-44	Cdr	166:52:27			Henize, Karl G., PhD	Civ	STS-51F	MS	190:45:2		190:45:26
Gregory, William G. Lt Col	USAF	STS-67	Ptt	399:09:47		399:09:47	Henricks, Terence T. Col.	USAF	STS-44	Pit	166:52:2		620:53:35
Griggs, S. David	Civ	STS-51D	MS	167:55:23	03:10		1		STS-55	Pit	239:39:5		
Grissom, Virgil I., Lt. Col.	USAF**	Liberty Bell	Pit	15:37		5:08:08			STS-70	Cdr	214:21:0	9	
		Gemini 3	Cdr	4:52:31			Hieb, Richard J	Civ	STS-39	MS	199:26:1	7	766:38:55
Grunsfeld, John M., PhD	Civ	STS-67	MS	399:09:47		399:09:47	l ·		STS-49	MS	213:17:3	8 17:4	12
Gutierrez, Sidney M. Lt. Col.	USAF	STS-40	Pit	218:15:14		488:04:44			STS-65	MS	353:55:0	0	
		STS-59	Cdr	269:49:30			Hilmers, David C., Lt. Col.	USMC	STS-51J	MS	97:44:38		494:18:54
Hadfield, Chris, Maj	CAF	STS-74	MS	196:31:42		196:31:42	1		STS-26	MS	97:00:11	I	
Halsell, James D, Jr., Lt Co.	USAF	STS-65	Pit	353:55:00		549:26:42			STS-36	MS	106:18:22		
		STS-74	Pit	196:31:42					STS-42	MS	193:15:43		
	-1	unar Surface I	EVA					** Suborb					

Name	Service	Mission	Position	Flight Time (hr:min:sec)		Total Flighttime (hr:min: Sec)	Name	Service	Mission	Position	Flight Time (hf:min:sec)	EVA (hr:min)	Total Flighttime (hr:min: Sec)
Hoffman, Jeffery A., PhD	Civ	STS-51D	MS	167:55:23	03:10	834:15:12		USN	STS-64	MS	262:49:57	-	262:49:57
		STS-35	MS	215:05:07			Lopez-Alegria, Michael LtC	USN	STS-73	MS	381:53:17		381:53:17
		STS-46	MS	91:16:07			Lounge, John M.	Civ	STS-51I	MG	170:17:42		482:23:00
		STS-61	MS	259:58:35	22:0	3			STS-26	MS	97:00:11		
Hughes-Futford, Millie Dr.	Civ	STS-40	PS	218:15:14		218:15:14			STS-35	MS	215:05:07		
Invin, James B., Col	USAF	ReApollo 15		295:11:53	*18:3	5 295:11:53	Lousma, Jack R., Col	LISMIC	Skylab 3	Pit	1416:11:09	10:59	1608:15:55
lvins, Marsha S.	Civ	STS-32	MS	261:00:37		787:33:25	J		STS-3	Cdr	192:04:46		
		STS-46	MS	191:16:07	,		Lovell, James A., Jr., Capt	USN Ret	Gemini 7	Pit	330:35:01		715:04:55
		STS-62	MS	335:16:41					Gemini 12	Cdr	94:34:31		
Jarvis, Gregory B	Civ	STS-51L	PS	N/A		N/A			Apollo 8	OMP	147:00:42		
Jemison, Mae C., MD	Civ	STS-47	MS	190:30:23		190:30:23			Apollo 13	Cdr	142:54:41		
Jemigan, Tamara E. PhD	Ciν	STS-40	MS	218:15:14		854:21:14	Low, G. David	Civ	STS-32	MS	261:00:37		714:07:58
		STS-52	MS	236:56:13	1				STS-43	MS	213:22:27		
		STS-67	MS	399:09:47	,				STS-57	PC	239:44:54	05:50	
Jones, Thomas D. PhD	Chv	STS-59	MS	269:49:30		539 35:38	Lucid, Shannon W., PhD	Civ	STS-51G	MG	169:38:52		838:53:11
		STS-68	PC	269:46:08	1				STS-34	MS	119:39:20		
Kerwin, Joseph P., Capt	USN Ret	Skylab 2	Ptt	672:49:49	03:30	672.49.49	1		STS-43	MS	213:22:27		
Kregel, Kevin R.	av	STS-70	Pit	214:21:09)	214:21:09	\		STS-58	MS	336:12:32		
Krikalev, Sergel	CIS	SXTS-60	MS	199:09:22		199:09:22	Malerba, Franco, PhD	Civ	STS-46	PS	191:16:07		191:16:07
Lawrence, Wendy B, Cdr	USN	STS-67	MS	399:09:47		399:09:47	Mattingly, Thomas K., Capt	USN	Apollo 16	CMP	265:51:05	01:24	508:33:59
Lee, Mark C. Maj	USAF	STS-30	MS	96:56:28		550:16:48	1		STS-4	Cdr	169:09:31		
		STS-47	MS	190:30:23			L		STS-51C	Cdr	73:33:23		
		STS-64	MS	262:49:57	,		McArthur, William, Jr., Lt Col	USA	STS-58	MS	336:12:32		532:44:14
Leetsma, David C., Cdr	USN	STS-41G	MS	197:23:33	03:29	532:34:05			STS-74	MS	196:31:42		
		STS-28	MS	121:00:08			McAuliffe, S. Christa	Civ	STS-51L	PS	N/A		N/A
		STS-45	MS	214:10:24			McBride, Jon A., Cdr	USN	STS-41G	Pit	197:23:33		197:23:33
Lenoir, William B., PhD	Civ	STS-5	MS	122:14:26		122:14:26	McCandless, Bruce, Capt	USN	STS41-B	MG	191:15:55	11:37	191:15:55
Leslie, Fred, PhD	Civ	STS-73	PS	381:53:17		381:53:17	McCulley, Michael, Cdr	USN	STS-34	Pit	119:39:20		119:39:20
Lichtenberg, Bryon K, PhD		STS-9	PS	247:47:24		461:57:48	McDivitt, James A., B. Gen	USAF Ret	Gemini 4		97:56:12		338:57:06
•••••		STS-45	PS	214:10:24			McMonagle, Donald R. Lt.Col.	USAF	STS-39	MS	199:23:17		605:36:38
Lind, Don Leslie, PhD	CIV	STS-51B		168:08:46		168:08:46			STS-54 STS-66	Pit Cơr	143:38:19 262:32:02		
		Hunar Surfar					1		** Suborbita	al Elight			

Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Filghttime (hr:min: Sec)	Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flighttime (hr:min: Sec
McNair, Ronald E., PhD	Clv	STS-41B	MS	191:15:55		191:15:55	Neri Vela, Rodolpho, PhD	Civ	STS-61B	FS	165:04:49		165:04:49
		STS-51L	MS	N/A			Newman, James H., Dr.	Civ	STS-51	MS	236:11:11	07:05	496:28:07
Meade, Carl J., Col.	USAF	STS-38	MS	117:54:27		712:13:28			STS-69	MS	260:29:56		
		STS-50	MS	331:30:04			Nicollier, Claude, PhD	Civ	STS-46	MS	191:16:07		451:14:42
		STS-64	MS	262:49:57					STS-61	ESA	259:58:35		
Melnick, Bruce E., Cdr	USOG	STS-41	MS	98:10:03		311:27:41	Ochoa, Ellen, Dr.	CM	STS-56	MS	222:08:16		484:40:18
		STS-49	MS	213:17:38				Civ	STS-66	MS	262:32:02		
Merbold, Ulf, PhD	Civ	STS-9	PS	247:47:24		441:03:07	Ockels, Wubbo J., PhD	Civ	STS-61A	PS	168:44:51		168:44:51
		STS-42	PS	193:15:43			O'Connor, Bryan O., Col	USMC	STS-61B	Pit	165:04:49		383:20:03
Messerschmid, Ernest, PhD	Civ	STS-61A	PS	168:44:51		168:44:51			STS-40	Cdr	218:15:14		
Mitchell, Edger D., Capt	USN Ret	Apollo 14	LMP	216:01:58	* 09:23	216:01:58	Onizuka, Ellison S., Lt. Cot	USAF	STS-51C	MS	73:33:23		73:33:23
Mohri, Mamoru, PhD	Civ	STS-47	PS	190:30:23		190:30:23			STS-51L	MS	N/A		
Mullane, Richard M., Col	USAF	STS-41D	MS	144:56:04		571:25:10	Oswald, Steven S.	Civ	STS-42	Pit	193:15:43		814:33:46
		STS-27	MS	105:05:37					STS-56	Plt	222:08:16		
		STS-36	MS	106:18:22					STS-67	Cdr	399:09:47		
		STS-35	MS	215:05:07			Overmyer, Robert F., Col	USMC	STS-5	Pit	122:14:26		290:23:12
Mukai, Chiaki, MD, PhD		STS-65	PS	353:55:00		355:55:00	-		STS-51B	Cdr	168:08:46		
Musgrave, F. Story, MD, PhD	Civ	STS-6	MS	120:23:42	03:54	857:06:56							
		STS-51F	MS	190:45:26									
		STS-33	MS	120:06:46			Pailes, William A., Maj	USAF	STS-51J	PS	97:44:38		97:44:38
		STS-44	MS	166:52:27			Parazynski, Scott, MD	Civ	STS-66	MS	262:32:02		262:32:02
		STS-61	MS	259:58:35	22:03		Parise, Ronald A., PhD	Civ	STS-35	PS	215:05:07		614:14:54
Nagel, Steven R., Col. USA	vF	STS-51G	MS	169:38:52		721:36:27	Parker, Robert A., PhD	Civ	\$Ŧ\$-\$7	PÃIS	329:09:47		462:52:31
		STS-61A	Pit	168:44:51				0.0	STS-35	MS	215:05:07		402.52.51
		STS-37	Cdr	143:32:45			Payton, Gary E., Maj	USAF	STS-51C	PS	73:33:23		73:33:23
		STS-55	Cdr	239:39:59			Peterson, Donald H.	USAF Ret		MS		03:54	120:23:42
Nelson, Bill Civ		STS-61C	PS	146:03:51		146:03:51	Pogue, William R., Col.	USAF Ret	Skylab 4			13:34	2016:01:16
Nelson, George D., PhD Civ		STS-41C	MS	167:40:07	10:06	410:44:09	Precourt, Charles, Lt Col.	USAF	STS-55	MS	239:39:59	13.34	475:03:08
		STS-61C	MG	146:03:51			riecon, charles, LL COL	0345	STS-55	Ptt	235:23:09		475:03:08
		STS-26	MS	97:00:11			Readdy, William F.	Civ	STS-42	MS	193:15:43		429:26:54
							ricaucy, maidill F.	CI4	STS-51	Pit	236:11:11		429:26:54
	*Luna i	Surface EV	A						** Suborbit	at Flight			

Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Filghttime (hr:min: Sec)	Name	Service	Mission 8	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flighttime _ftr:min: Sec)
Reightler, Kenneth S., Jr. C	dri ISN	STS-48	Pit	128:27:51		327:36:53	Seddon, M. Rhea, MD	Civ	STS-51D	MG	167:55:23		722:23:09
Theightest, New Libert C., Cr. C		STS-60	Pit	199:09:02		027.00.00			STS-40	MG	218:15:14		
Resnik, Judith A., PhD	Civ	STS-41D	MS	144:56:04		144:56:04			STS-58	FC	336:12:32		
	•	STS-51L	MS	N/A			Sega, Ronald M.	Civ	STS-60	MS	199:09:22		199:09:22
Richards, Richard N., Cdr	USN	STS-28	Pit	121:00:08		813:30:12	Shaw, Brewster H., Col	USAF	STS-9	Pit	247:47:24		533:52:21
		STS-41	Cdr	98:10:03					STS-61B	Cdr	165:04:49		
		STS-50	Cdr	331:30:04					STS-28	Cdr	121:00:08		
		STS-64	Cdr	262:49:57			Shepard, Alan B., Jr., R. Adm	.USN Ret*		Pit	15:22		216:17:20
Ride, Sally K, PhD	Civ	STS-7	MS	146:23:59		343:47:32			Apollo 14	Cdr	216:01:5	*09:23	
		STS-41G	MS	197:23:33			Shepherd, William M., Capt	USN	STS-27	MS	105:05:37		440:11:53
Rominger, Kent, Cdr	USN	STS-73	Pit	381:53:17		381:53:17			STS-41	MS	98:10:03		
Roosa, Stuart A., Col	USAFRet	Apollo14	OMP	216:01:58		216:01:58			STS-52	MS	236:56:13		
Ross, Jerry L., Lt Col	USAF	STS-61B	MS	165:04:49	12:20	610:14:53	Sherlock, Nancy J., Capt.	USA	STS-57	MS	239:44:54		239:44:54
• • • • • • •		STS-27	MS	105:05:37			Shriver, Loren J., Col	USAF	STS-51C	Pit	73:33:23		386:05:36
		STS-37	MS	143:32:45	10:49				STS-31	Cdr	121:16:06	06 07	
		STS-74	MS	196:31:42					STS-46	Cdr	191:16:07		
Runco, Mario Jr., Lt Cdr	USN	STS-44	MS	166:52:27		310:30:46	Slayton, Donald K. Maj		TApollo Soyuz	OMP	217:28:23		217:28 :23
		STS-54	MS	143:38:19	04:27		Smith, Michael J, Cdr	USN	STS-51L	Pit	N/A		N/A
Sacco, Albert, Lt Cdr	USN	STS-73	PS	381:53:17		381:51:17	Smith, Steven L	Civ	STS-68	MS	269:46:08		269:46:08
Searfoss, Richard, Maj	USAF	STS-58	Pit	336:12:32		336:12:32	Solovyev, Anatoly Y,	FLS	STS-71	Cdr	235:23:09		235:23:09
Schirra, Walter M., Jr., Cap	t USN Ret	Sigma 7	Pit	9:13:11		295:13:38	Spring, Sherwood C., Lt Col	USA	STS-61B	MS	165:04:49	12:20	165:04:49
		Gemini 6A	Cdr	25:51:24			Springer, Robert C., Col	USMC	STS-29	MS	119:38:52		237:33:19
		Apolio 7	Cdr	260:09:03					STS-38	MS	117:54:27		
Schlegel, Hans (German)	Civ	STS-55	PS	239:39:59		239:39:59	Stafford, Thomas P., Lt. Gen	USAF Re	tGemini 6A	Plt	25:51:24		507:44:00
Schmitt, Harrison H., PhD	Civ	Apollo 17	LMP	301:51:59	*22:04	301:51:59			Gemini 9A	Cdr	72:20:50		
Schweickart, Russell	Civ	Apollo 9	LMP	241:00:54	01:07	241:00:54			Apollo 10	Cdr	192:03:23		
Scobee, Francis R. (Dick)	USAF Ret		Ptt	167:40:07		167:40:07			Apollo Soyuz	Cdr	217:28:23		
		STS-51L	Cdr	N/A			Stewart, Robert L., Col	USA	STS-41B	MS	191:15:55	11:37	289:00:33
Scott, David R., Col U	SAF Ret	Gemini 8	Pit	10:41:26		546:54:13			STS-51J	MS	97:44:38		
		Apollo 9	CMP	241:00:54	01:01		Strekalov, Gennady, FE	RUS	STS-71	FE	235:23:09		235:23:09
		Apolio 15	Cdr	295:11:53	*19:08								
Scully-Power, Paul D C	N	STS-41G	PS	197:23:33		197:33:23							
	*Lur	nar Surface	EVA						** Suborbitat	Flight			

NASA Astronauts

Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flight Time (hr:min:sec)	Name	Service	Mission	Position (hr:min:s	Flight Time ac) (hr:min) (EVA [hr:min:sec	Total Flight Time)
Sullivan, Kathryn D., PhD	av	STS-41G	MS	197:23:33	03:29	532:50:03	Voss, Janice E., Dr.	Civ	STS-57	MS	239:44:54		436:14:30
		STS-31	MS	121:16:06				.	STS-63	MS	196:29:36		
		STS-45	MS	214:10:24			Walker, Charles D.	Ċiv	STS-41D	PS	144:56:04		477:56:16
Swigert, John L., Jr.	Civ	Apollo 13	CMP	142:54:41		152:54:41			STS-51D	PS	167:55:23		
Tanner, Joseph, R.	USN	STS-66	MS	262:32:02		262:32:02			STS-61B	PS	165:04:49		
Thagard, Norman E, MD	αv	STS-7	MS	168:08:46		672:42:06	Walker, David M., Capt	USN	STS-51A	Pit	191:44:56		724:31:07
		STS-30	MS	96:56:28					STS-30	Cdr	96:56:28		
		STS-42	MS	193:15:43					STS-53	Cdr	175:19:47		•
		STS-71	MS	214:21:09					STS-69	Cdr	260:29:56		
Thomas, Donaid A, PhD	Civ	STS-65	MS	353:55:00		568:16:09	Walter, Ulrich (Germany)	Civ	STS-55	PS	239:39:59		239:39:59
		STS-70	MS	214:21:09			Walz, Carl E., Maj	USAF	STS-51	MS	236:11:11	07:05	620:06:11
Thornton, Kathryn	CN .	STS-33	MŞ	120:06:46		975:16:17			STS-65	MG	353:55:00		
		STS-49	MS	213:17:38	7:45		Wang, Taylor G., PhD	Civ	STS-518	PS	168:08:46		168:08:46
		STS-61	MS	259:58:35	13:25	5	Weber, Mary PhD	Civ	STS-70	MS	214:01:46		214:01:16
		STS-73	MS	381:53:17			Weitz, Paul J., Capt	USN Ret	Skylab 2	Pit	672:49:49	01:44	793:13:31
Thornton, William E., MD	Civ	STS-8	MS	145:08:43		313:17:29			STS-6	Cdr	120:23:42		
		STS-51B	MS	168:08:46			Wetherbee, James, Cdr	USN	STS-32	Plt	261:00:37		694:86:86
Thuot, Flerre J., Lt. Cdr	USG	STS-36	MS	108:18:22		654:52:41			STS-52	Cdr	236:56:13		
		STS-49	MS	213:17:38	17:42				STS-63	Cdr	196:29:36		
		STS-62	MS	335:16:41			White, Edward H., Lt. Col	USAF	Gemini 4	Pit	97:56:12	00:23	97:56:12
Titov, Vladimir Georgievich	RUS	STS-63	MS	196:29:36		196:29:36	Wilcutt, Terrence, Maj	USMC	STS-68	Ptt	269:46:08		269:46:08
Trinh, Eugene H., Phd	av	STS-60	PS	331:30:04		331:30:04	Williams, Donald E., Capt	USN	STS-51D	Pit	167:55:23		287:34:43
Truly, Richard H., Capt	USN	STS-2	Ptt	54:13:12		199:21:55			STS-34	Cdr	119:39:20		
		STS-8	Cdr	145:08:43			Wisoff, Peter J. K., Dr.	Civ	STS-57	MS	239:44:54	05:50	509:31:02
van den Berg, Lodewijk, PhD	Civ	STS-51B	PS	168:08:46		168:08:46			STS-68	MS	269:46:08		
van Hoften, James D., PhD	Civ	STS-41C	MS	167:40:07	10:06	337:57:49	Wolf, David A., Dr	Civ	STS-58	MS	336:12:32		336:12:32
		STS-51	MS	170:17:42	11:51		Worden, Alfred M., Col	USAF Ret	Apollo 15	OMP	295:11:53	00:39	295:11:53
Veach, Charles Lacy	USAF	STS-39	MS	199:23:17		436:19:30	Young, John W., Capt	USN Ret	Gemini 3	Pit	4:52:31		835:41:55
		STS-52	м	236:56:13					Gemini 10	Cdr	70:46:39		
Voss, James S. Col.	USA	STS-44	MS	166:52:27		602:42:10			Apollo 10	CMP	192:03:23		
		STS-53	MS	175:19:47					Apolio 16		265:51:05	20.14	
		STS-69	MS	260:29:56					STS-1	Cdr	54:20:53		
									STS-9	Cdr	247:47:24		
	Luna	Surface EV	Α						0.0.0	-01			

Summary of United States Human Space Flight

Hission	Crew Members	Mission Duration (hr:min:sec)	Crew Hours (hr:min:sec)	Mission	Crew Members	Mission Duration (hr:min:sec)	Crew Hours (hr:min:sec)
MERCURY REDSTO	NE (Suborbital)			APOLLO SATURN I			
Freedom 7	Shepard	15:22	15:22	Apolio 7	Schirra, Eisele, Cunningham	260:09:03	780:27:09
Liberty Bell 7	Grissom	15:37	15:37				
Total Flights - 2		30:59	30:59	APOLLO SATURN V			
MERCURY ATLAS	(Orbital)			Apollo 8	Borman, Lovell, Anders	147:00:42	
				Apollo 9	McDivitt, Scott, Schweickart	241:00:54	723:02:42
Friendship 7	Glenn	4:55:23	4:55:23	Apollo 10	Stafford, Young, Cernan	192:03:23	
Aurora 7	Carpenter	4:56:05	4:56:05	Apollo 11	Armstrong, Collins, Aldrin	195:18:35	
Sigma 7	Schirra	9:13:11	9:13:11	Apollo 12	Conrad, Gordon, Bean	244:36:24	733:49:12
Faith 7	Cooper	<u>34:19:49</u>	34:19:49	Apollo 13	Lovell, Swigert, Haise	142:54:41	428:44:03
Total Flights - 4	k i i i i i i i i i i i i i i i i i i i	53:24:28	53:24:28	Apollo 14	Shepard, Roosa, Mitchell	216:01:58	
				Apollo 15	Scott, Worden, Irwin	295:11:53	
				Apollo 16	Young, Mattingly, Duke	265:51:05	797:33:15
TOTAL MERCURY	FLIGHTS - 6	53:55:27	53:55:27	Apollo 17	Cernan, Evans, Schmitt	301:51:59	
				Total Flights - 10		2241:51:34	6725:34:42
GEMINI TITAN				TOTAL APOLLO FLIGH	ITS - 11	2502:00:37	7506:01:51
Gemini 3	Grissom, Young	4:52:30	9:45:02	SKYLAB SATURN IB			
Gemini 4	McDivitt, White	97:56:12	195:52:24				
Gemini 5	Cooper, Conrad	190:55:14	381:50:28	Skylab 2	Conrad, Kerwin, Weitz	672:49:49	2018:29:27
Gemini 6A	Schirra, Stafford	25:51:24	51:42:48	Skylab 3	Bean, Garriott, Lousma		4248:33:27
Gemini 7	Borman, Lovell	330:35:01	661:10:02	Skylab 4	Carr, E. Gibson, Pogue		6048:03:48
Gemini 8	Armstrong, Scott	10:41:26	21:22:52				
Gemini 9A	Stafford, Cernan	72:20:50	144:41:40	TOTAL SKYLAB FU	GHTS - 3	4105:02:14	12315:06:4
Gemini 10	Young, Collins	70:46:39	141:33:18				
Gemini 11	Conrad, Gordon	71:17:08	142:34:16	APOLLO SATURN IB			
Gemini 12	Lovell, Aldrin	94:34:31	189:09:02				
-	-			ASTP	Stafford, Brand, Slayton	217:28:23	652:25:05
	GHTS - 10	969-50-56	1939:41:52	1			

Summary of United States Human Space Flight

Mission	Crew Members	Mission Duration (hr:min:sec)	Crew Hours (hr:min:sec)	Mission	Crew Members	Mission Duration (hr:min:sec)	Crew Hours (hr:min:sec)
STS-1 - Columbia	Young, Crippen	54:20:53	108:41:46	STS-511 - Discovery	Engle, Covey, van Hoften, Lounge, W. Fisher	170:17:42	851:28:30
STS-2 - Columbia	Engle, Truly	54:13:12	108:26:24	STS-51J - Atlantis	Bobko, Grabe, Hilmers, Stewart, Pailes	97:44:38	488:43:10
STS-3 - Columbia	Lousma, Fullerton	192:04:46	384:09:32	STS-61A - Challenger	Hartsfield, Nagel, Buchli, Bluford, Dunbar,	168:44:51	1349:58:48
STS-4 - Columbia	Mattingly, Hartsfield	169:09:31	338:19:02		Furrer, Messerschmid, Ockels		
STS-5 - Columbia	Brand, Overmyer, Allen, Lenoir	122:14:26	488:57:44	STS-618 - Atlantis	Shaw, O'Connor, Cleave, Spring, Ross,	165:04:49	1155:33:43
STS-6 - Challenger	Weitz, Bobko, Peterson, Musgrave	120:23:42	481:34:48		Neri Vela, C. Walker		
STS-7 - Challenger	Crippen, Hauch, Ride, Fabian, Thagard	146:23:59	731:59:55	STS-61C - Columbia	R. Gibson, Bolden, Chang-Diaz, Hawley,	146:03:51	1022:26:57
STS-8 - Challenger	Truly, Brandenstein, D. Gardner, Bluford,	145:08:43	725:43:35		G. Nelson, Cenker, B. Nelson		
	W. Thornton			STS-51L - Challenger	Scobee, Smith, Resnik, Onizuka, McNair,	N/A	N/A
STS-9 - Columbia	Young, Shaw, Garriott, Parker,	247:47:24	1486:44:24		Jarvis, McAuliffe		
	Lichtenberg, Merbold			STS-26 - Discovery	Hauck, Covey, Lounge, Hilmers, G. Nelson	97:00:11	485:00:55
STS-41B - Challenger	Brand, Gibson, McCandless, McNair,	191:15:55	956:19:35	STS-27 - Atlantis	R. Gibson, Gardner, Mullane, Ross, Shepherd	105:05:37	525:28:05
	Stewart			STS-29 - Discovery	Coats, Blaha, Bagian, Buchi, Springer	119:38:52	598:14:20
STS-41C - Challenger	Crippen, Scobee, van Hoften, G. Neison, Hart		838:20:35	STS-30 - Atlantis	Walker, Grabe, Thagard, Cleave, Lee	96:56:28	484:42:20
STS-41D - Discovery	Hartsfield, Coats, Resnik, Hawley, Mullane,	144:56:04	869:36:24	STS-28 - Columbia	Shaw, Richards, Leetsma, Adamson, Brown	121:00:08	605:00:40
	C. Walker			STS-34 - Atlantis	Williams, McCully, Baker, Chang-Diaz, Lucid	119:39:20	598:16:40
STS-41G - Challenger	Crippen, McBride, Ride, Sullivan, Leetsma,	197:23:33	1381:44:51	STS-33 - Discovery	Gregory, Blaha, Musgrave, K. Thornton, Carter	120:06:46	600:33:50
	Gameau, Scully-Power			STS-32 - Columbia	Brandenstein, Wetherbee, Dunbar, Ivins, Low	261:00:37	1305:03:05
STS-51A - Discovery	Hauck, D. Walker, Gardner, A. Fisher, Allen	191:44:56		STS-36 - Atlantis	Creighton, Casper, Hilmers, Mullane, Thuot	106:18:22	531:31:50
STS-51C - Discovery	Mattingly, Shriver, Onizuka, Buchli, Payton	73:33:23	367:46:55	STS-31 - Discovery	Shriver, Bolden, McCandless, Hawley, Sullivan	121:16:06	606:20:30
STS-51D - Discovery	Bobko, Williams, Seddon, Hoffman, Griggs,	167:55:23	1175:27:41	STS-41- Discovery	Richards, Cabana, Melnick, Shepard, Akers	98:10:03	490:50:15
	C. Walker, Garn			STS-38 - Atlantis	Covey, Springer, Meade, Culbertson, Gemar	117:54:27	589:35:15
STS-518 - Challenger	Overmyer, Gregory, Lind, Thagard, W. Thornton, van den Berg, Wang	168:08:46	1177:01:22	STS-35 - Columbia	Brand, Lounge, Hoffman, Parker, G. Gardner, Parise, Durrance	215:05:07	1505:35:49
STS-51G - Discovery	Brandenstein, Creighton, Lucid, Fabian,	169:38:52	1187:32:04	STS-37 - Atlantis	Nagel, Cameron, Ross, Apt, Godwin	143:32:45	717:43:45
•	Nagel, Baudry, Al-Saud			STS-39 - Discovery	Coats, Hammond, Harbaugh, Hieb, McMonagle,	199:23:17	1395:42:59
STS-51F - Challenger	Fullerton, Bridges, Musgrave, England, Henize, Acton, Bartoe	190:45:26	1335:18:02		Bluford, Veach		

Summary of United States Human Space Flight

Mission	Crew Members	Mission Duration (hr:min:sec)	Crew Hours (hr:min:sec)	Mission	Crew Members	Mission Duration (hr:min:sec)	Crew Hours (hr:min:sec)
STS-40 - Columbia	Gutierrez, Seddon, Bagian, Jernigan, Gaffney, Hughes-Fulford, O'Connor	218:15:14	1527:46:38	STS-61 - Endeavour	Covey, Bowersox, Musgrave, Akers, Hoffman, Thornton, Nicollier	259:58:35	1971:57:05
STS-43 - Atlantis STS-48 - Discovery	Blaha, Baker, Lucid, Low, Adamson Creighton, Reightler, Buchli, Brown, Gemar	213:22:27 128:27:51	642:19:15	STS-60 - Discovery	Bolden, Reightler, Chang-Diaz, Davis, Sega, Krikalev	199:09:22	
STS-44 - Atlantis STS-42 - Discovery	Gregory, Henricks, Musgrave, Runco, Voss, Hennen Grabe, Oswald, Thagard, Readdy, Hilmers	166:52:27 193:15:43		STS-62 - Columbia STS-59 - Endeavour	Casper, Allen, Thout, Gemar, Ivins Gutierrez, Chilton, Godwin, Apt, Clifford,	335:16:41 269:49:30	
STS-42 - Discovery STS-45 - Atlantis	Bondar, Merbold Bolden, Duffy, Sullivan, Leestma, Foale,		1499:12:48	STS-65 - Columbia	Jones Cabana, Halsell, Hieb, Walz, Chiao, Thomas, Naito-Mukai	353:55:00	2477:25:00
STS-49 - Endeavour	Frimout, Lichtenburg Brandenstein, Chilton, Hieb, Melnick, Thout, Thornton, Akers	213:30:04	1493:03:26	STS-68 - Endeavour STS-64 - Discovery	Baker, Wilcutt, Jones, Smith, Bursch, Wisoff Richards, Hammond, Linenger, Helms, Meade,	269:46:08 262:49:57	
STS-50 - Columbia	Richards, Bowersox, Dunbar, Meade, Baker Delucas	331:30:04		STS-66 - Atlantis	Lee McMonagle, Brown, Ochoa, Tanner, Clervoy, Parazynski	262:32:02	1575:12:1
STS-46 - Atlantis	Shriver, Allen, Hoffman, Chang-Diaz, Nicollier, Ivins, Malerba			STS-63 - Discovery STS-67 - Endeavour	Wetherbee, Collins, Harris, Foale, Voss, Titov Oswald, Gregory, Grunsfeld, Lawrence, Parise	196:29:36 399:09:47	
STS-47 - Endeavour	Gibson, Brown, Lee, Davis, Jemison, Apt, Mohri		1333:32:41	STS-71 - Atlantis	Jerrigan, Durrance Gibson, Precourt, Baker, Harbaugh, Dunbar,	235:23:09	
STS-52 - Columbia STS-53 - Discovery	Weatherbee, Baker, Shepherd, Jernigan, Veach, MacLean Walker, Cabana, Bluford, Voss, Clifford	236:56:13	1421:37:18 876:38:55	STOPPE Addition	Sofovyev, Budarin, Dezhurow, Strekakov, Thagard		
STS-54 - Endeavour	Casper, McMonagle, Runco, Harbaugh	143:38:19	718:11:35	STS-70 - Discovery	Herricks, Kregel, Thomas, Currie, Webber 214:	21:09 107	1:45:45
	Helms			STS-69 - Endeavour	Walker, Cockrell, Voss, Newman, Gernhardt	260:29:56	
STS-56 - Discovery STS-55 - Columbia	Cameron, Oswald, Foale, Cockrell, Ochoa Nagel, Henricks, Precourt, Harris, Walter,	222:08:24 239:39:59	1110:42:00 1437:59:54	STS-73 - Columbia	Bowersox, Rorringer, Coleman, Thornton, Lopez-Alegria, Leslie, Sacco	381:53:17	2673:12:5
STS-57 - Endeavour STS-51 - Discovery	Schlegel Grabe, Duffy, Low, Sherlock, Wisoff,Voss Culbertson, Readdy, Newman, Bursch, Walz	239:44:54 236:11:11		STS-74 - Atlantis	Cameron, Halsel, Hadfield, Ross, McArthur	196:31:42	982:38:3
STS-58 - Columbia	Blaha, Searfoss, Seddon, Lucid, Wolf, McArthur, Fettman		2023:27:42	TOTAL SHUTTLE FLIGH	ITS - 72	13695:18:20	5 79626:03:20

STS-1 Apr 12, 1981 Columbia KSC Mission Duration: 54 hrs 2 STS-2 Nov 12, 1981	Apr 14, 1981 DFRF 0 mins 53 secs	John W. Young Robert L. Crippen	Deployable Payloads: None Attached PLB Payloads: 1. Passive Sample Array	GAS (Getaway Special): None Crew Compartment Payloads: None Special Payload Mission Kits: None
CTC 0 Nov 10 1001			DFI (Development Flight Instrumentation) Pallet ACIP (Aerodynamic Coefficient Identification Package)	
Vission Duration: 54 hrs 1	Nov 14, 1981 DFRF 3 mins 12 secs	Joe Henry Engle Richard H. Truly	Deployable Payloads: None Attached PLB Payloads: 1. 1. OFT (Orbital Flight Test) Pallet a. MAPS (Measurement of Air Pollution From Satellite) b. SMIRR (Shuttle Multispectral Infrared Radiometer) c. SIR (Shuttle Imaging Radar) d. FILE (Features Identification and Location Experiment) e. OCE (Ocean Color Experiment) 2. DFI (Development Flight Instrument) Pallet 3. ACIP (Aerodynamic Coefficient Identification Package)	ECM (Induced Environment Contamination Monitor) OSTA-1 (Office of Space and Terrestrial Applications) GAS (Getaway Special): None Crew Compartment Payloads: None Special Payload Mission Kits: I. RMS (Remote Manipulator System (S/N 201)
STS-3 Mar 22, 1982 Columbia KSC Mission Duration: 192 hrs	Mar 30, 1982 White Sands 4 mins 46 secs	Jack R. Lousma Charles G. Fullerton	Deployable Payloads: None 1. Plasma Diagnostic Package Attached PLB Payloads: 1. OSS (Office of Space Science)-1 Pallet a. Plant Lignification Experiment b. Plasma Diagnostic Package * c. Vehicle Charging and Potential d. Space Shuttle Induced Atmosphere e. Thermal Canister f. Solar Flara X-ray Polarimeter g. Solar Ultraviolet and Spectral Irradiance Monitor h. Contamination Monitor Package i. Foil Microabrasion Package *RMS deployed/berthed	 DFI (Development Flight Instrument) Pallet ACIP (Aerodynamic Coefficient Identification Package) GAS (Getaway Special): Verification Canister Verification Canister MLR (Monodisperse Latex Reactor) HBT (Heflex Bioengineering Test) Special Payload Mission Kits: RMS (Remote Manipulator System (S/N 201)

Flight	Launch Date	Landing Date		Crew	Payloads a	nd Experiments
	Jun 27, 1982 KSC rration: 169 hrs 9		Cdr: Plt:	Henry W. Hartsfield, Jr.	Deployable Payloads: None 1. IECM (Induced Environment Contamination Monitor) deployed/reberthed by RMS Attached PLB Payloads 1. DFI (Development Flight Instrument) Pallet Department of Defense 1. DOD 82-1 GAS (Getaway Special): 1. Utah State University a. Drosophila Melanogaster (fruit fly) Growth Experiment b. Antemia (Brine Shrimp) Growth Experiment c. Surface Tension Experiments d. Composite Curing Experiment e. Thermal Conductivity Experiment f. Microgravity Solering Experiment f. Microgravity Solering Experiment	 Root growth of Lemna Minor L. (Duckweed) in Microgravity Homogeneous Alloy Experiment Algai Microgravity Bioassay Experiment Crew Compartment Payloads: MLR (Monodisperse Latex Reactor) CFES (Continuous Flow Electrophoresis System) SSIP (Shuttle Student Involvement Program) SSIP (Shuttle Student Involvement Program) S404: Effect of Prolonged Space Travel on Levels of Trivialent Chromium in the Body S405: Effect of Diet, Exercise, and Zero Gravity on Lipoprotein Profiles VPCF (Vapor Phase Compression Freezer) Special Payload Mission Kits: RMS (Remote Manipulator System (S/N 201)
STS-5 Columbia Mission Du	Nov 11, 1982 KSC aration: 122 hrs	Nov 16, 1982 DFRF 14 mins 26 secs	Cdr: Pit: MS: MS:	Vance DeVoe Brand Robert F. Overmyer Joseph P. Allen William B. Lenoir	Deployable Payloads: None 1. SBS-C/PAM-D (Satellite Business Systems/Payload Assist Module) 2. ANIK-C/PAM-D (Telesat Canada, Ltd/Payload Assist Module) Attached PLB Payloads 1. DFi (Development Flight Instrument) Pallet a. EIOM (Effects of Interaction of Oxygen with Materials) b. ISAL (Investigation of STS Atmospheric Luminosities)	GAS (Getaway Special): 1. G-026: ERNO/Stability of Metallic Dispersions (JSC PIP 14021) Crew Compartment Payloads: 1. SSIP (Shuttle Student Involvement Program) a. SE81-5 - Crystal Formation in Zero Gravity b. SE81-9 - Convection in Zero Gravity c. SE81-2 - Growth of Porifera Special Payload Mission Kits: 1. Mission Specialis Seats (2)
STS-6 Challenger Mission Du		Apr 9, 1983 DFRF 23 mins 42 secs	Cdr: Plt: MS: MS:	Paul J. Weitz Karol J. Bobko Donald H. Peterson Story Musgrave	Deployable Payloads: None 1. TDRS-A/IUS (Tracking and Data Relay Satellite/Inertial Upper Stage) Attached PLB Payloads 1. CBSA (Cargo Bay Stowage Assembly) GAS (Getaway Specia): 1. G-005: Asahi Shimban, Japan 2. G-049: US. Air Force Academy 3. G-381: Park Seed Company	Crew Compartment Payloads: 1. CFES (Continuous Flow Electrophoresis System) 2. MLR (Monodisperse Latex Reactor) 3. RME (Radiation Monitoring Experiment) 4. NOSL (Night/Day Optical Survey of Lightning) Special Payload Mission Kits: 1. Mini-MADS (Modular Auxiliary Data System) 2. EMU (Extravehicular Mobility Unit)

Flight	Launch Date	Landing Date		Crew	Payloads a	nd Experiments
STS-7 Columbia Mission Du	Jun 18, 1983 KSC aration: 146 hrs	Jun 24, 1983 DFRF 23 mins 59 secs	Cdr: Plt: MS: MS:	Robert L. Crippen Frederick H. Hauck John M. Fabian Sally K. Ride Norman E. Thagard	Deployable Payloads: None 1. ANIK-C/PAM-D (Telesat Canada Satellite) 2. Palapa-B1/PAM-D (Indonesian Satellite) 3. SPAS (Shuttle Patlet Satellite)-01 Unberthing/Berthing Tests Attached PLB Payloads: 1. OSTA (Office of Space and Terrestrial Applications)-2 2. CBSA (Cargo Bay Stowage Assembly) GAS (Getaway Special): 1. G-033: California Institute of Tech - Plant Gravireception and Liquid Dispersion 2. G-088: Edsyn, Inc Soldering of Material 3. G-002: Kayser Threde, W. Germany - Youth Fair Experiment	 G-009: Purdue University - Geotropism Fluid Dynamics and Nuclear Particle Velocity G-305: U.S. Air Force and National Research Labs - Ultraviolet Spectrometer G-012: RCA, Camden, NJ Schools - Ant Colony G-345: Goddard Space Flight Center and National Research Labs - Payload Bay Environment Crew Compartment Payloads: CFES (Continuous Flow Electrophoresis System) MLFI (Monodisperse Latex Reactor) SSIP (Shuttle Student Involvement Program) Special Payload Mission Kits: RMS (Remote Manipulator System) SN 201 TAGS (Text and Graphics System) Mini-MADS (Modular Auxiliary Data System)
STS-8 Challenger Mission Du	Aug 30, 1983 KSC uration: 145 hrs	Sep 5, 1983 DFRF 8 mins 43 secs	Cdr: Ptt: MS: MS: MS:	Richard H. Truty Daniel C. Brandenstein Dale A. Gardner Guion S. Biuford, Jr. William E. Thornton	Deployable Payloads: 1. Insat/PAM-D: Indian National Satellite 2. PFTA (Payload Flight Test Article) Unberthing/ Berthing Tests Attached PLB Payloads: 1. DFI (Development Flight Instrumentation) a. Oxygen Interaction and Heat Pipe Experiment b. Postal Covers (2 boxes) 2. CBSA (Cargo Bay Stowage Assembly) 3. SPAS (Shuttle Pallet Satellite)-01 Umbilical Disconnect CAS (Getaway Special): 1. U.S. Postal Service - 8 cans of philatelic covers 2. G-475: Asahi Shimban - Artificial Snow Crystal Experiment 3. G-348: Office of Space Science - Atomic Oxygen Erosion 4. G-347: Navy Research Lab - Ultraviolet PhotoFilm Test	 G-346: Goddard Space Flight Center - Cosmic Ray Upset Experiment Crew Compartment Payloads : CFES (Continuous Flow Electrophoresis System) ICAT (Incustor-Cell Attachment Test) ISAL (Investigation of STS Atmospheric Luminosities) AEM (Animal Enclosure Module) - Evaluation of AEM using rate RME (Fladiation Monitoring Experiment) SSIP (Shuttle Student Involvement Program) - Biofeedback Special Payload Mission Kits: RMS (Remote Manipulator System) S/N 201 MADS (Modular Auxiliary Data System) II COMSEC (Communication Security) TAGS (Text and Graphics System)

Flight	Launch Date	Landing Date		Crew	Payloads a	nd Experiments
STS-9 Columbia Mission D	Nov 28, 1983 KSC	Dec 8, 1983 DFRF 47 mins 24 secs	Cdr: Plt: MS: PS: PS:	John W. Young Brewster W. Shaw Owen K. Garriott Robert A. R. Parker Byron K. Lichtenberg Ulf Merbold	Deployable Payloads: None Attached PLB Payloads: 1. Spacelab-1: a. Spacelab Long Module b. Spacelab Patlet c. Tunnel d. Tunnel Extension e. Tunnel Extension e. Tunnel Adapter 2. Experiments a. Astronomy and Physics (6) b. Atmospheric Physics (4) c. Earth Observations (2)	d. Life Sciences (16) e. Materials Sciences (39) f. Space Plasma Physics (5) g. Technology (1) GAS (Getaway Special): None Crew Compartment Payloads: None Special Payload Mission Kits: 1. Cryogenic sets 4 and 5 2. Spacelab Utility Kit 3. TAGS (Text and Graphics System) 4. Galley
STS-41B Challenger Mission D		Feb 11, 1984 KSC 15 mins 55 secs	Cdr: Plt: MS: MS: MS:	Vance D. Brand Robert L. Gibson Bruce McCandless Robert L. Stewart Ronald E. McNair	 Deployable Payloads: Westar VI/PAM-D - Western Union Communications Satellite/Payload Assist Module Patapa-BrPAM-D - Indonesian Communications Satellite/Payload Assist Module SPAS (Shuttle Patiet Satellite)-01 - Not Deployed due to RIMS anomaly IRT (Integrated Rendezvous Target) - Failed to inflate due to intermal failure Attached PLB Payloads: MFR (Manipulator Foot Restraint) SESA (Special Equipment Stowage Assembly) Cinema 360 - High Quality Motion Picture Camera GAS (Getaway Special): G-004: Utah State University/Aberdeen University G-008: Utah State University/University of Utah/ Brighton High School 	 G-051: General Telephone Labs G-309; U.S. Air Force G-349: Goddard Space Flight Center (re: flight STS-8) Crew Compartment Payloads: ACES (Accustic Containerless Experiment System) IEF (Isoelectric Focusing) Cinema 360 Camera Student Experiment SE81-10 - Effects of Zero g on Arthritis MLR (Monodisperse Latex Reactor) RME (Radiation Monitoring Experiment) Special Payload Mission Kits: RMMS (Remote Manipulator System) S/N 201 MMU (Manned Maneuvering Unit) - 2 Mini-MADS (Modular Auxiliary Data System) Galley

Flight	Launch Date	Landing Date		Crew	Payloads a	and Experiments
STS-41C Challenger Mission Du	Apr 6, 1984 KSC	Apr 13, 1984 DFRF 40 mins 7 secs	Pit: MS: MS:	Robert L. Crippen Francis R. Scobee Terry J. Hart James D. Van Hoften George D. Nelson	Deployable Payloads: 1. LDEF (Long Duration Exposure Facility) - Office of Aeronautics and Space Technology 2. SMM (Solar Maximum Mission) Spacecraft - Rendezvous/Retrieve/Repair/Deploy Attached PLB Payloads: 1. SMRM (Solar Maximum Repair Mission) - Flight Support System 2. Cinema 360 - High Quality Motion Picture Camera 3. CBSA (Cargo Bay Stowage Assembly) - Bay 2, starboard side GAS (Getaway Special): None	 Crew Compartment Payloads: RME (Radiation Monitoring Experiment) IMAX Camera - Canadian Commercial Company color film camera using 70mm x 280mm film SSIP (Shuttle Student Involvement Program) - Comparison of honeycomb structure of bees in low g and bees in 1g Special Payload Mission Kits: MMU (Manned Maneuvering Units) - 2 EMU (Extravehicular Mobility Units) - 3 RMS (Remote Manipulator System) S/N 302
STS-41D Discovery Mission Du	Aug 30, 1984 KSC rration: 144 hrs	Sep 5, 1984 EAFB	Pit: MS: MS: MS:	Henry W. Hartsfield Michael L. Coats Richard M. Mullane Steven A. Hawley Judith A. Resnik Charles D. Walker	Deployable Payloads: 1. SBS/PAM-D (Satellite Business System/Payload Assist Module) 2. Syncom KV-2 (Leased to DOD for UHF and SHF communications, also called Leasat) 3. Telstar/PAM-D (American Telephone and Telegraph/Payload Assist Module) Attached PLB Payloads: 1. OAST-1 (Office of Aeronautics and Space Technology) a. SAE (Solar Array Experiment) b. DAE (Dynamic Augmentation Experiment) c. SCCF (Solar Cell Calibration Facility) GAS (Getaway Special): None	 Crew Compartment Payloads: CFES III (Continuous Flow Electrophoresis System) IMAX Camera - IMAX System Corporation (Canadian Company) 70mm x 280mm film RME (Radiation Monitoring Experiment) USAF Space Division Clouds - USAF Mikon F 3/T with 105mm lens SSIP - (Shuttle Student Involvement Program) - Grow single crystal of Indium, Shawn Murphy, Hiram, OH; Rockwell Intl, Sponsor Special Payload Mission Kits: RMS (Remote Manipulator System) S/N 301 MADS (Modular Auxiliary Data System)

Flight Launch Date La	anding Date	Crew	Payloads a	and Experiments
STS-41G Oct 5, 1984 O Challenger KSC Mission Duration: 197 hrs 23 m	kt 13, 1984 Cdr: KSC Pft: MS: MS: PS: PS: nins 33 secs	Jon A. McBride Kathryn D. Sullivan Sally K. Ride David D. Leetsma Marc D. Garneau	 Deployable Payloads: ERBS (Earth Radiation Budget Satellite) Attached PLB Payloads: OSTA-3 (Office of Space and Terrestrial Applications) SIR-8 (Shuttle Imaging Radar) FILE (Feature Identification and Location Experiment) MAPS (Measurement of Air Pollution from Satellite) LFC (Large Format Camera) ORS (Orbital Refueling System	 GAS (Getaway Special): GOO7: Alabama Space and Rocket Center - Solidification of lead-antimony; and aluminum-copper student experiment GOO32: ASAHI National Broadcasting Corp. Japan - Surface tension and viscosity; and materials experiment GO0305: Air Force and U.S. Naval Research Lab - Low Energy Heavy Ions Search in the Inner Magnetosphere G4693: Goddard Space Flight Center - Cosmic Ray Upset Experiment (CRUX) G038: Marshall-McShane - Vapor Deposition of Metals And Non-Metals GO74: McDonnell Douglas Company - Study Proposed Propellant Acquisition System G013: Kayser Threde, West Germany - Verify Transport Mechanism in Halogen Lamps Performance in Extended Micro-g G518: Utah State University - Study Solar Flux Separation, Capillary Haves on Water Surface, and Thermo-Capillary Flow in Liquid Columns Special Payload Mission Kits: I. RMS (Remote Manipulator System) S/N 302 Galley MNU (Extravehicular Mobility Units) - 2 EDU (Extravehicular Mobility Units) - 3 PSA (Provisions Stowage Assembly)

Flight	Launch Date	Landing Date		Crew	Payloads a	and Experiments
STS-51A Discovery Mission Du	Nov 8, 1984 KSC uration: 191 hrs.	Nov 16, 1984 KSC 44 mins 56 secs	Cdr: Plt: MS: MS: MS:	Frederick H. Hauck David M. Walker Joseph P. Alfen Anna L. Fisher Dale A. Gardner	Deployable Payloads: 1. Telesat-H (ANIK)-D2/PAM-D - Canadian 24 channel communications satellite. 2. Syncom IV-1 - Synchronous Communications Satellite, also called Leasat, leased to U.S. Navy Retrieved Payloads: 1. Palapa-B2 - Deployed during mission STS 41-B, failed to achieve proper transfer orbit due to PAM-D failure 2. Westar-V1 - Deployed during mission 41-B, failed to achieve proper transfer orbit due to PAM-D failure Attached PLB Payloads: 1. Dealow Proper transfer orbit due to PAM-D failure Attached PLB Payloads: 1. DMOS (Diffusive Mixing of Organic Solutions) 3M Corp 2. RME (Radiation Montoring Experiment)	GAS (Getaway Special): None Special Payload Mission Kits: 1. RMS (Femote Manipulator System) S/N 301 2. MMU (Manned Maneuvering Units) (2) 3. EMU (Extravelicular Mobility Units) (3) 4. PSA (Provisions Stowage Assembly) (2) 5. Satellite Retrieval Hardware: a. Modified Spacelab Pallet (2) b. MFR (Manipulator Foot Restraint) (2) c. Stinger Adapter (2) d. Satellite Adapter (2) e. Berthing A Frame
STS-51C Discovery Mission Du	Jan 24, 1985 KSC Jan 24, 1985	Jan 27, 1985 KSC 3 mins 23 secs	Cdr: Pit: MS: MS: PS:	Thomas K. Mattingly Loren J. Shriver Ellison S. Onizuka James F. Buchli Gary E. Payton	Deployable Payloads: Data not available, DOD Classified Mission Attached PLB Payloads: Data not available, DOD Classified Mission GAS (Getaway Special): Data not available, DOD Classified Mission	Crew Compartment Payloads: Data not available, DOD Classified Mission Special Payload Mission Kits: 1. RMS (Remote Manipulator System) S/N 301 2. Other data not available, DOD Classified Mission
STS-51D Discovery	Apr 12, 1985 KSC uration: 167 hrs	Apr 19, 1985 KSC	Cdr: Pit: MS: MS: PS: PS:	Karol J. Bobko Donald E. Williams M. Rhea Seddon S. David Griggs Jeffrey A. Holfman Charles D. Walker E. J. Garn	 Deployable Payloads: 1. Syncom IV-3 - Synchronous Communications Satellite, built by Hughes, third in a series of 4, leased to the Navy. Failed to activate after nominal deploy from Orbiter. 2. Telesat I (Anik C-1)/PAM-D - Canadian communications satellite. Placed in 3 year storage orbit. Attached PLB Payloads: None GAS (Getaway Special): 1. G035 - Asahi National Broadcasting Corp, Japan a. Surface tension and viscosity b. Alky, lead oxide and carbon fiber 	G471 - Goddard Space Flight Center, Thermal Engineering Branch. Capillary Pump Loop (CPU) Priming Experiment Crew Compartment Payloads: CFES III (Continuous Flow Electrophoresis System) AFE (American Flight Echocardiograph) PPE (Phase Partitioning Experiment) SSIP (Shuttle Student Involvement Program) (2) a. Corn Statolith b. Brain Cell Special Payload Mission Kits: I. RMS (Remote Manipulator System) S/N 301 2. PSA (Provision Stowage Assembly) MADS III (Modular Auxiliary Data System)

Flight Launc	h Date Landing Date	_	Crew	Payloads a	and Experiments
STS-51B Apr 25 Challenger KS Mission Duration:		Cdr: Ptt: MS: MS: PS: PS:	R. F. Overmyer F. D. Gregory Don L. Lind Norman E. Thagard William E. Thornton Lodewijk Vandenberg Taylor Wang	 Deployable Payloads: Refer to GAS Section Attached PLB Payloads: Spacelab 3 Materials Processing in Space a. Solution Growth of Crystals in Zero Gravity b. Mercuric Iodide Crystal Growth, Vapor Crystal Growth System (VCGS) c. Mercury Iodide Crystal Growth (MICG) Technology a. Dynamics of Rotating and Oscillating Free Drops (DROP) 3. Environmental Observations a. Geophysical Fluid Flow Cell Experiment (GFFC) b. Atmospheric Trace Molecule Spectroscopy (ATMOS) c. Very Wide Field Galactic Camera (VWFGC) d. Aurora Observation 4. Astro Physics a Studies of the Ionization States of Solar and Galactic Cosmic Ray Heavy Nuclei (ION) 5. Life Sciences a. Research Animal Holding Facility (RAHF) b. Urine Monitoring Investigation (UMI) c. Autogenic Feedback Training (AFT) 	 GAS (Getaway Special): GO10 - NUSAT, Northern Utah Satellite. Weber State College, Utah, Utah State University, and New Mexico State University. First successful payload ejection from a GAS canister. G303 - GLOMR, Global Low Orbiting Message Relay Satellite. Defense Systems, Inc., McLean, VA. Failed to eject from GAS canister. Crew Compartment Payloads: UMS: Urine Monitoring System Special Payload Mission Kits: Airdock Long Transfer Tunnel Galley MPESS - Mission Peculiar Equipment Support Structure, carried ATMOS and ION.

MS: John M. Faban MS: Steven R. Nagel MS: Staven R. Nagel MS: Staven R. Nagel MS: Staven R. Nagel MS: Staven R. Nagel MS: Shannon W. Lucid PS: Patrick Baudry PS: Patrick Baudry PS: Patrick Baudry PS: Patrick Sauta Salman Al-Saud Mission Duration: 169 hrs 38 mins 52 secs Mission Duration: 169 hrs 38 mins 52 secs Satellite with MCDac Payload Assist Module Satellite with MCDac Payload Assist Module Booster. Organization Mission Duration: 169 hrs 38 mins 52 secs MS: Staven R. Nagel Mission Duration: 169 hrs 38 mins 52 secs MS: Staven R. Nagel MS: Staven R. Nagel M	Flight	Launch Date	Landing Date		Crew	Payload	s and Experiments
The SEC was released and retrieved using REM and Radiation Experiment) RMS (Remote Manipulator System) Crew Compartment Payloads:	Discovery	KSC	EDŴ	Pit: MS: MS: PS: PS:	John O. Creighton John M. Fabian Steven R. Nagel Shannon W. Lucid Patrick Baudry Prince Sultan Salman	 Telstar-3D/PAM-D: Hughes 376 Communications Satellite with McDac Payload Assist Module Booster. Owned by AT&T Co. ARABSAT-A/PAM-D: Aerospatiale Communication Satellite with McDac Payload Assist Module Booster. Owned by Saudi Arabian Communications Organization MCRELOS-A/PAM-D: Hughes 376 Communications Satellite with McDac Payload Assist Module Booster. Owned by Mexican Communications and Transportation Agency Spartan-1: Shuttle Pointed Autonomous Research Tool for Astronomy a. SPSS: Spartan Flight Support Structure b. REM: Release/Engage Mechanism c. SEC: Scientific Experiment Carrier The SEC was released and retrieved using REM and RMS (Remote Manipulator System) 	 G007 - Alabama Space and Rocket Center/Marshall Amateur Radio Cub - Solidification of Metals Crystal Growth Radio Transmission Experiment G025 - ERNO - Dynamic Behavior of Liquid Propellants in low-g G027: DFVLR of West Germany - Slipcasting in micro-g. G028: DFVLR of West Germany - Manganese - Bismuth production in micro-g. G028: DFVLR of West Germany - Manganese - Bismuth production in micro-g. G028: Dickshire Coors, Texas High School Students a. 12 Biological/physical science experiments b. 1 Microprocessor controller G314: USAF and USNRL - SURE (Space Ultraviolet Radiation Experiment) Crew Compartment Payloads: ADSF - Automated Directional Solidification Furnace FEE - French Echocardiograph Experiment HPTE - High Precision Tracking Experiment Special Payload Mission Kits: RMS (Riemote Manipulator System) S/N 301

Flight	Launch Date	Landing Date		Crew	Payloads	and Experiments
STS-51F Challenger Mission Du		Aug 6, 1985 EDW 45 mins 26 secs	Cdr: Pit: MS: MS: PS: PS:	Anthony W. England	 Deployable Payloads: 1. Ejectable Plasma Diagnostic Package, Exp No 3, second flight of PDP (STS-3 first flight). First flight as free flyer to sample plasma away from Shuttle Attached PLB Payloads: Spacelab 2 1. Plasma Physics a. Deployable/Retrievable Plasma Diagnostic Package (PDP) (Exp 3) b. Plasma Depletion Experiments for Ionospheric and Radio astronomical Studies (Exp 4) 2. Astrophysical Research a. Small Helium Cooled Infrared Telescope (IRT) (Exp 5) b. Hard X-ray Imaging of Cluster of Galaxies and Other Extended X-ray Sources (XRT) (Exp 7) c. Elemental Composition and Energy Spectra of Cosmic Ray Nuclei (CRNE) (Exp 4) 3. Solar Astronomy a. Solar Magnetic and Velocity Field Measurement System (SOUP) (Exp 9) c. High Resolution Telescope and Spectrograph (HRTS) (Exp 19) c. High Resolution Telescope and Spectrograph (HRTS) (Exp 11) 4. Technology a. Properties of Superfluid Helium Zero-g (SFHe) (Exp 13) 	GAS (Getaway Special): None Crew Compartment Payloads: 1. Life Sciences a. Vitamin D Metabolites and Bone Demineralization (Exp 1) b. The Interaction of Oxygen and Gravity Induced Lignification (Exp 2) c. Shuttle Amateur Radio Experiment (SAREX) d. Dispenser Technology Experiment Dispensing Carbonated beverages in Micro-g e. Protein Crystal Growth Special Payload Mission Kits: 1. RMS (Remote Manipulator System) S/N 302 2. Galley

Flight	Launch Date	Landing Date		Crew	Payloads	and Experiments
STS-511 Discovery Mission Do	Aug 27, 1985 KSC uration: 170 hrs	Sep 3, 1985 EDW 17 mins 42 secs	Cdr: Plt: MS: MS: MS:	Joe H. Engle Richard O. Covey James van Hoften John M. Lounge William F. Fisher	 Deployable Payloads: ASC-1/PAM-D: American Satellite Company, first of two satellites built by RCA and owned by a partnership between Fairchild Industries and Continental Telecon Inc. PAM-D Payload Assist Module built by McDonnell Douglas. 'D' indicates used for lightweight satellites, less than 2,250 lbs. AUSSAT-1/PAM-D: Australian Communications Satellite, owned by Aussat Proprietary Ltd., built by Hughes Communications International, Model HS376. SYNCOM IV-4: Synchronous Communications Satellite. Last in a series of four satellites built by Hughes Communication Services and leased to the Navy. Referred to as LEASAT when deployed. Failed to function after reaching correct geosynchronous orbit. 	Attached PLB Payloads: None GAS (Getaway Special): None Crew Compartment Payloads: 1. PVTOS - Physical Vapor Transport Organic Solid Experiment, 3M Corporation. Special Payload Mission Kits: 1. RMS (Remote Manipulator System) S/N 301 2. Galley 3. Leasat-3 Salvage Equipment. Leasat-3 was successfully retrieved, repaired, and redeployed.
STS-51J Atlantis Mission Du	Oct 3, 1985 KSC uration: 97 hrs 44	Oct 7, 1985 EDW 4 mins 38 secs	Pit:	Karol Bobko Ronald J. Grabe Robert C. Stewart David C. Hilmers William A. Pailes	Deployable Payloads: Data not available, DOD Classified Mission Attached PLB Payloads: Data not available, DOD Classified Mission GAS (Getaway Special): Data not available, DOD Classified Mission	Crew Compartment Payloads: Data not available, DOD Classified Mission Special Payload Mission Kits: Data not available, DOD Classified Mission

Flight Launch Date Landing Date Crew	Payloa	ds and Experiments
STS-61B Nov 26, 1985 Dec 3, 1985 Cdr: Brewst Atlantis KSC EAFB Ptt: Bryan I MS: Mary L MS: Sherwo MS: Jenry L PS: Rudoft PS: Charles Mission Duration: 165 hrs 4 mins 49 secs	Deployable Payloads: nnor 1. MORELOS-B/PAM-D: Hughes 376 Comm Satellite ay with McDAC Payload Assist Module booster. oping Owned by Mexican Communications and Transportation Agency. eta 2. AUSSAT-2/PAM-D: Hughes 376 Comm Satellite	 GAS (Getaway Special): 1. G-479 - Telesat-Canada a. Primary surface mirror production b. Metallic crystal production Crew Compartment Payloads: 1. CFES (Continuous Flow Electrophoresis System): Owned by McDonnell Douglas, separates biological samples using electrophoretic process. Third flight of this experiment. 2. DMOS (Diffusive Mixing of Organic Solutions); Sponsored by 3M Corporation, used to study organic crystal growth/kinetics, test molecular orbital model, and produce new materials for electro-optical applications. 3. MPSE (Morelos Payload Specialist Experiments): includes experiments in transportation of nutrients inside bean plants, inoculation of group bacteria viruses, germination of three seed types, and medical experiments testing internal equilibrium and volume change of the leg due to fluid shifts in zero-g. 4. OEX (Orbiter Experiments): An onboard experimental digital autopilot software package designed to provide precise stationkeeping capabilities between space vehicles. Special Payload Mission Kits: Food Warmers (2), galley not flown. RMS (Remote Manipulator System) S/N 301 PSA (Provision Stowage Assembly)

Columbia KSC KSC PI: C. F. Bolden, Jr. MS: F. R. Chang-Diaz MS: Secore D. Neison MS: Steven A. Hawley PS: Robert J. Cenker PS: C. William Nelson 1. SATCOM KU-1/PAM D-2: RCA built/owned 16 channel Ku-band communications satellite. Not Numbered: measures the the PAM-D which is used for heavier payloads. 7. Not Numbered: measures the the PAM-D which is used for heavier payloads. 7. Not Numbered: measures the the PAM-D which is used for heavier payloads. Mission Duration: 146 hrs 3 mins 51 secs C. William Nelson 1. MSL-2 (Materials Science Laboratory) consisting of MSL-2 (Materials Science Laboratory) consisting of a seperiments: a. 3AAL (3-Axis Acoustic Levitator) b. ADSF (Automated Directional Solidification Furnace) c. SEECM (Shuttle Environmental Effects of Coated Mirror) 3. 9. GO62: 4 part ewolds: Model Payloads: a. 3AAL (3-Axis Acoustic Levitator) b. ADSF (Automated Directional Solidification Furnace) c. SEECM (Shuttle Environmental Effects of Coated Mirror) 3. 11. G32: 2 part exol Model Payloads: a. PACS (Particle Analysis Camera for Shuttle) b. CPL (capillary Pump Loop) c. SEECM (Shuttle Environmental Effects of Coated Mirror) 3. 12. G310: USAF A Note: Abover 21 list Bridge Carrier 13. G470: Experiment. Bridge Carrier 13. G470: Experiment. Crew Compartmer Crew Compartmer Science Alphane Spectorphotometer. GSFC experiment. ACCESS experiment. GG32: CVX, referred to as GAP (GSFC Avionics Package) contains Telement System, Tape Recorder, and Battery, GSFC experiment. GG32: CityX, referred to as GAP (GSFC A	Flight	Launch Date	Landing Date		Crew	Payloads and Experiments
Amateur club. Contains 3 student experiments and 1 radio Grains in Pla	STS-61C Columbia	Jan 12, 1986 KSC	Jan 18, 1986 KSC	Pit: MS: MS: MS: PS:	Robert L. Gibson C. F. Bolden, Jr. F. R. Chang-Diaz George D. Nelson Steven A. Hawley Robert J. Cenker	 Deployable Payloads: SATCOM KU-1/PAM D-2: RCA built/owned 16 channel Ku-band communications satellite, Second of four satellites McDAC Payload Assist Module D2 is an uprated version of the PAM-D which is used for heavier payloads. MSL-2 (Materials Science Laboratory) consisting of MSL carrier, MPE (Mission Peculiar Equipment), and 3 experiments:
	}					transmission experiment. 5. G446: HPLC (High Performance Liquid Chromatography) 1. GAS Bridge Carrier

Flight Launch Date L STS-51L Jan 28, 1986 . Challenger KSC	Jan 28, 1986 Cdr: Pit:	Francis R. Scobee Michael J. Smith	Deployable Payloads:	3. Phase Partitioning Experiment (PPE) dissolves two
Mission Duration: N/A	MS: MS: PS: PS:	Judith A. Resnik Ellison S. Onizuka Ronald E. McNair Gregory Jarvis	TDRS-B/IUS: Tracking and Data Relay Satellite/ Inertial Upper Stage. SPARTAN-203/Halley: Shuttle pointed Autonomous Research Tool for Astronomy/Halley's Comet Experiment Deployable/retrieval packages using RMS: SPARTAN experiment package: 1) 2 UV Spectrometers from Univ of Colorado 2) 2 Nikon F-3 Cameras 3) Optic Bench b. Halley's Comet Experiment; measure Halley's Comet composition/activity Attached PLB Payloads: None GAS (Getaway Special): None Crew Compartment Payloads: 1. Fluid Dynamics Experiment (FDE) - Hughes Aircraft Company Experiment composed of 6 experiments: a. Fluid position and ullage b. Fluid motion due to spin c. Fluid setf-inertia	 polymer solutions in water to observe their separation Teacher in Space: Six experiments including hydrophonics, magnetism, Newton's laws, effervescence, chromatography, and simple machines. SSIP (Shuttle Student Involvement Program) packages: a. SE82-4: "The effects of weightlessness on grain formation and strength in metals" - L Bruce, St. Louis, MO - Sponsor: McDonnell Douglas b. SE82-5: "Utilizing a semi-permeable membrane to direct crystal growth in zero gravity" - S. Cavou, Marlboro, NY - Sponsor: Union College c. "Chicken Embryo Development in Space" - J. Vellinger, Lafayette, IN - Sponsor: Kentucky Fried Chicken Corporation Special Payload Mission Kits: I. RMS (Remote Manipulator System) Galley MADS
			 c. Fluid self-inertia d. Fluid motion due to payload deployment e. Energy dissipation due to fluid motion f. Fluid transfer 2. Comet Halley Active Monitoring Program (CHAMP), second flight. 	

Flight	Launch Date	Landing Date		Crew	Payloads a	and Experiments
STS-26 Discovery Mission Du STS-27 Atlantis	Sep 29, 1988 KSC uration: 97 hrs 0 Dec 2, 1988 KSC	Oct 3, 1988 EAFB mins 11 secs Dec 6, 1988 EAFB	Pit: F MS: J MS: C MS: C MS: G Cdr: R Pit: G MS: J MS: J MS: J	Tederick H. Hauck Richard O. Covey John M. Lounge Javid C. Hilmers Beorge D. Nelson Nelson Sevrge D. Nelson Sevrge D. Nelson	Deployable Payloads: 1. TDRS-C/IUS: Tracking and Data Relay Satellite/ Inential Upper Stage. Attached PLB Payloads: 1. OASIS-1: Orbiter Experiment Autonomous Supporting Instrumentation System measures and records payload bay environmental data. Crew Compartment Payloads: 1. PVTOS - Physical Vapor Transport of Organic Solids, 3M Corporation. Second flight 2. ADSF - Automated Directional Solidification Furnace, MSFC, third flight, test material solidification in zero g. 3. IRCFE - Infrared Communication Flight Experiment, JSC, first flight. Test infrared transmitting crew headsets. 4. PCG - Protein Crystal Growth, MSFC, flown four previous flights in less complicated configurations to examine growth of protein crystals in zero g. 5. IEF - Isoelectric Focusing, MSFC, second flight, test isoelectric transport through a permeable membrane in zero g. Deployable Payloads: Data not available, DOD Classified Mission. Attached PLB Payloads: Data not available, DOD Classified Mission. CAS (Getaway Special): None	 PPE - Phase Partitioning Experiment, MSFC, second flight, photograph fluid phase partitioning phenomena in zero g ARC - Aggregation of Red Blood Cells, MSFC and Australia, investigate aggregation characteristics of human red blood cells in zero g. MLE - Mesoscale Lightning Experiment, MSFC, first flight, photograph atmospheric lightning activity from orbit. ELRAD - Earth Limb Radiance Experiment, JSC, first flight, photograph earth limb radiance pre-sunrise/ post-sunset. Student Experiment SE82-4 - "Effects of weightlessness on Ti grain formation and strength." L. Bruce, St. Louis, MO, Sponsor: McDonnell Douglas Student Experiment SE82-5 - "Utilizing a semi-permeable membrane to direct crystal growth in zero gravity." S. Cavou, Martboro, NY, Sponsor: Union College GAS (Getaway Special): None Special Payload Mission Kits: Galley Crew Compartment Payloads:: Data not available, DOD Classified Mission. Special Payload Mission Kits: Data not available, DOD Classified Mission.
Mission Du	ration: 105 hrs 5	i mins 37 secs			Data not available, DOD Classified Mission.	

Flight L	aunch Date	Landing Date		Crew	Payloads and Experiments				
Discovery	far 13, 1989 KSC tion: 119 hrs 3	Mar 17, 1989 EAFB 18 mins 52 secs	Cdr: Pit: MS: MS: MS:	Michael L. Coats John E. Blaha James P. Bagian James F. Buchli Robert C. Springer	Deployable Payloads: 1. TDRS-D/IUS: Tracking and Data Relay Satellite/ Inertial Upper Stage. One of four identical communications satellites providing support for STS and other customers. Attached PLB Payloads: 1. SHARE (Space Station Heat Pipe Advanced Radiator Element) 2. OASIS-1 (Orbiter Experiments Autonomous Supporting Instrumentation System	GAS (Getaway Special): None Crew Compartment Payloads: 1. Protein Crystal Growth (PCG-111-1) 2. Chromosome and Plant Cell Division in Space (CHROMEX) 3. IMAX Camera 4. Air Force Maui Optical Sãe Calibration Test (AMOS) 5. Chicken Embryo Development (CHIX) in space. 6. Effects of Weightlessness of Bones (SSIP 82-08) Special Payload Mission Kits: None			
Atlantis Mission Durat	Aay 4, 1989 KSC tion: 96 hrs 56 wg 8, 1989 KSC	May 8, 1989 EAFB mins 28 secs Aug 13, 1989 EAFB	Cdr: Pit: MS: MS: MS: Cdr: Pit: MS:	Ronaki J. Grabe Norman E. Thagard Mary L. Cleave Mark C. Lee Brewster H. Shaw Richard N. Richards David C. Leetsma	Deployable Payloads: 1. Magellan/US - Unmanned three-axis attitude- controlled exploration spacecraft containing systems required to achieve orbit of Venus and map its surface. Attached PLB Payloads: None Deployable Payloads: Data not available, DOD Classified Mission. Attached PLB Payloads:	GAS (Getaway Special): None Crew Compartment Payloads: 1. Fluids Experiment Apparatus (FEA) 2. Mesoscale Lightning Experiment (MLE) 3. Air Force Maui Optical Site Calibration Test (AMOS) Special Payload Mission Kits: None Crew Compartment Payloads: Data not available, DOD Classified Mission. Special Payload Mission Kits:			
Atlantis	Oct 18, 1989 KSC	Oct 23, 1989 EAFB 9 mins 20 secs	MS: MS: Plt: MS: MS: MS:	James C. Adamson Mark N. Brown Donald E. Williams Michael McCulley Ellen S. Baker Franklin R. Chang-Diaz Shannon W. Lucid	Data not available, DOD Classified Mission. GAS (Getaway Special): Data not available, DOD Classified Mission. Deployable Payloads: 1. Galileo/IUS - Unmanned spin-stabilized exploration spacecraft comprising a Jupiter orbiter and a Jupiter atmospheric entry probe mated to the IUS. Attached PLB Payloads: 1. Shuttle Solar Backscatter Ultraviolet (SSBUV) GAS (Getaway Special): 1. Zero Gravity Growth of Ice Crystals	Data not available, DOD Classified Mission. Crew Compartment Payloads: 1. Polymer Morphology 2. Growth Hormone Concentration & Distribution in Plants 3. Sensor Technology Experiment 4. IMAX Camera 5. Mesoscale Lightning Experiment 6. Air Force Maui Optical Site Calibration Test (AMOS) Special Payload Mission Kits: None			

Flight	Launch Date	Landing Date		Crew	Payloads as	nd Experiments
STS-33 Discovery	Nov 22, 1989 KSC uration: 120 hrs 6	Nov 27, 1989 EAFB	Cdr: Plt: MS: MS: MS:	Frederick D. Gregory John E. Blaha Manley L. Carter Franklin Musgrave Kathryn C. Thornton	Deployable Payloads: Data not available, DOD Classified Mission. Attached PLB Payloads: Data not available, DOD Classified Mission. GAS (Getaway Special):	Crew Compartment Payloads: Data not available, DOD Classified Mission. Special Payload Mission Kits: Data not available, DOD Classified Mission.
STS-32 Columbia	Jan 9, 1990 KSC	Jan 20, 1990 EAFB	Cdr: Plt: MS: MS: MS:	Daniel C. Brandenstein James D. Wetherbee Bonnie J. Dunbar Marsha S. Mins G. David Low	Data not available, DOD Classified Mission. Deployable Payloads: 1. Syncom N-5, a geostationary communications satellite also known as Leasat; leased to U.S. Navy Attached PLB Payloads: None Returned Cargo:	Fluids Experiment Apparatus MAX Camera Locator (L3) Mesoscale Lightning Experiment (MLE) Protein Crystal Growth (PCG)
	uration: 261 hrs () mins 37 secs			LDEF, a non-powered space vehicle containing experiments - Deployed on STS-41C. Crew Compartment Payloads: American Flight Echocardiograph (AFE) Air Force Maul Optical Site Calibration Test (AMOS) Characterization of Neurosona Circadian Rhythms (CNCR)	GAS (Getaway Special): None Special Payload Mission Kits: 1. Remote Manipulator System (RMS) 2. Galley 3. MADS
STS-36 Atlantis	Feb 28, 1990 KSC	Apr 14, 1990 DFRF	Cdr: Pit: MS: MS: MS:	John D. Creighton John H. Casper David C. Hilmers Richard M. Multane Pierre J. Thuot	Data not available, DOD Classified Mission. GAS (Getaway Special):	Crew Compartment Payloads: Data not available, DOD Classified Mission. Special Payload Mission Kits: Data not available, DOD Classified Mission.
STS-31 Discovery	<u>iration: 106 hrs 1</u> Apr 24, 1990 KSC aration: 121 hrs 1	Apr 29, 1990 EAFB	Cdr: Plt: MS: MS: MS:	Loren J. Shriver Charles F. Bolden Bruce McCandless Steven A. Hawley Kathryn D. Sullivan	Hubble Space Telescope (HST), a large aperture optical telescope. Attached PLB Payloads: I. IMAX Cargo Bay Camera (ICBC) Ascent Particle Monitor (APM) GAS (Getaway Special): None Crew Compartment Payloads: Air Force Maui Optical Site Calibration Test (AMOS)	IMAX Camera Investigation into Polymer Membrane Processing (IPMP) Protein Crystal Growth (PCG) Radiation Monitoring Experiment (RME) Investigation of Arc and Ion Behavior in Microgravity (Student Experiment 82-16) Special Payload Mission Kits: Remote Manipulator System (RMS) Galley HST EVA Tools

Flight	Launch Date	Landing Date		Crew	Payloads a	nd Experiments
STS-41 Discovery Mission Du	Oct 6, 1990 KSC aration: 98 hrs 10	Oct 10, 1990 DFRF 0 mins 3 secs	Cdr: Plt: MS: MS: MS:	Richard N. Richards Robert D. Cabana Bruce E. Melnick William M. Shepherd Thomas D. Akers	Deployable Payloads: 1. Ulysses/US/PAM-S Attached PLB Payloads: 1. Shuttle Solar Backscatter Ultraviolet (SSBUV) 2. Intelsat Solar Array Coupon (ISAC) - Attached to RMS arm GAS (Getaway Special): None Crew Compartment Payloads: 1. Chromosome and Plant Cell Division in Space (CHROMEX) 2. Solid Surface Combustion Experiment (SSCE)	 Voice Command System (VCS) Physiological Systems Experiment (PSE) Radiation Monitor Experiment (RME-III) Investigation into Polymer Membrane Processing (IPMP) Air Force Maui Optical Ste (AMOS) Special Payload Mission Kits: Remote Manipulator System (RMS) Galley Radioisctope Generator (TRG) Cooling System
STS-38 Atlantis Mission Du	Nov 15, 1990 KSC	Nov 20, 1990 KSC 54 mins 27 secs	Pit: MS: MS: MS:	Richard O. Covey Frank L. Culbertson Robert C. Springer Carl J. Meade Charles D. Gernar	Deployable Payloads: Data not available, DOD Classified Mission. Attached PLB Payloads: Data not available, DOD Classified Mission. GAS (Getaway Special): Data not available, DOD Classified Mission.	Crew Compartment Payloads Data not available, DOD Classified Mission. Special Payload Mission Kits: Data not available, DOD Classified Mission.
STS-35 Columbia	Dec 2, 1990 KSC	Dec 11, 1990 DFRF		Vance Brand Guy S. Gardner John M. Lounge Jeffrey A. Hoffman Robert A. R. Parker Ronald A. Parise Samuel T. Durrance	Deployable Payloads: None Attached PLB Payloads: 1. Astro 1 - Three ultraviolet telescopes attached to an Instrument Pointing System (IPS): a. Wisconsin UV Photopolarimeter Experiment (WUPPE) b. UV Imaging Telescope (UIT) c. Hopkins UV Telescope (HUT) 2. BBXRT - Broad Band X-ray Telescope. Attached to	GAS (Getaway Special): None Crew Compartment Payloads: 1. Shuttle Amateur Radio Experiment (SAREX) 2. Air Force Maui Optical Stê (AMOS) Special Payload Mission Kits: 1. Galley 2. Aerodynamic Coefficient Identification Package (ACIP)
STS-37 Atlantis	Apr 5, 1991 KSC	Ápr 11, 1991 EAFB	Pit: MS: MS: MS:	Steven R. Nagel Kenneth D. Cameron Linda M. Godwin Jerome Apt Jerry L. Ross	its own two-axis pointing system (TAPS) Deployable Payloads: 1. Gamma Ray Observatory (GRO), an unmanned astronomical observatory designed to image objects at high energy (gamma ray) wavelengths. Attached PLB Payloads:	GAS (Getaway Special): None Crew Compartment Payloads: 1. Protein Crystal Growth (PCG)-II 2. Air Force Maui Optical Site (AMOS) 3. Radiation Monitoring Equipment (RME)-III
Mission Du	iration: 143 hrs:	22 mins 45 secs			 Crew and Equipment Translation Aids (CETA) - designed to evaluate candidate techniques/equipment for EVA crewmember translation Ascent Particle Monitor (APM) - designed to assess the particulate contamination in the Orbiter PLB during ascent. 	Shuttle Amateur Radio Experiment (SAREX)-II Bioserve/Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA) Special Payload Mission Kits: Remote Manipulator System (RMS) S/N 301

Flight Launch Date Landing Date Crew Pavloads and Experiments STS-39 Apr 28, 1991 May 6, 1991 Cdr: Michael L Coats Deployable Payloads: 3. Multi-Purpose Experiment Container (MPEC) - An Blaine L. Hammond, Jr. 1. Shuttle Pavload Autonomous Satellite (SPAS)-IV Discoverv KSC FAFR Phadditional USAF experiment mounted on STP-1. MS: Guion S Bluford Infrared Background Signature Survey (IBSS) -GAS (Getaway Special): None SPAS-II/IBSS was designed to observe rocket MS: Gregory J. Harbaugh Crew Compartment Pavloads: MS: Richard J. Hieh plume firings at infrared wavelengths. 1. Cloud Logic to Optimize Use of Defense Systems MS: Donald R. McMonaole Attached PLB Pavloads: (CLOUDS)-1A MS: Charles L. Veach 1. Air Force Program (AFP)-675 - The objective of 2. Radiation Monitoring Equipment (RME)-III Mission Duration: 199 hrs 23 mins 17 secs AFP-675 was to observe near-Earth space and Special Pavload Mission Kits: celestial objects at infrared & ultraviolet wavelengths. 1. Remote Manipulator System (RMS) S/N 301 2. Space Test Payload (STP)-1 - Five USAF experiments mounted on a Hitchhiker-M carrier. STS-40 Jun 5, 1991 Jun 14, 1991 Cdr: Bryan O. O'Connor Deployable Pavloads: None 2. Experiment in Crystal Growth Columbia KSC DEBE Pit: Sidney M. Gutierrez Attached PLB Pavioads: Spacelab Life Sciences (SLS)-1 3. Orbital Ball Bearing Experiment MS: James P. Bagian a. Spacelab Long Module 4. In-Space Commercial Processing MS: Tamara E, Jernigan b. Tunnel 5. Foamed Ultralight Metals MS: M Rhea Seddon c. Tunnel Extension 6. Chemical Precipitate Formation PS: Drew F. Gaffney d. Tunnel Adapter 7. Microgravity Experiments PS: Millie Hughes-Fulford Experiments 8. Flower and vegetable seeds exposure to Space Mission Duration: 218 hrs 15 mins 14 secs a. 6 Body Systems 9. Semiconductor Crystal Growth Experiment b. 6 Cardiovascular/Cardiopulmonary 10. Active Soldering Experiments c. 3 Blood System 11. Orbiter Stability Experiment d. 6 Musculoskeletal 12. Effects of cosmic Ray Radiation on Floppy Disks and e. 3 Neurovestibular Plant Seeds Exposure to Microgravity f. 1 Immune System Crew Compartment Payloads; g. 1 Renal/Endocrine System Physiological Monitoring System (PMS) 1. Gas Bridge Assembly (GBA) - 12 GAS experiments 2. Urine Monitoring System (UMS) mounted on a truss structure in the PLB. Animal Enclosure Modules (AEM) GAS (Getaway Special): 4. Middeck Zero-Gravity Experiment (MODE) 12 Experiments on GBA Special Payload Mission Kits: 1. Solid State Microaccelerometer Experiment Airlock Transfer Tunnel

Flight	Launch Date	Landing Date		Crew	Payloads	and Experiments
STS-43 Atlantis Mission D	Aug 2, 1991 KSC uration: 213 hrs	Aug 11, 1991 KSC 22 mins 27 secs	Cdr: Plt: MS: MS: MS:	John E. Biaha Michael A. Baker James C. Adamson G. David Low Shannon E. Lucid	 Deployable Payloads: TDRS-E/IUS: Tracking and Data Relay Satellike/ Inertial Upper Stage. One of four identical communications satellikes providing support for STS and other customers. Attached PLB Payloads: Space Station Heatpipe Advanced Radiator Element (SHARE-II) Shuttle Solar Backscatter Ultraviolet (SSBUV) Optical Communications Through the Window (CCTW) Experiments Gas Bridge Assembly (GBA) 	GAS (Getaway Special): 1. Tank Pressure Control Experiment (IPCE) Crew Compartment Payloads: 1. Air Force Maui Optical Site (AMOS) 2. Auroral Photography Experiment (APE) 3. Bioserve/Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA) 4. Investigations into Polymer Membrane Processing (IPMP) 5. Protein Crystal Growth (PCG) 6. Space Acceleration Measurement System (SAMS) 7. Solid Surface Combustion System (SSCS) 8. Ultraviolet Plume Instrument Special Payload Mission Kits; None
STS-48 Discovery Mission D	Sep 12, 1991 KSC uration: 128 hrs.	Sep 18, 1991 EAFB 27 mins 51 secs	Cdr: Plt: MS: MS: MS:	John O. Creighton Kenneth S. Reightler Mark F. Brown James F. Buchli Charles D. Gernar	Deployable Payloads: 1. Upper Atmosphere Research Satellite (UARS) Attached PLB Payloads: Experiments 1. Gas Bridge Assembly (GBA) Crew Compartment Payloads: 1. Ascent Particle Monitor (APM) 2. Cosmic Radiation Effects and Activation Monitor (CREAM)	Radiation Monitoring Experiment (RME) Investigations into Polymer Membrane Processing (IPMP) Irotein Crystal Growth (PCG) Middeck 0-Gravity Dynamics Experiment (MODE) Shuttle Activation Monitor (SAM) Physiological and Anatomical Rodent Experiment (PARE) GAS (Getaway Special): None Special Payload Mission Kits: None
STS-44 Atlantis Mission D	Nov 14, 1991 KSC uration: 166 hrs	Dec 1, 1991 EAFB 52 mins 27 secs	Pit:	Frederick D. Gregory Terence T. Henricks F. Story Musgrave Mario Runco, Jr. James S. Voss Thomas J. Hennen	Deptoyable Payloads: 1. Defense Support Program/Inertial Upper Stage satellite (DSP/IUS) Attached PLB Payloads: 1. Interim Operational Contamination Monitor (IOCM) Experiments 1. Gas Bridge Assembly (GBA) Crew Compartment Payloads: 1. Terra Scout 2. Military Man in Space (M88-1)	 Air Force Maui Optical Site (AMOS) Cosmic Radiation Effects and Activation Monitor (CREAM) Shuttle Activation Monitor (SAM) Radiation Monitoring Experiment (RME-III) Visual Function Monitor (VFT-1) Ultraviolet Plume Instrument (UVPI) GAS (Getaway Special): None Special Payload Mission Kits: None

Fiight	Launch Date	Landing Date		Crew	Payloads at	nd E	Experiments
STS-42 Discovery Mission Du	Jan 22, 1992 KSC ıration: 193 hrs 1	Jan 30, 1992 EAFB 5 mins 43 sec	Cdr: Pit: MS: MS: PS: PS:	Ronald J. Grabe Steven S. Oswald Norman E. Thagard William F. Readdy David C. Hilmers Roberta L. Bondar Uff D. Merbold	 Deployable Payloads: None Attached PLB Payloads: International Microgravity Laboratory-1 (Spacelab Long Module) Objective: Conduct 9 Materials Science and 7 Life Sciences experiments in microgravity: 1. Fluid Experiment System - Crystal growth and fluid behavior 2. Vapor Crystal Growth System - Reflight from Spacelab 3 3. Mercury Iodide Crystal Growth - Reflight from STS 28, 29, 32, 37 (Middeck) 5. Organic Crystal Growth - Reflight from STS 28, 29, 32, 37 (Middeck) 6. Cryostal Growth Facility - Crystal growth 6. Cryostal-Crystal Growth Facility - Crystal growth 7. Space Acceleration to support other microgravity experiments 8. Critical Point Facility - Measure material properties at the critical point 9. Gravitational Plant Physiology Facility - Biological Investigation of plants during spaceflight 10. Biorack - Biological Investigation of various life forms during spaceflight 11. Space Physiology Experiments - Investigate human space adaptation and motion sickness 12. Microgravity Vestibular Investigations - Study space motion sickness 13. Biostack - Investigate space radiation effects on biological materials 14. Mental Workload and Performance Evaluation - Test human performance of computer tasks in Zero-G 15. Radiation Monitoring Container/Dosimeter - Measure effect of space radiation on biological material 	1. 2.3.4. 5. 6. 7.8.9. 10. 11. 12. 1. 2. 3. 4. 5.	AS (Getaway Special) Bridge consisting of 12 canisters: G-86 - Effects of microgravity on cysts hatched in space; thermal conductivity and bubble velocity of air in water G-140 - Marangoni convection in a floating zone G-143 - Glass bubbles in glass melts G-329 - Solidification of phenomena in metal aloys G-329 - Solidification of phenomena in metal aloys G-326 - Measurement of diffuse zodiacal and galactic emissions at B, R, and V standard G-337 - Performance of thermoacoustic refrigerator under microgravity G-457 - Gas-liquid separation under microgravity G-457 - Gas-liquid separation under microgravity G-609, G-610 - Ultraviolet observations of deep space G-614 - Motion of debris under microgravity conditions: how melting point materials processing Middeck O-Gravity Dynamics Experiment (MODE) GAS ballast payload no. 1 (GPB #1) GAS ballast payload no. 2 (GPB #2) ew Compartment Payload: Gelation of Sols: Applied Microgravity Research (GOSAMR) - Objective: Investigate processing of gelled sols in microgravity Student Experiment SE 93-2 - Objective: Study zero gravity capillary rise of liquid through granular porous media Student Experiment SE 81-9 - Objective: Study convection in zero gravity Investigation into Polymer Membrane Processing (IPMP) Objective: Manufacture polymers in space Radiation Monitoring Experiment (RME-III) - Objective: Masure radiation environment on-orbit ecial Payload Mission Kits: None

Flight Launch Date Landing Date Crew **Payloads and Experiments** STS-45 Mar 24, 1992 Apr 2, 1992 Cdr: Charles F. Bolden Deployable Payloads: None Ultraviolet Astronomy: Atlantis KSC KSC Plt Brian K. Duffy Attached PLB Pavloads: 1. Far Ultraviolet Space Telescope (FAUST) -ATLAS-1 (2 Spacelab Pallet and Igloo) - Objective: Study MS: Kathryn D. Sullivan Previously flown on Spacelab 1 MS: David C. Leestma the composition of the middle atmosphere and its 2. Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) -Objective: To provide more accurate and reliable MS: C. Michael Foale variations over an 11 year solar cycle. This is the first of PS: Dirk D. Frimout 10 planned ATLAS missions over the next 11 years. readings of global ozone to aid in the calibration of PS: Bryon K. Lichtenburg Atmosphere Physics: backscatter ultraviolet instruments being flown on Mission Duration: 214 brs 10 mins 24 secs 1. Atmosphere Trace Molecule Spectroscopy (ATMOS) free-flying satellites Previously flown on Spacelab 1, Reflight from Spacelab 3 GAS (Getaway Special): 2. Millimeter Wave Atmospheric Sounder (MAS) - First flight Getaway Special 229 (GAS-229) - Objective: To melt 3. Atmospheric Lyman Alpha Emissions (ALAE) - Previously and regrow gallium arsenide crystals with convective flown on Spacelab 1 effects absent 4. Grille Spectrometer (GRILLE) - Previously flown on Crew Compartment Payload; Spacelab 1 1. Investigation into Polymer Membranes Processing (IPMP)-5. Imaging Spectrometric Observatory (ISO) - Previously Objective: To flash evaporate mixed solvent systems in flown on Spacelab 1 the absence of convection to control the porosity of the Solar Science: polymer membrane in microgravity 1. Active Cavity Radiometer Irradiance Monitor (ACRIM) -2. Space Tissue Loss-01 (STL-01) - Objective: To monitor ACRIM 1 flown on the solar maximum satellite the activities of tissue samples at the cellular level under 2. Measurement of the Solar Constant (SOLCON) the influence of microgravity Previously flown on Spacelab 1 3. Radiation Monitoring Equipment-III (RME-III) - Objective: 3. Solar Spectrum Measurement from 180 to 3200 To measure ionizing radiation over repeated time intervals Nanometers (SOLSPEC) - Previously flown on Spacelab 1 and digitally store the resulting data 4. Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) -4. Visual Function Tester-2 (VFT-2) - Objective: To measure Previously flown on Spacelab 2 and on the Upper basic vision performance parameters in an orbital space Atmosphere Research Satellite (UARS) flight environment Space Plasma Physics: Cloud Logic to Optimize Use of Defense System -1. Atmospheric Emissions Photometric Imaging (AEPI) -Objective: To obtain photographic sequences of cloud Previously flown on Spacelab 1 fields of interest as targets of opportunity 2. Space Experiments with Particle Accelerators (SEPAC) -6. Shuttle Amateur Radio Experiment (SAREX II) - Objective: Previously flown on Spacelab 1 To demonstrate voice, slow-scan television (SSTV), and 3. Energetic Neutral Atom Precipitation pocket radio. All transmitted on 2 meter capabilities and fast scan television (FSTV) transmitted on 70 cm capability.

Flight	Launch Date	Landing Date		Crew	Payloads and Experiments		
STS-49 Endeavour		May 16, 1992 EAFB 17 mins 38 secs	Cdr: Ptt: MS: MS: MS: MS: MS:	Daniel C. Brandenstein Kevin P. Chilton Richard J. Hieb Bruce E. Melnick Pierre J. Thout Kathryn C. Thornton Thomas D. Akers	Deployable Payloads: 1. Intelsat VI F3 (International Telecommunications Satellite)/perigee kick motor (PKM) Attached PLB Payloads: 1. Assembly of station by EVA methods CAS (Cotumou Secolar): Name	Crew Compartment Payloads: 1. Commercial protein crystal growth (CPGC) 2. Air Force Maui Optical Site Calibration (AMOS) 3. Ultraviolet Plume Instrument (UVPI) Special Payload Mission Kits: None	
STS-50 Columbia	Jun 25, 1992 KSC	Jul 9, 1992 KSC 30 mins 04 secs	Cdr: Pit: MS: MS: MS: PS:	Richard N. Richards Keneth D. Bowersox Bonnie J. Dunbar Carl J. Meade Ellen S. Baker Lawrence J. DeLucas	GAS (Getaway Special): None Deployable Payloads: None Attached PLB Payloads: 1. U.S. Microgravity Laboratory (USML-1) 2. Investigation Into Polymer Membrane Processing (IPMP) 3. Shuttle Amateur Radio Experiment-II (SAREX-II) 4. Uttraviolet Plume Instrument (UVPI) 5. Orbital Acceleration Research Experiment (OARE) 6. Zeolite Crystal Growth (ZCG) 7. Astroculture 8. Generic Bioprocessing Apparatus (GBA) 9. Protein Crystal Growth (PCG) Block 1	GAS (Getaway Special): None Crew Compartment Payloads: 1. Zeolite Crystal Growth 2. Generic Bioprocessing Apparatus with 1 Refrigerator/Incubator Module (R/IM) 3. Astroculture (ASC) 4. Protein Crystal Growth (PCG) Block 1 with 3 R/IMs 5. Investigation into Polymer Membrane Processing (IPMP) 6. Shuttle Amateur Radio Experiment-II (SAREX-II) 7. Ultraviolet Plume Instrument (UVP) 5pecial Payload Mission Kits: None	
STS-46 Attantis Mission Du	Jul 31, 1992 KSC ration: 191 hrs *	Aug 8, 1992 KSC	Cdr: Plt: MS: MS: MS: MS: PS:	Loren J. Shriver Andrew M. Allen Jeffrey A. Hoffman Franklin R. Chang-Diaz Claude Nicollier Martha S. Nins Franco Malerba	Deployable Payloads: 1. EURECA Attached PLB Payloads	GAS (Getaway Special): None GAS (Getaway Special): None Crew Compartment Payloads: 1. Gas Autonomous Payload Controller (GAPC) for Use in ICBC Operations 2. Pituitary Growth Hormone Cell Function (PHCF) 3. Air Force Maui Optical Site Calibration (AMOS) (Passive Requirements Only) 4. Ultraviolet Plume Instrument (UVPI) Special Payload Mission Kits: None	

Flight	Launch Date	Landing Date		Crew	Payloads and Experiments		
STS-52 Columbia	ration: 190 hrs Oct 22, 1992 KSC	Sep 20, 1992 KSC 30 mins 23 secs Nov 1, 1992 KSC 56 mins 13 secs	Cdr: PIt: MS: MS: PS: PS: Cdr: MS: MS: MS: MS:	Robert L. Gibson Curtis L. Brown Mark C. Lee N. Jan Davis Mae C. Jemison Jerome Apt Mamoru Mohri James D. Wetherbee Michael A. Baker William M. Sheperd Tamara E. Jernigan Charles L. Veach	Deployable Payloads: 1. Japanese Spacelab (Spacelab-J) Long Module Gas Bridge Assembly (GBA) with 12 Gas Canisters GAS (Getaway Special): None Deployable Payloads: None 1. Laser Geodynamics Satellite (LAGEOS) Attached PLB Payloads 1. United Stated Microgravity Payload (USMP-1) GAS (Getaway Special): None Crew Compartment Payloads: 1. Queens University Experiment in Liquid Metal Diffusion (QUELD) 2. Phase Partition in Liquid (PARLIO) 3. Sun Photo Spectrometer Earth Atmosphere 3. Sun Photo Spectrometer Earth Atmosphere	Crew Compartment Payloads: Israeli Space Agency Investigation about Homets (ISAIAH) Shuftle Amateur Radio Experiment (SAREX) Solid Surface Combustion Experiment (SCCE) Ultraviolet Plume Instrument (UVPI) - Payload of Opportunity Special Payload Mission Kits: None Orbiter Glow-2 Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX) Crystal by Vapor Transport Experiment (CVTE) Heat Pipe Performance (HPP) (CMIX) Commercial Protein Crystal Growth (CPCG) Shuttle Plume Impingement Experiment (SPIE) Physiological System Experiment (PSE) 	
STS-53 Discovery Mission Du	Jul 31, 1992 KSC aration: 175 hrs	Aug 8, 1992 EAFB 19 mins 47 secs	Cdr: Plt: MS: MS: MS:	Loren J. Shriver Andrew M. Allen Jeffrey A. Hoffman Franklin R. Chang-Diaz Claude Nicollier	Measurement-2 (SPEAM) Deployable Payloads: Attached PLB Payloads	Special Payload Mission Kits: None GAS (Getaway Special): None Crew Compartment Payloads: Special Payload Mission Kits: None	

Flight	Launch Date	Landing Date		Crew	Payloads and Experiments		
STS-54 Endeavour Mission Du		Jan 19, 1993 KSC 38 mins 19 secs	Cdr: Plt: MS: MS: MS	John H. Casper Donald R McMonagle Mario Runco, Jr Gregory Harbaugh Susan Helms	Deployable Payloads: None 1. Tracking and Data Relay Satellite/Inertial Upper Stage(TDRS/IUS) Attached PLB Payload: 1. Diffuse X-Ray Spectrometer(DXS) GAS(Getaway Special): None Crew Compartment Payloads: 1. Chromosome and Plant Cell Division in Space(CHROMEX)	Commercial Generic Bioprocessing Apparataus(CGBA) Physiological and Anatomical Rodent Experiment(PARE) Solid Surface Combustioin Experiment(SSCE) Special Payload Mission Kits: None	
STS-56 Discovery Mission Du	Apr 8, 1993 KSC ration: 222 hrs (Apr 17, 1993 KSC	Plt:	Kenneth Cameron Steven S. Oswald C. Michael Foale Kenneth Cockrell Ellen Ochoa	Deployable Payloads: 1. Shuttle Point Autonomous Research Tool for Astronomy - 201(SPARTAN-201) Attached PILB Payloads: 1. Almospheric Laboratory for Applications and Science (ATLAS-2) GAS (Getaway Special): None Crew Compartment Payloads: 1. Solar Ultraviolet Spectrometer(SUVE) 2. Hand-Held, Earth-Oriented, RealTime, Cooperative, User-Friendly, Location Targeting, and Environmental System(HERCULES) 3. Radiation Monitoring Equipment II(RME-III)	 Cosmic Radiatiion Effects and Activation Monitor(CREAM) Shuttle Amateur Radio Experiment II(SAREX II) Commercial Materials Dispersion Apparatus ITA Experiments(CMIX) Space Tissue Loss Experiment(STL) Physiological and Anatomical Rodent Experiment(PARE) Special Payload Mission Kits Remote Manipulator System 	
Columbia	Apr 26, 1993 KSC uration: 239 hrs	May 6, 1993 EAFB 39 mins 59 secs	Cdr. Pit. MS. MS. PS. PS	Steven R. Nagel Terence T. Hendricks Chafes Precourt Bernard Harris, Jr. Ulrich Watter Hans Schlegel	Deployable Payload: None Attached PLB Payload: 1. D2 payload user support structure: German(SPACELAB) 2. Material Science Autonomous Payload(MAUS) 3. Atomic Oxygen Exposure Tray(AOET) 4. Galactic Ultrawide Angle Schmidt System Camera(GAUSS) 5. Modular Opto-Electronic Multispectral Stereo Scanner (MOMS)	GAS (Gateway Special): 1. Reaction Kinetics in Glass Metts(RKGM) Crew Compartment Payload: 1. Crew Telesupport Experiment 2. Shuttle Amateur Radio Experiment(SARAX) Special Payload Mission Kits: None	

Flight Laun	ch Date	Landing Date		Crew	Payloads a	and Experiments
STS-57 Jun 2 Endeavour KS Mission Duration:		Jul 1, 1993 KSC 4 mins 54 secs	Cdr: Pft: PC: MS: MS: MS:	Ronald J. Grabe Brian J. Duffy G. David Low Nancy J. Sherlock Peter J. K. Wisoff Janice E. Voss	Deployable Payloads: 1. EURECA Attached PLB Payloads 1. Spacehab-1 a. Experiments(22) GAS (Getaway Special): 1. G-022: Pedriodic Volume Stimulus 2 G-324: Earth Photographs 3. G-399: Insulin/Artemia/Ion Expts 4. G-450: Crystal Growth/Fluid Transfer 5. G-452: Crystal Growth 6. G-453: Semiconductor/Boiling Expts	 G-454: Crystal Growth G-535: Pool Boiling G-601: High Frequency Variations G-647: Liquid Phase Electroepitaxy Crew Compartment Payloads: SAREX-II (Shuttle Amateur Radio Experiment -II) FARE (Fluid Acquisition and Resupply Experiment) AMOS (Air Force Maui Optical Site Calibration Test) Special Payload Mission Kits: SHOOT: (Superfluid Helium On-Orbit Transfer) CONCAP-IV: (Consortium for Materials Development in Space Complex Autonomous Payload IV)
	12, 1993 SC 236 hrs 1	KSC	Cdr: Pit: MS: MS: MS	Frank Culbertson, Jr. William F. Readdy James H. Newman Daniel W. Bursch Carl E. Walz	 Deployable Payloads: ACTS: (Advanced Communication Technology Satellite) TOS: (Transfer Orbit Stage) ORFEUS/SPAS: (Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer-Shuttle Pallet Satellite) LDCE: (Limited Duration Space Environment Candidate Materials Exposure) Attached PLB Payloads: IMAX: Camera CPCG: (Commercial Protein Crystal Growth) CHROMEX:(Chromosome and Plant Cell Division in Space) HRSGS-A: (High Resolution Shuttle Glow Spectroscopy) APE-B: (Auiroral Photography Experiment) RME-III: (Radiation Monitoring Experiment-III) IPMP: (Investigations into Polymer Membrane Processing) AMOS: (Air Force Maui Optical Site Calibration Test) GAS (Getaway Special): None 	Crew Compartment Payloads: Special Payload Mission Kits:

Flight Launch Date Landing Date Crew Payloads and Experiments STS-58 Oct 18, 1993 Nov 1, 1993 Cdr: John E. Blaha Deployable Payloads: None Crew Compartment Pavloads: Columbia KSC EAFB Plt: Richard Searfoss Attached PLB Pavloads: 1. Urine Monitoring System (UMS PC: Margaret Rhea Seddon 1. Spacelab Life Sciences-2(SLS-2) 2. Shuttle Amateur Radio Experiment (SAREX MS: Shannon W. Lucid a. Spacelab Long Module MS: David A. Wolf b. Spacelab Pallet Special Payload Mission Kits: c. Tunnel MS: William McArthur, Jr. PS: Martin J. Fettman d. Tunnel Extension Mission Duration: 336 hrs 12 mins 32 secs GAS (Getaway Special): None STS-61 Dec 2, 1993 Dec 13, 1993 Cdr: Richard O. Covey Deployable Payloads: Crew Compartment Payloads Endeavour KSC KSC Plt: Kenneth D. Bowersox 1. Hubble Space Telescope (HST) 1. Hubble Space Telescope Special Tools MS: F. Story Musgrave Service Mission - 01 2. Shuttle Orbiter Repackaged Galley (SORG) MS: Thomas D. Akers a. Solar Array (SA) Electronic Still Camera Photography Test 3. MS: Jefferv A. Hoffman b. Wide Field/Planetary Camera (WFPC) Global Positioning System (GYS) MS: Kathryn C. Thornton c. Corrective Optics Space Telescope MS: Claude Nicollier Axial Replacement (COSTAR) Mission Duration: 259 hrs 58 mins 35 secs Attached PLB Payloads: MFR (Manipulator Foot Restraint) 2. SESA (Special Equipment Stowage Assembly) IMAX Caroo Bay Camera (ICBC-04) Special Payload Mission Kits: None 3. 4. Air Force Maui Opitical Site Calibration Test (AMOS) GAS (Getaway Special): None

Flight	Launch Date	Landing Date	Crew	Payloads	and Experiments
STS-60 Discovery Mission Du	Feb 3, 1994 KSC uration: 199 hrs (Feb 11, 1994 KSC 09 mins 22 secs	Cdr: Charles Bolden Ptt: Ken Reightler MS: Franklin Chang-Diaz MS: Jan Davis MS: Ronald Sega MS: Sergei Krikalev	Deployable Payloads: 1. Wake Shield Facility-1 (WSF-1) Attached PLB Payloads: 1. SPACEHAB-2 a. Experiments-12 2. Capillary Pump Loop (CAPL) GAS (Getaway Special): 1. Oribital Debris Radar Calibration Spheres (ODERACS) 2. BREMAN Satellite (BREMSAT) 3. G-071 (Ball Bearing Experiment) 4. G-514 (Orbiter Stability Exper.& Medicines in Microgravity) 5. G-536 (Heat Flux) 6. G-557 (Capillary Pumped Loop Experiment)	Crew Compartment Payloads: 1. Shuttle Amateur Radio Experiment-II (SAREX-2) 2. Aurora Photography Experiment-B (APE-B) Special Payload Mission Kits: None
STS-62 Columbia Mission Du	Mar 9, 1994 KSC uration: 335 hrs	Mar 18, 1994 KSC 16 mins 41 ses	Cdr: John Casper Pit: Andrew Allen MS: Pierre Thuot MS Charles Gemar MS Marsha Ivins	Deployable Payloads: None Attached PLB Payloads: 1. United States Microgravity Payload-2 (USMP-2) a. Experiments-5 2. Office of Aeronautics & Space Technology-2 (OAST-2) 3. Dexterous End Effector (DEE) 4. Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A) 5. Limited Duration Space Environment Candidate Materials Exposure (LDCE) GAS (Getaway Special): None	Crew Compartment Payloads 1. Protein Crystal Growth Experiments (PCG) 2. Physiological System Experiment (PSE) 3. Commercial Protein Crystal Growth (CPCG) 4. Commercial Generic Bioprocessing Apparatus (CGBA) 5. Middeck O-Gravity Dynamics Experiments (MODE) 6. Bioreactor Demonstration System (BDS): Biotechnology Specimen Temperature Controller (BSTC) Speclal Payload Mission Kits: 1. Air Force Maui Optical Site Calibration Test (AMOS)

Flight Launch Date Landing Date Crew Payloads and Experiments STS-59 Apr 9, 1994 Apr 20, 1994 Cdr: Sidney M. Gutierrez Deployable Payloads: None Crew Compartment Payloads: KSC Endeavour KSC Pit: Kevin P. Chilton Attached PLB Pavloads: 1. Space Tissue Loss (STL) MS: Linda M. Godwin 1. Space Radar Laboratory-1 (SRL-1) 2. Shuttle Amateur Radio Experiment -II (SAREX-II) MS: Jay Apt 2. Consortium for Materials Development in Space 3. Toughened Uni-Piece Fibrous Insulation (TUFI) Complex Autonomous Payload-IV (CONCAP-IV) 4. Visual Function Tester-4 (VFT-4) MS: M.R. Clifford MS: Thomas D. Jones Mission Duration: 269hrs 49mins 30secs GAS (Getaway Special): Special Payload Mission Kits: None 1. G-203, New Mexico State University 2. G-300, Matra Marconi Space 3. G-458. The Society of Japanese Aerospice Companies. Inc. STS-65 Jul 8, 1994 Jul 23, 1994 Cdr: Robert D. Cabana Deployable Payloads: None g. Performance Assessment Workstation Columbia KSC KSC Attached PLB Payloads: Pit: James D. Halsell r. Biostack 1. International Microgravity Lab-2 (IML-2) MS: Richard J. Hieb s, Real-Time Radiation Monitoring Device MS: Carl E. Walz a. Large isothermal Furnace 2. Orbital Acceleration Research Experiment (OARE) MS: Lerov Chiao b. Electromagnetic Containerless Processing Facility MS: Donald A. Thomas c. Bubble, Drop and Particle Unit PS: Chiaki Naito-Mukai d. Critical Point Facility GAS (Getaway Special): None e. Space Acceleration Measurement System **Crew Compartment Payloads:** Mission Duration: 353hrs 55mins 00secs f. Quasi-Steady Acceleratioin Measurement 1. Commercial Protein Crystal Growth (CPCG) a. Vibration Isolation Box Experiment System 2. Shuttle Amateur Radio Experiment-II (SAREX-II) h. Advanced Protein Crystallization Facility 3. Military Applications of Ship Tracks (MAST) i. Applied Research on Separation Methods Using Space Electrophoresis i. Free Flow Electrophoresis Unit Special Payload Mission Kits: k, Aquatic Animal Experiment Unit 1. Air Force Maul Optical Site (AMOS) I. Thermoelectric Incubator/Cell Culture Kit m. Biorack n. Slow Rotating Centrifuge Microscope o. Spinal Changes in Microgravity p. Extended Duration Orbiter Medical Project

Flight Launch Dat	Landing Date	Crew	Payloads	and Experiments
STS-64 Sep 9, 1994 Discovery KSC Mission Duration: 262 hr	Sep 20, 1994 EDW	Cdr.: Richard N. Richar Prt: L.: Blaine Hammo MS: Jerry M. Linenger MS: Susan J. Helms MS: Carl J. Meade MS: Mark C. Lee	nd 1. Shuttle Pointed Autonomous Research Tool for	 G. 4-54, The Society of Japanese Aerospace Companies (SJAC), Crystal Growth Experiments G. 4-56, The Society of Japanese Aerospace Companies (SJAC), Electrophoresis and Microgravity Tests G. 4-85, European Space Agency, IESTEC FTD g. 6-506, Orbiter Stability Experiment (OSE) I. 6-562, Canadian Space Agency, OUESTS-2 Crew Compartment Payloads Air Force Maul Optical Site (AMOS) Biological Research in Caniters (BRIC) Military Application of Ship Tracks (MAST) 4. Radiation Monitoring Experiment-III (RME-III) Shuttle Amateur Radio Experiment-II (SAREX-II) Sold Surface Combustion Experiment (SSCE) Special Payload Mission Kits: None
STS-68 Sep 30, 1994 Endeavour KSC Mission Duration: 269 hrs	EDŴ	Cdr Michael A. Baker: Pit Terrenca W. Wilcu MS: Steven L. Smith MS Daniel W. Bursch MS Peter J. K. Wisoff MS Thomas D. Jones	Deployable Payloads: None Attached PLB Payloads: 1. Space Radar Laboratory-2 (SRL-2) GAS (Getaway Special): 1. G-316, Student Space Shuttle Program (SSSP) 2. G-503, Microgravity & Cosmic Radiation Effects on Diatoms (MCRED) Concrete Curing in Microgravity (ConCIM) Root Growth in Space (RGIS) Microgravity Corrosion Experiment (COMET) 3. G-541, Study breakdown of a planar solid/liquid interface during crystal growth Special Payload Mission Kits: None	Crew Compartment Payloads 1. Commercial Protein Crystal Growth (CPCG) 2. Biological Research in Canisters (BRIC) 3. Chromosomes & Plant Cell Division in Space Experiment (CHROMEX) 4. Cosmic Radiation Effects and Activation Monitor (CREAM) 5. Military Applications of Ship Tracks (MAST)

Flight	Launch Date	Landing Date	Crew	Payloads a	nd Experiments
Discovery		Feb. 11, 1995 KSC hrs 29 mins 36 sect	Cdr: James D Wetherbee Ptt: Eileen M. Collens MS: Bernard A. Harris, Jr. MS: Michael C. Roale MS: Janice Voss MS: Vladimir Georgievich Titov	Deployable Payloads: 1. Shuttle Mir Rendezvous and Fly Around 2. SPARTAN 204 Science 3. Extravhicular Activities (EVA) Attached PLB Payloads: 1. SPACEHAB-3	2. Solid Surface Combustion Experiment (SSCE) 3. Air Force Maul Optical Site (AMOS) GAS (Gateaway Special): None Special Payload Mission Kits: None
STS-67 Endeavou Mission		Mar 18, 1995 hrs 09 mins 47 secs	Cdr: Steven S Oswald Ptt: William G. Gregory MS: John M Grunsfeld MS: Wendy B. Lawrence MS: Tamara E. Jerrigan MS. Samuel T. Durrance MS: Ronald Parise	Deployable Paloads: None Attached PLB Payloada: 1. ASTRO 2 Spacelab 2. Ultraviolet Telescope of the Johns Hopkins Univ. (HUT) 3. Ultraviolet Imaging Telescope of NASA/GSFC (UIT) 4. Photo-Polarimeter Telescope of the Univ of Wisconsin (WUPPE)	GAS (Getaway Special): 1. ASTRO-2 Getaway Special Canisters Crew Compartment Payloads: 1. Commercial MDA ITA Experiments (CMIX) 2. Protein Crystal Growth (PCG) Experiments 3. Middeck Active Control Experiment (MACE) 4. Shuttle Amateur Radio Experiment (SAREX-II)
STS-71 Atlantis Missior	M		Cdr: Robert L. Gibson Pit: Charles J. Precourt MS: Ellen S. Baker MS: Gregory J. Harbaugh MS: Bonnie Dunbar (Cdr: Anatoly Y. Solovyev FE: Nikolai M. Budarin Cdr:Vladmir Dezhurov FE: Gennady Strekalov Norm Thagard	Deployable Payloads: None Attached PLB Payloads: 1. Shuttle-Mir Rendezvous and Docking 2. Orbiter Docking System Crew Compartment Payloads 1. Shuttle-MiR Science 2. Protein Crystal Growth Experiment 3. Protocol Activities 4. IMAX 5. Shuttle Amateur Radio Experiment-II (SAREX)	GAS(Getaway Specials): None Special Payload Mission Kits: None

Summary of Shuttle Payloads and Experiments Flight Launch Date Landing Date Payloads and

light Launch Date Landing Date	Crew	Payloads	and Experiments
STS-70 July 13, 1995 July 22, 1995 Discovery KSC KSC	Cdr: Terren T. Hendricks Pft: Kevin R. Kregel MS: Mary E. Weber MS: Donaki A. Thomas MS: Nancy J. Curie	Deployable Payloads: 1. Tracking and Data Relay Satellite (TDRS-7) 2. Inertial Upper Stage (IUS) Attached PLB Payloads: 1. Biological Research in Canisters (BRIC) 2. Bioreactor Development Systems (BDS) 3. Commercial Protein Crystal Growth (CPCG) 4. National Institues of Heath R-2 (NIR R-2) 5. Space Tissue Loss-8 (STL-6) 6. Midcourse Space Experiment (MSX) GAS (Getaway Special): None	Crew Compartment Payloads: 1. Hand-Heid, Earth-Oriented, Cooperative, Real-Time, User- Friendly, Location Targeting and Environmental Systems (HERCULES) 2. Microencapsulation in Space-B (MIS-B) 3. Military Application of Ship Tracks (MAST) 4. Radiation Monitoring Equipment-III (RME-III) 5. Shuttle Amateur Radio Equipment (SAREX) 6. Window Experiment (WINDEX) 7. Visual Function Tester-4 m(VFT-4) Special Payload Mission Kits: None
Endeavour KSC KSC P	Cdr. David M. Walker Pit: Kenneth D. Cockrell LC: James S. Voss MS Jim Newman MS Michael L. Gernhardt	Deployable Payloads: 1. Wake Shield Facility-2 (WSF-2) 2. SPARTAN 201-03 Attached PLB Payloads 1. International Extreme Ultraviolet Hitchhiker (IEU) 2. Solar Extreme Ultraviolet Hitchhiker (SEH) 3. Capillary Pumped Loop-1/Gas Bridge Assembly (CAPL-2/GBA) GAS (Getaway Special): 1. G-515, European Space Agency, Noordwijk, The Netherlands Control FlexIbility Interaction Experiment 2. G-454, Miltorek Township School District, Erie, PA McDowell High School, LORD Corp. 3. G-702, The Microgravity Smoldering Combustion Experiment (MSC) NASA Lewis Research Center 4. G-726, The Joint Damping Experiment (JDX) NASA Langley Research Center	Crew Compartment Payloads: 1. Space Tissue Loss/National Institutes of Health-Cells (STL/NIH-C) 2. Commercial Generic Bioprocessing Apparatus-7 (CCBA) 3. Biological Research In Canister (BRIC 4. Electrolysis Performance Improvement Concept Study (EPICS) 5. Commercial MDA ITA Experiments (CMIX)
Mission Duration: 260 hrs 29 mins 56 ses			Special Payload Mission Kits: None

Summary of Shuttle Payloads and Experiments

Flight Launch Date	Landing Date	Crew	Payloads	and Experiments
STS-73 Oct. 20, 1995 Columbia KSC Mission Duration: 381 hrs 5	Nov. 5, 1995 KSC 53 mins 17 secs	Cdr: Kenneth D. Bowersox Pt: Kent Rominger MS: Kathryn Thornton MS: Catherine Coleman MS: Michael Lopez-Alegria PS: Fred Lesile PS: Albert Sacco	Deployable Payloads: None Attached PLB Payloads: 1. United States Microgravity Laboratory-2 (USML-2) a. Surface Tension Driven Convection Experiment b. Drop Dynamics Experiment c. Geophysical Fluid Flow Cell Experiment d. Crystal Growth Furnace e. Protein Crystal Growth Experiments f. Astroculture Facility and Experiment 2. Orbital Acceleration Research Experiment (OARE) GAS (Getaway Special): None	Crew Compartment Payloads: 1. Education Experiments Special Payload Mission Kits: None
STS-74 Nov. 12, 1995 Atlantis KSC Mission Duration: 196 hrs	Nov. 20, 1995 KSC 31 mins 42 secs	Cdr: Ken Carneron Pit: Jim Halsell MS: Chris Hadfield MS: Jerry Ross MS: William McArthur	Deployable Payloads: None Attached PLB Payloads: 1. Docking Module w/Solar Arrays 2. Orbital Docking System 3. IMAX Cargo Bay Camera 4. GLOW-4 (GPP) 5. Photogrammetric Appeodage Structural Dynamics Experiment (PASDE) 6. Shuttle Gio Experiment (GLO-4)	GAS (Gateaway Special: None Crew Compartment Payloads: 1. Shuttle Amateur Radio Experiment-II (SAREX-II) 2. Detailed Test/Supplementary Objectives (DTOs/DSOs) Special Payload Mission Kits: None

The Planets

Wercury Vertus Earth W	51 ⁵		Jupte			Saure	Ursh	he he	Pure Puro
<u> </u>	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune	Pluto
Mean Distance from Sun Millions of Kilometers Millions of Miles	57.9 36	108.2 67.2	149.6 93	227.9 141.6	778.3 483.6	1,429	2,875 1,786	4,504	5,900 3,666
Period of Revolution (in Earth time) Period of Rotation (in Earth time)	87.97 days 58.65 days	224.7 days 243.01 days, Retrograde	365.26 days 23 hrs 56 mins	686.98 days 24 hrs 37 mins	11.86 years 9 hrs 56 mins	29.46 years 10 hrs 40 mins	84.07 years 17 hrs 14 mins		248.6 years 6.39 days,
Inclination of Axis (Degrees)	0.0	177.3	23.5	25.2	3.08	26.7	97.9	29.6	Retrograde 122
Inclination of Orbit to Ecliptic (Deg)	7.0	3.39	0.0	1.85	1.31	2.49	0.77	1.77	17.15
Eccentricity (Degrees)	0.206	0.007	0.017	0.093	0.048	0.056	0.046	0.010	0.248
Equatorial Diameter Kilometers Miles	4,878 3,031	12,104 7,521	12,755 7,926	6,790 4,219	142,796 88,729	120,660 74,975	51,118 31,763	49,528 30,775	2,300 Appx. 1,429 Appx.
Atmosphere	Essentially None	Carbon Dioxide	Nitrogen, Oxygen	Carbon Dioxide	Hydrogen, Helium	Hydrogen, Helium	Hydrogen, Helium	Hydrogen, Helium	Methane
Satellites	None	None	1	2	16	18	15	8	1
Rings	None	None	None	None	1	Thousands	11	5	Probably None

Our automated spacecraft have traveled to the Moon and to all the planets beyond our world except Pluto; they have observed moons as large as small planets, flown by comets, and sampled the solar environment. The knowledge gained from our journeys through the solar system has redefined traditional Earth sciences like geology and meteorology and spawned an entirely new discipline called comparative planetology. By studying the geology of planets, moons, asteroids, and comets, and comparing differences and similarities, we are learning more about the origin and history of these bodies and the solar system as a whole. We are also gaining insight into Earth's complex weather systems. By seeing how weather is shaped on other worlds and by investigating the Sun's activity and its influence through the solar system, we can better understand climatic conditions and processes on Earth.

The Sun

Many spacecraft have explored the Sun's environment, but none have gotten any closer to its surface than approximately two-thirds of the distance from Earth to the Sun. Pioneers 5-11, the Pioneer Venus Orbiter, Voyagers 1 and 2, and other spacecraft have all sampled the solar environment. The Ulysees spacecraft, launched Oct 6, 1990, is a joint solar mission of NASA and the European Space Agency. After using Jupiter's gravity to change its trajectory, Ulysses will fly over the Sun's polar regions during 1994 and 1995 and will perform a wide range of studies using nine onboard scientific instruments.

The Sun dwarfs the other bodies in the solar system, representing approximately 99.86 percent of all the mass in the solar system. All of the planets, moons, asteroids, comets, dust, and gas add up to only about 0.14 percent. This 0.14 percent represents the material left over from the Sun's formation. One hundred and nine Earths would be required to fit across the Sun's disk, and its interior could hold 700,000 Earths.

As a star, the Sun generates energy by the process of fusion. The temperature at the Sun's core is 15 million degrees Celsius (27 million degrees Fahrenheit), and the pressure there is 340 billion times Earth's air pressure at sea level. The Sun's surface temperature of 5,500 degrees Celsius (10,000 degrees Fahrenheit) seems almost chilly compared to its core temperature. At the solar core, hydrogen can fuse into helium, producing energy. The Sun produces a strong magnetic field and streams of charged particles, extending far beyond the planets. The Sun appears to have been active for 4.6 billion years and has enough fuel for another 5 billion years or so. At the end of fis life, the Sun will start to fuse helium into heavier elements and begin to swell up, utimately growing so large that it will swallow Earth. After a billion years as a "red giant," it will suddenly collapse into a "white dwart" -- the final end product of a star like ours. It may take a trillion years to cool off completely.

Mercury

Obtaining the first closa-up views of Mercury was the primary objective of the Mariner 10 spacecraft, launched Nov 3, 1973. After a journey of nearly 5 months, including a flyby of Venus, the spacecraft passed within 703 km (437 m) of the solar system's innermost planet on Mar 29, 1974. Until Mariner 10, little was known about Mercury. Even the best telescopic views from Earth showed Mercury as an indistinct object tacking any surface detail. The planet is so close to the Sun that it is usually lost in solar glare. When the planet is visible on Earth's horizon just after sunset or before dawn, it is obscured by the haze and dust in our atmosphere. Only radar telescopes gave any hini of Mercury's surface conditions prior to the voyage of Mariner 10.

Mariner 10 photographs revealed an ancient, heavily cratered surface, closely resembling our Moon. The pictures also showed high cliffs crisscrossing the planet, apparently created when Mercury's interior cooled and shrank, buckling the planet's crust. The cliffs are as high as 3 km (2 m) and as long as 500 km (310 m).

Instruments on Mariner 10 discovered that Mercury has a weak magnetic field and a trace of atmosphere – a trillionth the density of Earth's atmosphere and composed chiefly of argon, neon, and helium. When the planet's orbit takes it closes to the Sun, surface temperatures range from 467 degrees Celsius (872 degrees Fahrenheit) on Mercury's sunit side to -183 degrees Celsius (-298 degrees Fahrenheit) on the dark side. This range in surface temperature is the largest for a single body in the solar system. Mercury literally bakes and freezes at the same time.

Days and nights are long on Mercury. The combination of a slow rotation relative to the stars (59 Earth days) and a rapid revolution around the Sun (88 Earth days) means that one Mercury solar day takes 176 Earth days or two Mercury years, the time it takes Mercury to complete two orbits around the Sun.

Mercury appears to have a crust of light silicate rock like that of Earth. Scientists believe Mercury has a heavy iron-rich core making up slightly less than half of its volume. That would make Mercury's core larger, proportionally, than the Moon's core or those of any of the planets.

After the initial Mercury encounter, Mariner 10 made two additional flybys – on Sep 21, 1974, and Mar 16, 1975 – before control gas used to orient the spacecraft was exhausted and the mission was concluded. Each flyby took place at the same local Mercury time when the identical half of the planet was illuminated; as a result, we still have not seen one-half of the planet's surface.

Venus

Veiled by dense cloud cover, Venus – our nearest planetary neighbor – was the first planet to be explored. The Mariner 2 spacecraft, launched Aug 27, 1962, was the first of more than a dozen successful American and Soviet missions to study the mysterious planet. On December 14, 1962, Mariner 2 passed within 34,839 kilometers (21,648 miles) of Venus and became the first spacecraft to scan another planet; onboard instruments measured Venus for 42 milutes. Mariner 5, launched in June 1967, flew much closer to the planet. Passing within 4,094 kilometers (2,544 miles) of Venus on the second American flyby, Mariner 5s instruments measured the planet's magnetic field, ionosphere, radiation beits, and temperatures. On its way to Mercury, Mariner 10 flew by Venus and transmitte ultraviolet pictures to Earth showing cloud circulation patterns in the Venusian atmosphere.

On Dec 4, 1978, the Pioneer Venus Orbiter became the first spacecraft to orbit the planet. Five days later, the five separate components making up a second spacecraft, the Pioneer Venus Multiprobe, entered the Venusian atmosphere at different locations above the planet. The four small probes and the main body radioed atmospheric data back to Earth during their descent toward the surface. Atthough designed to examine the atmosphere, one of the probes survived its impact with the surface and continued to transmit data for another hour.

Venus resembles Earth in size, physical composition, and density more closely than any other known planet. However, significant differences have been discovered. For example, Venus' rotation (west to east) is retrograde (backward) compared to the east-to-west spin of Earth and most of the other planets. Approximately 96.5 percent of Venus' atmosphere (95 times as dense as Earth's) is carbon dioxide. The principal constituent of Earth's atmosphere is nitrogen. Venus' atmosphere acts like a greenhouse, permitting solar radiation to reach the surface but trapping the heat that would ordinarily be radiated back into space. As a result, the planet's average surface temperature is 482 degrees Celsius (900 degrees Fahrenheit), hot enough to melt lead.

A radio altimeter on the Pioneer Venus Orbiter provided the first means of seeing through the planet's dense cloud cover and determining surface features over almost the entire planet. NASA's Magellan spacecraft, launched on May 5, 1989, has orbited Venus since August 10, 1990. The spacecraft used radar-mapping techniques to provide ultrahigh-resolution images of the surface.

Magelian has revealed a landscape dominated by volcanic features, faults, and impact craters. Hugh areas of the surface show evidence of multiple periods of lava flooding with flows lying on top of previous ones. An elevated region named Ishtar Terra is a lava-filled basin as large as the United States. At one end of this plateau sits Maxwell Montes, a mountain the size of Mount Everest. Scaring the mountain's flank is a 100-km (62-m) wide, 25-km (1.5 m) deep impact crater named Cleopatra. (Almost all features on Venus are named for women: Maxwell Montes, Alpha Regio, and Beta Regio are the exceptions.) Craters survive on Venus for perhaps 400 million years because there is no water and very little wind erosion.

The successful Magellan mission ended on October 12, 1994, when the spacecraft was commanded to drop lower into the fringes of the Venusian atmosphere during an aerodynamic experiment and it burned up, as expected. Magellan mapped 98 percent of the planet's surface with radar and compiled a high-resolution gravity map of 95 percent of the planet.

Extensive fault-line networks cover the planet, probably the result of the same crustal flexing that produces plate tectonics on Earth. But on Venus the surface temperature is sufficient to weaken the rock, which cracks just about everywhere, preventing the formation of major plates and large earthquake faults like the San Andreas Fault in California.

Venus' predominant weather pattern is a high-altitude, high-speed circulation of clouds that contain Besides affecting Earth's weather, solar activity gives rise to a dramatic visual phenomenon in our atmosphere. When charged particles from the solar wind become trapped in Earth's magnetic sulfuric acid. At speeds reaching as high as 360 km (225 mi) per hour, the clouds circle the planet in only 4 Earth days. The circulation is in the same direction -- west to east -- as Venus' slow field, they collide with air molecules above our planet's magnetic poles. These air molecules then rotation of 243 Earth days, whereas Earth's winds blow in both directions - west to east and east begin to glow and are known as the auroras or the northern and southern lights. to west -- in six alternating bands. Venus' atmosphere serves as a simplified laboratory for the Satellites 36,000km (22,000 mi) out in space play a major role in daily local weather study of our weather. forecasting. These watchful electronic eyes warn us of dangerous storms. Continuous global Earth monitoring provides a vast amount of useful data and contributes to a better understanding of Earth's complex weather systems. As viewed from space. Earth's distinguishing characteristics are its blue waters, brown and green land masses, and white clouds. We are enveloped by an ocean of air consisting of 78 The TOPEX/POSEIDON satellite, a joint NASA/French mission and part of the Missior to Planet percent Earth, is providing information of unprecedented accuracy about global ocean circulation. Radar nitrogen, 21 percent oxygen, and 1 percent other constituents. The only planet in the solar attimeter measurements of sea height level in the mid Pacific, accurate within 5 cm. (2 In.), system demonstrate the presence of a strong El Nino current in the 1994-95 winter. This has great known to harbor life. Earth orbits the Sun at an average distance of 150 million km (93 million importance for long range weather forecasting. Another element of the Mission to Planet Earth, **m**i). the Total Ozone Monitoring Satellite (TOMS), stopped transmitting in Dec. '94 after exceeding its Earth is the third planet from the Sun and the fifth largest in the solar system, with a diameter a design lifetime by a year. This joint NASA/Russian effort provided essential data on ozone density few hundred kilometers larger than that of Venus. and global distribution for the past 3 years. TOMS data are showing us how human activities can alter Earth's global environment. Two more TOMS satellites are to be flown by February, 1996. Our planet's rapid spin and molten nickel-iron core give rise to an extensive magnetic field. which, along with the atmosphere, shields us from nearly all of the harmful radiation coming from The Moon the Sun and other stars. Earth's atmosphere protects us from meteors as well, most of which burn up before they can strike the surface. Active geological processes have left no evidence of The Moon is Earth's single natural satellite. The first human footsteps on an alien world were made the petting Earth almost certainly received soon after it formed - about 4.6 billion years ago. by American astronauts on the dusty surface of our airless, tifeless companion. In preparation for the Apollo expeditions. NASA dispatched the automated Ranger, Surveyor, and Lunar Orbiter From our journeys into space, we have learned much about our home planet. The first American spacecraft to study the Moon between 1964 and 1968. satellite -- Explorer 1 -- launched Jan 31, 1958, discovered an intense radiation zone, called the Van Atlen radiation belts, surrounding Earth. Other research satellites revealed that our planet's NASA's Apollo program left a large legacy of lunar materials and data. Six 2-astronaut crews magnetic field is distorted into a tear-drop shape by the solar wind. We've learned that the landed on and explored the lunar surface between 1969 and 1972, carrying back a collection of magnetic field does not fade off into space but has definite boundaries. And we now know that rocks and soil weighing a total of 382 km (842 lb) and consisting of more than 2.000 separate our wispy upper atmosphere, once believed calm and uneventful, seethes with activity -- swelling samples. From this material and other studies, scientists have constructed a history of the Moon by day and contracting by night. Affected by changes in solar activity, the upper atmosphere that includes its infancy. contributes to weather and climate on Earth.

Rocks collected from the lunar highlands date to about 4.0-4.3 billion years old. The first few million years of the Moon's existence were so violent that few traces of this period remain. As a motien outer layer gradually cooled and solidified into different kinds of rock, the Moon was bombarded by huge asteroids and smaller objects. Some of the asteroids were as large as Rhode Island or Delaware, and their collisions with the Moon created basins hundreds of kilometers across.

This catastrophic bombardment tapered off approximately 4 billion years ago, leaving the lunar highlands covered with huge, overlapping craters and a deep layer of shattered and broken rock. Heat produced by the decay of radioactive elements began to met the interior at depths of about 200 km (125 mi) below the surface. For the next 700 million years, lava rose from inside the Moon and gradually spread out over the surface, flooding the large impact basins to form the dark areas that Galileo Galilei, an astronomer of the Italian Renaissance, called maria, meaning seas. As far as we can tell, there has been no significant volcanic activity on the Moon for more than 3 billion years. Since then, the lunar surface has been altered only by micrometeorites, atomic particles from the Sun and stars, rare impacts of large meteorites, and spacecraft and astronavis.

The origin of the Moon is still a mystery. Four theories attempt an explanation: The Moon formed

near Earth as a separate body; it was torn from Earth; it formed somewhere else and was captured by our planet's gravity, or it was the result of a collision between Earth and an asteroid about the size of Mars. The last theory has some good support but is far from certain.

Mars

Mars has long been considered the solar system's prime candidate for harboring extraterestrial life. Astronomers studying the red planet through telescopes saw what appeared to be straight lines criss-crossing its surface. These observations, later determined to be optical illusions, led to the popular notion that intelligent beings had constructed a system of irrigation canals. Another reason for scientists to expect life on Mars was the apparent seasonal color changes on the planet's surface. This phenomenon led to speculation that conditions might support vegetation during the warmer months and cause plant life to become dormant during colder periods. Seven American missions to Mars have been carried out. Four Mariner spacecraft, three flying by the planet and one placed into marilan orbit, surveyed the planet extensively before the Viking Orbiters and Landers arrived. Mariner 4, launched in late 1964, flew past Mars on Jul 14, 1965, within 9,846 km (6,118 m) of the surface. Transmitting to Earth 22 close-up pictures of the planet, the spacecraft found many craters and naturally occurring channels but no evidence of artificial canals or flowing water. The Mariners 6 and 7 flybys, during the summer of 1969, returned 201 pictures. Mariners 4, 6, and 7 showed a diversity of surface conditions as well as a thin, cold, dry atmosphere of carbon dioxide.

On May 30, 1971, the Mariner 9 Orbiter was launched to make a year-long study of the martian surface. The spacecraft arrived 5-1/2 months after liftoff, only to find Mars in the midst of a planet-wide dust storm that made surface photography impossible for several weeks. After the storm cleared, Mariner 9 began returning the first of 7,329 pictures that revealed previously unknown martian features, including evidence that large amounts of water once flowed across the surface teching river valleys and flood plains.

In Aug and Sep 1975, the Viking 1 and 2 spacecraft, each consisting of an orbiter and a lander, were launched. The mission was designed to answer several questions about the red planet, including, Is there life there? Nobody expected the spacecraft to spot martian cities, but it was hoped that the biology experiments would at least find evidence of primitive life, past or present.

Viking Lander 1 became the first spacecraft to successfully touch down on another planet when it landed on Jul 20, 1976. Photographs serie back from Chryse Planitia ("Plains of Gold") showed a bleak, rusty-red landscape. Panoramic images revealed a rolling plain, littered with rocks and marked by rippled sand dunes. Fine red dust from the martian soil gives the sky a salmon hue. When Viking Lander 2 touched down on Utopia Planitia on Sep 3, 1976, it viewed a more rolling landscape, one without visible dunes.

The results sent back by the laboratory on each Viking Lander were inconclusive. Small samples of the red martian soil were tested in three different experiments designed to detect biological processes. While some of the test results seemed to indicate biological activity, later analysis confirmed that this activity was inorganic in nature and related to the planet's soil chemistry. Is there life on Mars? No che knows for sure, but the Viking mission found no evidence that organic molecules exist there.

The Viking Landers became weather stations, recording wind velocity and direction as well as atmospheric temperature and pressure. The highest temperature recorded by either spacecraft was -14 degrees Celsius (7 degrees Fahrenheit) at the Viking Lander 1 site in midsummer. The lowest temperature, -120 degrees Celsius (-184 degrees Fahrenheit), was recorded in the more northerly Viking Lander 2 site during winter. Near-hurricane wind speeds were measured at the two martian weather stations during global dust storms, but because the atmosphere is so thin, wind force is minimal. Viking Lander 2 photographed light patches of frost, probably water-ice, during its second winter on the planet.

The martian atmosphere, like that of Venus, is primarily carbon dioxide. Nitrogen and oxygen are present only in small percentages. Martian air contains only about 1/1,000 as much water as our air, but this small amount can condense out, forming clouds that ride high in the atmosphere or swit around the slopes of towering volcances. Patches of early morning fog can form in valleys. There is evidence that in the past a denser martian atmosphere may have allowed water to flow on the planet. Physical features closely resembling shorelines, gorges, riverbeds, and islands suggest that great rivers once marked the planet.

Mars has two moons, Phobos and Deimos. They are small and irregularly shaped and possess ancient, cratered surfaces. It is possible the moons were originally asteroids that ventured too close to Mars and were captured by its gravity. The Viking Orbiters and Landers exceeded their design lifetimes of 120 and 90 days, respectively. The first to fail was Viking Orbiter 2, which stopped operating on Jul 24, 1978, when a leak depleted its attitude-control gas. Viking Lander 2 operated until Apr 12, 1980, when the last of its attitude-control gas used up. Viking Lander 1 ceased functioning on Nov 13, 1983.Despite the inconclusive results of the Viking biology experiments, we know more about Mars than any other planet except Earth. The Mars Observer mission, launched on Sept. 25, 1992, lost

contact with Earth on April 21, 1993, just 3 days before it was to enter orbit around Mars.

NASA will continue to explore Mars, which a new exploration strategey called the Mars Surveyor program, calls for start of development of a small orbiter that will be launched in November 1996 to study the surface of the red planet.

The Mars Surveyor orbiter will lay the foundation for a series of missions to Mars in a decadelong program of Mars exploration. The missions will take advantage of launch opportunities about every 2 years as Mars comes into alignment with Earth.

The orbiter planned for launch in 1998 would be even smaller than the initial Mars Surveyor orbiter and carry the remainder of the Mars Observer science instruments. It would act as a communications relay satellite for a companion lander, launched the same year, and other landers in the future, such as the Russian Mars 96 lander. The U.S. Pathfinder lander, set to land on Mars in 1997, will operate independently of the Mars orbiter.

Asteroids

The solar system is populated by thousands of small planetesimals called asteroids that orbit the Sun in a broad belt between Mars and Jupiter. Some of these are of rocky composition, others are mainly iron and nicke; they are fragments and rocky splinters generated by the same processes that built the planets some four and a half billion years ago. Metallic asteriods are hought to be fragments of the central cores of small short-lived planets that were broken up soon

after they formed by massive collisions with other similar objects; some of the rocky splinters may be pieces of the outer layers of such exploded planets while others could be primitive planet-building materials accumulated into rocks but that was never used in planet building.

showed it to have been formed relatively recently, a mere 200 million years ago NASA will send the Near Earth Asteriod Rendevous (NEAR) spacecraft to orbit the asteriod 433 EROS in January 1999. The density, rotation, composition, and topography of the silicate rock asteriod will be measured

A new mission to Jupiter, the Galileo Project, is underway. After a 6-year cruise that so far has taken the Galileo Orbiter once past Venus, twice past Earth and the Moon, and once past two asteroids, the spacecraft will drop an atmospheric probe into Jupiter's cloud layers and relay data back to Earth. The Galileo Orbiter will spend 2 years circling the planet and flying close to Jupiter's large moons, exploring in detail what the two Pioneers and two Voyagers revealed.

The year 1994 was one of great excitement in space science. In July some 20 fragments of the comet Shoemaker-Levy 9 crashed hito Jupiter. An event of this magnitude occurs perhaps once in 1000 years. The knowledge that the comet would hit Jupiter came far too late to launch a spaceraft from earth that could arrive in the near vicinity in time for the event. The initial Impacts were on the far side of the planet and went unobserved. However Jupiter's very rapid rotation (1day =10 hours) allowed the Hubble Space Telescope (HST) and other earth based and space based telescopes to observe the impact scars when they were only a few minutes old. Some of them were as large as Earth. The time evolution of the scars serves to test our understanding of energy deposition and fluid dynamics. The impacts briefly removed the curtain of Jupiter's lower atmosphere. There is controversy about how much of the sulfur and water observed arcse from Jupiter as opposed to the cometary matter. Our observations yielded a rich store of data that will keep scientists occupied for some time to come.

Galilean Satellites

In 1610, Galileo Galilei almed his telescope at Jupiter and Spotted four points of light orbiting the planet. For the first time, humans had seen the moons of another world. In honor of their discoverer, these four bodies would become known as the Galilean satellites or moons. But Galileo might have happily traded this honor for one look at the dazzling photographs returned by the Voyager spacecraft as they flew past these planet-sized satellites.

One of the most remarkable findings of the Voyager mission was the presence of active volcances on the Galilean moon Io. Volcanic eruptions had never before been observed on a world other than Earth. The Voyager cameras identified at least nine active volcances on Io, with plumes of ejected material extending as far as 280 km (175 mi) above the moon's surface. Io's pizza-colored terrain, marked by orange and yellow hues, is probably the result of suffur-rich materials brought to

the surface by volcanic activity. Volcanic activity on this satellite is the result of tidal flexing caused by the gravitational tug-of-war between Io, Jupiter, and the other three Galilean moons.

Galilean Satellites

In 1610, Galileo Galilei aimed his telescope at Jupiter and Spotted four points of light orbiting the planet. For the first time, humans had seen the moons of another world. In honor of their discoverer, these four bodies would become known as the Galilean satellites or moons. But Galileo might have happily traded this honor for one look at the dazzling photographs returned by the Voyager spacecraft as they flew past these planet-sized satellites.

One of the most remarkable findings of the Voyager mission was the presence of active volcances on the Galilean moon lo. Volcanic eruptions had never before been observed on a world other than Earth. The Voyager cameras identified at least inline active volcances on lo, with plumes of ejected material extending as far as 280 km (175 m) above the moor's surface. Io's pizza-colored terrain, marked by orange and yellow hues, is probably the result of sulfur-rich materials brought to the surface by volcanic activity. Volcanic activity on this satellite is the result of tidal flexing caused by the gravitational tug-of-war between lo, Jupiter, and the other three Galilean moons.

Europa, approximately the same size as our Moon, is the brightest Galilean satellite. The moon's surface displays an array of streaks, indicating the crust has been fractured. Caught in a gravitational tug-of-war like lo, Europa has been heated enough to cause its interior ice to melt, producing a liquid-water ocean. This ocean is covered by an ice crust that has formed where water is exposed to the cold of space. "Astronomers using NASAS Hubble Space Telescope (HST) have identified the presence of an extremely tenuous attromosphere of molecular oxygen around Europa. Is is so thin that the surface pressure is barely one hundred billion that of Earth. Free moleular oxygen is expected from the action of extreme utraviolet radiation of Europa's water. The greatest significance of the observation is the astonishing sensitivity afforded by the HST." Europa's core is made of rock that sank to its center. Like Europa, the other two Galilean moons -Ganymede and Callisto- are works of ice and rock. Ganymede is the largest satellite in the solar system – larger than the planets Mercury and Pluto. The satellite is composed of about 50 percent water or ice and the rest rock. Ganymede's surface has areas of different brighness, indicating that, in the past, material oozed out of the moon's Interior and was deposited at various locations on the surface.

Callisto, only slightly smaller than Ganymede, has the lowest density of any Galilean satellife, suggesting that large amounts of water are part of its composition. Callisto is the most heavily cratered object in the solar system; no activity during its history has erased old craters except more impacts.

Detailed studies of all the Galilean satellites will be performed by the Galileo Orbiter.

Satum

No planet in the solar system is adorned like Saturn. Its exquisite ring system is unrivaled. Like Jupiter, Saturn is composed mostly of hydrogen. But in contrast to the vivid colors and wild turbulence found in Jovian clouds, Saturn's atmosphere has a more subtle, butterscotch hue, and its markings are muted by high-altitude haze. Given Saturn's somewhat plack-looking appearance, scientists were surprised at the high-velocity equatorial jet stream that blows some 1,770 km (1,100 mi) per hour.

Three American spacecraft have visited Saturn. Pioneer 11 sped by the planet and its moon Titan in September 1979, returning the first close-up images. Voyager 1 followed in November 1980, sending back breathtaking photographs that revealed for the first time the complexities of Saturn's ring system and moons. Voyager 2 flew by the planet and its moons in August 1981.

The rings are composed of countless low-density particles orbiting individually around Saturn's equator at progressive distances from the cloud tops. Analysis of spacecraft radio waves passing through the rings showed that the particles vary widely in size, ranging from dust to house-sized boulders. The rings are bright because they are mostly loc and frosted rock.

The rings might have resulted when a moon or a passing body ventured too close to Saturn. The object would have been tom apart by great it dal forces on its surface and in its interior. Or the object may not have been fully formed and disintegrated under the influence of Saturn's gravity. A third possibility is that the object was shattered by collisions with larger objects orbiting the planet.

Unable either to form into a moon or to drift away from each other, individual ring particles appear to be held in place by the gravitational pull of Saturn and its satellites. These complex gravitational interactions form the thousands of ringlets that make up the major rings.

Radio emissions quite similar to the static heard on an AM car radio during an electrical storm were detected by the Voyager spacecraft. These emissions are typical of lightning but are believed to be coming from Satum's ring system rather than its atmosphere, where no lightning was observed. As they had at Jupiter, the Voyagers saw a version of Earth's auroras near Satum's poles.

The Voyagers discovered new moons and found several satellites that share the same orbit. We learned that some moons shepherd ring particles, maintaining Satum's rings and the gaps in the rings. Satum's 18th moon was discovered in 1990 from Images taken by Voyager 2 in 1981.

Voyager 1 determined that Titan has a nitrogen-based atmosphere with methane and argon -one more like Earth's in composition than the carbon dioxide atmosphere of Mars and Venus. Titan's surface temperature of -179 degrees Celsius (-290 degrees Fahrenheit) implies that there might be water-ice islands rising above oceans of ethane-methane liquid or sludge. Unfortunately, Voyager 1's cameras could not penetrate the moon's dense clouds.

Continuing photochemistry from solar radiation may be converting Titan's methane to ethane, acetylene and, in combination with nitrogen, hydrogen cyanide. These conditions may be similar to the atmospheric conditions of primeval Earth between 3 and 4 billion years ago. However, Titan's atmospheric temperature is believed to be too low to permit progress beyond this stage of organic chemistry.

A mission to Saturn, planned for launch in October 1997, may help answer many of the questions

raised by the Voyager flybys about the Saturnian system. Called Cassini, the joint U.S. European

Space Agency mission consists of an Orbiter and an instrumented probe call Huygens supplied by ESA. The mission is designed to complete an orbital surveillance of the planet and unveil Saturn's largest moon, Titan, by dropping the Huygens probe through Titan's intriguingly Earthlike

atmosphere.

Cassini will fly by Venus twice as well as by Earth and Jupiter before arriving at Satum in Novembe 2004 to begin a 4-year orbital tour of the ringed planet and its 18 moons. The Hurgens probe will descend to the surface of Titan in June 2005. Uranus	^r Voyager 2 discovered 10 new moons, 16-169 km (10-105 mi) in diameter, orbiting Uranus. The five previously known – Miranda, Ariet, Umbriet, Titania, and Oberon – range in size from 520 to 1,610 km (323 to 1,000 mi) across. Representing a geological showcase, these five moons are half-ice, half-rock spheres that are cold and dark and show evidence of past activity, including faulting and ice flows.
In January 1986, 4-1/2 years after visiting Saturn, Voyager 2 completed the first close-up survey of the Uranian system. The brief flyby revealed more information about Uranus and its moons than had been gleaned from ground observations since its discovery over 2 centuries ago by English astronomer William Herschel. Uranus, third kargest of the planets, is an oddball of the solar system. Unlike the other planets (with the exception of Pluto), this glant lies tipped on its side with its north and south poles atternately facing the Sun during an 84-year awing around the solar system. During Voyagor 2's flyby, the south pole faced the Sun. Uranus might have been knocked over when an Earth-sized object collided with it early in the life of the solar system. Voyager 2 discovered that Uranus' magnetic field does not follow the usual north-south axis found on the other planets. Instead, the field is tilted 60 degrees and offset from the planet's center. a phenomenon that on Earth would be like having one magnetic pole in New York City and the other in the city of Djakarta, on the Island of Java In Indonesia. Uranus' atmosphere consists mainly of hydrogen, with some 12 percent helium and small amounts of ammonia, methane, and water vapor. The planet's blue color occurs because methane in its atmosphere absorbs all other colors. Wind speeds range up to 580 km (360 mi) per hour, and temperatures near the cloud tops average -221 degrees Celsius (-366 degrees Fahrenhel). Uranus' sunit south pole is strouded in a kind of photochemical "smog" believed to be a combination of acetylene, ethane, and other sunlight-generated chemicals. Surrounding the planet's atmosphere and extending thousands of kilometers into space is a mysterious utraviolet sheen known as "electrolow." Approximately 6000 km (5,000 m) below Uranus' cloud tops, there is thought to be a scaking ocean of water and dissolved ammonia some 10,000 km (6,200 m) deep. Beneath this ocean is an Earth-sized core of heavier materials.	The most remarkable of Uranus' moons is Miranda. Its surface features high cliffs as well as canyons, crater-pocked plains, and winding valleys. The sharp variations in terrain suggest that, after the moon formed, it was smashed apart by a collision with another body – an event not unusual in our solar system, which contains many objects that have impact craters or are fragments from large impacts. What is extraordinary is that Miranda apparently reformed with some of the material that had been in its interior exposed on its surface. Uranus was thought to have nine dark rings; Voyager 2 Imaged 11. In contract to Saturn's rings, composed of bright particles, Uranus' rings are primarily made up of dark, boulder-sized chunks. Neptune Voyager 2 completed its 12-year tour of the solar system with an investigation of Neptune and the planet's moons. On Aug 25, 1989, the spacecraft swept to within 4,850 km (3,010 m) of Neptune and then flew on to the moon Triton. During the Neptune encounter, it became clear that the planet's atmosphere was more active than Uranus'. Voyager 2 observed the Great Dark Spot, a circular storm the size of Earth, in Neptune's atmosphere. Resembling Jupiter's Great Red Spot, the storm spins counter-clockwise and moves westward at almost 1,200 km (745 m) per hour. Voyager 2 also noted a smaller dark spot and helium cloud deck. The highest wind speeds of any planet were observed, up to 2,400 km (1,500 mi) per hour.

Like the other glant planets, Neptune has a gaseous hydrogen and helium upper layer over a liquid interior. The planet's core contains a higher percentage of rock and metal than those of the other gas glants. Neptune's distinctive blue appearance, like Uranus' blue color, is due to atmospheric methane.

Neptune's magnetic field is tilted relative to the planet's spin axis and is not centered at the core. This phenomenon is similar to Uranus' magnetic field and suggests that the field of the two giants are being generated in an area above the cores, where the pressure is so great that liquid hydrogen assumes the electrical properties of a metal. Earth's magnetic field, on the other hand, is produced by its spinning metallic core and is only slightly tilted and offset relative to its center.

Voyager 2 also shed light on the mystery of Neptune's rings. Observations from Earth indicated that there were arcs of material in orbit around the giant planet. It was not clear how Neptune could have arcs and how these could be kept from spreading out into even, unclumped rings. Voyager 2 detected these arcs, but they were, in pact, part of thin, complete rings. A number of amali moons could explain the arcs, but such bodies were not spotted.

Astronomers had identified the Neptunian moons Triton in 1846 and Nereid in 1949. Voyager 2 found six more. One of the new moons – Proteus – is actually larger than Nereid, but since Proteus orbits close to Neptune, it was lost in the planet's glare for observers on Earth.

Triton circles Neptune in a retrograde orbit in under 6 days. Tidal forces on Triton are causing it to spiral slowly toward the planet. In 10-100 million years (a short time in astronomical terms), the moon will be so close that Neptunian gravity will tear it apart, forming a spectacular ring to accompany the planet's modest current rings.

Triton's landscape is as strange and unexpected as those of lo and Miranda. The moon has more rock than its counterparts at Saturn and Uranus. Triton's mantle is probably composed of water-ice, but its crust is a thin verneer of nitrogen and methane. The moon shows two dramatically different types of terrain: the so-called "cantaloupe" terrain and a receding ice cap. Dark streaks appear on the ice cap. These streaks are the fallout from geyser-like volcanic vents that shoot nitrogen gas and dark, fine-grained particles to heights of 1-8 km (1-5 mi). Triton's thin atmosphere, only 1/70,000th as thick as Earth's, has winds that carry the dark particles and deposit them as streaks on the ice cap – the coldest surface yet discovered in the solar system (-235 degrees Celsius, -391 degrees Fahrenheit). Triton might be more like Pluto than any other object spacecraft have so far visited.

Pluto

Pluto is the most distant of the planets, yet the eccentricity of its orbit periodically carries it inside Neptune's orbit, where it has been since 1979 and where it will remain until March 1999. Pluto's orbit is also highly inclined – tilted 17 degrees to the orbital plane of the other planets.

Discovered in 1930, Pluto appears to be little more than a celestial snowball. The planet's diameter is calculated to be approximately 2,300 km (1,430 mi), only 2/3 the size of our Moon. Ground-based observations indicate that Pluto's surface is covered with methane ice and that there is a thin atmosphere that may freeze and fall to the surface as the planet moves away from the Sun. Observations also show that Pluto's spin axis is tipped by 122 degrees.

The planet has one known satellite, Charon, discovered in 1978. Charon's surface composition is different from Pluto's: the moon appears to be covered with water-ice rather than methane ice. Its orbit is gravitationally locked with Pluto, so both bodies always keep the same hemisphere facing each other. Pluto's and Charon's rotational period and Charon's period of revolution are all 6.4 Earth days.

No spacecraft has ever visited Pluto, however, a Pluto Fast Flyby mission is being studied for a possible launch in 1999-2000.

C.n	m	e t	
ື	m	σι	

The outermost members of the solar system occasionally pay a visit to the inner planets. As asteroids are the rocky and metallic remnants of the formation of the solar system, comets are th loy debris from that dim beginning and can survive only far from the Sun. Most comet nuclei reside in the Oort Cloud, a loose swarm of objects in a halo beyond the planets and reaching perhaps halfway to the nearest star.

Comet nuclei orbit in this frozen abyss until they are gravitationally perturbed into new orbits that carry them close to the Sun. As a nucleus falls inside the orbits of the outer planets, the volatile elements of which it is made gradually warm; by the time the nucleus enters the region of the inner planets, these volatile elements are boiling. The nucleus itself is irregular and only a few miles across, and is made principally of water loe with methane and ammonia.

As these materials boil off of the nucleus, they form a coma or cloud-like "head" that can measure tens of thousands of kilometers across. The coma grows as the comet gets closer to the Sun. The stream of charged particles coming from the Sun pushes on this cloud, blowing it back and giving rise to the comet's "tails." Gases and lons are blown directly back from the nucleus, but dust particles are pushed more slowly. As the nucleus continues in its orbit, the dust particles are left behind in a curved arc.

Both the gas and dust tails point away from the Sun; in effect, the comet chases its tails as it recedes from the Sun. The tails can reach 150 million km [93 million million in length, but the total amount of material contained I this dramatic display would fit in an ordinary suitcase. Comets – from the Latin cometa, meaning "long-haired" – are essentially dramatic light shows.

Some comets pass through the solar system only once, but others have their orbits gravitationally modified by a close encounter with one of the giant outer planets. These latter visitors can enter closed elliptical orbits and repeatedly return to the inner solar system.

Halley's Comet is the most famous example of a relatively short period comet, returning on an average of once every 76 years and orbiting from beyond Neptune to within Venus' orbit. Confirmed sightings of the comet go back to 240 B.C. This regular visitor to our solar system is named for Sir Edmund Halley, because he plotted the comet's orbit and predicted its return, based on earlier sightings and Newtonian laws of motion. His name became part of astronomical lore when, in 1759, the comet returned on schedule. Unfortunately, Sir Edmund did not live to see it.

A comet can be very prominent in the sky if it passes comparatively close to Earth. Unfortunately, on its most recent appearance, Halley's Comet passed no closer than 62.4 million km (28.8 million mi) from our world. The comet was visible to the naked eye, especially for viewers in the southern hemisphere, but it was not spectacular. Comets have been so bright, on rare occasions, that they were visible during daylime. Historically, comet sightings have been artistically rendered as bad omens and have been artistically rendered as daggers in the sky.

Several spacecraft have flown by comets at high speed; the first was NASA's international Cometary Explorer in 1985. An armada of five spacecraft (two Japanese, two Soviet, and the Giotto spacecraft from the European Space Agency) flew by Halleys Comet in 1986.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Venera 1 USSR	Venus Probe	Feb 12, 1961		First Soviet planetary flight, launched from Sputnik 8. Radio contact was lost during flight, spacecraft was not operating when it passed Venus.
Mariner 1 USA	Venus Flyby	Jul 22, 1962		Destroyed shortly after launch when vehicle veered off course.
Sputnik 19 USSR	Venus Probe	Aug 25, 1962		Unsuccessful Venus attempt.
Mariner 2 USA	Venus Flyby	Aug 27, 1962	Dec 14, 1962	First successful planetary flyby. Provided instrument scanning data. Entered solar orbit.
Sputnik 20 USSR	Venus Probe	Sep 1, 1962		Unsuccessful Venus attempt.
Sputnik 21 USSR	Venus Probe	Sep 12, 1962		Unsuccessful Venus attempt.
Sputnik 22 USSR	Mars Probe	Oct 24, 1962		Spacecraft and final rocket stage blew up when accelerated to escape velocity.
Mars 1 USSR	Mars Probe	Nov 1, 1962		Contact was lost when the spacecraft antenna could no longer be pointed towards Earth.
Sputnik 24 USSR	Mars Probe	Nov 4, 1962		Disintegrated during an attempt at Mars trajectory from Earth parking orbit.
Zond 1 USSR	Venus Probe	Apr 2, 1964		Communications lost. Spacecraft went into solar orbit.
Mariner 3 USA	Mars Flyby	Nov 5, 1964		Shroud failed to jettison properly; Sun and Canpous not acquired; spacecraft did not encounter Mars. Transmissions ceased 9 hours after launch. Entered solar orbit.
Mariner 4 USA	Mars Flyby	Nov 28, 1964	Jul 14, 1965	Provided first close-range images of Mars, confirming the existence of surface craters. Entered solar orbit.
Zond 2 USSR	Mars Probe	Nov 30, 1964		Passed by Mars; failed to return data. Went into solar orbit.

B-66

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Venera 2 USSR	Venus Probe	Nov 12, 1965	Feb 27, 1966	Passed by Venus, but failed to return data.
Venera 3 USSR	Venus Probe	Nov 16, 1965	Mar 1, 1966	Impacted on Venus, becoming the first spacecraft to reach another planet. Failed to return data.
Venera 4 USSR	Venus Probe	Jun 12, 1967	Oct 18, 1967	Descent capsule transmitted data during parachute descent. Sent measurements of pressure, density, and chemical composition of the atmosphere before transmissions ceased.
Mariner 5 USA	Venus Flyby	Jun 14, 1967	Oct 19, 1967	Advanced instruments returned data on Venus' surface temperature, atmosphere, and magnetic field environment. Entered solar orbit.
Venera 5 USSR	Venus Probe	Jan 5, 1969	Mar 16, 1969	Entry velocity reduced by atmospheric braking before main parachute was deployed. Capsule entered atmosphere on planet's dark side; transmitted data for 53 minutes while traveling into the atmosphere before being crushed.
Venera 6 USSR	Venus Probe	Jan 10, 1969	Mar 17, 1969	Descent capsule entered the atmosphere on the planet's dark side; transmitted data fo 51 minutes while traveling into the atmosphere before being crushed.
Mariner 6 USA	Mars Flyby	Feb 24, 1969	Jul 31, 1969	Provided high-resolution photos of Martian surface, concentrating on equatorial region. Entered solar orbit.
Mariner 7 USA	Mars Flyby	Mar 27, 1969	Aug 5, 1969	Provided high-resolution photos of Martian surface, concentrating on southern hemisphere. Entered solar orbit.
Venera 7 USSR	Venus Lander	Aug 17, 1970	Dec 15, 1970	Entry velocity was reduced aerodynamically before parachute deployed. After fast descent through upper layers, the parachute canpcy opened fully, slowing descent to allow fuller study of lower layers. Gradually increasing temperatures were transmitted. Returned data for 23 minutes after landing.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Cosmos 359 USSR	Venus Lander	Aug 22, 1970		Unsuccessful Venus attempt, failed to achieve escape velocity.
Mariner 8 USA	Mars Orbiter	May 8, 1971		Centaur stage malfunctioned shortly after launch.
Cosmos 419 USSR	Mars Probe	May 10, 1971		First use of Proton launcher for a planetary mission. Placed in Earth orbit but failed to separate from fourth stage.
Mars 2 USSR	Mars Orbiter and Lander	May 19, 1971	Nov 27, 1971	Landing capsule separated from spacecraft and made first, unsuccessful attempt to soft land, Lander carried USSR pennant. Orbiter continued to transmit data.
Mars 3 USSR	Mars Orbiter and Lander	May 28, 1971	Dec 2, 1971	Landing capsule separated from spacecraft and landed in the southern hemisphere. Onboard camera operated for only 20 seconds, transmitting a small panoramic view. Orbiter transmitted for 3 months.
Mariner 9 USA	Mars Orbiter	May 30, 1971	Nov 13, 1971	First interplanetary probe to orbit another planet. During nearly a year of operations, obtained detailed photographs of the Martian moons, Phobos and Deimos, and mapped 100 percent of the Martian surface. Spacecraft is inoperable in Mars orbit.
Pioneer 10 USA	Jupiter Flyby	Mar 2, 1972	Dec 3, 1973	First spacecraft to penetrate the Asteroid Belt. Obtained first close-up images of Jupiter, investigated its magnetosphere, atmosphere and internal structure. Still operating in the outer Solar System.
Venera 8 USSR	Venus Lander	Mar 27, 1972	Jul 22, 1972	As the spacecraft entered the upper atmosphere, the descent module separated while the service module burned up in the atmosphere. Entry speed was reduced by aerodynamic braking before parachute deployment. During descent, a refrigeration system was used to offset high temperatures. Returned data on temperature, pressure, light levels, and descent rates. Transmitted from surface for about 1 hour.
Cosmos 482 USSR	Venus Lander	Mar 31, 1972		Unsuccessful Venus probe; escape stage misfired leaving craft in Earth orbit.

B-68

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Pioneer 11 USA	Jupiter/Saturn Flyby	Apr 5, 1973	Dec 2, 1974 (Jupiter) Sep 1, 1979 (Saturn)	The successful encounter of Jupiter by Pioneer 10 permitted Pioneer 11 to be retargeted in flight to fly by Jupiter and encounter Saturn. Still operating in the outer Solar System.
Mars 4 & 5 USSR	Mars Orbiters and Landers	Jul 21, 1973 Jul 25, 1973	Feb 10, 1974 Feb 12, 1974	Pair of spacecraft launched to Mars. Mars 4 retro rockets failed to fire, preventing orbit insertion. As it passed the planet, Mars 4 returned one swath of pictures and some radio occultation data. Mars 5 was successfully placed in orbit, but operated only a few days, returning photographs of a small portion of southern hemisphere of Mars.
Mars 6 & 7 USSR	Mars Orbiters and Landers	Aug 5, 1973 Aug 9, 1973	Mar 12, 1974 Mar 9, 1974	Second pair of spacecraft launched to Mars. Mars 6 lander module transmitted data during descent, but transmissions abruptly ceased when the landing rockets were fired. Mars 7 descent module was separated from the main spacecraft due to a problem in the operation of one of the onboard systems, and passed by the planet.
Mariner 10 USA	Venus/Mercury Flyby	Nov 3, 1973	Feb 5, 1974 (Venus) Mar 29, 1974 (Mercury) Sep 21, 1974 (Mercury) Mar 16, 1975 (Mercury)	First dual-planet mission. Used gravity of Venus to attain Mercury encounter. Provided first ultraviolet photographs of Venus; returned close-up photographs and detailed data of Mercury. Transmitter was turned off March 24, 1975, when attitude control gas was depleted. Spacecraft is inoperable in solar orbit.
Venera 9 USSR	Venus Orbiter and Lander	Jun 8, 1975	Oct 22, 1975	First spacecraft to transmit a picture from the surface of another planet. The lander's signals were transmitted to Earth via the orbiter. Utilized a new parachute system, consisting of six chutes. Signals continued from the surface for nearly 2 hrs 53 mins.
Venera 10 USSR	Venus Orbiter and Lander	Jun 14, 1975	Oct 25, 1975	During descent, atmospheric measurements and details of physical and chemical contents were transmitted via the orbiter. Transmitted pictures from the surface of Venus.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Viking 1 USA	Mars Orbiter and Lander	Aug 20, 1975	Jul 19, 1976 (in orbit) Jul 20, 1976 (landed)	First U.S. attempt to soft land a spacecraft on another planet. Landed on the Plain of Chryse. Photographs showed an orange-red plain strewn with rocks and sand dunes. Both Orbiters took a total of 52,000 images during their mission; approximately 97% percent of the surafce was imaged. Orbiter 1 operated until August 7, 1980, when it used the last of its attitude control gas. Lander 1 ceased operating on Nov 13, 1983.
Viking 2 USA	Mars Orbiter and Lander	Sep 9, 1975	Aug 7, 1976 (in orbit) Sep 3, 1976 (landed)	Landed on the Plain of Utopia. Discovered water frost on the surface at the end of the Martian winter. The two Landers took 4,500 images of the surface and provided over 3 million weather reports. Orbiter 2 stopped operating on July 24, 1978, when its attitude control gas was depleted because of a leak. Lander 2 operated until April 12, 1960, when it was chut down due to battery degeneration.
Voyager 2 USA	Tour of the Outer Planets	Aug 20, 1977	Jul 9, 1979 (Jupiter) Aug 25, 1981 (Saturn) Jan 24, 1986 (Uranus) Aug 25, 1989 (Neptune)	Investigated the Jupiter, Saturn and Uranus planetary systems. Provided first close-up photographs of Uranus and its moons. Used gravity-assist at Uranus to continue on to Neptune. Swept within 1280 km of Neptune on August 25, 1989. The spacecraft will continue into interstellar space.
Voyager 1 USA	Tour of Jupiter and Saturn	Sep 5, 1977	Mar 5, 1979 (Jupiter) Nov 12, 1980 (Saturn)	Investigated the Jupiter and Saturn planetary systems. Returned spectacular photographs and provided evidence of a ring encirciing Jupiter. Continues to return data enroute toward interstellar space.
Pioneer Venus 1 USA	Venus Orbiter	May 20, 1978	Dec 4, 1978	Mapped Venus' surface by radar, imaged its cloud systems, explored its magnetic environment and observed interactions of the solar wind with a planet that has no intrinsic magnetic field. Provided radar altimetry maps for nearly all of the surface of Venus, resolving features down to about 50 miles across. Still operating in orbit around Venus.
Pioneer Venus 2 USA	Venus Probe	Aug 8, 1978	Dec 9, 1978	Dispatched heat-resisting probes to penetrate the atmosphere at widely separated locations and measured temperature, pressure, and density down to the planet's surface. Probes impacted on the surface.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Venera 11 USSR	Venus Orbiter and Lander	Sep 9, 1978	Dec 25, 1978	Arrived at Venus 4 days after Venera 12. The two landers took nine samples of the atmosphere at varying heights and confirmed the basic components. Imaging system failed; did not return photos. Operated for 95 minutes.
Venera 12 USSR	Venus Orbiter and Lander	Sep 14, 1978	Dec 21, 1978	A transit module was positioned to relay the lander's data from behind the planet. Returned data on atmospheric pressure and components. Did not return photos; imaging system failed. Operated for 110 minutes.
Venera 13 USSR	Venus Orbiter and Lander	Oct 31, 1981	Mar 1, 1982	Provided first soil analysis from Venusian surface. Transmitted eight color pictures via orbiter. Measured atmospheric chemical and isotopic composition, electric discharges, and cloud structure. Operated for 57 minutes.
Venera 14 USSR	Venus Orbiter and Lander	Nov 4, 1981	Mar 3, 1982	Transmitted details of the atmosphere and clouds during descent; soil sample taken. Operated for 57 minutes.
Venera 15 USSR	Venus Orbiter	Jun 2, 1983	Oct 10, 1983	Obtained first high-resolution pictures of polar area. Compiled thermal map of almost entire northern hemisphere.
Venera 16 USSR	Venus Orbiter	Jun 7, 1983	Oct 16, 1983	Provided computer mosiac images of a strip of the northern continent. Soviet and U.S. geologists cooperated in studying and interpreting these images.
Vega 1 & 2 USSR	Venus/Halley	Dec 15, 1984 Dec 21, 1984	Jun 11, 1985 (Venus) Mar 6, 1986 (Halley) Jun 15, 1985 (Venus) Mar 9, 1986 (Halley)	International two-spacecraft project using Venusian gravity to send them on to Halley's Comet after dropping the Venusian probes. The Venus landers studied the atmosphere and acquired a surface soil sample for analysis. Each lander released a helium-filled instrumented balloon to measure cloud properties. The other half of the Vega payloads, carrying cameras and instruments, continued on to encounter Comet Halley.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Phobos 1 & 2 USSR	Mars/Phobos	Jul 7, 1988 Jul 12, 1988	Jan 1989 (Mars) Jan 1989 (Mars)	International two-spacecraft project to study Mars and its moon Phobos. Phobos 1 was disabled by a ground control error. Phobos 2 was successfully inserted into Martian orbit in January 1989 to study the Martian surface, atmosphere, and magnetic field. On March 27, 1989, communications with Phobos 2 were lost and efforts to contact the spacecraft were unsuccessful.
Magellan USA	Venus Radar Mapping	May 4, 1989	Aug 1990	Returned radar images that showed geological features unlike anything seen on Earth. One area scientists called crater farms; another area was covered by a checkered pattern of closely spaced fault lines running at right angles. Most intriguing were indications that Venus still may be geologically active. Will continue to map the entire surface and observe evidence of volcanic eruption into 1991.
Galileo USA	Jupiter Orbiter and Probe	Oct 18, 1989	Dec 8, 1990 (Earth) Feb 1991 (Venus)	A sophisticated two-part spacecraft; an Orbiter will be inserted into orbit around Jupiter to remotely sense the planet, its satellites and the Jovian magnetosphere and a Probe will descend into the atmosphere of Jupiter to make in situ measurements of its nature. Galileo flew by Venus, conducting the first infrared imagery and spectroscopy below the planet's cloud deck and used the Earth's gravity to speed it on its way to Jupiter.
Mars Observer USA	Mars Orbiter	Sep 25, 1992		Communication was lost with the Mars Observer on August 21, 1993, 3 days before the orbit insertion burn.
Galileo Probe USA	Jupiter Orbiter	Oct 18, 1989	July 13, 1995	An Orbiter was released from the Galileo Spacecraft with seven instruments: a helium abundance detector, an atmospheric structure instrument, a neutral mass spectrometer, a radiometer, a nephelometer, a lightning detector and an energetic particle detector. When the probe enters the Jupiter atmosphere the Galileo spacecraft will have been maneuvered overhead to receive the telemetry signals.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Pioneer 1 USA	Lunar Orbit	Oct 11, 1958		Did not achieve lunar trajectory; launch vehicle second and third stages did not separate evenly. Returned data on Van Allen Belt and other phenomena before reentering on October 12, 1958.
Pioneer 2 USA	Lunar Orbit	Nov 8, 1958		Third stage of launch vehicle failed to ignite. Returned data that indicated the Earth's equatorial region has higher flux and energy levels than previously believed. Did not achieve orbit.
Pioneer 3 USA	Lunar Probe	Dec 6, 1958		First stage of launch vehicle cut off prematurely; transmitted data on dual bands of radiation around Earth. Reentered December 7, 1958.
Luna 1 USSR	Lunar Impact	Jan 2, 1959		Intended to impact the Moon; carried instruments to measure radiation. Passed the Moon and went into solar orbit.
Pioneer 4 USA	Lunar Probe	Mar 3, 1959	Mar 4, 1959	Passed within 37,300 miles from the Moon; returned excellent data on radiation. Entered solar orbit.
Luna 2 USSR	Lunar Impact	Sep 12, 1959	Sep 15, 1959	First spacecraft to reach another celestial body. Impacted east of the Sea of Serenity; carried USSR pennants.
Luna 3 USSR	Lunar Probe	Oct 4, 1959		First spacecraft to pass behind Moon and send back pictures of far side. Equipped with a TV processing and transmission system, returned pictures of far side including composite full view of far side. Reentered Apr 29, 1960.
Pioneer P-3 USSR	Lunar Orbit	Nov 26, 1959		Payload shroud broke away 45 seconds after liftoff. Did not achieve orbit.
Ranger 1 USA	Lunar Probe	Aug 23, 1961		Flight test of lunar spacecraft carrying experiments to collect data on solar plasma, particles, magnetic fields, and cosmic rays. Launch vehicle failed to restart resulting in low Earth Orbit. Reentered August 30, 1961.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Ranger 2 USA	Lunar Probe	Nov 18, 1961		Flight test of spacecraft systems for future lunar and Interplanetary missions. Launch vehicle altitude control system failed, resulting in low Earth orbit. Reentered November 20, 1961.
Ranger 3 USA	Lunar Landing	Jan 26, 1962		Launch vehicle malfunction resulted in spacecraft missing the Moon by 22,862 miles. Spectrometer data on radiation were received. Entered solar orbit.
Ranger 4 USA	Lunar Landing	Apr 23, 1962	Apr 26, 1962	Failure of central computer and sequencer system rendered experiments useless. No telemetry received. Impacted on far side of the Moon.
Ranger 5 USA	Lunar Landing	Oct 18, 1962		Power failure rendered all systems and experiments useless; 4 hours of data received from gamma ray experiment before battery depletion. Passed within 450 miles of the Moon. Entered solar orbit.
Sputnik 25 USSR	Lunar Probe	Jan 4, 1963		Unsuccessful lunar attempt.
Luna 4 USSR	Lunar Orbiter	Apr 2, 1963		Attempt to solve problems of landing instrument containers. Contact lost as it passed the Moon. Barycentric orbit.
Ranger 6 USA	Lunar Photo	Jan 30, 1964	Feb 2, 1964	TV cameras failed; no data returned. Impacted in the Sea of Tranquility area.
Ranger 7 USA	Lunar Photo	Jul 28, 1964	Jul 31, 1964	Transmitted high quality photographs, man's first close-up lunar views, before impacting in the Sea of Clouds area.
Ranger 8 USA	Lunar Photo	Feb 17, 1965	Feb 20, 1965	Transmitted high quality photographs before impacting in the Sea of Tranquility area.
Ranger 9 USA	Lunar Photo	Mar 21, 1965	Mar 24, 1965	Transmitted high quality photographs before impacting in the Crater of Alphonsus. Almost 200 pictures were shown live via commercial television in the first TV spectacular from the Moon.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Luna 5 USSR	Lunar Lander	May 9, 1965	May 12, 1965	First soft landing attempt. Retrorocket malfunctioned; spacecraft impacted in the Sea of Clouds.
Luna 6 USSR	Lunar Lander	Jun 8, 1965		During midcourse correction maneuver, engine failed to switch off. Spacecraft missed Moon and entered solar orbit.
Zond 3 USSR	Lunar Probe	Jul 18, 1965		Photographed lunar far side and transmitted photos to Earth 9 days later. Entered solar orbit.
Luna 7 USSR	Lunar Lander	Oct 4, 1965	Oct 7, 1965	Retrorockets fired early; crashed in Ocean of Storms.
Luna 8 USSR	Lunar Lander	Dec 3, 1965	Dec 6, 1965	Retrorockets fired late; crashed in Ocean of Storms.
USSR USSR	Lunar Lander	Jan 31, 1966	Feb 3, 1966	First successful soft landing; first TV transmission from lunar surface. Three panoramas of the lunar landscape were transmitted from the eastern edge of the Ocean of Storms.
Cosmos 111 USSR	Lunar Probe	Mar 11, 1966		Unsuccessful lunar attempt. Reentered March 16, 1966.
Luna 10 USSR	Lunar Orbiter	Mar 31, 1966		First lunar satellite. Studied lunar surface radiation and magnetic field intensity; monitored strength and variation of lunar gravitation. Selenocentric orbit.
Surveyor 1 USA	Lunar Lander	May 30, 1966	Jun 2, 1966	First U.S. spacecraft to make a fully controlled soft landing on the Moon; landed in the Ocean of Storms area. Returned high quality images, from horizon views of mountains to close-ups of its own mirrors, and selenological data.
Lunar Orbiter 1 USA	Lunar Orbiter	Aug 10, 1966	Aug 14, 1966	Photographed over 2 million square miles of the Moon's surface. Took first photo of Earth from lunar distance. Impacted on the far side of the Moon on October 29, 1966.
Luna 11 USSR	Lunar Orbiter	Aug 24, 1966		Second lunar satellite. Data received during 277 orbits. Selenocentric orbit.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Surveyor 2 USA	Lunar Lander	Sep 20, 1966	Sep 22, 1966	Spacecraft crashed onto the lunar surface southeast of the crater Copernicus when one of its three vernier engines failed to ignite during a mid-course maneuver.
Luna 12 USSR	Lunar Orbiter	Oct 22, 1966		TV system transmitted large-scale pictures of Sea of Rains and Crater Aristarchus areas. Tested electric motor for Lunokhod's wheels. Selenocentric orbit.
Lunar Orbiter 2 USA	Lunar Orbiter	Nov 6, 1966	Nov 10, 1966	Photographed landing sites, including the Ranger 8 landing point, and surface debris tossed out at impact. Impacted the Moon on October 11, 1967.
Luna 13 USSR	Lunar Lander	Dec 21, 1966	Dec 24, 1966	Soft landed in Ocean of Storms and sent back panoramic views. Two arms were extended to measure soil density and surface radioactivity.
Lunar Orbiter 3 USA	Lunar Orbiter	Feb 4, 1967	Feb 8, 1967	Photographed lunar landing sites; provided gravitational field and lunar environment data. Impacted the Moon on October 9, 1967.
Surveyor 3 USA	Lunar Lander	Apr 17, 1967	Apr 19, 1967	Vernier engines failed to cut off as planned and the spacecraft bounced twice before landing in the Ocean of Storms. Returned images, including a picture of the Earth during lunar eclipse, and used a scoop to make the first excavation and bearing test on an extraterrestrial body. Returned data on a soil sample. Visual range of TV cameras was extended by using two flat mirrors.
Lunar Orbiter 4 USA	Lunar Orbiter	May 4, 1967	May 8, 1967	Provided the first pictures of the lunar south pole. Impacted the Moon on Oct 6, 1967.
Surveyor 4 USA	Lunar Lander	Jul 14, 1967	Jul 17, 1967	Radio contact was lost 2-1/2 minutes before touchdown when the signal was abruptly lost. Impacted in Sinus Medii.
Lunar Orbiter 5 USA	Lunar Orbiter	Aug 1, 1967	Aug 5, 1967	Increased lunar photographic coverage to better than 99%. Used in orbit as a tracking target. Impacted the Moon on January 31, 1968.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Surveyor 5 USA	Lunar Lander	Sep 8, 1967	Sep 10, 1967	Technical problems were successfully solved by tests and maneuvers during flight. Soft-landed in the Sea of Tranquility. Returned images and obtained data on lunar surface radar and thermal reflectivity. Performed first on-site chemical soil analysis.
Surveyor 6 USA	Lunar Lander	Nov 7, 1967	Nov 9, 1967	Soft-landed in the Sinus Medii area. Returned images of the lunar surface, Earth, Jupiter, and several stars. Spacecraft engines were restarted, lifting the spacecraft about 10 feet from the surface and landing it 8 feet from the original site.
Surveyor 7 USA	Lunar Lander	Jan 7, 1968	Jan 9, 1968	Landed near the crater Tycho. Returned stereo pictures of the surface and of rocks that were of special interest. Provided first observation of artificial light from Earth.
Luna 14 USSR	Lunar Orbiter	Apr 7, 1968		Studied gravitational field and "stability of radio signals sent to spacecraft at different locations in respect to the Moon." Made further tests of geared electric motor for Lunokhod's wheels. Selenocentric orbit.
Zond 5 USSR	Circumlunar	Sep 15, 1968		First spacecraft to circumnavigate the Moon and return to Earth. Took photographs of the Earth. Capsule was recovered from the Indian Ocean on September 21, 1968. Russia's first sea recovery.
Zond 6 USSR	Circumlunar	Nov 10, 1968		Second spacecraft to circumnavigate the Moon and return to Earth "to perfect the automatic functioning of a manned spaceship that will be sent to the Moon." Photographed lunar far side. Reentry made by skip-glide technique; capsule was recovered on land inside the Soviet Union on November 17, 1968.
Luna 15 USSR	Lunar Sample Return	Jul 13, 1969	Jul 21, 1969	First lunar sample return attempt. Began descent maneuvers on its 52nd revolution. Spacecraft crashed at the end of a 4 minute descent in the Sea of Crises.
Zond 7 USSR	Circumlunar	Aug 7, 1969		Third circumlunar flight. Far side of Moon photographed. Color pictures of Earth and Moon brought back. Reentry by skip-glide technique on August 14, 1969.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Cosmos 300 USSR	Lunar Probe	Sep 23, 1969		Unsuccessful lunar attempt. Reentered September 27, 1969.
Cosmos 305 USSR	Lunar Probe	Oct 22, 1969		Unsuccessful lunar attempt. Reentered October 24, 1969.
Luna 16 USSR	Lunar Sample Return	Sep 12, 1970	Sep 20, 1970	First recovery of lunar soil by an automatic spacecraft. Controlled landing achieved in Sea of Fertility; automatic drilling rig deployed; samples collected from lunar surface and returned to Earth on September 24, 1970.
Zond 8 USSR	Circumlunar	Oct 20, 1970		Fourth circumlunar flight. Color pictures taken of Earth and Moon. Russia's second sea recovery occurred on October 27, 1970, in the Indian Ocean.
Luna 17 USSR	Lunar Rover	Nov 10, 1970	Nov 17, 1970	Carrying the first Moon robot, soft landed in Sea of Rains. Lunokhod 1, driven by 5-man team on Earth, traveled over the lunar surface for 11 days; transmitted photos and analyzed soil samples.
Luna 18 USSR	Lunar Lander	Sep 2, 1971		Attempted to land in Sea of Fertility on September 11, 1971. Communications ceased shortly after command was given to start descent engine.
Luna 19 USSR	Lunar Orbiter	Sep 28, 1971		From lunar orbit, studied Moon's gravitational field; transmitted TV pictures of the surface. Selenocentric orbit.

	1957-1959	1960-1969	1970-1979	1980-1989	1990	1991	1992	1993	1994	1995	TOTAL
Almaz		-	-		-	1	0	0	0	0	1
Buran			-	t	0	0	0	0	0		1
Cosmos		317	831	906	66	54	55	38	37	27	2331
Electro			-	-		-			1		1
Ekran			4	15	0	0	1	0	0	0	20
Express Electron			-	•			-	-	1		1
Electron		4	0	0	0	o	0	0	0	0	4
Foton		-	-	2	1	1	1	0	0	0	5
Gals		-	-	-		-	-		1	1	2
Gamma		-			1	0	0	0	Ó	Ó	1
Geo-lk				-		-			1		1
Gorizont Granat			3	16 1	3	2	3	2	1	o	30
Granat		-		1	U	U	0 ·	U	U	0	T
Informator		2	12	0	0	1	0	0	0	0	15
Interball Tail								-		1	1
Intercosmos		-	6	3	0	1	0	0	0	0	10
lskra				3	0	0	0	0	0	0	3
Koronas		-				-			1	0	1
Kristall		-	-	0	1	0	0	0	0	0	1
Kvant				2	0	D	٥	0	0	0	2
Luch				Ξ		-			1	ľ	2
Luna	з	12	9	0	0	0	0	0	0	o	24
Mars		1	6	0	0	0	o	٥	O	٥	7
Meteor		2	32	18	2	2	ō	1	ī	õ	58
Mir		-		1	0	0	Ó	0	Ó	Ō	1
Molniya		15	63	18	6	5	4	5	2	1	153
Nadezhda		-	-	1	1	1	0	0	1	o	4
Okean				1	1	1	0	0	1	o	4
TOTAL	3	353	966	1025	82	69	64	46		31	2690

Unofficial Tabulation of CIS (USSR) Payloads

			2 0	0	0 	0	0 - 0	0 - 0	0	2 1
			-	0	0 -	-	-	-	1	1
 	-	0		-	-	- 2	-		1	
-	-	0	-	-		2	0	•		
-	-	0	٥					0	0	2
-		-		0	0	0	0	0	0	2
-		1	3	0	0	0	0	0	0	10
-		7	36	4	4	5	5	5	5	76
	4	0	0	0	0	0	0	0	0	4
		2	6	0	0	0	0	0	0	8
	-	-	_	-	-	-	-	1	1	2
	-	5	20	3	2	0	2	3.	i	36
	-	-	5	4	4	4	3	1	1	22
••	-	6	1	0	0	o	c	0	0	7
	8									77
	~		-	-	~		_		1	1
3	9	0	0	0	0	0	0	0	ó	12
		-	-	~	-	ō	ĩ	ō	õ	1
	-	-	-			-			1	1
	~		2	0	0	0	o	0	0	2
	5	6	4	0	0	0	0	0	0	15 2
	2	0	0	0	0	0	Q	0	0	2
	4	-	0	0	0	0	0	0	٥	4
-	9	1	0	0	0	0	D	0	0	10
	6	0	σ	0	o	0	0	0	٥	6
	3			$\begin{array}{cccccccccccccccccccccccccccccccccccc$						

Unofficial Tabulation of CIS (USSR) Payloads (cont'd)

B-80

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT O	RBITAL PARAME	TERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) Inc	l (deg)	_ (kg)	(All Launches from ESMC, unless otherwise noted)
1958								1958
Pioneer I (U) Eta I	Thor-Able I 130 (U)	Oct 11		DOW	N OCT 12, 1958		34.2	Measure magnetic fields around Earth or Moon. Error in burnout velocity and angle; did not reach Moon. Returned 43 hours of data on extent of radiation band, hydromagnetic oscillations of magnetic field, density of micrometeors in interplanetary space, and interplanetary magnetic field.
Beacon I (U)	Jupiter C (U)	Oct 23		DID NO	T ACHIEVE ORBIT	_	4.2	Thin plastic sphere (12-feet in diameter after inflation) to study atmosphere density at various levels. Upper stages and payload separated prior to first-stage burnout.
Pioneer II (U)	Thor-Able I 129 (U)	Nov 8		ĐIĐ NO	T ACHIEVE ORBIT		39.1	Measurement of magnetic fields around Earth or Moon. Third stage failed to ignite. Its brief data provided evidence that equatorial region about Earth has higher flux and higher energy radiation than previously considered.
Pioneer III (U)	Juno II (U)	Dec 6		DOWN DEC 7, 1958				Measurement of radiation in space. Error in burnout velocity and angle; did not reach Moon. During its flight, discovered second radiation belt around Earth.
1959								1959
Vanguard II (U) Alpha 1	Vanguard (SLV-4) (U)	Feb 17	122.8	3054	557	32.9	9.4	Sphere (20 inches in diameter) to measure cloud cover. First Earth photo from satellite. Interpretation of data difficult because satellite developed precessing motion.
Pioneer IV (S) Nu 1	Juno II (S)	Mar 3			CENTRIC ORBIT		6.1	Measurement of radiation in space. Achieved Earth-Moon trajectory; returned excellent radiation data. Passed within 37,300 miles of the Moon on March 4, 1959.
Vanguard (U)	Vanguard (SLV-5) (U)	Apr 13			T ACHIEVE ORBIT		10.6	Payload consisted of two independent spheres: Sphere A contained a precise magnetometer to map Earth's magnetic field, Sphere B was a 30-inch inflatable sphere for optical tracking. Second stage failed because of damage at stage separation.
Vanguard (U)	Vanguard (SLV-6) (U)	Jun 22		DID NOT ACHIEVE ORBIT				Magnesium alloy sphere (20 inches in diameter), to measure solar-Earth heating process which generates weather. Faulty second- stage pressure valve caused failure.
Explorer (S-1) (U)	Juno II (Ü)	Jul 16		DID NO	T ACHIEVE ORBIT		41.5	To measure Earth's radiation balance. Destroyed by Range Safety Officer 5-1/2 seconds after liftoff; failure of power supply to guidance system.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT O	RBITAL PARAM	ETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Explorer 6 (S-2) (S) Detta 1	Thor-Able III 134 (S)	Aug 7			RIOR TO JULY 196		64.4	Carried instruments to study particles and meteorology. Helped in the discovery of three radiation levels, a ring of electric current circling the Earth, and obtained crude cloud cover images.
Beacon II (U)	Juno II (U)	Aug 14		DID NOT ACHIEVE ORBIT			4.5	Thin plastic inflatable sphere (12-feet in diameter) to study atmosphere density at various levels. Premature fuel depletion in first stage caused upper stage mathunction.
Big Joe (Mercury) (S)	Atlas 10 (S)	Sep 9		SUBO	RBITAL FLIGHT			Suborbital test of the Mercury Capsule. Capsule recovered successfully after reentry test. (WFF)
Vanguard III (S) Eta 1	Vanguard (SLV-7) (S)	Sep 18	127.4	3417	512	33.4	45.4	Solar-powered magnesium sphere with magnetometer boom; provided a comprehensive survey of the Earth's magnetic field, surveyed location location of lower edge of radiation bets, and provided an accurate count of micrometeorite impacts. Last transmission December 8, 1959.
Little Joe 1 (S)	Little Joe {L/V #6} (S)	Oct 4		SÚBÓ	RBITAL FLIGHT			Suborbital test of the Mercury Capsule to qualify the booster for use with the Mercury Test Program.
Explorer 7 (S-1a) (S) lota 1	Juno II (S)	Oct 13		DOW	I JULY 16, 1989		41.5	Provided data on energetic particles, radiation, and magnetic storms. Also recorded the first micrometeorite penetration of a sensor.
Little Joe 2 (S)	Little Joe (L/V #1A) (S)	Nov 4		SUBO	RBITAL FLIGHT			Suborbital test of Mercury Capsule to test the escape system. Vehicle functioned perfectly, but escape rocket ignited several seconds too late. (WFF)
Pioneer P-3 (U)	Atlas-Able 20	Nov 26		DID NO	T ACHIEVE ORBIT		168.7	Lunar Orbiter Probe; payload shroud broke away after 45 seconds.
Little Joe 3 (S)	Little Joe (L/V #2)(S)	Dec 4		SUBO	RBITAL FLIGHT			Suborbital test of the Mercury Capsule, included escape system and biomedical tests with monkey (Sam) aboard, to demonstrate high attitude abort at max q. (WFF)
1960								1960
Little Joe 4 (S)	Little Joe (L/V #1B)(S)	Jan 21			RBITAL FLIGHT			Suborbital test of Mercury Capsule included escape system and biomedical test with monkey (Miss Sam) aboard. (WFF)
Pioneer V (P-2) (S) Alpha 1	Thor-Able IV 219 (S)	Mar 11			CENTRIC ORBIT			Sphere, 26 inches in diameter, to investigate interplanetary space between orbits of Earth and Venus; test long-range communications; and determine strength of magnetic fields.
Explorer (S-46) (U)	Juno II (U)	Mar 23		DIÒ NO	T ACHIEVE ORBIT		16.0	Analyze electron and proton radiation energies in a highly elliptical orbit. Telemetry lost shortly after first stage burnout; one of the upper stages failed to fire.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARAME	ETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) In	cl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Tiros I (S) Beta 2	Thor-Able II 148 (S)	Apr 1	98.3	695	658	48.4	122.5	First successful weather-study satellite. Demonstrated that satellites could be used to survey global weather conditions and study other surface features from space. Transmitted 22,952 good-quality cloud- cover photographs.
Scout X (U)	Scout X (U)	Apr 18		SUB	ORBITAL FLIGHT			Suborbital Launch Vehicle Development Test with live first and third stages. Vehicles broke up after first-stage burnout.
Echo A-10 (U)	Thor-Delta (1) (U)	May 13		DID N	DID NOT ACHIEVE ORBIT			100-foot passive reflector sphere to be used in a series of communications experiments. During coast period, attitude control jets on second stage failed.
Scout I (S)	Scout 1 (S)	Jul 1		SUB	ORBITAL FLIGHT			Launch Vehicle Development Test; first complete Scout vehicle. (WFF)
Mercury (MA-1) (U)	Atlas 50 (U)	Jul 29			OT ACHIEVE ORBIT			Suborbital test of Mercury Capsule Reentry. The Atlas exploded 65 seconds after launch.
Echo I (A-11) (S) lota 1	Thor-Delta (2) (S)	Aug 12	-	DOV	VN MAY 24, 1968		75.3	First passive communications satellite (100-foot sphere). Reflected a pre-taped message from President Eisenhower across the Nation, demonstrating feasibility of global radio communications via satellite.
Pioneer (P-30) (U)	Atlas-Able 80 (U)	Sep 25		DID N	OT ACHIEVE ORBIT		175.5	
Scout II (S)	Scout 2 (S)	Oct 4		SUB	ORBITAL FLIGHT			Launch Vehicle Development Test; second complete Scout vehicle, reached an altitude of 3,500 mi. (WFF)
Explorer 8 (S-30) (S) Xi 1	Juno II (S)	Nov 3	102.5	1361	395	49.9	40.8	Contained instrumentation for detailed measurements of the ionosphere. Confirmed the existence of a helium layer in the upper atmosphere.
Little Joe 5 (U)	Little Joe (L/V #5)(S)	Nov 8		SUB	ORBITAL FLIGHT			Suborbital test of Mercury Capsule to quality capsule system. Capsule did not separate from booster. (WFF)
Tiros II (S) Pi 1	Thor-Delta (3) (S)	Nov 23	96.3	614	549	48.5	127.0	Test of experimental television techniques and infrared equipment for global meteorological information system.
Explorer (S-56) (U)	Scout 3 (U)	Dec 4		DID N	OT ACHIEVE ORBIT		6.4	12-foot sphere to determine the density of the Earth's atmosphere. Second stage failed to ignite.
Pioneer (P-31) (U)	Atlas-Able 91 (U)	Dec 15		DID N	OT ACHIEVE ORBIT		175.9	Highly instrumented probe, in lunar orbit, to investigate the environment between the Earth and the Moon. Vehicle exploded about 70 seconds after launch due to malfunction in first stage.
Mercury (MR-1A) (S)	Redstone (S)	Dec 19		SUB	ORBITAL FLIGHT			Unmanned Mercury spacecraft, in suborbital trajectory, impacted 235 miles down range after reaching an attitude of 135 miles and a speed of near 4,200 mph. Capsule recovered about 50 minutes after launch.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT O	ORBITAL PARAME	TERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) In	cl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Tiros I (S) Beta 2	Thor-Able II 148 (S)	Apr 1	98.3	695	658	48.4	122.5	First successful weather-study satellite. Demonstrated that satellites could be used to survey global weather conditions and study other surface features from space. Transmitted 22,952 good-quality cloud- cover pholographs.
Scout X (U)	Scout X (U)	Apr 18		SUB	ORBITAL FLIGHT			Suborbital Launch Vehicle Development Test with live first and third stages. Vehicles broke up after first-stage burnout.
Echo A-10 (U)	Thor-Delta (1) (U)	May 13		DID NOT ACHIEVE ORBIT			75.3	100-foot passive reflector sphere to be used in a series of communications experiments. During coast period, attitude control jets on second stage failed.
Scout I (S)	Scout 1 (S)	Jul 1			ORBITAL FLIGHT			Launch Vehicle Development Test; first complete Scout vehicle. (WFF)
Mercury (MA-1) (U)	Atlas 50 (U)	Jul 29			OT ACHIEVE ORBIT			Suborbital test of Mercury Capsule Reentry. The Atlas exploded 65 seconds after launch.
Echo I (A-11) (S) Iota 1	Thor-Delta (2) (S)	Aug 12		DOV	VN MAY 24, 1968		75.3	First passive communications satellite (100-foot sphere). Reflected a pre-taped message from President Elsenhower across the Nation, demonstrating feasibility of global radio communications via satellite.
Pioneer (P-30) (U)	Atlas-Able 80 (U)	Sep 25		DID NOT ACHIEVE ORBIT		175.5	Highly instrumented probe, in lunar orbit, to investigate the environment between the Earth and the Moon. Second stage failed due to maffunction in oxidizer system.	
Scout II (S)	Scout 2 (S)	Oct 4		SUB	ORBITAL FLIGHT			Launch Vehicle Development Test; second complete Scout vehicle, reached an altitude of 3,500 mi. (WFF)
Explorer 8 (S-30) (S) XI 1	Juno II (S)	Nov 3	102.5	1361	395	49.9	40.8	Contained instrumentation for detailed measurements of the ionosphere. Confirmed the existence of a helium layer in the upper atmosphere.
Little Jos 5 (U)	Little Joe (L/V #5)(S)	Nov 8		SUB	ORBITAL FLIGHT			Suborbital test of Mercury Capsule to quality capsule system. Capsule did not separate from booster (WFF)
Tiros II (S) Pi 1	Thor-Delta (3) (S)	Nov 23	96.3	614	549	48.5	127.0	Test of experimental television techniques and infrared equipment for global meteorological information system.
Explorer (S-56) (U)	Scout 3 (U)	Dec 4			OT ACHIEVE ORBIT		6.4	12-foot sphere to determine the density of the Earth's atmosphere. Second stage failed to ignite.
Pioneer (P-31) (U)	Atlas-Able 91 (U)	Dec 15		DID N	OT ACHIEVE ORBIT		175.9	Highly instrumented probe, in lunar orbit, to investigate the environment between the Earth and the Moon. Vehicle exploded about 70 seconds after launch due to malfunction in first stage.
Mercu:y (MR-1A) (S)	Redstone (S)	Dec 19		SUB	ORBITAL FLIGHT			Unmanned Mercury spacecraft, in suborbital trajectory, impacted 235 miles down range after reaching an altitude of 135 miles and a speed of near 4,200 mph. Capsule recovered about 50 minutes after launch.

MISSION/			PERIOD	CURRENT	ORBITAL PARAME	TERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) In	cl (dea)	(kg)	(All Launches from ESMC, unless otherwise noted)
1961							<u> </u>	1961
Mercury (MR-2) (S)	Redstone (S)	Jan 31		SUB	ORBITAL FLIGHT		1315.0	Suborbital test of Mercury Capsule; 16-minute flight Included biomedical test with chimpanzee (Ham) aboard.
Explorer 9 (S) Detta 1	Scout 4 (S)	Feb 16		DO	WN APR 9, 1964		6.8	12-foot sphere to determine the density of the Earth's Atmosphere. First spacecraft orbited by an all-solid rocket. (WFF)
Mercury (MA-2) (S)	Atlas 67 (S)	Feb 21		SUBORBITAL FLIGHT		1315.0	Suborbital test of Mercury Capsula; upper part of Atlas strengthened by an 8-inch wide stainless steel band. Capsula recovered less than 1 hour after launch.	
Explorer (S-45) (U)	Juno II (U)	Feb 24		DIDN	OT ACHIEVE ORBIT		33.6	Investigate the shape of the ionosphere. A malfunction following booster separation resulted in loss of payload telemetry; third and forth stages failed to lonite.
Little Joe 5A (U)	Little Joe (L/V #5A) (U)	Mar 18			ORBITAL FLIGHT		1315.0	Suborbital test of Mercury Capsule, Escape rocket motor fired prematurely and prior to capsule release. (WFF)
Mercury (MR-BD) (S)	Redstone (S)	Mar 24		SUBORBITAL FLIGHT		1315.0	Suborbital test of launch vehicle for Mercury flight to acquire further experience with booster before manned flight was attempted.	
Explorer 10 (S) Kappa 1	Thor-Delta (4) (S)	Mar 25		DOWN JUN 1968		35.8	Injected into highly elliptical orbit. Provided information on solar winds, hydromagnetic shock waves, and reaction of the Earth's magnetic field to solar flares.	
Мегситу (МА-З) (U)	Atlas 100 (U)	Apr 25		DID NOT ACHIEVE ORBIT		907.2	Orbital flight test of Mercury capsule. Destroyed after 40 seconds by Range Safety Officer when the inertial guidance system failed to pitch the vehicle over toward the horizon.	
Explorer 11 (S) Nu 1	Juno II (S) (4 stages)	Apr 27	14.5	1465	479	28.8	37.2	Placed in elliptical orbit to detect high energy gamma rays from cosmic sources and map their distribution in the sky.
Little Joe 5B (S)	Little Joe (L/V #5B)(S)	Apr 28			ORBITAL FLIGHT		1315.0	Suborbital flight test to demonstrate the ability of the escape and sequence systems to function property at max g, (WFF)
Mercury (S) (Freedom 7)	Mercury- Redstone-3 (S				DRBITAL FLIGHT DED MAY 5, 1961		1315.0	First manned suborbital flight with Alan B. Shepard, Jr. Pilot and spacecraft recovered after 15 minute 22 second flight.
Explorer (S-45a) (U)	Juno II (U)	May 24		DID NOT ACHIEVE ORBIT		33.6	Investigate the shape of the ionosphere. Second stage ignition system malfunctioned.	
Meteoroid Sat A Explorer (S-55) (U)	Scout 5 (U)	Jun 30		DID NOT ACHIEVE ORBIT		84.8	Evaluate launch vehicle; investigate micrometeoroid impact and penetration. Third stage failed to ignite. (WFF)	
Tiros III (S) Rho 1	Thor-Delta (5) (S)	Jul 12	100.0	791	723	47.9	129.3	Development of meteorological satellite system. Provided excellent photos and infrared data. Photographed many tropical storms during 1961 hurricane season, credited with discovering Hurricane Esther.

MICCION	LAUNCH	ALINICH	DEDIOD	CURRENT ORBITAL PARAMETERS	WEIGHT	REMARKS
MISSION/					_	(All Launches from ESMC, unless otherwise noted)
Inti Design	VEHICLE	DATE_	(Mins.)	Apogee (km) Perigee (km) Incl (deg)		
Mercury (S)	Mercury-	Jul 21		SUBORBITAL FLIGHT	1470.0	Second manned suborbital flight with Virgil I. Grissom. After landing,
(Liberty Bell 7)	Redstone-4 (S	i)		LANDED JUL 21, 1961		spacecraft was lost but pilot was rescued from surface of water.
						Mission Duration 15 minutes 37 seconds.
Explorer 12	Thor-Delta	Aug 16		DOWN SEP 1963	37.6	
(S-3) (S)	(6) (S)					fields, and energetic particles. Identified the Van Allen Belts as a
Upsilon 1						magnetosphere.
Ranger I (U)	Atlas-Agena B	Aug 23		DOWN AUG 30, 1961	306.2	
Phi 1	111 (U)					rays, magnetic fields, and energetic particles. Agena failed to restart,
						resulting in low Earth orbit
Explorer 13 (U)	Scout 6	Aug 25		DOWN AUG 28, 1961	84.8	Evaluate launch vehicle; investigate micrometeoroid impact and
Chi 1						penetration. Third stage failed to ignite. (WFF)
Mercury (MA-4)	Atlas 88	Sep 13		DOWN SEP 13, 1961	1224.7	Orbital test of Mercury capsule to test systems and ability to return
(S)	(S)					capsule to predetermined recovery area after one orbit. All capsule,
A-Alpha 1						tracking, and recovery objectives met.
Probe A (P-21)	Scout 7	Oct 19		SUBORBITAL FLIGHT		Vehicle test/scientific Geoprobe. Reached altitude of 4,261 miles;
(S)	<u>(S)</u>					provided electron density measurements. (WFF)
Saturn Test	Saturn I (S)	Oct 27		SUBORBITAL FLIGHT		Suborbital launch vehicle development test of S-1 booster propulsion
(SA-1) (S)						system; verification of aerodynamic/structural design of entire vehicle.
Mercury (MS-1) (U)	AF 609A	Nov 1		DID NOT ACHIEVE ORBIT	97.1	Orbital test of the Mercury Tracking Network. First Stage exploded 26
	Blue Scout (U)				seconds after liftoff; other three stages destroyed by Range Safety
						Officer 44 seconds after launch.
Ranger II (U)	Atlas-Agena E	8 Nov 18		DOWN NOV 20, 1961	306.2	Flight test of spacecraft systems designed for future lunar and
A-Theta 1	117 (U)					interplanetary missions. Inoperative roll gyro prevented Agena restart
						resulting in a low Earth orbit.
Mercury (MA-5) (S)	Atlas 93 (S)	Nov 29		DOWN NOV 29, 1961	1315.4	
A-lota 1						chimpanzee Enos on board. Spacecraft and chimpanzee recovered
						after two orbits.
1962						1962
Echo (AVT-1) (S)	Thor 338 (S)	Jan 15		SUBORBITAL FLIGHT	256.0	Suborbital Communications Test. Canister ejection and opening
						successful, but 135-foot sphere ruptured.
Ranger III (U)	Atlas-Agena E	3 Jan 26		HELIOCENTRIC ORBIT	329.8	Rough land instrumented capsule on the Moon. Booster malfunction
Alpha 1	121 (U)					resulted in the spacecraft missing the Moon by 22,862 miles and going
•	.,					into solar orbit. TV pictures were unusable.
						·

MISSION/	LAUNCH I	AUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	
inti Design	VEHICLE	DATE	(Mins.)	Apogee (km	n) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Tiros IV (S) Beta 1	Thor-Deita (7) (S)	Feb 8	99.9	812	694	48.3	129.3	Continued research and development of meteorological satellite system. U.S. Weather Bureau initiated international radio facsimile transmission of cloud maps based on data received.
Mercury (MA-6) (Friendship 7) (S) Gamma 1	Atlas 109 (S)	Feb 20			NDED FEB 20, 1962		1354.9	First U.S. manned orbital flight. John H. Gienn, Jr. made three orbits of the Earth. Capsule and pilot recovered after 21 minutes in the water. Mission Duration 4 hours 55 minutes 23 seconds.
Reentry I (U)	Scout 8 (S)	Mar 1		SL	BORBITAL FLIGHT			Launch vehicle development test/Reentry test. Desired speed was not achieved. (WFF
OSO-I (S) Zeta 1	Thor-Delta (8) (S)	Mar 7		C	OWN OCT 8, 1981		207.7	Carried 13 instruments to study Sun-Earth relationships. Transmitted almost 1,000 hours of information on solar phenomena, including measurements of 75 solar flares.
Probe B (P-21a) (S)	Scout 9 (S)	Mar 29		SL	IBORBITAL FLIGHT			Suborbital vehicle test/scientific geoprobe. Reached an altitude of 3,910 miles; provided electron density measurements. (WFF)
Ranger 4 (U) Mu 1	Atlas-Agena B (S)	Apr 23		IMPACTE	MOON ON APR 26	, 1962	331.1	Second attempt to rough land instrumented capsule on Moon. Failure of central computer and sequencer system rendered experiments useless. Impacted on far side of Moon after flight of 64 hours.
Saturn Test (SA-2) (S)	Saturn I (S)	Apr 25		ົ້ິຣເ	JBORBITAL FLIGHT		86167.0	Suborbital launch vehicle test; carried 95 tons of ballast water in upper stages which was released at an attitude of 65 miles to observe the effect on the upper region of the atmosphere (Project High Water).
Ariel I (S) Omicron 1	Thor-Detta (9) (S)	Apr 26		D	OWN MAY 24, 1976		59.9	Carried six British experiments to study the ionosphere, solar radiation, and cosmic rays. First International Satellite. Cooperative with UK.
Centaur Test 1 (AC-1)(U)	Atlas-Centaur (F-1) (U)	Мау 8		รเ	BORBITAL FLIGHT			Launch vehicle development test. Centaur exploded before separation.
Mercury (MA-7) (Aurora 7) (S) Tau 1	Atlas 107 (S)	May 24		ĹA	NDED MAY 24, 1962		1349.5	Second orbital Manned Flight with M. Scott Carpenter. Reentered under manual control after three orbits. Mission Duration 4 hours 56 minutes 5 seconds.
Tiros V (S) A-Alpha	Thor-Delta (S)	Jun 19	99.4	889	573	58.1	129.3	Continued research and development of meteorological satellite system. Extended observations to higher latitudes. Observed ice breakup in northern latitudes and storms originating in these areas.
Telstar 1 (S) A-Epsilon	Thor-Delta (10) (S)	Jul 10	157.8	5642	947	44.8	77.1	First privately built satellite to conduct communication experiments. First telephone and TV experiments transmitted, Reimbursable (AT&T).
Echo (AVT-2) (S)	Thor-Delta (11) (S)	Jul 18		SL	JBORBITAL FLIGHT		256.0	

MISSION/	LAUNCH I	AUNCH	PERIOD	CURRENT C	ORBITAL PARAME	TERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) Inc	cl (deg)	_(kg)	(All Launches from ESMC, unless otherwise noted)
Mariner I (P-37) (U)	Atlas-Agena B 145 (U)	Jul 22	_		OT ACHIEVE ORBIT		202.8	Venus Flyby. Vehicle destroyed by Range Safety Officer about 290 seconds after launch when it veered off course.
Mariner II (P-38) (S) A-Rho 1	Atlas-Agena B 179 (S)	Aug 27		HELI	DCENTRIC ORBIT		202.8	Second Venus flyby. First successful interplanetary probe. Passed Venus on December 14, 1962, at 21,648 miles; 109 days after launch. Provided data on solar wind, cosmic dust density, and particle and magnetic field variations.
Reentry II (U)	Scout 13 (U)	Aug 31		SUBORBITAL FLIGHT				Reentry test at 28,000 fps: late third stage ignition; desired speed was not achieved. (WFI
Tiros VI (S) A-Psi 1	Thor-Delta (12) (S)	Sep 18	97.6	652	635	58.3		Provide coverage of the 1962 hurricane season. Returned high quality cloud cover photographs.
Alouette I (S) B-Alpha 1	Thor-Agena B (S)	Sep 29	105.2	1022	987	80.5		Designed and built by Canada to measure variations in the ionosphere electron density distribution. Returned excellent data to 13 Canadian, British, and U.S. stations. Cooperative with Canada.
Explorer 14 (S-3a)(S) B-Gamma 1	Thor-Delta (13) (S)	Oct 2	•	DOWN JULY 1, 1966				Monitor trapped corpuscular radiation, solar particles, cosmic radiation and solar winds. Placed into a highly elliptical orbit; excellent data received.
Mercury(MA-8) (Sigma 7) (S) B-Delta 1	Atlas 113 (S)	Oct 3		LANDED OCT 3, 1962			1360.8	Manned Orbital Flight with Walter M. Schirra, Jr. Made six orbits of the Earth. Mission Duration 9 hours 13 minutes 11 seconds.
Ranger V (U) B-Eta 1	Atlas-Agena B 215 (S)	Oct 18		HELIOCENTRIC ORBIT				Rough land instrumented capsule on the Moon. Malfunction caused power supply loss after 8 hours 44 minutes. Passed within 450 miles the Moon.
Explorer 15 (S-3b) (S) B-Lambda	Thor-Delta (14) (S)	Oct 27		DOWN OCT 5, 1967		44.5	Study location, composition, and decay rate of artificial radiation belt created by high altitude nuclear explosion over the Pacific Ocean. Despin device failed: considerable useful data transmitted.	
Saturn (SA-3) (S)	Saturn I (S)	Nov 16		SUB	DRBITAL FLIGHT			Suborbital launch vehicle development flight. Second *Project High Water* using 95 tons of water released at an altitude of 90 n.mi.
Relay I (S) B-Upsilon 1	Thor-Delta (15) (S)	Dec 13	185.1	7436	1323	47.5	78.0	Test intercontinental microwave communication by low-altitude active repeater satellite. Initial power failure overcome. Over 500 communication tests and demonstrations conducted.
Explorer 16 (S-55b) (S) B-Chi 1	Scout 14 (S)	Dec 16	104.1	1159	745	52.0		Measure micrometeoroid puncture hazard to structural skin samples. First statistical sample; flux level found to lie between estimated extremes. (WFI

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARAM	IETERS	WEIGHT	REMARKS
nti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	ncl (deg)] (kg)	(All Launches from ESMC, unless otherwise noted)
1963								196
Syncom I (U) 1963 04A	Thor-Delta (16) (S)	Feb 14		CURRENT E	LEMENTS NOT MAIN	ITAINED	39.0	First test of a communication satellite in geosynchronous orbit. Initial communication tests successful; all contact was lost 20 seconds after command to fire apogee motor.
Saturn Test (SA-4) (S)	Saturn I (S)	Mar 28		SUE	SORBITAL FLIGHT			Suborbital launch vehicle development test. Programmed in-flight cutoff of one of eight engines; successfully demonstrated propellant utilization system function.
Explorer 17 (SA-4) (S) 1963 09A	Thor-Delta (17) (S)	Apr 3		DO	WN NOV 24, 1966		183.7	Measure density, composition, pressure and temperature of the Earth's atmosphere. Discovered a belt of neutral helium around the Earth.
Telstar II (S) 1963 13A	Thor-Delta (18) (S)	May 7	225.3	10807	967	42.8	79.4	Conduct wideband communication experiments. Color and black and white television successfully transmitted to Great Britain and France. Reimbursable (AT&T).
Mercury (MA-9) (Faith 7) (S) 1963 15A	Atlas 130 (S)	May 15		LAN	DED MAY 16, 1963		1360.8	Fourth Orbital Manned flight with L. Gordon Cooper, Jr. Various tests and experiments were performed. Capsule reentered after 22 orbits. Mission Duration 34 hours 19 minutes 49 seconds.
RFD-1 (S)	Scout 19 (S)	May 22	_	SUE	ORBITAL FLIGHT			Reimbursable (AEC). (WFF
Tiros VII (S) 1963 24A	Thor-Delta (19) (S)	Jun 19	92.7	415	398	58.2	134.7	Continued meteorological satellite development. Furnished over 30,000 useful cloud cover photographs, including pictures of Hurricane Ginry in its early stages in mid-October.
CRL (USAF) (S) 1963 26A	Scout 21 (S)	Jun 28		DO	WN DEC 14, 1983		99.8	Cambridge Research Lab geophysics experiment test. Reimbursable (DOD). (WFF
Reentry III (U)	Scout 22 (U)	Jul 20		SUE	ORBITAL FLIGHT			Suborbital reentry flight demonstration test of an ablation material at reentry speeds. Vehicle failed. (WFF
Syncom II (S) 1963 31A	Thor-Delta (20) (S)	Jul 26		CURRENT E	LEMENTS NOT MAIN	TAINED	39.0	Geosynchronous communication satellite test. Voice, teletype, facsimile, and data transmission tests were conducted.
Little Joe II Test (S)	Little Joe II #1 (S)	Aug 28		SUE	SORBITAL FLIGHT			Suborbital Apollo launch vehicle test. Booster qualification test with dummy payload(White Sands
Explorer 18 (S) (IMP-A) 1963 46A	Thor-Delta (21) (S)	Nov 27		DÖ	WN DEC 30, 1965		62.6	First in a series of Interplanetary Monitoring Platforms to observe interplanetary space over an extended period of the solar cycle. Discovered a region of high-energy radiation beyond the Van Allen beh reported stationary shock wave created by the interaction of the solar wind and geomagnetic field.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)		Perigee (km)		(kg)	(All Launches from ESMC, unless otherwise noted)
Centaur Test II (S) 1963 47A	Atlas-Centaur (AC-2) (S)	Nov 27	104.6	1485	468	30.4	4620.8	Launch vehicle development test. Instrumented with 2,000 pounds of sensors, equipment, and telemetry; performance and structural integrity test.
Explorer 19 (AD-A) (S) 1963 53A	Scout 24 (S)	Dec 19		DO	WN MAY 10, 1981		7.7	
Tiros VIII (S) 1963 54A	Detta 22 (S)	Dec 21	98.5	711	663	58.5	120.2	Continued meteorological satellite development; initial flight test of Automatic Picture Transmission camera system which made it possible to obtain local cloud cover pictures using inexpensive ground stations.
1964				_				1964
Relay II (S) 1964 03A	Delta 23 (S)	Jan 21	194.7	7535	1966	46.4	85.3	Modified communication satellite with a capability of TV or 300 one-way voice transmissions or 12 two-way narrowband communication. Completed more than 230 demonstrations and tests; also obtained over 500 hours of radiation data.
Echo II (S) 1964 04A	Thor-Agena B (S)			DO	WN JUN 7, 1969		348.4	Rigidized sphere, 135 feet in diameter, to conduct passive communication experiments (radio, teletype, facsimile tests). Good experiment results obtained; data exchanged with USSR. (WSMC)
Saturn I (SA-5) (S) 1964 05A	Saturn I (S)	Jan 29	-	DO	WN APR 30, 1966		17,554.2	Launch vehicle development test. Fifth flight of Saturn, first Block II Saturn, first five flight of the LOX/LH2 fueled second stage (S-IV). 11.146 measurements taken
Ranger VI (U) 1964 07A	Atlas-Agena B 199 (S)			IMPACTED	MOON ON FEB 2,	1964		Photograph lunar surface before hard impact. No video signals received. Impacted on west side of Sea of Tranquility, within 20 miles of target, after 65.6 hour flight.
Beacon Explorer A (S-66) (U)	Delta 24 (U)	Mar 19			OT ACHIEVE ORBIT	r	54.7	Provide data on ionosphere; conduct laser and Doppler shift geodetic tracking experiments. Vehicle third stage malfunctioned.
Ariel II (UK) (S) 1964 15A	Scout 25 (S)	Mar 27			VN NOV 18, 1967			Carried three British experiments to measure galactic radio noise. Cooperative with UK. (WFF)
Gemini I (S) 1964 18A	Titan II 1 (S)	Apr 8		DOV	VN APR 12, 1964		3175.2	Qualification of Gemini spacecraft configuration/Gemini launch vehicle combination in launch environment through orbital insertion phase.
Fire I (S)	Atlas-Antares 263 (S)	Apr 14			ORBITAL FLIGHT		1995.8	Reentry Test to study the heating environment encountered by a body entering the Earth's atmosphere at high speed.
Apollo Abort A-001 (S)	Little Joe II (S)	May 13		SUB	ORBITAL FLIGHT			Vehicle development test to demonstrate Apollo spacecraft atmospheric abort system capabilities. (White Sands)

MISSION/	LAUNCH	AUNCH	PERIOD	CURRENT C	RBITAL PARA	METERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Saturn I (SA-6) (S) 1964 25A	Saturn I (SA-6) (S)	May 28		DOWN JUN 1, 1964			17644.9	Vehicle development test. First flight of unmanned model of the Apollo spacecraft. 106 measurements obtained.
Centaur Test III (S)	Atlas-Centaur (AC-3) (S)	Jun 30		SUBO	ORBITAL FLIGHT			Launch vehicle development test; performance and guidance evaluation.
SERT I (S)	Scout 28 (\$)	Jul 20		SUBC	ORBITAL FLIGHT			Test ion engine performance in space. Confirmed that high prevalence ion beams could be neutralized in space. (WFF)
Ranger VII (S) 1964 41A	Atlas-Agena B 250 (S)	Jül 28		IMPACTED I	MOON ON JUL 31,	1964	364.7	Photograph lunar surface before hard impact. Transmitted 4,316 high quality photographs showing amazing detail before impacting in Sea of Clouds; flight time 68 hours 35 minutes 55 seconds.
Reentry IV (S)	Scout 29 (S)	Aug 18		SUBC	DRBITAL FLIGHT			Reentry Test. Demonstrated the ability of the Apollo spacecraft to
Syncom III (S) 1964 47A	Detta 25 (S)	Aug 19		CURRENT ELI	EMENTS NOT MAIN	NTAINED	65.8	withstand reentry conditions at 27,950 fps. Experimental geosynchronous communications satellite. Provided live TV coverage of the Olympic games in Tokyo and conducted various communications tests.
Explorer 20 (S) 1964 51A	Scout 30 (S)	Aug 25	103.6	1001	855	79.9	44.5	lonosphere Explorer to obtain radio soundings of upper ionosphere as part of the Topside Sounder program.
Nimbus I (S) 1964 52A	Thor-Agena B (S)	Aug 28		DOW	/N MAY 16, 1974		376.5	Improved meteorological satellite; Earth oriented to provide complete global cloud cover images. Returned more than 27,000 excellent photographs; APT system supplied daytime photos to low-cost ground stations.
OGO I (U) 1964 54A	Atlas-Agena B 195 (S)	Sep 4		CURRENT EL	EMENTS NOT MAIL	NTAINED	487.2	Standardized spacecraft capable of conducting related experiments. Carried 20 instruments to investigate geophysical and solar phenomena. Boom deployment anomaly obscured horizon scanner's view of Earth. Varying quality data received from all experiments.
Saturn I (SA-7) (S) 1964 57A	Saturn I (S)	Sep 18		DOV	VN SEP 22, 1964			Demonstrate Launch Vehicle/spacecraft compatibility and test launch escape system. Telemetry obtained from 131 separate and continuous measurements.
Explorer 21 (U) 1964 60A	Delta 26 (U)	Oct 4		DOV	VN JAN 30, 1966			Interplanetary Monitoring Platform to obtain magnetic fields, radiation, and solar wind data. Failed to reach planned apogee;provided good data
RFD-2 (S)	Scout 31 (S)	Oct 9			DRBITAL FLIGHT			Reentry flight carried AEC Reactor Mockup. Reimbursable (AEC).
Explorer 22 (S) 1964 64A	Scout 32 (S)	Oct 10	104.3	1054	872	79.7	52.6	Beacon Explorer; to provide data on variations in the ionosphere's structure and relate ionospheric behavior to solar radiation. Low-cost ground stations throughout the work! received uncoded radio signals. Laser tracking accomplished on October 11, 1964. (WSMC)

MISSION/	LAUNCH IL	AUNCH	PERIOD	CURRENT O	RBITAL PARAN	TERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE		Apogee (km)	Perigee (km) I	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Mariner III (U) 1964 73A	Atlas-Agena D 289 (U)	Nov 5			CENTRIC ORBIT		260.8	Mars flyby. Fiberglass shroud failed to jettison properly, solar panels failed to extend, Sun and Canopus not acquired. Transmissions ceased 9 hours after launch.
Explorer 23 (S-55C) (S) 1964 74A	Scout 33 (S)	Nov 6		DOW	N JUN 29, 1983		133.8	Provided data on meteoroid penetration and resistance of various materials to penetration.
Explorer 24 (S) 1964 76A	Scout 34 (S)	Nov 21		DOW	N OCT 18, 1968		8.6	First dual payload (Air Density/Injun); two satellites provided detailed information on complex radiation-air density relationships in the upper
Exploret 25 (S) 1964 768	.,		114.6	2354	522	81.3	34.0	atmospheres. (WSMC)
Mariner IV (S) 1964 77A	Atlas-Agena D 288 (S)	Nov 28		HELIO	CENTRIC ORBIT		260.8	Second of two 1964 Mars tlyby launches. Encounter occurred on July 14, 1965, with closest approach at 6,118 miles of the planet. Transmitted 22 pictures.
Apollo Abort A-002 (S)	Little Joe II (S)	Dec 8		SUBO	RBITAL FLIGHT		42593.0	First test of Apollo emergency detection system at abort altitude. (White Sands)
Centaur 1964 82A	Atlas-Centaur (AC-4) (S)	Dec 11		DOW	N DEC 12, 1964		2993.0	Vehicle development flight carried mass model of Surveyor spacecraft; propulsion and stage separation test.
San Marco 1 (S) 1964 84A	Scout 35 (S)	Dec 15		DOW	N SEP 13, 1965		115.2	Flight test of satellite to furnish data on air density and ionosphere characteristics. Launch vehicle provided by NASA; taunched by Italian aunch crew. Cooperative with Italy. (WFF)
Explorer 26 (S) 1964 86A	Delta 27 (S)	Dec 21		CURRENT ELEM	ENTS NOT MAINT	AINED	45.8	Energetic Particles Explorer; carried five experiments to provide data on high-energy particles.
1965								1965
Gemini II (S)	Titan II 2 (S)	Jan 19		SUBC	RBITAL FLIGHT		3133.9	Demonstrate structural integrity of reentry module heat protection during maximum heating rate reentry and demonstrate variable lift on reentry module.
Tiros IX (S) 1965 04A	Delta 28 (S)	Jan 22	118.9	2564	702	96.4	138.3	First "Cartwheel" configuration for Weather Bureau's Operational system. Provided Increased coverage of global cloud cover with pictures of excellent quality.
OSO B-2 (S) 1965 07A	Delta 29 (S)	Feb 3			/N ÁUG 9, 1989		244.9	Second in a series to measure the frequency and energy of solar electromagnetic radiation in the ultraviolet, X-ray and gamma-ray regions of the spectrum.
Pegasus I (S) 1965 09A	Saturn I (SA-9) (S)	Feb 16		DOW	N SEP 17, 1978		1451.5	Obtained scientific and engineering data on the magnitude and direction of meteoroids in near-Earth orbit.
D. 00								

MISSION/	LAUNCH I	AUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Ranger VIII (S) 1965 10A	Atlas-Agena B 196 (S)			IMPA	CTED MOON ON FE		364.7	Photograph lunar surface before hard impact. Transmitted 7,137 high quality photographs before impacting in the Sea of Tranquility; flight time 64.54 hours.
Centaur Test (U)	Atlas-Centaur (AC-5) (U)			SUB	ORBITAL FLIGHT		2548.0	Vehicle development test; Atlas stage failed 4 seconds after liftoff.
Ranger IX (S) 1965 23A	Atlas-Agena B 204 (S)			IMPACTED	MOON ON MAR 24,	1965	364.7	Photograph lunar surface before hard impact. Transmitted 5,814 excellent quality pictures; about 200 pictures relayed live via commercial TV. Flight time 64.52 hours.
Gemini III (S) 1965 24A	Titan II 3 (S)	Mar 23			DED MAR 23, 1965		3236.9	First manned orbital flight of the Gemini program, with astronauts Virgil I. Grissom and John W. Young. Manually controlled reentry after three orbits. Mission Duration 4 hours 52 minutes 31 seconds.
Intelsat 1 (F-1) (S) 1965 28A	Delta 30 (S)	Apr 6		CURRENT EL	EMENTS NOT MAIN	TAINED	38.5	First operational satellite for Comsat Corp., to provide commercial trans-Atlantic communications. Reimbursable (Comsat).
Explorer 27 (S) 1965 32A	Scout 36 (S)	Apr 29	107.7	1312	929	41.2	60.8	Beacon Explorer; obtained data on Earth's gravitational field. Also carried laser tracking experiments.
Apollo Abort A-003 (U)	Little Joe II (U)	May 19		SUB	ORBITAL FLIGHT			Demonstration of abort capability of Apollo spacecraft. Launch escape vehicle at high atlitude not accomplished due to matfunction of Little Joe II Booster. (White Sands)
Fire II (S)	Atlas-Antares 264 (S)	May 22		SUB	ORBITAL FLIGHT		2005.8	Second Reentry Test to study heating environment encountered by a body entering the Earth's atmosphere at high speed.
Pegasus II (S) 1965 39A	Saturn I (SA-8) (S)	May 25		DO	WN NOV 3, 1979		1451.5	Micrometeoroid detection experiment confirmed lower meteoroid density than expected.
Explorer 28 (S) 1965 42A	Delta 31 (S)	May 29		DO	WN JUL 4, 1968		59.0	Third Interplanetary Monitoring Platform, carrying eight scientific instruments, to measure magnetic fields, cosmic rays, and solar wind beyond the Earth's magnetosphere.
Gemini IV (S) 1965 43A	Titan II 4 (S)	Jun 3		LAN	DED JUN 7, 1965		3537.6	
Tiros X (S) 1965 51A	Delta 32 (S)	Jul 1	100.1	807	722	98.8	127.0	of 1965 hurricane and typhoon season.
Pegasus III (S) 1965 60A	Saturn I (SA-10) (S)	Jul 30		DO	WN AUG 4, 1969		1451.5	Final micrometeoroid detection experiment. Results of Pegasus program indicated that the flux of small particles was less than expected, the flux of large particles was more than expected, and the flux of medium-sized particles was about as predicted.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARAM	ETERS	WEIGHT	
inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) Ir	icl (deg)	_(kg)	(All Launches from ESMC, unless otherwise noted)
Scout Test (S) Secor (S) 1965 63A	Scout 37 (S)	Aug 10	122.2	2419	1134	69.2	20.0	Vehicle development test. Carried U.S. Army Secor geodetic satellite. Reimbursable (DOD).
Centaur Test (S) 1965 64A	Atlas-Centaur (AC-6) (S)	Aug 11		BAR	YCENTRIC ORBIT		952.6	Vehicle development test. Carried Surveyor dynamic model. Direct-ascent test for guidance evaluation.
Gemini V (S) 1965 68A REP 1965 68C	Titan II 5 (S)	Aug 21		LÂNDED AUG 29, 1965 DOWN AUG 27, 1965			3175.2	Third manned orbital flight with L. Gordon Cooper and Charles Conrad, Jr. Ejected Rendezvous Evaluation Pod (REP) for simulated rendezvous maneuvers experiment; participated in communications and other on-board experiments. Mission Duration: 190 hours 55 minutes 14 seconds.
050-C (U)	Delta 33 (U)	Aug 25		DID N	OT ACHIEVE ORBIT		281.2	Third in a series to maintain continuity of observations during solar activity cycle. Vehicle third stage ignited prematurely.
OGO II (U) 1965 81A	Thor-Agena D (S)	0 Oct 14		DO	WN SEP 17, 1981		507.1	Carried 20 experiments to investigate near-Earth space phenomena on an interdisciplinary basis. Failure of primary launch vehide guidance resulted in higher than planned orbit. Nineteen experiments returned useful data. (WSMC)
Gemini VI (U)	Atlas-Agena (5301 (U)	0 Oct 25		DID N	OT ACHIEVE ORBIT			Agena target vehicle. Simultaneous countdown of the Gemini spaccraft and Attas-Agena Target Vehicle. Telemetry was lost 375 seconds after launch of the target vehicle; Gemini launch was terminated at T-42 minutes.
Explorer 29 (S) 1965 89A	Detta 34 (S)	Nov 6	120.3	2274	1113	59.4	174.6	GEOS-A, part of U.S. Geodetic Satellite Program to provide new geodetic data about the Earth.
Explorer 30 (S) 1965 93A	Scout 38 (S)	Nov 18	100.4	881	664	59.7	56.7	Monitor solar X-rays and ultraviolet emissions during final portion of IQSY. Data acquired by NRL and foreign stations in 13 countries. Cooperative with NRL. (WFF)
Explorer 31 (S) 1965 98B	Thor-Agena E (S)	8 Nov 29	120.0	2859	501	79.8	98.9	Make related studies of ionospheric composition and temperature variations. Provided excellent data from regions of the ionosphere
Alouette II (S) 1965 98A			118.3	2708	501	79.8	146.5	
Gemini VII (S) 1965 100A	Titan II 6 (S)	Dec 4	-	LAN	DED DEC 18, 1965		3628.8	Fourth manned mission with Frank Borman and James A. Lovell, Jr. Astronauts flew part of the mission without wearing pressure suits. Mission Duration: 330 hours 35 minutes 01 seconds.
French 1A (S) 1965 101A	Scout 39 (S)	Dec 6	98.8	708	696	75.9	71.7	Study VLF wave propagation in the ionosphere and magnetosphere and measure electron densities. Cooperative with France. (WSMC

MISSION/	LAUNCH	LAUNCH	PERIOD	CURREN	T ORBITAL PARA	METERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (kr	n) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Gemini VI-A (S) 1965 104A	Titan II 7 (S)	Dec 15			NDED DEC 16, 1965		3175.2	Fifth manned mission with Walter M. Schirta, Jr. and Thomas P. Stafford. First rendezvous in space accomplished with Gemini VII spacecraft. Mission Duration 25 hours 51 minutes 24 seconds.
Pioneer VI (S) 1965 105A	Delta 35 (S)	Dec 16		HE	LIOCENTRIC ORBIT		63.5	Operated in solar orbit to provide data on solar wind, interplanetary magnetic fields, solar physics, and high-energy charged particles and magnetic fields.
1966								1966
Apollo Abort A-004 (S)	Little Joe II (S)	Jan 20		SI	JBORBITAL FLIGHT		4989.0	Apollo development flight to demonstrate launch escape vehicle performance. Last unmanned ballistic flight. (White Sands)
ESSA I (S) 1966 08A	Delta 36 (S)	Feb 3	99.7	806	684	97.8	138.3	Sun-synchronous orbit permitted satellite to view weather in each area of the globe each day, photographing a given area at the same local time every day. First Advanced Vidicon Camera System provided valuable information about weather patterns and conditions. Reimbursable (NOAA). (WSMC)
Reentry V (S)	Scout 42 (S)	Feb 9		SL	BORBITAL FLIGHT		95.0	Test to investigate the heating environment of a body reentering the Earth's atmosphere at 27,000 fps. (WFF)
Apollo Saturn (AS-201) (S)	Saturn IB (S)	Feb 26		SL	BORBITAL FLIGHT		20820.1	Launch Vehicle development flight; carried unmanned Apollo spacecraft.
ESSA II (S) 1966 16A	Detta 37 (S)	Feb 28	113.4	1412	1352	101.0	131.5	Provided direct readout of cloud cover photos to local users. Along with ESSA I, completed the initial global weather satellite system. Reimbursable (NOAA). (WSMC)
Gemini VIII (U) 1966 20A	Titan II 8 (S)	Mar 16			NDED MAR 17, 1966		3788.0	Agena Target Vehicle launched from Complex 14 and manned Gernini launched from Complex 19. Astronauts Neil A. Armstrong and David
GATV (S) 1966 19A	Atlas-Agena D 5302 (S)) Mar 16		D	OWN SEP 15, 1967			R. Scott accomplished rendezvous and docking. Attitude and maneuver thruster malfunction caused the docked spacecraft to tumble. Astronauts separated the vehicles and terminated the mission early; EVA was not accomplished. First Pacific Ocean landing. Mission Duration 10 hours 41 minutes 26 seconds.
Centaur Test (U) 1966 30A	Atlas-Centaur (AC-8) (U)	Apr 8		D	OWN MAY 5, 1966		784.7	Launch vehicle development flight; carried Surveyor model. Second Centaur Engine firing unsuccessful.
OAO I (U) 1966 31A	Atlas-Agena D 5002C (S)		100.6	793	783	35.0	1769.0	Carried four experiments to study UV, X-ray and gamma-ray regions. Primary battery malfunctioned.
Nimbus II (S) 1966 40A	Thor-Agena D D 5303 (S)	May 14	108.0	1174	1091	100.6	413.7	Provided global weather photography on 24-hour basis for meteorological research and operational use. (WSMC)

MISSION/	LAUNCH	AUNCH	PERIOD	CURRENT	ORBITAL	PARAMET	ERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee	(km) Incl	(deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Gemini IX (U)	Atlas-Agena D 5303 (U)	May 17			OT ACHIE			3252.0	Target vehicle for Gemini IX; vehicle failure caused by a short in the servo control circuit.
Explorer 32 (S) 1966 44A	Detta 38 (S)	May 25			WN FEB 22	-		224.5	Atmosphere Explorer; carried 8 experiments to measure temperatures, composition, density and pressures in the upper atmosphere.
Surveyor I (S) 1966 45A	Atlas-Centaur (AC-10) (S)	May 30		LANDED	ON MOON	I JUN 2, 1966			Achieved soft lunar landing in Ocean of Storms. Performed engineering tests and transmitted photography. Landing pads penetrated the lunar surface to a maximum depth of 1 inch.
Gemini IXA (U) 1966 47A GATV (U)	Titan II 9 (S) Atlas-Agena D	Jun 3 Jun 1			IDED JUN 6 WN JUN 11			3705.3	Seventh manned mission with Thomas P. Stafford and Eugene A. Cernan. Target vehicle shroud failed to separate; docking was not achieved. EVA was successful, but evaluation of AMU was not
1966 46A OGO III (S) 1966 49A	5304 (S) Atlas-Agena B 5601 (S)	Jun 7		CURRENT EL	EMENTS	IOT MAINTAI	NED	514.8	achieved. Mission Duration 72 hours 20 minutes 50 seconds. Carried 21 experiments to obtain correlated data on geophysical and solar phenomena in the Earth's atmosphere. First 3-axis stabilization in highly elliptical orbit.
OV-3 (S) 1966 52A	Scout 46 (S)	Jun 9	142.9	4703	645		40.8	173.0	Radiation research satellite for the USAF. Reimbursable (DOD). (WFF
Pageos I (S) 1966 56A	Thor-Agena D (S)	Jun 23	177.0	5599	2533	3	84.5	56.7	Sphere, 100 feet in diameter, to determine the location of continents, land masses, and other geographic points using a world-wide triangulation network of stations. (WSMC)
Explorer 33 (S) 1966 58A	Delta 39 (S)	Jul 1		CURRENT EL	EMENTS	IOT MAINTAI	NED	93.4	Interplanetary Monitoring Platform to study, at lunar distance, the Earth's magnetosphere and magnetic tail. Planned anchored lunar orbit was not achieved; useful data obtained from Earth orbit.
Apollo Saturn AS-203 (S) 1966 59A	Saturn IB (S)	Jul 5		DC	WN JUL 5,	1966		2635.4	Launch vehicle development flight to evaluate the S-IVB stage vent and restart capability.
Gemini X (S) 1966 66A	Titan II 10 (S)	Jul 18			DED JUL 2			3762.6	Eighth manned mission with John W. Young and Michael Collins. Performed first docked vehicle maneuvers; standup EVA of 89
GATV (S) 1966 65A	Atlas-Agena D 5305 (S)	Jul 18			WN DEC 29	-			minutes; umbilical EVA of 27 minutes. Mission duration 70 hours 46 minutes 39 seconds.
Lunar Orbiter I (S) 1966 73A	Atlas-Agena D 5801 (S)	Aug 10		DO	WN OCT 29), 1966		385.6	Photograph landing sites for Apollo and Surveyor missions from lunar orbit. Photographed over 2 million square miles of the Moon's surface; took the first two photos of the Earth from the distance of the Moon. Demonstrated maneuverability in lunar orbit.

	196
WEIGHT	REMARKS
(kg)	(All Launches from ESMC, unless otherwise noted)
63.5	Second in a series of interplanetary probes to provide data on solar
	wind, magnetic fields, and cosmic rays.

MISSION/	LAUNCH	AUNCH	PERIOD	CURRENT	ORBITAL PARAM	NETERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km) Perigee (km) I	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Pioneer VII (S) 1966 75A	Delta 40 (S)	Aug 17	•··		IOCENTRIC ORBIT		63.5	Second in a series of interplanetary probes to provide data on solar wind, magnetic fields, and cosmic rays.
Apollo Saturn AS-202 (S)	Saturn IB (S)	Aug 25		ຣບ	BORBITAL FLIGHT		25809.7	Apollo launch vehicle/spacecraft development flight to test Command Module heat shield and obtain launch vehicle and spacecraft data.
Gemini XI (S) 1966 81A	Titan II 11 (S)	Sep 12			NDED SEP 15, 1966		3798.4	Ninth manned mission with Charles Conrad, Jr. and Richard F. Gordon, Jr. Rendezvous and docking achieved. Umbilical and standup EVA performed and as well as tethered spacecraft experiment. Mission
GATV (S) 1966 80A	Atlas-Agena D 5306 (S)	Sep 12		DC	OWN DEC 30, 1966			Duration 71 hours 17 minutes 8 seconds.
Surveyor II (U) 1966 84A	Atlas-Centaur (AC-7) (S)	Sep 20		IMPACTED	MOON ON SEP 23, 1	1966	1000.2	Second soft lunar landing planned. One vernier engine did not fire for midcourse correction, sending the spacecraft into a tumbling mode. Crashed southeast of crater Copernicus after 62.8 hour flight.
ESSA III (S) 1966 87A	Delta 41 (S)	Oct 2	114.5	1483	1384	100.9	147.4	Replaced ESSA I in Tiros Operational Satellite (TOS) system. Sophisticated cameras and sensors provided valuable information about the world's weather patterns/conditions. Reimbursable (NOAA)_(WSMO)
Centaur Test (AC-9) (S) 1966 95A	Atlas-Centaur (AC-9) (S)	Oct 26		D	OWN NOV 6, 1966		952.6	Launch vehicle development flight; Surveyor model injected into simulated lunar transfer orbit. Demonstrated two-burn parking orbit operational capability.
Intelsat II F-1 (U) 1966 96A	Detta 42 (S)	Oct 26	717.7	37229	3123	16.9		Comsat commercial communications satellite. Apogee monitor matfunction resulted in elliptical orbit. Reimbursable (Comsat).
Lunar Orbiter 2 (S) 1966 100A	Atlas-Agena D 5802 (S)	Nov 6		DC	OWN OCT 11, 1967		385.6	Photographed lunar landing sites from lunar orbit; provided new data on lunar gravitational field; photographed Ranger VIII landing point and surface debris tossed out at impact.
Gemini XII (S) 1966 104A	Titan II 12 (S)	Nov 11			NDED NOV 15, 1966		3762.1	Tenth and last manned Gemini flight with James A. Lovell, Jr. and Edwin E. Aldrin, Jr. Rendezvous and docking achieved. Two EVA's
GATV (S) 1966 103A	Atlas-Agena D 5307 (S)			DC	DWN DEC 23, 1966			performed. Mission duration 94 hours 34 minutes 31 seconds.
ATS I (S) 1966 110A	Atlas-Agena D 5101 (S)	Dec 7	1436.0	35817	35750	14.3	703.1	Perform various communication, meteorology, and control technology experiments and carry out scientific measurements of orbital environment. Experiments results outstanding. Spin-scan cloud camera photographed changing weather patterns; air-to-ground and air-to-air communications demonstrated for the first time.
Biosatellite I (U) 1966 114A	Delta 43 (S)	Dec 14		DC	DWN FEB 15, 1967		426.4	Carried biological specimens to determine the effects of the space environment on life processes. Reentry vehicle separated but rocket failed, leaving the capsule in orbit. No useful scientific data obtained.

MISSION/	LAUNCH L	AUNCH	PERIOD	CURREN'	T ORBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (kr	n) Perigee (km)	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1967								1967
Intelsat I F-2 (S) 1967 01A	Delta 44 (S)	Jan 11		CURRENT	ELEMENTS NOT MAIN	TAINED	87.1	Comsat commercial communication satellite. Reached intended location on February 4, 1967. Reimbursable (Comsat).
ESSA IV (S) 1967 06A	Delta 45 (S)	Jan 26	113.4	1437	1323	102.0	131.5	Replaced ESSA II in TOS system. Provided daily coverage of local weather systems to APT receivers. Shutter malfunction rendered one camera inoperative. Reimbursable (NOAA). (V/SMC)
Lunar Orbiter 3 (S) 1967 08A	Atlas-Agena D 5803 (S)	Feb 5		ī	DOWN OCT 9, 1967		385.6	Photographed lunar landing sites from lunar orbit; also returned 600,000 sq. mi. of front and 250,000 sq. mi. of back side lunar photography: provided gravitational field and lunar environment data.
OSO III (S) 1967 20A	Delta 46 (S)	Mar 8		<u> </u>	DOWN APR 4, 1982		284.4	Carried 9 experiments to study structure, dynamics and chemical composition of the outer solar atmosphere through X-ray, visible, and UV radiation measurements.
Intelsat II F-3 (S) 1967 26A	Detta 47 (S)	Mar 22		CURRENT	ELÉMENTS NOT MAIN	TAINED	87.1	Comsat commercial communication satellite, Completed Intelsat II system. Reimbursable (Comsat).
ATS II (U) 1967 31A	Atlas-Agena D 5102 (U)	Apr 6	_		DOWN SEP 2, 1969		324.3	Test of the gravity gradient control system; carried microwave communications, meteorological cameras, and eight scientific experiments. Second stage failed to restart, resulting in an elliptical orbit. Limited data obtained.
Surveyor III (S) 1967 35A	Atlas-Centaur (AC-12) (S)	Apr 17		LANDE	d ôn moon àpr 20, "	1967	1035.6	Vernier engines talled to cut off as planned; spacecraft bounced twice before landing. Surface sampler was used for pressing, digging, trenching, scooping, and depositing surface material in view of the camera. Returned over 6,300 photographs, including pictures of the Earth during lunar eclipse.
ESSA V (S) 1967 36A	Delta 48 (S)	Apr 20	113.5	1419	1352	102.0	147.4	Replaced ESSA III in TOS System. Furnished daily global coverage of weather systems. Reimbursable (NOAA). (WSMC)
San Marco II (S) 1967 38A	Scout 52 (S)	Apr 26		D	OWN OCT 14, 1967		129.3	First satellite launch attempt from a mobile sea-based platform in the Indian Ocean; launched conducted by Italian crew. Provided continuous equatorial air density measurements. Cooperative with Italy. (SM)
Lunar Orbiter IV (S) 1967 41A	Atlas-Agena D 5804 (S)	May 4			DOWN OCT 6, 1967		385.6	Lunar orbit achieved. Photographed 99% of the Moon's front side and additional back side areas.
Ariel III (S) 1967 42A	Scout 53 (S)	May 5			OWN DEC 14, 1970			First UK-built satellite to extend atmospheric and ionospheric investigations. Cooperative with UK. (WSMC)
Explorer 34 (S) 1967 51A	Detta 49 (S)	May 24			OWN MAY 3, 1969		73.9	Fifth in Interplanetary Monitoring Platform series to study Sun-Earth relationships, Elliptical orbit achieved. Useful data returned. (WSMC)

MISSION/	LAUNCH	AUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
ESRO II-A (U)	Scout 55 (U)	May 29		DID NOT ACHIEVE ORBIT			89.1	Carried 7 experiments to study solar and cosmic radiation. Third stage vehicle failure. Cooperative with ESRO. (WSMC)
Mariner V (S) 1967 60A	Atlas-Agena D 5401 (S)			HEL	IOCENTRIC ORBIT		244.9	Venus flyby. Returned data on planet's atmosphere, radiation, and magnetic field environment.
Surveyor IV (U) 1967 68A	Atlas-Centaur (AC-11) (S)			IMPACTE	D MOON ON JUL 17	, 1967	1037.4	Lunar soft landing mission. All systems were normal until 2 seconds before retro rocket burnout (2-1/2 minutes before touchdown) when the sional was abruptly lost.
Explorer 35 (S) 1967 70A	Delta 50 (S)	Jul 19		SELE	ENOCENTRIC ORBIT	ſ	104.4	Interplanetary Monitoring Platform to study solar wind and interplanetary fields at lunar distances. Lunar orbit achieved. Results indicated no shock front precedes the Moon, no magnetic field, no radiation bets or evidence of lunar ionosphere.
OGO IV (S) 1967 73A	Thor-Agena D (S)			DO	WN AUG 16, 1972		551.6	Study relationship between Sun and Earth's environment. Near-polar orbit achieved, 3-axis stabilized. (WSMC)
Lunar Orbiter V (S) 1967 75A	Atlas-Agena D 5805 (S)	Aug 1		DC	WN JAN 31, 1968		385.6	Fifth and final mission to photograph potential landing sites from lunar orbit. Increased lunar photographic coverage to better than 99%.
Biosatellite II (S) 1967 83A	Delta 51 (S)	Sep 7		DC	DWN SEP 9, 1967		425.4	Carried 13 experiments to conduct biological experiments in low Earth orbit. Reentry initiated 17 orbits early because of communications difficulties and storm in recovery area. Air recovery successful.
Surveyor V (S) 1967 84A	Atlas-Centaur (AC-13) (S)	Sep 8		LANDED	ON MOON SEP 11, 1	967	1006.1	Lunar soft landing accomplished; returned TV photos of lunar surface and data on chemical characteristics of lunar soil.
Intelsat II (S) 1967 94A	Delta 52 (S)	Sep 28		CURRENT E	LEMENTS NOT MAII	NTAINED	87.1	Comsat commercial communications satellite to provide 24-hour transoceanic service. Reimbursable (Comsat).
OSO-IV (S) 1967 100A	Delta 53 (S)	Oct 18		DŌ	WN JAN 15, 1982		276.7	Continuation of OSO program to better understand the Sun's structure and determine the solar influence upon the Earth. Obtained the first pictures made of the Sun in extreme ultraviolet.
RAM C-1 (S)	Scout 57 (S)	Oct 19		SUE	BORBITAL FLIGHT		116.6	Reentry test to investigate communications problems experienced during reentry. (WFF)
ATS III (S) 1967 111A	Atlas-Agena D 5103 (S)		1436.1	35844	35730	14.2	714.0	Purther development of experiments and concepts in useful applications of space technology to communications, meteorology, navigation, and Earth resources management.
Surveyor VI (S) 1967 112A	Atlas-Centaur (AC-14) (S)	Nov 7		LANDED	ON MOON NOV 10,	1967	1008.3	Lunar soft landing achieved; pictures and soil analysis data transmitted. Vernier engines restarted, lifting spacecraft 10 feet from the surface and landing 8 feet from the original landing site, performing the first rocket- powered takeoff from the lunar surface.

	-							
MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	FORBITAL PAR	AMETERS	WEIGHT	
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (kn	n) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Apollo 4 (S) 1967 113A	Saturn V AS-501 (S)	Nov 9	<u> </u>		OWN NOV 9, 1967		45506.0	Launch vehicle/spacecraft development flight. First launch of the Saturn V; carried unmanned Apollo Command/Service Module.
ESSA VI (S) 1967 114A	Delta 54 (S)	Nov 10	114.8	1482	1407	102.2	129.7	Replaced ESSA II and ESSA IV in the TOS system; used in central analysis of global weather. Reimbursable (NOAA). (WSMC)
Pioneer VIII (S) 1967 123A	Delta 55 (S)	Dec 13		HE	LIOCENTRIC ORBI	T	65.8	Third in a series of interplanetary probes to provide data on the solar wind, magnetic fields, and cosmic rays. Carried TETR-1, the first NASA
TETR-1 (S) 1967 123B	(0)			D	OWN APR 28, 1968		20.0	piggyback payload.
1968								1968
Surveyor VII (S) 1968 01A	Atlas-Centaur (AC-15) (S)	Jan 7		LANDE	D ON MOON JAN 9	, 1968	1040.1	Lunar soft landing achieved; provided pictures of lunar terrain, portions of spacecraft, experiment operations, stars, planets, crescent Earth as it changed phases, and first observation of artificial light from the Earth.
Explorer 36 (S) 1968 02A	Delta 56 (S)	Jan 11	112.2	1572	1079	105.8	212.3	GEOS spacecraft to provide precise information about the size and shape of the Earth and strength of an variations in its gravitational field; part of the National Geodetic Program. (WSMC)
Apollo 5 (S) 1968 07A	Saturn IB AS-204 (S)	Jan 22		D	OWN JAN 24, 1968		42,506.0	First flight test of the Lunar Module; verified the ascent and descent stages, propulsion systems, and restart operations.
OGO V (S) 1968 14A	Atlas-Agena L 5602A (S)	Mar 4		CURRENT	LEMENTS NOT MA	INTAINED	611.0	Provided measurements of energy characteristics in the Earth's radiation belts; first evidence of electric fields in the bow shock.
Explorer 37 (S) 1968 17A	Scout 60 (S)	Mar 5		D	OWN NOV 16, 1990)	89.8	Solar Explorer to provided data on selected solar X-ray and ultraviolet emissions. Cooperative with NRL. (WFF)
Apollo 6 (U) 1968 25A	Saturn V AS-502 (U)	Apr 4			DOWN APR 4, 1968		42856.0	Launch vehicle and spacecraft development flight. Launch vehicle engines malfunctioned; spacecraft systems performed normally.
Reentry VI (S)	Scout 61 (S)	Apr 27		SU	JBORBITAL FLIGHT	r –	272.0	Turbulent heating experiment to obtain heat transfer measurements at 20,000 fps. (WFF)
ESRO IIB (S) 1968 41A	Scout 62 (S)	May 17		C	DOWN MAY 8, 1971		89.1	Carried seven experiments to study solar and cosmic radiation in the lower Van Allen bett. Cooperative with ESRO. (WSMC)
Nimbus B (U) Secor 10 (U)	Thor-Agena D (U)) May 18		DIC	NOT ACHIEVE OF	1BIT 20.4	571.5	Experimental meteorological satellite; also carried Secor 10 (DOD) as a secondary payload. Booster malfunctioned; destruct signal sent by Range Safety Officer. (WSMC)
Explorer 38 (S) 1968 55A	Delta 57 (S)	Jul 4	224.2	5869	5825	120.8	275.4	Radio Astronomy Explorer to monitor low-frequency radio signals originating in our own solar system and the Earth's magnetosphere and radiation belts.
l								

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT C	RBITAL PARAN	ETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) I	ncl (dea)	(kg)	(All Launches from ESMC, unless otherwise noted)
Explorer 39 (S) 1968 66A	Scout 63 (S)	Aug 8			/N JUN 22, 1981		9.3	Dual payload (Air Density/Injun Explorers) to continue the detailed scientific study of the density and radiation characteristics of the
Explorer 40 (S) 1968 66B			117.9	2494	677	80.7	69.4	Earth's upper atmosphere. (WSMC)
ATS IV (U) 1968 68A	Atlas-Centaur (AC-17) (U)	Aug 10	·	DOW	/N OCT 17, 1968		390.1	Evaluate gravity-gradient stabilization, simultaneous transmission of voice, TV, telegraph, and digital data. Centaur failed to reignite for second burn; spacecraft remained in parking orbit attached to Centaur.
ESSA VII (S) 1968 69A	Delta 58 (S)	Aug 16	114.9	1471	1428	101.4	147.4	Replaced ESSA V as the primary stored data satellite in the TOS system. Reimbursable (NOAA), (WSMC)
RAM CIL(S)	Scout 64 (S)	Aug 22		SUBC	ORBITAL FLIGHT		122.0	Measure electron and ion concentrations during reentry. (WFF)
Intelsat III F-1 (U)	Delta 59 (U)	Sep 18		DID NO	DT ACHIEVE ORBIT		286.7	Comsat commercial communications satellite. Vehicle failure. Reimbursable (Comsat).
ESRO IA (S) 1968 84A	Scout 65 (S)	Oct 3		DOW	/N JUN 26, 1970		85,8	Carried eight experiments to measure energies and pitch angles of particles impinging on the polar lonosphere during magnetic storms and quiet periods. Cooperative with ESRO. (WSMC).
Apollo 7 (S) 1968 89A	Satum IB AS-205 (S)	0d 11		LAND	ED OCT 22, 1968		51,655.0	First manned flight of the Apollo spacecraft with Walter M. Schirra, Jr., Donn F. Eisele, and Walter Cunningham. Performed Earth orbit
Pioneer IX (S) 1968 100A TETR 2 (S) 1968 100B	Delta 60 (S)	Nov 8			CENTRIC ORBIT		66.7	operations: Mission Duriation 280 hours 9 minutes 3 seconds. Deep space probe to collect scientific data on the electromagnetic and plasma properties of interplanetary space. Carried TETR 2 as a secondary payload.
HEOS A (S) 1968 109A	Delta 61 (S)	Dec 5		DOW	N OCT 28, 1975		108.8	Study interplanetary magnetic fields and solar cosmic ray particles. Reimbursable (ESA).
OAO II (S) 1968 110A	Atlas-Centaur (AC-16) (S)	Dec 7	99.9	759	750	35.0	2016.7	Perform astronomy investigations of celestial objects in the ultraviolet region of the electromagnetic spectrum.
ESSA VIII (S) 1968 114A	Delta 62 (S)	Dec 15	114.6	1461	1411	101.8	136.1	Meteorological satellite for ESSA. Reimbursable (NOAA). (WFF)
Intelsat III F-2 (S) 1968 116A	Delta 63 (S)	Dec 18		CURRENT ELE	MENTS NOT MAIN	TAINED		Initial increment of first global commercial communications satellite system for Comsat. Reimbursable (Comsat).
Apollo 8 (S) 1968 118A	Satum V AS-504 (S)	Dec 21		LAND	ED DEC 27, 1968			First manned Saturn V flight with Frank Borman, James A. Lovell, Jr., and William A. Anders. First manned lunar orbit mission; provided a close-up look at the Moon during 10 lunar orbits. Mission Duration 147 hours 0 minutes 42 seconds.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT C	RBITAL PARAM	IETERS	WEIGHT	
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1969								1969
OSO V (S) 1969 06A	Delta 64 (S)	Jan 22		DOV	WN APR 2, 1984		288.5	Continuation of OSO program to study Sun's X-rays, gamma rays, and radio emissions,
ISIS-A (S) 1969 09A	Delta 65 (S)	Jan 30	127.7	3471	574	88.4	235.9	Satellite built by Canada: carried 10 experiments to study the ionosphere, Cooperative with Canada. (WSMC).
Intelsat III F-3 (S) 1969 11A	Detta 66 (S)	Feb 5		CURRENT ELE	MENTS NOT MAIN	TAINED	286.7	Second increment of Comsat's operational commercial communication satellite system. Reimbursable (Comsat).
Mariner VI (S) 1969 14A	Atlas-Centaul (AC-20) (S)	r Feb 25		HELIC	CENTRIC ORBIT		411.8	Mars flyby; provided high resolution photographs of the Martian surface, Closest approach was 2,120 miles on July 31, 1969.
ESSA IX (S) 1969 16A	Detta 67 (S)	Feb 26	115.2	1503	1422	101.4	157.4	Ninth and tast in the TOS series of meteorological satellites. Reimbursable (NOAA).
Apolio 9 (S) 1969 18A	Saturn V SA-504 (S)	Mar 3		LAND	ED MAR 13, 1969		51655.0	Earth orbital flight with James A. McDivitt, David R. Scott, and Russell Schweickar. First flight of the lunar module. Performed rendezvous, docking, and EVA. Mission Duration 241 hours 0 minute 54 seconds.
Mariner VII (S) 1969 30A	Atlas-Centau (AC-19) (S)	r Mar 27		HELIC	CENTRIC ORBIT		411.8	Mars flyby; provided high resolution photographs of the Martian surface. Closest approach was 2,190 miles on August 5, 1969.
Nimbus III (S) 1969 37A	Thor-Agena (S)	Apr 14	107.2	1128	1069	100.0	575.6	Provided night and day global meteorological measurements from space. Secor (DOD) provided geodetic position determination
Secor 13 (S) 1969 37B	\ - <i>\</i>		107.2	1127	1067	100.0	20.4	measurements. (WSMC)
Apollo 10 (S) 1969 43A	Saturn V SA-505 (S)	May 18		LAND	ED MAY 26, 1969		51655.0	Manned lunar orbital flight with Thomas P. Stafford, John W. Young, and Eugene A. Cernan to test all aspects of an actual manned lunar landing except the landing. Mission Duration 192 hrs 3 mins 23 secs.
Intelsat III F-4 (S) 1969 45A	Delta 68 (S)	May 21		CURRENT ELE	MENTS NOT MAIN	TAINED	143.8	satellite system, Reimbursable (Comsat).
OGO VI (S) 1969 51A	Thor-Agena (S)	Jun 5		DOV	VN OCT 12, 1979	_	631.8	Last in the OGO series to provide measurements of the energy characteristics in the Earth's radiation belts; provided the first evidence of electric fields in the bow shock. (WSMC).
Explorer 41 (S) 1969 53A	Delta 69 (S)	Jun 21		DOV	VN DEC 23, 1972		78.7	the environment within and beyond Earth's magnetosphere. (WSMC)
Biosatellite III (U) 1969 56A	Detta 70 (S)	Jun 28		DO	WN JUL 7, 1969		696.3	Conduct intensive experiments to evaluate effects of weightlessness with a pigtal monkey onboard. Spacecraft deorbited after 9 days because the monkey's metabolic condition was deteriorating rapidly. Monkey expired 8 hours after recovery, presumably from a massive heart attack brought on by dehydration.

MISSION/	LAUNCH	AUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Apollo 11 (S) 1963 59A	Saturn V SA-506 (S)	Jul 16			NDED JUL 24, 1969	 _	51655.0	First manned lunar landing and return to Earth with Neil A. Armstrong, Michael Collins, and Edwin A. Aldrin. Landed in the Sea of Tranquillity on July 20, 1969; deployed TV camera and EASEP experiments, performed lunar surface EVA, returned lunar soil samples. Mission Duration 195 hours 18 minutes 35 seconds.
Intelsat III F-S (U) 1969 64A	Delta 71 (S)	Jul 26		DO	DWN OCT 14, 1988		146.1	Fourth increment of Comsat's operational commercial communication satellite system. Third-stage malfunctioned; satellite did not achieve desired orbit. Reimbursable (Comsat).
OSO VI (S) 1969 68A	Delta 72 (S)	Aug 9			OWN MAR 7, 1981			Continuing study of Sun's X-rays, gamma rays, and radio emissions. Carried PAC experiment to stabilize spent Delta stage.
PAC (S) 1969 68B				D	OWN APR 28, 1977		117.9	
ATS V (U) 1969 69A	Atlas-Centaur (AC-18) (S)	Aug 12	1447.5	36031	35986	13.9	432.7	Evaluate gravity-gradient stabilization for geosynchronous satellites. Anomaly after apogee motor firing resulted in counterclockwise spin; gravity-gradient booms could not be deployed. Nine of 13 experiments returned useful data.
Pioneer E (U) (TETR C) (U)	Delta 73 (U)	Aug 27		DID	NOT ACHIEVE ORBI	18.1	67.1	Deep space probe to study magnetic disturbances in interplanetary space. Vehicle malfunctioned; destroyed 8 minutes 3 seconds into powered flight by Range Safety Officer.
ESRO 1B (S) 1969 83A	Scout 66 (S)	Oct 1		DC	DWN NOV 23, 1969		85.8	Fourth European-designed and built satellite to study ionospheric and auroral phenomena over the northern polar regions. Reimbursable (ESA). (WSMC)
GRS-A (S) 1969 97A	Scout 67 (S)	Nov 7	110.8	2155	371	102.8	72.1	Study the inner Van Allen bett and auroral zones of the Northern Hemisphere, Cooperative with Germany. (WSMC)
Apollo 12 (S) 1969 99A	Satum V SA-507 (S)	Nov 14		LA	NDED NOV 24, 1969		51655.0	Second Manned lunar landing and return with Charles Conrad, Jr., Richard F. Gordon, and Alan F. Bean. Landed in the Ocean of Storms on November 19, 1969; deployed TV camera and ALSEP experiments; two EVA's performed; collected core sample and lunar materials; photographed and retrieved parts from Surveyor III spacecraft. Mission duration 244 hours 36 minutes 24 seconds.
Skynet A (S) 1969 101A	Delta 74 (S)	Nov 21		ELE	MENTS NOT AVAILA	BLE	242.7	Communication satellite for the United Kingdom. Reimbursable (UK).

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1970	· · · · · ·		<u> </u>	<u> </u>		·		1970
Intelsat III F-6 (S) 1970 03A	Detta 75 (S)	Jan 14		CURRENT E	LEMENTS NOT M	AINTAINED	155.1	Part of Comsat's operational commercial communication satellite system. Reimbursable (Comsat).
ITOS I (S) 1970 08A	Delta 76 (S)	Jan 23	115.0	1477	1431	101.3	306.2	Second generation meteorological satellite to provide daytime and nighttime cloud cover observations in both direct and stored modes.
Oscar 5 (S) 1970 08B	.,		115.0	1475	1431	101.3	9.1	Oscar (Australia), carried as a piggyback, was used by radio amateurs throughout the world. (WSMC)
SERT II (U) 1970 09A	Thor-Agena (S)	Feb 3	106.0	1044	1038	99.2	503.5	Ion engine test. Fell short of mission duration objective by less than 1 month. (WSMC)
NATOSAT I (S) 1970 21A	Detta 77 (S)	Mar 20	1436.2	35798	35779	12.9	242.7	Communications satellite for NATO. Reimbursable (NATO).
Nimbus D (S) 1970 25A	Thor-Agena (S)	Apr 8	107.1	1096	1086	99.9	619.6	Stabilized, Earth-oriented platform to test advanced systems for collecting meteorological and geological data. TOPO, carried as a
TOPO 1 (S) 1970 25B			106.9	1084	1082	99.8	21.8	piggyback, performed triangulation exercises. (WSMC)
Apollo 13 (U) 1970 29A	Saturn V SA-508 (S)	Apr 11		LAI	IDED APR 17, 1970)	51655.0	Third manned lunar landing attempt with James A. Lovell, Jr., John L. Swiger, Jr., and Fred W. Haise, Jr. Pressure lost in SM oxygen system; mission aborted; LM used for life support. Mission Duration 142 hours 54 minutes 41 seconds.
Intelsat III F-7 (S) 1970 32A	Delta 78 (S)	Apr 22		CURRENT	LEMENTS NOT M	AINTAINED	290.3	Part of Comsat's operational commercial communication satellite system. Reimbursable (Comsat).
Intelsat III F-8 (U) 1970 55A	Delta 79 (S)	Jul 23	1408.2	36634	33842	13.9	290.3	Part of Comsat's operational commercial communication satellite system. Malfunction during apogee motor firing; failed to achieve desired orbit. Reimbursable (Comsat).
Skynet 2 (U) 1970 62A	Delta 80 (S)	Aug 19		CURRENT E	LEMENTS NOT M	AINTAINED	242.7	Communication satellite for the United Kingdom. Telemetry terminated following apogee motor failure. Reimbursable (UK).
RAM CIII (S)	Scout 69 (S)	Sep 30			BORBITAL FLIGHT	· · · · · · · · · · · · · · · · · · ·	134.0	Reentry test of radio blackout.
OFO I (S) 1970 94A	Scout 70 (S)	Nov 9		D	OWN MAY 9, 1971		132.9	Orbiting Frog Otolith (OFO) in which frogs were used to study the effects of weightlessness on the inner ear, which controls balance.
RMS (S) 1970 948				D	OWN FEB 7, 1971			Radiation Meteoroid Spacecraft (RMS) provided data on radiation belts (WFF)
OAO B (U)	Atlas-Centau (AC-21) (U)	Nov 30		DID	NOT ACHIEVE OR	BIT	2122.8	Perform stellar observations in the UV region. Centaur nose fairing failed to separate; orbit not achieved.

MISSION/	LAUNCH I		PERIOD	CURRENT	ORBITAL PARAM	ETERS	WEIGHT	
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) Ir	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
ITOS A (S) 1970 106A	Delta 81 (S)	Dec 11	114.8	1471	1421	101.5	306.2	To augment NOAA's satellite world-wide weather observation capabilities, Reimbursable (NOAA). (WSMC)
Explorer 42 (S) 1970 107A	Scout 71 (S)	Dec 12		DC	WN APR 5, 1979		142.0	Small Astronomy Satellite to catalog celestial X-ray sources within and outside the Milky Way. First X-ray satellite. (San Marco)
1971								1971
Intelsat IV F-2 (S) 1971 06A	Atlas-Centaur (AC-25) (S)	Jan 25		ELEN	IENTS NOT AVAILABI	LE	1387.1	Fourth generation satellite to provide increased capacity for Comsat's global commercial communications network, Reimbursable (Comsat),
Apolio 14 (S) 1971 08A	Saturn V SA-509 (S)	Jan 31		LAN	IDED FEB 9, 1971		51655.0	Third Manned lunar landing with Alan B. Shepard, Jr., Stuart A. Roosa, and Edgar D. Mitchell. Landed in the Fra Mauro area on February 5, 1971; performed EVA, deployed lunar experiments, returned lunar samples. Mission duration 216 hours 1 minute 58 seconds.
NATOSAT 2 (S) 1971 09A	Delta 82 (S)	Feb 2	1436.1	35830	35744	13.7	242.7	Second communications satellite for NATO. Reimbursable (NATO)
Explorer 43 (S) 1971 19A	Delta 83 (S)	Mar 13		DO	WN OCT 2, 1974		288.0	Second generation Interplanetary Monitoring Platform to extend man's knowledge of solar-lunar relationships.
ISIS B (S) 1971 24A	Delta 84 (S)	Mar 31	113.5	1421	1355	8.2	264.0	Study electron production and loss, and large scale transport of ionization in the ionosphere. Cooperative with Canada. (WSMC)
San Marco C (S) 1971 36A	Scout 72 (S)	Apr 24		DO	WN NOV 29, 1971		163.3	Study atmosphere drag, density, neutral composition, and temperature. Cooperative with Italy. (SM)
Mariner H (U)	Atlas-Centaur (AC-24) (U)	May 8		DID N	IOT ACHIEVE ORBIT		997.9	Mariner Mars '71 Orbiter mission to map the Martian surface. Centaur stage malfunctioned shortly after launch.
Mariner I (S) 1971 051A	Atlas-Centaur (AC-23) (U)	May 30		AER	OCENTRIC ORBIT		997.9	Second Mariner Mars 71 Orbiter mission to map the Martian surface. Achieved orbit around Mars on November 13, 1971. Transmitted 6,876 pictures.
PAET (S)	Scout 73 (S)	Jun 20		SUE	ORBITAL FLIGHT		62.1	Test to determine the structure and composition of an atmosphere from a probe entering at high speed.
Explorer 44 (S) 1971 58A	Scout 74 (S)	Jul 8		DO	WN DEC 15, 1979	·	115.0	Solar radiation spacecraft to monitor the Sun's X-ray and ultraviolet emissions. Cooperative with NRL, (WFF)
Apollo 15 (S) 1971 63A	Saturn V SA-510 (S)	Jul 26		LAN	DED AUG 7, 1971		51655.0	Fourth manned lunar landing with David R. Scott, Alfred M. Worden, and James B. Irwin. Landed at Hadley Rille on July 30, 1971;
P&F Subsat (S) 1971 63D	SM	Aug 4		IMPACTE	ED MOON JUL 30, 197	'1	36.3	

MISSION/	LAUNCH	AUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Inci (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
CAS/EOLE (S) 1971 71A	Scout 75 (S)	Aug 16	99.7	837	652	50.2	85.0	Obtain data on winds, temperatures, and pressures using instrumented balloons launched from Argentina and a satellite. Cooperative with France. (WFF)
BIC (S)	Scout 76 (S)	Sep 20		SUE	BORBITAL FLIGHT		31.7	Barium Ion Cloud Project to study the Earth's magnetic field. Cooperative with Germany. (WFF)
OSO H (S) 1971 83A	Delta 85 (S)	Sep 29		DC	WN JUL 9, 1974		635.0	Observe active physical processes on the Sun and how it influences the Earth and its space environment.
TETR4 (S) 1971 83B				DO	WN SEP 21, 1978		20.4	• • • • • • • • • • • • • • • • • • • •
ITOS B (U) 1971 91A	Delta 86 (U)	Oct 21		DO	WN JUL 21, 1972		31.7	To augment NOAA's satellite world-wide weather observation capabilities. Second stage failed, Reimbursable (NOAA), (WSMC)
Explorer 45 (S) 1971 96A	Scout 77 (S)	Nov 15		DO	WN JAN 10, 1992		50.0	Small Scientific Satellite to study magnetic storms and acceleration of charged particles within the inner magnetosphere. (San Marco)
UK-4 (S) 1971 109A	Scout 78 (S)	Dec 11		DO	WN DEC 12, 1978		102.4	Study the interactions between plasma and charged particle streams in the atmosphere. Cooperative with UK. (WSMC)
Intelsat IV F-3 (S) 1971 116A	Atlas-Centaur (AC-26) (S)	Dec 20	1445.5	36013	35928	10.3	1387.1	Fourth generation satellite to provide increased capacity for Comsat's global commercial communications network. Reimbursable (Comsat).
1972								1972
Intelsat IV F-4 (S) 1972 03A	Atlas-Centaur (AC-28) (S)	Jan 22	1442.4	35921	35896	9.7	1387.1	Fourth generation satellite to provide increased capacity for Comsat's global commercial communications network. Reimbursable (Comsat).
HEOS A-2 (S) 1972 05A	Delta 87 (S)	Jan 31		DO	WN AUG 2, 1974		117.0	Carried seven experiments provided by various European organizations to investigate particles and micrometeorites in space. Reimbursable (ESA). (WSMC)
Pioneer 10 (S) 1972 12A	Atlas-Centaur (AC-27) (S)	Mar 2		SOLAR SYST	EM ESCAPE TRAJE	CTORY	258.0	Jupiter Flyby. First spacecraft to flyby Jupiter and return scientific data.
TD-1 (S) 1972 14A	Delta 88 (S)	Mar 11		DC	WN JAN 9, 1980		470.8	Western European satellite to obtain data on high-energy emissions from stellar and galactic sources. Reimbursable (ESA). (WSMC)
Apollo 16 (S) 1972 31A	Saturn V SA-511 (S)	Apr 16		LAN	DED APR 27, 1972		5655.0	Fifth manned lunar landing mission with John W. Young, Ken Mattingly, and Charles M. Duke. Landed at Descartes on Apr 20, 1972. Deployed
P&F Subsat (S) 1972 31D	SM	Apr 16		IMPACTE	D MOON MAY 29, 1	972	36.3	camera and experiments; performed EVA with lunar roving vehicle. Deployed P&F Subsatellite in lunar orbit. Mission Duration 265 hours 51 minutes 5 seconds.
Intelsat IV F-5 (S) 1972 41A	Atlas-Centaur (AC-29) (S)	Jun 13	1438.6	35858	35811	10.7	1387.1	Fourth generation satellite to provide increased capacity for Comsat's global commercial communications network. Reimbursable (Comsat).

B-106

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
ERTS-A (S) 1972 58A	Delta 89 (S)	Jul 23	103.0	908	896	99.3	941.0	Demonstrate remote sensing technology of the Earth's surface on a global scale and on a repetitive basis. (WSMC)
Explorer 46 (S) 1972 61A	Scout 79 (S)	Aug 13		DC	WN NOV 2, 1979		206.4	Meteoroid Technology Satellite to measure meteoroid penetration rates and velocity. (WFF)
OAO 3 (S) 1972 65A	Atlas-Centaur (AC-22) (S)	Aug 21	99.2	725	713	35.0	2200.0	Study interstellar absorption of common elements in the interstellar gas, and investigate ultraviolet radiation emitted from young hot stars.
Transit (S) 1972 69A	Scout 80 (S)	Sep 2	99.9	796	707	90.0	94.0	Navigation Satellite for the U.S. Navy. Reimbursable (DOD). (WSMC)
Explorer 47 (S) 1972 73A	Delta 90 _(S)	Sep 22			EMENTS NOT MAI		375.9	Interplanetary Monitoring Platform; an automated space physics lab to study interplanetary radiation, solar wind, and energetic particles.
ITOS D (S) 1972 82A	Delta 91 (S)	Oct 15	114.9	1453	1446	102.0	34.5	To augment NOAA's satellite world-wide weather observation capabilities. Oscar, an amateur radio satellite, was carried as a
Oscar (S) 1972 82B		Oct 15	114.9	1452	1446	102.0	15.9	piggyback. Reimbursable (ITOS/NOAA; Oscar/AMSAT). (WSMC)
Telesat A (ANIK) (S) 1972 90A	Delta 92 (S)	Nov 9	1457.1	36258	36136	10.8	544.3	First of a series of domestic communications satellites for Canada. Reimbursable (Canada). (WSMC)
Explorer 48 (S) 1972 91A	Scout 81 (S)	Nov 15		DO	WN AUG 20, 1980		186.0	Small Astronomy Satellite; carried a gamma ray telescope in a bulbous dome to study gamma rays. Launched by an Italian crew from San Marco(SM)
ESRO IV (S) 1972 92A	Scout 82 (S)	Nov 21		DO	WN APR 15, 1974		114.0	Carried five experiments to investigate the ionosphere, the near magnetosphere, auroral, and solar particles. Reimbursable (ESA). (VSMC)
Apollo 17 (S) (AS-512/CSM- 114/LM-12) 1972 96A	Saturn V SA-512 (S)	Dec 7		LAN	DED DEC 19, 1972		51655.0	Soth and last manned lunar landing mission in the Apollo series with Eugene A, Cernan, Ronald E, Evans, and Harrison H. (Jack) Schmitt. Landed at Taurus-Littrow on Dec 11., 1972. Deployed camera and experiments; performed EVA with lunar roving vehicle. Returned lunar samples. Mission duration 301 hours 51 minutes 59 seconds.
Nimbus E (S) 1972 97A	Detta 93 (S)	Dec 11	107.1	1099	1086	99.8	716.8	Stabilized, Earth-oriented platform to test advanced systems for collecting meteorological and geological data. (WSMC)
AEROS (S) 1972 100A 1973	Scout 83 (S)	Dec 16		DO	WN AUG 22, 1973		125.7	Study the state and behavior of the upper atmosphere and knosphere. Cooperative with Germany. (WSMC) 1973
Pioneer G (S) 1973 19A	Atlas-Centaur (AC-30) (S)	Apr 5		SOLAR SYS	TEM ESCAPE TRA	JECTORY	259.0	Investigate the interplanetary medium beyond the orbit of Mars, the Asteroid Belt, and the near-Jupiter environment.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	BITAL PARAM	ETERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) Ir	ici (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Telesat B (ANIK-2) (S) 1973 23A	Delta 94 (S)	Apr 20	1443.0	35970	35873	9.4	544.3	Second domestic communications satellite for Canada. Reimbursable (Canada).
Skylab Workshop (S) 1973 27A	Saturn V SA-513 (S)	May 14			VN JUL 11, 1979		71500.0	Unmanned launch of the first U.S. Space Station. Workshop incurred damage during launch. Repaired during follow-on manned missions.
Skylab 2 206/CSM-116 (S) 1973 32A	Saturn IB SA-206 (S)	May 25		LANE	DED JUN 22, 1973		29750.0	First manned visit to Skylab workshop with Charles (Pete) Conrad, Jr., Joseph P. Kerwin, and Paul J. Weitz. Deployed parasol-like thermal blanket to protect the hull and reduce temperatures within the workshop; freed solar wing that was jammed with debris. Mission duration 672 hours 49 minutes 49 seconds.
Explorer 49 (S) 1973 39A	Delta 95 (S)	Jun 10		SELE	NOCENTRIC ORBIT		328.0	Radio Astronomy Explorer to measure low frequency radio noise from galactic and extragalactic sources and from the Sun, Earth and Jupiter,
ITOS E (U)	Delta 96 (U)	Jul 16		DID N	OT ACHIEVE ORBIT		333.8	Augment NOAA's satellite world-wide weather observation capabilities. Vehicle second stage malfunctioned. Reimbursable (NOAA). (WSMC)
Skylab 3 207/CSM-117 (S) 1973 50A	Satum IB SA-207 (S)	Jul 28		LAND	DED SEP 25, 1973		29750.0	Second manned visit to Skylab Workshop with Alan L. Bean, Owen K. Garriott, and Jack R. Lousma. Performed systems and operational tests, conducted experiments, deployed thermal shield. Mission Duration 1416 hours 11 minutes 9 seconds.
Intelsat IV F-7 (S) 1973 58A	Atlas-Centaur (AC-31) (S)	Aug 23	1452.4	36138	36072	9.7	1387.1	Fourth generation satellite to provide increased capacity for Comsat's global commercial communications network. Reimbursable (Comsat).
Explorer 50 (S) 1973 78A	Delta 97 (S)	Oct 25		ELEME	NTS NOT AVAILABLE	_	397.2	Last Interplanetary Monitoring Platform to Investigate the Earth's radiation environment.
Transit (S) 1973 81A	Scout 84 (S)	Oct 30	105.2	1123	885	89.9	95.0	Navigation satellite for the U.S. Navy. Reimbursable (DOD). (WSMC)
Mariner 10 (Mariner/Venus/ Mercury) (S) 1973 85A	Atlas-Centaur (AC-34) (S)	Nov 3		- HELI	DĈENTRIC ORBIT		504.0	Venus and Mercury flyby mission; first dual-planet mission. Photographed the Earth and the Moon on its flight to Venus; Venus encounter (at 5,800 km) on February 5, 1973; Mercury encounter (at 704 km) on March 29, 1974; second Mercury encounter (at 48,069 km) on September 21, 1974; third Mercury encounter (at 327 km) on March 16, 1975. Engineering tests conducted before attitude control gas was depleted and transmitter commanded off on March 24, 1975.
ITOS F (S) 1973 86A	Delta 98 (S)	Nov 6	116.1	1508	1499	116.1	345.0	To augment NOAA's satellife world-wide weather observation capabilities, Reimbursable (NOAA). (WSMC)
Skylab 4 (S) 1973 90A	Saturn IB SA-208 (S)	Nov 16		LAN	DED FEB 8, 1974		29,750.0	Third manned visit to Skylab Workshop with Gerald P. Carr, Edward G. Gibson, and William R. Pogue. Performed inflight experiments; obtained medical data on crew; performed four EVA's. Mission duration: 2016 hours 1 minute 16 seconds.

MISSION/	LAUNCH I	LAUNCH	PERIOD	CURRENT	ORBITAL PARAME	TERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (kn	n) Perigee (km) Ind	cl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Explorer 51 (S)	Delta 99	Dec 16			OWN DEC 12, 1978		663.0	Atmosphere Explorer; carried 14 instruments to study energy transfer,
1973 101A	(S)							atomic and molecular processes, and chemical reactions in the
								atmosphere. (WSMC)
1974							_	1974
Skynet II-A (U) 1974 02A	Delta 100 (U)	Jan 18		D	OWN JAN 25, 1974		435.5	Communication satellite for the United Kingdom. Short circuit in electronics package caused vehicle failure. Reimbursable (UK).
Centaur Proof	Titan IIIE	Feb 11		DID	NOT ACHIEVE ORBIT			Launch vehicle development test of the Titan IIIE/Centaur (TC-1);
Flight (U)	Centaur (76) (U)						carried simulated Viking spacecraft and Sphinx. Liquid oxygen boost pump failed to operate during Centaur starts. Destruct command sent 748 seconds after liftoff.
San Marco C-2 (S) 1974 09A	Scout 85 (S)	Feb 18		C	OWN MAY 4, 1976		170.0	Measure variations of equatorial neutral atmosphere density, composition, and temperature. Cooperative with Italy. (San Marco)
UK-X4 (S) 1974 13A	Scout 86 (S)	Mar 8	100.3	867	677	97.9	91.6	Three-axis stabilized spacecraft to demonstrate the technology involved in the design and manufacture of this type platform for use on small spacecraft. Reimbursable (UK). (WSMC)
Westar A (S) 1974 13A	Delta 101 (S)	Apr 13	1441.6	35907	35907	9.1	571.5	Domestic communications satellite for Western Union. Reimbursable (WU).
SMS A (S) 1974 33A	Delta 102 (S)	May 17		ELEM	ENTS NOT AVAILABLE		628.0	Geostationary environmental satellite to provide Earth imaging in visible and IR spectrum. First weather observer to operate in a fixed geosynchronous orbit about the Equator. Cooperative with NOAA.
ATS F (S) 1974 39A	Titan III C Centaur 79 (S	May 30)	1412.1	35440	35190	12.5	1403.0	Applications Technology Satellite capable of providing good quality TV signals to small, inexpensive ground receivers. Carried over 20 technology and science experiments.
Explorer 52 (S) 1974 40A	Scout 87 (S)	Jun 3		D	OWN APR 28, 1978		26.6	"Hawkeye" spacecraft to investigate the interaction of the solar wind with the Earth's magnetic field. (WSMC)
AEROS B (S) 1974 55A	Scout 88 (S)	Jul 16		D	OWN SEP 25, 1975		125.7	German-built satellite to study the state and behavior of the upper atmosphere and ionosphere. Reimbursable (Germany). (WSMC)
ANS A (S) 1974 70A	Scout 89 (S)	Aug 30		D	OWN JUN 14, 1977		129.8	Study the sky in ultraviolet and X-ray from above the atmosphere. Cooperative with the Netherlands. (WSMC)
Westar B (S) 1974 75A	Delta 103 (S)	Oct 10	1442.2	35928	35883	8.9	571.5	Domestic communications satellite for Western Union. Reimbursable (WU).
UK-5 (S) 1974 77A	Scout 90 (S)	Oct 15		D	OWN MAR 14, 1980		130.3	Measure the spectrum, polarization and pulsar features of non-solar X-ray sources. Cooperative with UK. (San Marco)

MISSION/	LAUNCH	AUNCH	PERIOD	CURRENT C	DRBITAL PARA	METERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
ITOS-G (S) 1974 89A	Delta 104	Nov 15	114.9	1457	1442	101.9	345.0	ITOS-G - To augment NOAA's satellite world-wide weather observation capabilities. Reimbursable (NOAA).
Intasat (S) 1974 89B	(S)		114.8	1457	1439	101.9	20.4	Intasat - Conduct worldwide observations of ionospheric total electron counts. Cooperative with Spain.
Oscar (S) 1974 89C			114.8	1457	1437	101.9		Oscar - provide communications capability for amateur radio enthusiasts around the world. Reimbursable (AMSAT) (WSMC)
Intelsat IV F-8 (S) 1974 93A	Atlas-Centaur (AC-32) (S)	Nov 21	1443.0	35949	35894	8.1	1387.1	Fourth generation satellite to provide increased capacity for Comsat's global commercial communications network. Reimbursable (Cornsat).
Skynet II-B (S) 1974 94A	Delta 105 (S)	Nov 22	1436.9	35828	35775	11.6	435.0	Communication satellite for the United Kingdom. Reimbursable (UK).
Helios A (S) 1974 97A	Titan IIIE Centaur 83 (S	Dec 10		HELK	DCENTRIC ORBIT		370.0	Study the Sun from an orbit near the center of the solar system. Cooperative with West Germany.
Symphonie A (S) 1974 101A	Delta 106 (S)	Dec 18	1440.6	35896	35853	11.9	402.0	Joint French-German communications satellite to serve North and South America, Europe, Africa and the Middle East. Reimbursable (France/Germany).
1975								1975
Landsat 2 (S) 1975 04A	Delta 107 (S)	Jan 22	103.1	911	899	98.8	953.0	Second Earth Resources Technology Satellite to locate, map, and measure Earth resources parameters from space and demonstrate the applicability of this approach to the management of the worlds resources. (WSMC)
SMS-B (S) 1975 11A	Delta 108 (S)	Feb 6		ELEME	NTS NOT AVAILA	BLE	628.0	Together with SMS-A, provide cloud-cover pictures every 30 minutes to weathermen at NOAA. Cooperative with NOAA.
Intelsat IV F-6 (U)	Atlas-Centaur (AC-33) (U)	Feb 20		DID N	OT ACHIEVE ORE	BIŤ	1387.1	Fourth generation satellite to provide increased capacity for Comsat's global commercial communications network. Launch vehicle malfunctioned. Reimbursable (Comsat).
GEOS C (S) 1975 27A	Delta 109 (S)	Apr 9	101.6	851	815	115.0	340.0	Oceanographic and geodetic satellite to measure ocean topography, sea state, and other features, (WSMC)
Explorer 53 (S) 1975 37A	Scout 91 (S)	May 7		DO	WN APR 9, 1979		196.7	
Telesat C (S) 1975 38A	Delta 110 (S)	May 7	1439.5	35872	35833	8.2	544.3	Third domestic communications satellite for Canada. Reimbursable (Canada).
Intelsat IV F-1 (S) 1975 42A	Atlas-Centaur (AC-35) (S)	May 22	1450.8	36133	36015	8.1	1387.1	Fourth generation satellite to provide increased capacity for Comsat's commercial communications network. Last of the IV series. Reimbursable (Comsat).

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARAM	ETERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) In	icl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Nimbus F (S) 1975 52A	Delta 111 (S)	Jun 12	107.4	1111	1098	99.8	827.0	Stabilized, Earth-oriented platform to test advanced systems for collecting meteorological and geological data. (WSMC)
OSO I (S) 1975 57A	Delta 112 (S)	Jun 21		DO	WN JUL 9, 1986		1088.4	Observe active physical processes on the Sun and how it influences the Earth and its space environment.
Apollo Soyuz Test Project (S) 1975 66A	Saturn IB SA-210 (S)	Jul 15		DOV	VN JUL 24, 1975		14,856.0	Manned Apollo spacecraft with Thomas P. Stafford, Vance D. Brand and Donald K. Slayton Rendezvoused and docked with Soyuz 19 spacecraft (also launched July 15, 1975) with Aleksey Leonov and Valeriy Kubasov on July 17, 1975. Mission Duration 217 hours 28 minutes 23 seconds.
COS B (S) 1975 72A	Delta 113 (S)	Aug 8		CURRENT ELE	MENTS NOT MAINTA	INED	277.5	Cosmic ray satellite to study extraterrestrial gamma radiation. Reimbursable (ESA). (WSMC)
Viking A Orbiter(S) 1975 75A	Titan IIIE Centaur 88 (S	Aug 20			CENTRIC ORBIT		2324.7	Mars Orbiter and Lander mission to conduct systematic investigation of Mars. U.S. first attempt to soft land a spacecraft on another planet
Viking A Lander (S) 1975 75C				LANDED	ON MARS JUL 20, 197	6	571.5	achieved on July 20, 1976. First analysis of surface material on another planet.
Symphonie B (S) 1975 77A	Delta 114 (S)	Aug 29	1440.4	35880	35861	12.1	402.0	Second joint French-German communications satellite to serve North and South America, Europe, Africa and the Middle East. Reimbursable (France/Germany).
Viking B Orbiter(S) 1975 83A	Titan IIIE Centaur 89 (S	Sep 9)			CENTRIC ORBIT		2324.7	Second Mars Orbiter and Lander mission to conduct systematic investigation of Mars. Soft landed on Mars on September 3, 1976.
Viking B Lander 1975 83C				LAND	ED ON MARS SEP 3,	1976	571.5	Returned excellent scientific data.
Intelsat IVA F-1 (S) 1975 91A	Atlas-Centaur (AC-36) (S)	Sept 25	1441.0	35914	35852	8.1	1515.0	Improved satellite with double the capacity of previous Intelsats for Comsat's global commercial communications network. Reimbursable (Comsat).
Explorer 54 (S) 1975 96A	Delta 115 (S)	Oct 6		DOW	/N MAR 12, 1976		675.0	Atmosphere Explorer to investigate chemical processes and energy transfer mechanisms which control the Earth's atmosphere. (WSMC)
Transit (S) 1975 99A	Scout 92 (S)	Oct 12		DOW	/N MAY 26, 1991		161.9	Second in a series of improved navigation satellite for the U.S. Navy. Reimbursable. (WSMC)
SMS-C/GOES A (S) 1975 100A	Delta 116 (S)	Oct 16	1435.7	35801	35756	7.6	628.0	First operational satellite in NOAA's geosynchronous weather satellite system. Reimbursable (NOAA).
Explorer 55 (S) 1975 107A	Delta 117 (S)	Nov 20		DOV	VN JUN 10, 1981		719.6	Atmosphere Explorer to investigate the chemical processes and energy transfer mechanisms which control Earth's atmosphere.

MISSION/	LAUNCH	AUNCH	PERIOD	CURRENT	ORBITAL PARAM	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Dual Air Density	Scout 93	Dec 5		DID N	OT ACHIEVE ORBIT		35.3	Measure global density of upper atmosphere and lower exosphere.
Explorer (U)	(U)							Malfunction during third stage burn resulted in loss of vehicle control;
								destroyed by Range Safety Officer at 341 seconds. (WSMC)
RCA A (S)	Delta 118	Dec 13	1445.8	36084	35873	8.2	867.7	First RCA domestic communications satellite. Reimbursable (RCA).
1975 117A	(S)							1976
1976		1 45						
Helios B (S)	Titan IIIE Centaur 93 (Si	Jan 15		HELP	OCENTRIC ORBIT		374.7	Carried 11 scientific instruments to study the Sun. Cooperative with
1976 03A CTS (S)	Delta 119	Jan 17	1437.1	35887	35726	12.2	347.0	Germany. Experimental high-powered communication satellite to provide
1976 04A	(S)	can 17	1407.1	35887	33720	12.2	547.0	communications in remote areas. Cooperative with Canada.
Intelsat IVA F-2 (S)	Atlas-Centaur	Jan 29	1444.5	35968	35933	8.3	1515.0	Second improved satellite with double the capacity of previous
1976 10A	(AC-37) (S)							Intelsats for Comsat's global commercial communications network.
								Reimbursable (Comsat).
Marisat A (S)	Delta 120	Feb 19	1436.1	35797	35777	10.4	655.4	Comsat Maritime Satellite to provide rapid, high-quality communications
1976 17A	(S)							between ships at sea and home offices. Reimbursable (Comsat).
RCA B (S)	Delta 121	Mar 26	1460.1	36501	36010	7.8	867.7	Second RCA domestic communications Satellite.
1976 29A	<u>(S)</u>							Reimbursable (RCA)
NATO IIIA (S)	Delta 122	Apr 22	1442.3	36008	35806	10.1	670.0	Third-generation communications satellite for NATO.
1976 35A	(S) Delta 123	May 4	225.4	5945	5838	109.9	411.0	Reimbursable (NATO) Solid, spherical passive satellite to provide a reference point for laser
1976 39A	(S)	Niay 4	223.4	5945	5656	109.9	411.0	ranging experiments. (WSMC)
Comstar 1A (S)	Atlas-Centaur	May 13	1442.6	35921	35905	8.0	1490.1	First domestic communications satellite for Comsat.
1976 42A	(AC-38) (S)	,						Reimbursable (Comsat).
Air Force P76-5 (S)	Scout 94	May 22	105.4	1044	981	99.6	72.6	Evaluate propagation effects of disturbed plasmas on radar and
1976 47A	(S)	-						communications systems. Reimbursable (DOD). (WSMC)
Marisat B (S)	Delta 124	Jun 9	1436.1	35813	35760	9.5	655.4	Second Comsat Maritime Satellite to provide rapid, high-quality
1976 53A	(S)							communications between ships at sea and home offices. Reimbursable
	0	hun 40		0.10				(Comsat).
Gravity Probe A (S)	Scout 95 (S)	Jun 18 Jul 8	1439.1		ORBITAL FLIGHT		102.5	Scientific probe to test Einstein's Theory of Relativity. (WFF)
Palapa A (S) 1976 66A	Delta 125 (S)	JUI 8	1439.1	35867	35821	8.0	573.8	Communication Satellite for Indonesia. Reimbursable (Indonesia).
Comstar B (S)	Atlas-Centaur	Jul 22	1436.2	35791	35784	7.9	1490.1	Second domestic communications satellite for Comsat.
1976 73A	(AC-40) (S)			00/01		1.5	1430.1	Reimbursable (Comsat).
1010104	x 10 40/ (0/	-						remained to realized.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRE	NT ORBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
ITOS H (S) 1976 77A	Delta 126 (S)	Jul 29	116.2	1518	1505	102.1	345.0	Second generation satellite for NOAA's world-wide weather observation. Reimbursable (NOAA). (WSMC)
TIP III (S) 1976 89A	Scout 96 (S)	Sep 1			DOWN MAY 30, 1981		166.0	Improved Transit Navigation Satellite for the U.S. Navy. Reimbursable (DOD). (WSMC)
Marisat C (S) 1976 101A	Delta 127 (S)	Oct 14	1436.0	35791	35779	10.9	655.4	Third Comsat Maritime Satellite to provide rapid, high-quality communications between ships at sea and home offices. Reimbursable (Comsat).
1977					_			1977
NATO IIIB (S) 1977 05A	Delta 128 (S)	Jan 27	1436.2	35789	35788	9.9	670.0	Third-generation communications satellite for NATO. Reimbursable (NATO).
Palapa B (S) 1977 18A	Delta 129 (S)	Mar 10	1439.5	35873	35831	6.9	573.8	Second Communication Satellite for Indonesia. Reimbursable (Indonesia).
GEOS/ESA (U) 1977 29A	Delta 130 (U)	Apr 20	734.1	38283	2874	26.6	571.5	ESA scientific satellitie; carried seven experiments to investigate the Earth's magnetosphere. Maffunction during second stage/third stage spinup placed GEOS in unusable orbit. Reimbursable (ESA).
Intelsat IVA F-4 (S) 1977 41A	Atlas-Centaur (AC-39) (S)	May 26	1448.1	36075	35966	7.0	1515.0	Improved satellite with double the capacity of previous Intelsats for Comsat's global commercial communications network. Reimbursable (Comsat).
GOES/NOAA (S) 1977 48A	Delta 131 (S)	Jun 16	1435.8	35797	35762	10.2	635.0	Visible/infrared spin-scan radiometer provided day and night global weather pictures for NOAA. Reimbursable (NOAA).
GMS (S) 1977 65A	Delta 132 (S)	Jul 14	1451.0	36152	36001	10.4	669.5	Operational weather satellite; Japan's contribution to the Global Atmosphere Research Program (GARP). Reimbursable (Japan).
HEAO A (S) 1977 75A	Atlas-Centaur (AC-45) (S)				DOWN MAR 15, 1979		2551.9	High Energy Astronomy Observatory to study and map X-rays and gamma rays.
Voyager 2 (S) 1977 76A	TITAN III E Centaur 106 (Aug 20 S)		SOLAR SY	(STEM ESCAPE TRAJE	CTORY	2086.5	Investigate the Jupiter and Saturn planetary systems and the interplanetary medium between the Earth and Saturn. Jupiter flyby occurred on July 9, 1979; Saturn flyby occurred on August 25, 1981; Uranus flyby occurred on January 24, 1986; and Neptune flyby occurred on August 25, 1989. Will continue into Interstellar space
SIRIO (S) 1977 80A	Detta 133 (S)	Aug 25	1438.7	35925	35750	8.3		Italian scientific satellite to study the propagation characteristics of radio waves transmitted at super high frequencies during adverse weather. Reimbursable (Italy).

MISSION/	LAUNCH	LAUNCH	PERIOD	CURREN	T ORBITAL PARA	METERS	WEIGHT	
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (kr	n) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Voyager 1 (S) 1977 84A	Titan III E Centaur 107 (Sep 5 S)			LIOCENTRICORBIT		2086.5	Investigate the Jupiter and Saturn planetary systems and the interplanetary medium between the Earth and Saturn. Jupiter flyby occurred on March 5, 1979; Saturn flyby occurred on November 12, 1980; departed Saturn at a high angle to the ecliptic plane to observe the large cloud-covered moon Titan. Will not be involved in any more planetary encounters.
ESA/OTS (U)	Detta 134 (U)	Sep 13		DI	NOT ACHIEVE ORBI	T	865.0	ESA experimental communications satellite. Vehicle exploded at 54 seconds after liftoff. Reimbursable (ESA).
Intelsat IVA F-5 (U)	Atlas-Centaur (AC-43) (U)	Sep 29		DI	D NOT ACHIEVE ORB	IT	1515.0	Improved satellite with double the capacity of previous Intelsats for Comsat's global commercial communications network. Launch vehicle failed, Reimbursable (Comsat).
ISEE A/B 1977 102A (S) 1977 102B (S)	Delta 135 (S)	Oct 22			OWN SEP 26, 1987 OWN SEP 26, 1987		329.0 157.7	Dual payload International Sun Earth Explorer to the study interaction of the interplanetary medium with the Earth's immediate environment. Cooperative with ESA.
Transat (S) 1977 106A	Scout 97 (S)	Oct 27	106.8	1096	1060	89.7	93.9	Improved Transit navigation satellite for the U.S. Navy. Reimbursable (DOD). (WSMC)
Meteosat (S) 1977 108A	Deita 136 (S)	Nov 22	1435.9	35815	35748	11.3	695.3	ESA Meteorological satellite; Europe's contribution to the Global Atmospheric Research Program (GARP). Reimbursable (ESA).
CS/Japan (S) 1977 118A	Detta 137 (S)	Dec 14	1455.8	36182	36162	9.8	677.0	Experimental communication satellite for Japan. Reimbursable (Japan).
1978								1978
Intelsat IVA F-3 (S) 1978 02A	Atlas-Centaur (AC-46) (S)	Jan 6	1441.4	35901	35877	6.5	1515.0	Provide increased telecommunications capacity for Intelsat's global network, Reimbursable (Comsat),
IUE-A (S) 1978 12A	Delta 138 (S)	Jan 26	1435.6	41343	30210	33.8	698.5	International Ultraviolet Explorer to obtain high resolution data of stars and planets in the UV region of the spectrum. Cooperative with ESA.
Fitsatcom-A (S) 1978 16A	Atlas-Centaur (AC-44) (S)	r Feb 9	1436.1	35798	35776	10.5	1863.3	Provide communications capability for the USAF and the USN for fleet relay and fleet broadcast. Reimbursable (DOD).
Landsat-C (S) 1978 26A	Delta 139 (S)	Mar 5	103.1	916	894	98.8	900.0	Third Earth Resources Technology Satellite to study the Earth's natural resources; measure water, agricultural fields, and mineral
Oscar-8 (S) 1978 26B	(0)		103.0	904	893	99.2	27.3	deposits. Carried Lewis Research Center Plasma Interaction Experiment (PIX-I) and AMSAT Oscar Amateur Radio communications
PIX-I (S) 1978 26C				CL	IRRENT ELEMENTS N		NED 34.0	relay satellite. Reimbursable (Oscar/AMSAT).
Intelsat IVA F-6 (S) 1978 35A	Atlas-Centaur (AC-48) (S)	r Mar 31	1435.6	35801	35753	6.5	1515.0	Provide increased telecommunications capacity for Intelsat's global network. Reimbursable (Comsat).

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PA	RAMETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (kr	n) Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
BSE/Japan (S) 1978 39A	Delta 140	Apr 7	1435.2	35796	35740	11.0	665.0	Japan's Broadcasting Satellite/Experimental for conducting TV broadcast experiments. Reimbursable (Japan).
HCMM/AEM-A (S) 1978 41A	Scout 98 (S)	Apr 26		DO	WN DEC 22, 19	81	134.3	Heat Capacity Mapping Mission to test the feasibility of measuring variations in the Earth's temperatures. (WSMC)
OTS-B (S) 1978 44A	Delta 141	May 11	1452.6	36124	36092	8.5	865.0	Orbital Test Satellite to conduct communications experiments for ESA. Reimbursable (ESA).
Pioneer Venus-A (Orbiter) (S) 1978 51A	Atlas-Centaur (AC-50) (S)	May 20		ELEN	ENTS NOT AV	AILABLE	582.0	One of two Pioneer flights to Venus in 1978; was placed in orbit around Venus for remote sensing and direct measurements of the planet and its surrounding environment.
GOES-C/NOAA (S) 1978 62A	Delta 142 (S)	Jun 16	1436.0	35808	35761	9.1	635.0	Part of NOAA's global network of geostationary environmental satellikes to provide Earth imaging, monitor the space environment, and relay meteorological data to users. Reimbursable (NOAA).
Seasat-A (S) 1978 64A	Atlas-F (S)	Jun 26	100.1	765	761	108.0	2300.0	Demonstrate techniques for global monitoring of oceanographic phenomena and features. After 106 days of returning data, contact was lost when a short circuit drained all power from the batteries. (WSMC)
Comstar C (S) 1978 68A	Atlas-Centaur (AC-41) (S)	Jun 29	1451.8	36181	36004	6.3	1516.0	Third domestic communications satellite for Comsat. Reimbursable (Cornsat).
GEOS-B/ESA (S) 1978 71A	Delta 143 (S)	Jul 14	1449.1	36056	36033	11.1	575.0	Positioned on magnetic field lines to study the magnetosphere and correlate data with ground station, balloon, and sounding rocket measurements. Reimbursable (ESA).
Pioneer/Venus-B (Multiprobe) 1978 78A	Atlas-Centaur (AC-51) (S)	Aug 8		PRO	BES LANDED D	EC 9, 1978	904.0	Second Pioneer flight to Venus in 1978 to determine the nature and composition of the atmosphere of Venus. All four probes and the bus transmitted scientific data. The large probe, north probe, and night probe went dead upon impact; the day probe continued to transmit for 68 minutes after impact.
ISEE-C (S) 1978 79A ICE (S)	Delta 144 (S)	Aug 12		HEL	IOCENTRIC OR	BIT	479.0	Monitored the characteristics of solar phenomena about 1 hour before ISEE-A and B to gain knowledge of how the Sun controls the Earth's near space environment. The spacecraft was renamed ICE in 1985 and its orbit was changed to encounter the Comet Giacobini-Zinner on September 11, 1985. Cooperative with ESA.
Tiros-N (S) 1978 96A	Atlas-F (S)	Oct 13	101.7	845	829	98.7	1405.0	Third generation polar orbiting environmental spacecraft to provide improved meteorological and environmental data. Operated by NOAA. (WSMC)

MISSION/	LAUNCH	LAUNCH	PERIOD	CUBBENT	ORBITAL PAR	AMETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE) Perigee (km)		(kg)	(All Launches from ESMC, unless otherwise noted)
Nimbus-G (S) 1978 98A Cameo	Deita 145 (S)	Oct 24	104.0	955	940	99.1 99.6	987.0	Carried advanced sensors and technology to conduct experiments in pollution monitoring, oceanography, and meteorology. ESA received
1978 98B			104.0	900	924	99.6		and processed data direct. After separation from Nimbus-G, the Delta vehicle released lithium over Northern Scandinavia and barium over Northern Alaska as part of Project CAMEO (Chemically Active Material Ejected in Orbit).
НЕАО-В (S) 1978 103А	Atlas-Centau (AC-52) (S)	Nov 13		DC	DWN MAR 25, 1982		3152.0	Second High Energy Astronomical Observatory; carried a large X-ray telescope to study the high energy universe, pulsars, neutron stars, black holes, guasars, radio galaxies, and supermovas.
NATO IIIC (S) 1978 106A	Delta 146 (S)	Nov 18	1462.2	36307	36283	6.9	706.0	Third-generation communications satellite for NATO. Reimbursable (NATQ),
Telesat D (S) 1978 116A 1979	Detta 147 (S)	Dec 15	1442.7	35943	35887	5.8	887.2	Fourth domestic communications satellite for Canada. Reimbursable (Canada).
SCATHA (S)	Delta 148	Jan 30	1418.4	42737	28140	9.4		1979
1979 07A	(S)	Jan Su	1410.4	42/3/	20140	9.4	658.6	Spacecraft Charging at High Attitudes (SCATHA) carried 12 experiments to investigate electrical static discharges that affect satellites, Reimbursable (DOD).
SAGE/AEM-2 (S) 1979 13A	Scout 99 (S)	Feb 18		DC	OWN APR 11, 1989		127.0	
Fitsatcom B (S) 1979 38A	Atlas-Centaur (AC-47) (S)	May 4	1461.3	36334	36222	9.2	1876.1	Provide communications capability for the USAF and the USN for fleet relay and fleet broadcast. Reimbursable (DOD). (WFF)
UK-6 (S) 1979 47A	Scout 100 (S)	_		D	OWN SEP 23, 1990		154.5	Measure ultra-heavy cosmic ray particles and study low-energy cosmic X-rays_ Reimbursable (UK). (WSMC)
NOAA-6 (S) 1979 57A	Atlas-F (S)	Jun 27	100.7	801	786	98.6	1405.0	To provide continuous coverage of the Earth and high-accuracy world-wide meteorological data. Reimbursable (NOAA). (WSMC)
Westar C (S) 1979 72A	Delta 149 (S)	Aug 9	1441.0	35889	35874	4.6	571.5	Domestic communications satellite for Western Union. Reimbursable (WU),
HEAO 3 (S) 1979 82A	Atlas-Centaur (AC-53) (S)	Sep 20		D	OWN DEC 7, 1981		2898.5	High Energy Astronomy Observatory carried two cosmic ray experiments and one gamma ray spectrometer to obtain data on cosmic rays observed across the far reaches of space.
MAGSAT/AEM-3 (S) 1979 94A	Scout 101 (S)	Oct 30		D	OWN JUN 11, 1980		183.0	Magnetic Field Satellite, Applications Explorer Mission to map the magnetic field of the Earth. (WSMC)
RCA-C (U) 1979 101A	Delta 150 (S)	Dec 6	788.9	35423	8385	8.2	895.4	Third RCA domestic communications satellite. Contact was lost shortly after apogee motor firing. Reimbursable (RCA).

MISSION/	LAUNCH	LAUNCH	PERIOD	CURREN	T ORBITAL PARA	METERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (kr	n) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1980							•	1980
Fitsatcom C (S) 1980 04A	Atlas-Centaur (AC-49) (S)		1436.7	35885	35710	8.4	1864.7	Provide communications capability for the USAF and the USN for fleet relay and fleet broadcast. Reimbursable (DOD).
SMM-A (S) 1980 14A	Detta 151 (S)	Feb 14		ſ	DOWN DEC 2, 1989		2315.0	Solar Maximum Mission; first solar satellite designed to study specific solar phenomena using a coordinated set of Instruments; performed a detailed study of solar flares, active regions, sunspots, and other solar activity. Also measured the total output of radiation from the Sun.
NOAA-7 (U) 1980 43A	Atlas 19F (U)	May 29		[DOWN MAY 3, 1981		1405.0	A companion to TIROS N to provide continuous coverage of the Earth and provide high-accuracy workdwide meteorological data. Launch vehicle malfunctioned; failed to place satellite into proper orbit. Reimbursable (NOAA). (WSMC)
GOES D (S) 1980 74A	Detta 152 (S)	Sep 9	1451.3	36713	35453	8.6	832.0	Part of NOAA's global network of geostationary environmental satellites to provide Earth imaging, monitor the space environment, and relay meteorological data. Reimbursable (NOAA).
Fitsatcom D (S) 1980 87A	Atlas-Centaur (AC-57) (S)	Oct 30	1436.1	35798	35775	8.5	1863.8	Provide communications capability for the USAF and the USN for fleet relay and fleet broadcast. Reimbursable (DOD).
SBS-A (S) 1980 91A	Delta 153 (S)	Nov 15	1442.5	35946	35878	5.3	1057.0	Satellite Business Systems (SBS) to provide fully switched private networks to businesses, government agencies, and other organizations with large, varied communications requirements. Reimbursable (SBS).
Intelsat V-A F-2 (S) 1980 98A	Atlas-Centaur (AC-54) (S)	Dec 6	1436.2	35806	35769	3.8		Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Reimbursable (Comst).
1981								1981
Comstar D (S) 1981_18A	Atlas-Centaur (AC-42) (S)	Feb 21	1436.2	35791	35785	6.4	1484.0	Fourth domestic communications satellite for Comsat. Reimbursable (Comsat).
STS-1 (S) 1981 34A	Shuttle (S) (Columbia)	Apr 12			NDED AT DFRF APR			First Manned orbital test flight of the Space Transportation System with John W. Young and Robert L. Crippen to verify the combined performance of the Space Shuttle Vehicle. Mission duration 54 hours 20 minutes 53 seconds.
NOVA-1 (S) 1981 44A	Scout 102 (S)	May 15		EL	EMENTS NOT AVAIL	ÁBLE	166.9	Improved Transit satellite for the Navy's operational navigation system. Reimbursable (DOD).
GOES E (S) 1981 49A	Delta 154 (S)	May 22	1436.6	35808	35785	5.7		Part of NOAA's Geostationary Operational Environmental Satellite system to provide near continual, high resolution visual and infrared imaging over large areas. Reimbursable (NOAA).

MISSION/	LAUNCH	LAUNCH	PERIOD	CURREN	T ORBITAL P	ARAMETERS	WEIGHT	
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (k	m) Perigee (k	m) Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Intelsat V-8 F-1 (S) 1981 50A	Atlas-Centaur (AC-56) (S)	May 23	1438.2	35856	35799	4,4	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Reimbursable (Comsat).
NOAA-C (S) 1981 59A	Atlas 87F (S)	Jun 23	101.7	847	829	98.9	1405.0	To provide continuous coverage of the Earth and provide high-accuracy worldwide meteorological data. Reimbursable (NOAA) (WSMC)
DE A & B(S) 1981 70A (S) 1981 70B (S)	Delta 155	Aug 3	410.4	23286	505 DOWN FEB 19, 19	88.8	424.0 420.0	Dynamic Explorer (DE-A & B); dual spacecraft to study the Earth's electromagnetic fields. (WSMC)
Fitsatcom E (U) 1981 73A	Atlas-Centaur (AC-59) (S)	Aug 6	1460.4	36311	36209	8.1	1863.8	Provide communications capability for the USAF and the USN for fleet relay and fleet broadcast. Reimbursable (DOD).
SBS-B 1981 96A	Delta 156 (S)	Sep 24	1436.2	35797	35778	4.4	1057.0	Satellite Business Systems (SBS) to provide fully switched private networks to businesses, government agencies, and other organizations with large, varied communications requirements. Reimbursable (SBS).
SME (S) 1981 100A	Delta 157 (S)	Oct 6	_		DOWN MAR 5, 19	991	437.0	Solar Mesosphere Explorer, an atmospheric research satellite to study reactions between sunlight, ozone and other chemicals in the
UoSAT 1 (S) 1981 100B					DOWN OCT 13, 1	989	52.0	atmosphere. Carried UoSat-Oscar 9 (UK) Amateur Radio Satellite as secondary payload. Reimbursable (UoSat-Oscar 9)
STS 2 (S) 1981 111A	Shuttle (S) (Columbia)	Nov 12		LANDE	D AT DFRF NOV	14, 1981		Second Manned orbital test flight of the Space Transportation System with Joe E. Engle and Richard H. Truly to verify the combined performance of the Space Shuttle vehicle. OSTA-1 payload demonstrated capability to conduct scientific research in the attached mode. Mission duration 54 hours 13 minutes 12 seconds.
RCA-D (S) 1981 114A	Delta 158 (S)	Nov 19	1438.6	35846	35826	1.8	1081.8	Fourth RCA domestic communications satellite. Reimbursable (RCA).
Intelsat V F-3 (S) 1981 119A	Atlas-Centaur (AC-55) (S)	Dec 15	1436.1	35801	35770	3.4	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Reimbursable (Comsat).
1982								
RCA C' (S) 1982 04A	Delta 159 (S)	Jan 16	1446.0	35988	35970	1.1	1081.8	RCA domestic communications satellite. Reimbursable (RCA).
Westar IV (S) 1982 14A	Delta 160 (S)	Feb 25	1443.4	35934	35923	1.1	1072.0	Union. Reimbursable (WU).
Intelsat V-D F-4 (S) 1982 17A	Atlas-Centaur (AC-58) (S)	Mar 4	1435.3	35791	35751	3.4	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Reimbursable (Comsat).

MISSION/	LAUNCH	AUNCH	PERIOD	CURRENT	ORBITAL PA	RAMETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE		Apogee (km)			(kg)	(All Launches from ESMC, unless otherwise noted)
STS 3 (S) 1982 22A	Shuttle (S) (Columbia)	Mar 22			WHITE SANDS N			Third Manned orbital test flight of the Space Transportation System with Jack R. Lousma and C. Gordon Fullerton to verify the combined performance of the Space Shuttle vehicle. OSS-1 scientific experiments conducted from the cargo bay. Mission duration 192 hrs 4 mins 46 secs.
Insat 1-A (U) 1982 31A	Delta 161 (S)	Apr 10	1434.2	35936	35562	0.1	1152.1	Multipurpose telecommunications/meteorology spacecraft for India. Reimbursable (India).
Westar V (S) 1982 58A	Delta 162 (S)	Jun 8	1451.4	36149	36023	0.8	1105.0	Western Union domestic communications satellite. Reimbursable (WU).
STS 4 (S) 1982 65A	Shuttle (S) (Columbia)	Jun 27		LANE	ED AT DFRF JU	L 4, 1982		Fourth and last manned orbital test flight of the Space Transportation System with Thomas K. (Ken) Mattingly II and Henry W. Hartsfield to verify the combined performance of the Space Shuttle vehicle. Carried first operational Getaway Special canister for Utah State University and pavload DOB 82-1. Mission duration 169 hours 9 minutes 31 seconds.
Landsat D (S) 1982 72A	Delta 163 (S)	Jul 16	98.8	705	693	98.3	1942.0	Earth Resources Technology Satellite to provide a continuing Earth remote sensing data. Instruments included a multispectral scanner and thematic mapper. (VVSMC)
Telesat G (S) 1982 82A	Delta 164 (S)	Aug 25	1438.5	35851	35814	1.5	1238.3	Commercial communications satellite for Canada. Reimbursable (Canada).
Intelsat V-E F-5 (S) 1982 97A	Atlas-Centaur (AC-60) (S)	Sep 28	1436.1	35819	35754	2.9	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Carried Martime Communications Services (MCS) package for INMARSAT. Reimbursable (Comsat).
RCA-E (S) 1982 105A	Delta 165 (S)	Oct 27	1436.2	35795	35779	1.7	1116.3	RCA domestic communications satellite. Reimbursable (RCA).
STS 5 (S) 1982 110A	Shuttle (S) (Columbia)	Nov 11		LAND	ED AT DFRF NO	DV 16, 1982		First operational flight of STS with Vance Brand, Robert Overmeyer, Joseph Allen and William Lenoir. Two satellites deployed:
SBS-C (S) 1982 110B	(,	Nov 11	1436.2	35799	35776	1.2	3344.8	SBS-C (Reimbursable - SBS) and Telesat-C (Reimbursable - Canada). Demonstrated ability to conduct routine space operations. Mission
Telesat-E (S) 1982 110C		Nov 12	1436.1	35796	35796	01.3	4443.4	duration 122 hours 14 minutes 26 seconds.
1983								1983
IRAS (S) 1983 04A	Delta 166 (S)	Jan 25	102.9	903	884	99.0	1075.9	Infrared Astronomical Satellite to make the first all-sky survey for objects that emit infrared radiation and to provide a catalog of infrared sky maps.
PIX II (S) 1983 04B			102.3	882	851	100.0		Cooperative with the Netherlands. Lewis Research Center Plasma Interaction Experiment (PIX), to investigate interactions between high voltage systems and space environment, activated by Delta after IRAS separation.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
NOAA-8 (S) 1983 22A	Atlas 73E (S)	Mar 28	101.0	817	793	98.5	1712.0	Advanced Tiros spacecraft to provide continuous coverage of the Earth and provide high-accuracy worldwide meteorological data. Reimbursable (NOAA), (WSMC)
STS 6 (S) 1983 26A	Shuttle (S) (Challenger)	Apr 4		LAND	ED AT DFRF APR	9, 1983		Second operational flight of the STS with Paul Weitz, Karol Bobko, Donald Peterson, Story Musgrave. Deployed Tracking and Data Relay
TDRS-A (S) 1983 26B	, ,	Apr 4	1436.1	35797	35777	6.6	17014.0	Satellite (TDRS) to provide improved tracking and data acquisition services to spacecraft in low Earth orbit; performed EVA. Mission duration 120 hours 23 minutes 42 seconds.
RCA F (S) 1983 30A	Delta 167 (S)	Apr 11	1442.0	35956	357847	0.1	1116.3	RCA domestic communications satellite. Reimbursable (RCA).
GOES 6 (S) 1983 41A	Delta 168 (S)	Apr 28	1435.4	35785	35758	4.5	838.0	Part of NOAA's Geostationary Operational Environmental Satellite system to provide near continual, high resolution visual and infrared imaging over large areas. Reimbursable (NOAA).
Intelsat V-F F-6 (S) 1983 47A	Atlas-Centaur (AC-61) (S)	May 19	1436.2	35797	35779	1.9	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Carried Maritime Communications Services (MCS) package for INMARSAT. Reimbursable (Comsat).
EXOSAT (S) 1983 51A	Delta 169 (S)	May 26		DÓ	WN MAY 6, 1986		500.0	X-ray satellite to provide continuous observations of X-ray sources. Reimbursable (ESA).
STS 7 (S) 1983 59A	Shuttle (S) (Challenger)	Jun 18		LAND	ED AT DERF JUN	24, 1983		Third operational flight of STS with Robert L. Crippen, Frederick H. Hauck, John M. Fabian, Sally K. Ride (first woman astronaut), and
Telesat-F (S) 1983 59B		Jun 18	1436.1	35793	35780	1.2	4443.4	Norman E. Thagard. Deployed two communications satellites. Telesat (Reimbursable - Canada) and Palapa (Reimbursable - Indonesia).
Palapa-B-1 (S) 1983 59C		Jun 18	1436.1	35790	35784	2.4	4521.5	Carried out experiments including launching and recovering SPAS 01 (Reimbursable - Germany). Mission duration 146 hours 23 minutes 59
SPAS-01 (S) 1983 59F		Jun 18		RETF	IEVED JUN 24, 19	33		seconds.
AF P83-1 (S) 1983 63A	Scout 103 (S)	Jun 27	100.6	819	754	82.0	112.6	Air Force HILAT satellite to evaluate propagation effects of disturbed plasmas on radar and communication systems. Reimbursable (DOD). (WSMC)
Galaxy 1 (S) 1983 65A	Detta 170 (S)	Jun 28	1436.1	35791	35782	0.0	519.0	Hughes Communications, Inc. communications satellite. Reimbursable (Hughes).
Telsat 3A (S) 1983 77A	Detta 171 (S)	Jul 28	1436.2	35796	35780	0.1	635.0	AT&T communications satellite. Reimbursable (AT&T).

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE		Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS 8 (S) 1983 89A INSAT-B (S) 1983 89B	Shuttle (S) (Challenger)	Aug 30 Aug 31	1436.2		ED AT DFRF SEF 35765		3391.0	Fourth operational flight of STS with Richard H. Truy, Daniel C. Brandenstein, Dale A. Gardner, Guion S. Bluford (first black astronauf), and William E. Thornton. First night launch and landing. Deployed satellite, INSAT (Reimbursable - India), performed tests and experiments. Mission duration 145 hours 8 minutes 43 seconds.
RCA G (S) 1983 94A	Delta 172 (S)	Sep 8	1436.2	35803	35772	0.0	1121.3	RCA domestic communications Satellite, Reimbursable (RCA).
Galaxy 2 (S) 1983 98A	Delta 173 (S)	Sep 22	1436.2	35792	35783	0.0	579.0	Hughes Communications satellite. Reimbursable (Hughes).
STS-9 (S) Spacelab-1 1983 116A	Shuttle (S) (Columbia)	Nov 28		LAND	ED AT DFRF DEC	C 8, 1983		Fifth operational flight of STS with John W. Young, Brewster W. Shaw, Jr., Owen K. Garriott, Robert A. R. Parker, Byron K. Lichtenberg, and Ulf Merbold (ESA). Spacelab-1, a multi-discipline science payload, carried in Shuttle Cargo Bay. Cooperative with ESA. Mission Duration 247 hours 47 minutes 24 seconds.
1984								1984
STS 41-B (S) 1984 11A	Shuttle (S) (Challenger)	Feb 3			ED AT KSC FEB		-	Fourth Challenger flight with Vance D. Brand, Robert L. Gibson, Bruce McCandless, Ronald E. McNair and Robert L. Stewart. Deployed
Westar 6 (U) 1984 11B		Feb 3		RETR	EVED NOV 16, 1	984 (51-A)		Westar (Reimbursable - WU), and Palapa B-2 (Reimbursable - Indonesia). Both PAM's failed; both satellites retrieved on STS 51-A
IRT (S) 1984 11C		Feb 3		DO	WN FEB 11, 1984		234.0	mission. Rendezvous tests performed with IRT, using deflated target. Evaluated Manned Maneuvering Unit (MMU) and Manipulator Foot
Palapa B-2 (U) 1984 11D		Feb 6		RETR	EVED NOV 16, 1	984 (51-A)	3419.0	Restraint (MFR). First STS landing at KSC. Mission duration 191 hours 15 minutes 55 seconds.
Landsat 5 (S) 1984 21A	Delta 174 (S)	Mar 1	98.8	703	695	98.2	1947.0	Earth resources technology satellite to provide continuing Earth remote sensing data. Instruments included a multispectral scanner and
UoSAT (S) 1984 21B	(-)		98.0	670	653	97.8	52.0	AMSAT (Reimbursable - AMSAT). (WSMC)
STS 41-C (S) 1984 34A	Shuttle (S) (Challenger)	Apr 6		LAND	ED AT DFRF APP	13, 1984		Fifth Challenger flight with Robert L. Crippen, Frances R. Scobee, Terry J. Hart, George D. Nelson and James D. Van Hoften. Deployed
LDEF (S) 1984 34B	(ontailongoi)	Apr 6		RETRIE	EVED JAN 20, 199	90 (STS-32)	9670.0	LDEF; SMM retrieved and repaired in Cargo Bay; redeployed April 12. Mission duration 167 hours 40 minutes 7 seconds
Intelsat V-G F-9 (U) 1984 57A	Atlas-Centau (AC-62) (U)	r Juni9		DO	WN OCT 24, 1984		1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Cerried Maritime Communications Services (MCS) package for INMARSAT. Vehicle failed to place satellite in useful orbit. Reimbursable (Comsat).

MISSION/		LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
AMPTE CCE (S) 1984 88A	Delta 175 (S)	Aug 16	730.9	39217	1784	64.4	242.0	Three active magnetospheric particle tracer explorers: Charge Composition Explorer (CCE) provided by the U.S.; Ion Release Module (IRM) provided by the Federal Republic of Germany ; and the United
IRM (S) 1984 88B UKS (S)			2653.4	113818	402	27.0	605.0	Kingdom Subsatellite (UKS) provided by the UK; to study the transfer of mass from the solar wind to the magnetosphere. International
1984 88C			2659.6	113417	1002	26.9	77.0	Cooperative.
STS 41-D (S) 1984 93A	Shuttle (S) (Discovery)	Aug 30			ED AT EAFB SEP			First Discovery flight with Henry W. Hartsfield, Michael L. Coats, Richard M. Mullane, Steven Hawley, Judith A. Resnik, and Charles D. Walker.
SBS-4 (S) 1984 93B	(Discovery)	Aug 31	1436.2	35795	35780	0.0	3344.0	Deployed SBS (Reimbursable - SBS), Leasat (Reimbursable - Hughes), and Telstar (Reimbursable - AT&T), carried out experiments
Syncom IV-2 (S) 1984 93C		Aug 31	1463.0	35787	35779	04.1	6889.0	including OAST-1 solar array structural testing. Mission duration 144 hours 56 minutes 4 seconds.
Telstar 3-C (S) 1984 93D		Sep 1	1436.2	35793	35783	0.0	3402.0	
Galaxy C (S) 1984 101A	Delta 176 (S)	Sep 21	1436.2	35793	35782	0.1	519.0	Hughes Communications Satellite. Reimbursable (Hughes).
STS 41-G (S) 1984 108A	Shuttle (S) (Challenger)	Oct 5			ED AT KSC OCT 1	•		Sixth Challenger flight with Robert L. Crippen, Jon A. McBride, Kathryn D. Sullivan, Sally K. Ride, David C. Leestma, Paul D. Scully-Power, and
ERBS (S) 1984 108B		Oct 5	96.4	590	578	57.0	2449.0	Marc Garneau (Canada). Deployed ERBS to provide global measurements of the Sun's radiation reflected and absorbed by the Earth; performed scientific experiments using OSTA-3 and other instruments. Mission duration 197 hours 23 minutes 33 seconds.
NOVA III (S) 1984 1 10A	Scout 104 (S)	Oct 11	108.9	1199	1149	89.9	173.7	Improved Transit Navigation Satellite for the U.S. Navy. Reimbursable (DOD). (WSMC)
STS 51-A (S) 1984 113A	Shuttle (S) (Discovery)	Nov 8		LAND	ED AT KSC NOV 1	6, 1984		Second Discovery flight with Frederick H. Hauck, David M. Walker, Joseph P. Allen, Anna L. Fisher, Dale A. Gardner, Deployed Telesat
Telesat-H (S) 1984 113B	,	Nov 9	1436.2	35796	35780	0.0	3420.0	(Reimbursable - Canada) and Syncom IV-1 (Reimbursable - Hughes). Retrieved and returned Palapa B-2 and Westar 6 (Launched on 41-B).
Syncom IV-1 (S) 1984 113C		Nov 10	1466.8	36427	36341	2.8	6889.0	Mission duration 191 hours 44 minutes 56 seconds.
NATO III-D (S) 1984 115A	Delta 177 (S)	Nov 13	1436.2	35796	35780	1.4	761.0	Fourth in a series of communication satellites for NATO. Reimbursable (NATO).
NOAA-9 (S) 1984 123A	Atlas 39E (S)	Dec 12	101.8	854	834	99.1	1712.0	Advanced TIROS-N spacecraft to provide continuous coverage of the Earth and provide high-accuracy worldwide meteorological data. Reimbursable (NOAA). (WSMC)

1985

MISSION/	LAUNCH	LAUNCH		CURRENT	ORBITAL PAR	AMETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1985						· · · · · · · · · · · · · · · · · · ·		1985
STS 51-C (S) 1985 10A DOD (S) 1985 10B	Shuttle (S) (Discovery)	Jan 24		LANDED AT KSC JAN 27, 1984 ELEMENTS NOT AVAILABLE				Third Discovery flight with Thomas K. Mattingly, Loren J. Shriver, Ellison S. Onizuka, James F. Buchfi, and Gary E. Payton. Deployed unannounced payload for DOD, (Reimbursable - (DOD)). Mission duration 73 hours 33 minutes 23 seconds.
Intelsat V-A F-10 (S) 1985 25A	Atlas-Centaur (AC-63) (S)	Mar 22	1436.1	35807	35768	0.0	1996.7	First in a series of improved Commercial Communication satellites for Intelsat. Reimbursable (Comsat),
STS 51-D (S) 1985 28A	Shuttle (S) (Discovery)	Apr 12		LANDED AT KSC APR 19, 1985				Fourth Discovery flight with Karol K. Bobko, Donald F. Williams, M. Rhea Seddon, S. David Griggs, Jeffrey A. Hoffman, Charles D.
Telesat-1 (S) 1985 28B		Apr 13	1436.1	35796	35778	0.0	3550.0	Walker, and E. J. "Jake" Garn (U.S. Senator). Deployed Syncom (Reimbursable - Hughes) and Telesat (Reimbursable - Canada).
Syncom IV-3 (S) 1985 28C		Apr 12	1436.2	35803	35772	3.3	6889.0	Syncom Sequencer failed to start, despite attempts by crew; remained inoperable until restarted by crew of 51-1 (August 1985). Mission duration 167 hours 55 minutes 23 seconds.
STS 51-B (S) Spacelab-3	Shuttle (S) (Challenger)	Apr 29	· · · · · · · · · · · · · · · · · · ·					Sixth Challenger flight with Robert F. Overmeyer, Frederick D. Gregory, Don Lind, Norman E. Thagard, William E. Thornton, Lodewijk
1985 34A				· · · · · · · · · · · · · · · · · · ·	WN DEC 15, 1986		47.6	Vanderberg, and Taylor Wang. Spacelab-3 (Cooperative with ESA) mission to conduct applications, science and technology experiments. Deployed Northern Utah Satellite (NUSAT) (Reimbursable - Northern Utah University). Global Low Orbiting Message Relay Satellite (GLOMR) (Reimbursable - DOD) failed to deploy and was returned. Mission duration 168 hours 8 minutes 46 seconds.
STS 51-G (S) 1985 48A	Shuttle (S) (Discovery)	Jun 17		LANDED AT EAFB JUN 24, 1985				Fifth Discovery flight with Daniel C. Brandenstein, John O. Creighton, Shannon W. Lucid, John M. Fabian, Steven R. Nagel, Patrick Baudry
Morelos-A (S) 1985 48B		Jun 17	1436.1	35793	35781	0.0	3443.0	(France), and Prince Sultan Salman Al-Saud (Saudi Arabia). Deployed Morelos (Reimbursable - Mexico), Arabsat (Reimbursable - ASCO)
ARABSAT-A (S) 1985 48C		Jun 18	1434.4	35891	35614	1.0	3499.0	and Telstar (Reimbursable - AT&T). Deployed and retrieved Spartan 1. Mission duration 169 hours 38 minutes 52 seconds.
TELSTAR 3-D (S) 1985 48D		Jun 19	1436.1	35789	35783	0.0	3437.0	
SPARTAN 1 (S) 1985 48E		Jun 20		RETRIEVED JUN 24, 1985			2051.0	
Intelsat VA F-11 (S) 1985 55A	Atlas-Centaur (AC-64) (S)	Jun 29	1436.1	35804	35769	0.1	1996.7	Second in a series of improved Commercial Communications Satellites for Intelsat. Reimbursable (Comsat).

1	985	
---	-----	--

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PA	RAMETERS	WEIGHT	
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km	i) Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS 51-F (S)	Shuttle (S)	Jul 29	•••·	LAND	ED AT EAFB AU	IG 6, 1985		Seventh Challenger flight with Charles G. Futlerton, Roy D. Bridges, Jr., Karl G. Heinze, Anthony W. England, F. Story Musgrave, Loren W.
Spacelab-2	(Challenger)							Acton, and John-David F. Bartow/. Conducted experiments in
1985 63A				RETRIEVED JUL 29, 1985				Spacelab-2 (Cooperative with ESA). Deployed Plasma Diagnostic
PDP (S) 1985 638				HETHIEVED JUL 29, 1965				Package (PDP) which was retrieved 6 hours later. Mission duration 190
1965 650								hours 45 minutes 26 seconds.
Navy SOOS-I	Scout 105	Aug 2						Two Navigation Satellites for the U.S. Navy. Reimbursable (DOD).
1985 66A (S)	(S)		107.9	1255	999	89.9	64.2	(WSMC)
1985 66B (S)			107.9	1256	999	89.9	64.2	
STS 51-1 (S)	Shuttle (S)	Aug 27		LANDED AT EAFB SEP 3, 1985				Sixth Discovery flight with Joe H. Engle, Richard O. Covey, James D.
1985 76A	(Discovery)							VanHoften, William F. Fisher, John M. Lounge. Deployed Aussat
Aussat-1 (S)		Aug 27	1436.1	35798	35777	0.0	3445.5	
1985 76B								Co.), and Syncom IV-4 (Reimbursable - Hughes). After reaching
ASC (S)		Aug 27	1436.1	35794	35778	0.0	3406.1	Geosynchronous Orbit, Syncom IV-4 ceased functioning. Repaired
1985 76C				05010	00000	3.2	6894.7	Syncom IV-3 (launched by 51-D, April 1985), Mission duration 170 hours 17 minutes 42 seconds.
Syncom IV-4 (U) 1985 76D		Aug 29	1430.1	35843	35809	3.2	6694.7	hours 17 minutes 42 seconds,
Intelsat VA F-12 (S) 1985 87A	Atlas-Centaur (AC-65) (S)	Sep 28	1436.1	35801	35772	0.1	1996.7	Third in a series of improved commercial Communications Satellites for Intelsat, Reimbursable (Comsat),
STS 51-J (S) (DOD) 1985 92A	Shuttle (S) (Atlantis)	Oct 3		LANDED AT EAFB OCT 7, 1985				First Atlantis flight with Karol J. Bobko, Ronald J. Grabe, Robert A. Stewart, David C. Hilmers, and William A. Pailes. DOD mission. Mission duration 97 hours 44 minutes 38 seconds.
STS 61-A (S) Spacelab D-1 1985 104A	Shuttle (S) (Challenger)	Oct 30		LANDED AT EAFB NOV 6, 1985			·	Eighth Challenger flight with Henry W. Hartsfield, Steven R. Nagel, Bonnie J. Dunbar, James F. Buchli, Guion S. Bluford, Ernst Messerschmid (Germany), Reinhard Furrer (Germany), and Wubbo
GLOMR (S) 1985 104B				DO	WN DEC 26, 198	6	267.6	Cockels (Dutch). Spacelab D-1 mission (Cooperative with ESA) to conduct scientific experiments. Deployed GLOMR (Reimbursable - DOD). Carried Materials Experiment Assembly (MEA) for on-obit processing of materials science experiment specimens. Mission duration 168 hours 44 minutes 51 seconds.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS 61-B (S)	Shuttle (S)	Nov 26		LAND	ED AT EAFB DEC	3, 1985		Second Atlantis Flight with Brewster H. Shaw, Bryan D. O'Conner,
1985 109A	(Atlantis)							Mary L. Cleave, Sherwood C. Spring, Jerry L. Ross, Rudotto Neri Vela
Morelos-B (S)		Nov 27	1436.1	35793	35780	0.0	4539.6	(Morelos), Charles D. Walker (MDAC). Deployed Morelos
1985 109B				46700				(Reimbursable - Mexico), Aussat (Reimbursable - Australia), and
Aussat-2 (S) 1985 109C		Nov 27	1436.2	35796	35779	0.0	4569.1	Satcom (Reimbursable - RCA). Demonstrated construction in space
Satcom (S)		Nov 28	1436.2	35797	35779	0.0		by manually assembling EASE and ACCESS Experiments. Deployed
1985 109D		1404 20	1430.2	35/9/	35//9	0.0	7225.3	Station Keeping Target (OEX) to conduct advanced Station Keeping Tests. Mission duration 165 hours 4 minutes 49 seconds,
OEX Target								Tests. Mission duration 105 figure 4 manages 49 seconds,
1985 109E				DO	WN MAR 2, 1987			
AF-16	Scout 106	Dec 12						Air Force instrumented test vehicle. (Dual Payload)
1985 114A (S)	(S)				WN MAY 11, 1989			Reimbursable (DOD). (WFF)
1985 114B (S)				<u> </u>	WN AUG 9, 1987			
1986								1986
STS 61-C (S) 1986 03A	Shuttle (S) (Columbia)	Jan 12		LAND	ED AT EAFB JAN 1	18, 1986		Seventh Columbia flight with Robert L. Gibson, Charles F. Bolden, Jr.,
SATCOM (S)	(Columbia)	Jan 12	1436.2	35796	35780	0.0	7225.3	Franklin R. Chang-Diaz, George D. Nelson, Steven A. Hawley, Robert J. Cenker (RCA), and C. William Nelson (Congressman). Deployed
1986 03B		001112	1400.2	35/30	33760	0.0	1223.3	Satcom (Reimbursable - RCA). Evaluated material science lab payload
								carrier and processing facilities. Carried HHG-1 to accommodate GAS
								payloads. Mission duration 146 hours 3 minutes 51 seconds.
STS 51-L (U)	Shuttle (U)	Jan 28		DID N	IOT ACHIEVE ORB	n – – – – – – – – – – – – – – – – – – –		Ninth Challenger flight with Francis R. Scobee, Michael J. Smith,
TDRS-B (U)	(Challenger)						2103.3	Judith A. Resnik, Ellison S. Onizuka, Ronald E. McNair, Gregory Jarvis
1								(Hughes), S. Christie McAuliffe (Teacher). Approximately 73 seconds
								into flight, the Shuttle exploded.
GOES-G (U)	Delta 178 (U)	May 5		DID N	OT ACHIEVE ORB	п	840.0	Provide systematic world-wide weather coverage for NOAA. Vehicle failed. Reimbursable NOAA).
DOD (U)	Detta 180	Sep 5		DO	WN SEP 28, 1986			Carried DOD experiment. Reimbursable (DOD).
1986 69A	<u>(U)</u>							
NOAA-G (S)	Atias 52E	Sep 17	101.0	816	796	98.5	1712.0	Operational environmental satellite for NOAA. Included ERBE
								instrument to complement data being acquired by ERBS, launched in
l .								1984. Carried search and rescue instruments provided by Canada and
1								France. Reimbursable (NOAA). (WSMC)

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
AF P87-11 (S) Polar Bear 1986 88A	Scout 107 (S)	Nov 13	104.8	1014	954	89.6		Scientific satellite to study the atmospheric effect on electromagnetic propagation. Reimbursable (DOD). (WSMC)
Fitsatcom (F-7) (S) 1986 96A	Atlas-Centaur (AC-66) (S)	Dec 4	1436.2	35849	35728	0.4	1128.5	Provide communication between aircraft, ships, and ground stations for DOD. Reimbursable (DOD).
1987				-				1987
GOES-H (S) 1987 22A	Delta 179 (S)	Feb 26	1436.2	35800	35775	0.4	840.0	Operational environmental satellite to provide systematic worldwide weather coverage. Reimbursable (NOAA).
Palapa B2-P 1987 29A	Delta 182	Mar 20	1436.2	35788	35788	0.0	652.0	Provide communication coverage over Indonesia and the Asian countries. Reimbursable (Indonesia).
Fitsatcom (F-6) (U)	Atlas-Centaur (AC-67) (U)	Mar 26		DID	NOT ACHIEVE ORB	ит	1038.7	Part of the worldwide communications system between aircraft, ships, and ground stations for the DOD. Telemetry lost shortly after launch; destruct signal sent at 70.7 seconds into flight. An electrical transient, caused by a lighting strike on the launch vehicle, most probable cause of loss. Reimbursable (DOD).
SOOS-2 1987 80A (S) 1987 80B (S)	Scout 108 (S)	Sep 16	107.1 107.2	1178 1180	1011 1010	90.4 90.4	64.5 64.5	Two Transit navigation satellites in a stacked configuration for the U.S. Navy. Reimbursable (DOD). (WSMC)
1988								1988
DOD (SDI) (S) 1988 08A	Delta 181 (S)	Feb 8		D	OWN MAR 1, 1988			Strategic Defense Initiative Organization (SDIO) Payload. Reimbursable (DOD).
San Marco D/L (S) 1988 26A	Scout 109 (S)	Mar 25		D	OWN DEC 6, 1988		273.0	Explore the relationship between solar activity and meteorological phenomena. Cooperative with Italy. (San Marco)
SOOS-3 1988 33A (S) 1988 33B (S)	Scout 110 (S)	Apr 25	108.5 108.5	1302 1300	1013 1012	90.3 90.3	129.6	Two Transit navigation satellites in a stacked configuration for the U.S. Navy. Reimbursable (DOD). (WSMC)
Nova II 1988 52A	Scout 111 (S)	Jun 16	108.9	1199	1149	90.0	170.5	Improved Transit Navigation Satellite for the U.S. Navy. Reimbursable (DOD). (WSMC)
SOOS-4 1988 74A (S) 1988 74B (S)	Scout 112 (S)	Aug 25	107.3 107.3	1175 1173	1030 1031	89.9 89.9	128.2	Two Transit navigation satellites in a stacked configuration for the U.S. Navy. Reimbursable (DOD). (WSMC)
NOAA-H (Š) 1988 89A	Atlas 63E (S)	Sep 24	101.9	855	838	99.1	1712.0	Operational environmental satellite for NOAA. Carried Search and Rescue instruments provided by Canada and France. Reimbursable (NOAA). (WSMC)

1988	
------	--

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT C	ORBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS-26 (S) 1988 91A TDRS-3 (S) 1988 91B	Shuttle (S) (Discovery)	Sep 29 Sep 29	1436.2		ED AT EAFB OCT 35772		2224.9	Sixth Discovery flight with Frederick H. Hauck, Richard O. Covey, John M. Lounge, David C. Hilmers, and George D. Nelson. Deployed TDRS-3. Performed experiment activities for commercial and scientific middeck experiments. Mission Duration 97 hours 0 minutes 11 seconds.
STS-27 (S) 1988 106A DOD (S) 1988 106B	Shuttle (S) (Atlantis)	Sep 29			ED AT EAFB DEC MENTS NOT AVAIL			Third Atlantis flight with Robert L. Gibson, Guy S. Gardner, Richard M. Mullane, Jerry L. Ross and William M. Shepherd. DOD Mission. Mission Duration 105 hours 05 minutes 37 seconds.
1989								1989
STS-29 (S) 1989 21A TDRS-D (S) 1989 21B	Shuttle (S) (Discovery)	Mar 13	1436.1	35808	ED AT EAFB MAR 35768	18, 1989 0.0	2224	Eighth Discovery flight with Michael L. Coats, John E. Blaha, James Bagian, James F. Buchli, Robert Springer. Deployed a new Tracking and Data Relay Satellite. Performed commercial and scientific experiments. Mission Duration 119 hours 33 minutes 52 seconds.
STS-30 (S) 1989 33A Magellan (S) 1989 33B	Shuttle (S) (Atlantis)	May 4			ED AT EAFB MAY			Fourth Atlantis flight with David M. Walker, Ronald J. Grabe, Mary L. Cleave, Mark C. Lee, Norman E. Thagard. Deployed the Magellan spacecraft on a mission toward Venus. Performed commercial and scientific middeck experiments. Mission Duration: 96 hours 56 minutes 28 seconds.
STS-28 (S) 1989 61A	Shuttle (S) (Columbia)	Aug 8		LAND	ED AT EAFB AUG	13, 1989		Ninth Columbia flight with Brewster H. Shaw, Richard N. Richards, David C. Leetsma, James C. Adamson, and Mark N. Brown. DOD Mission. Duration: 121 hours 0 minutes 08 seconds.
Fitsatcom (S) 1989 77A	Atlas-Centaur (AC-68) (S)	Sep 25	1436.1	35701	35774	2.9	1863	Navy Communications satellite to provide communications between aircraft, ships and ground stations for DOD. Reimbursable (DOD).
STS-34 (S) 1989 84A Galileo (S) 1989 84B	Shuttle (S) (Atlantis)	Oct 18		LANDED AT EAFB OCT 23, 1989 ELEMENTS NOT AVAILABLE				Fifth Atlantis flight with Donald E. Williams, Michael J. McCulley, Ellen Baker, Shannon N. Lucid, and Franklin Chang-Diaz. Deployed the Galileo spacecraft on a mission toward Jupiter. Performed experiment activities for commercial and scientific middeck experiments. Mission Duration: 119 hours 39 minutes 22 seconds.
COBE (S) 1989 89A	Detta 2	Nov 18	102.6	885	873	99.0	2206	Cosmic Background Explorer spacecraft to provide the most comprehensive observations to date of radiative content of the universe.
STS-33 (S) 1989 90A DOD (S) 1989 90B	Shuttle (S) (Discovery)	Nov 23			ED AT EAFB NOV MENTS NOT AVAI			Ninth Discovery flight with Frederick Gregory, John E. Blaha, Manly L. Carter, Franklin S. Musgrave and Kathryn C. Thornton. DOD Mission. Mission Duration: 120 hours 6 minutes 46 seconds.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	RAMETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) Incl (dea)	(kg)	(All Launches from ESMC, unless otherwise noted)
1990				<u>_</u>		<u> </u>		1990
STS-32 (S) 1990 2A Syncom IV-5 (S)	Shuttle (S) (Columbia)	Jan 9	1436.2	LAND 35815	ED AT EAFB JAI 35759	N 20, 1990 2.7	6953.4	Tenth Columbia flight with Daniel C. Brandenstein, James D. Wetherbee, Bonnie J. Dunbar, Marsha S. kins and G. David Low. Deployed Syncom IV-5 (Reimbursable - DOD), a geostationary
1990 2B								communications satellite also known as Leasat, for the U.S. Navy. Also retrieved the Long Duration Exposures Facility (LDEF) deployed on STS-41C on April 6, 1984, Mission Duration; 261 hrs 0 mins 37 secs.
STS-36 (S) 1990 19A	Shuttle (S) (Atlantis)	Feb 28		LAND	ED AT EAFB MA	R 4, 1990		Stoth Atlantis flight with John D. Creighton John H. Casper, David C. Hilmers, Richard M. Mullane and Pierre J. Thuot. DOD Mission.
DOD (S) 1990 198	•			ELE	MENTS NOT AV	AILABLE		Mission Duration: 106 hours 18 minutes 22 seconds.
Pegsat (S) 1990 28A	Pegasus (S) (Orb Sci)	Apr 5	94.1	539	410	94.1		A 50-foot rocket (Pegasus), dropped from the wing of a B-52 aircraft flying over the Pacific Ocean, launched the Pegsat satellite in the first demonstration flight of the Pegasus launch vehicle. The Pegsat science investigations are part of the Combined Release and Radiation Effects Satellite (CRRES), a joint NASA/DOD program.
STS-31 (S) 1990 37A HST (S) 1990 37B	Shuttle (S) (Discovery)	Apr 24	96.6	598	ED AT EAFB AP 591	R 29, 1990 28.5	11355.4	Tenth Discovery flight with Loren J. Shriver, Charles F. Bolden, Bruce McCandless, Steven A. Hawley, and Kathryn D. Sullivan. Deployed the Edwin P. Hubble Space Telescope (HST) astronomical observatory. Designed to operate above the Earth's turbulent and obscuring atmosphere to observe celestial objects at ultraviolet, visible and near-infrared wavelengths. Joint NASA/ESA mission. Mission
Macsat (S) 1990 43A 1990 438	Scout 113 (S)	May 9	98.3 98.3	755 752	601 600	89.9 89.9	89.9	Duration: 121 hours 16 minutes 6 seconds. Two Multiple Access Communications Satellites (MACSATs) to provide global store-and-forward message relay capability for DOD Users. Reimbursable (DOD). (VAFB)
ROSAT (S) 1990 49A	Delta 2 (S)	Jun 1	95.6	557	542	53.0	2421.1	Roentgen Satellite (ROSAT), an Explorer class scientific satellite configured to accommodate a large X-ray telescope, to study X-ray emissions from non-solar celestial objects. International cooperative program with NASA, Germany, and the UK.
CRRES (S) 1990 65A	Atlas-Centaur (AC-69) (S)	Jul 25	614.4	34781	345	18.0		Combined Release and Radiation Effects Satellite (CRRES) which uses chemical releases to study the Earth's magnetic fields and the plasmas, or ionized gases, that travel through them. Joint NASA/DOD program.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS-41 (S) 1990 90A Ulysses (S) 1990 90B	Shuttle (S) (Discovery)	Oct 6			ED AT EAFB OCT 1	,	20079.5	Eleventh Discovery flight with Richard N. Richards, Robert D. Cabana, Bruce E. Melnick, William M. Shepherd, and Thomas D. Akers. Deployed the Ulysses spacecraft, a joint NASA/ESA mission to study the poles of the Sun and the interplanetary space above and below the poles. Mission Duration: 98 hours 10 minutes 3 seconds.
STS-38 (S) 1990 97A DOD (S) 1990 97B	Shuttle (S) (Atlantis)	Nov 15			ED AT KSC NOV 20 MENTS NOT AVAIL			Seventh Atlantis flight with Richard O. Covey, Robert C. Springer, Carl J. Meade, Frank L. Cutbertson and Charles D. Gemar. DOD Mission. Mission Duration: 117 hours 54 minutes 27 seconds.
STS-35 (S) 1990 106A	Shuttle (S) (Columbia)	Dec 2		LAND	ED AT EAFB DEC 1	1, 1990		Eleventh Columbia flight with Vance D. Brand, John M. Lounge, Jeffrey A. Hoffman, Robert A. Parker, Guy S. Gardner, Ronald A. Parise, and Samuel T. Durrance. Carried Astro-1, a Space Shuttle attached payload to acquire high priority astrophysical data on a variety of celestial objects. Mission Duration: 215 hours 5 minutes 7 seconds.
1991								1991
STS-37 (S) 1991 27A GRO (S) 1991 27B	Shuttle (S) (Atlantis)	Apr 5	92.0	376	ED AT EAFB APR 1 370	1, 1991 28.5	15900.0	Eighth Atlantis flight with Steven R. Nagel, Kenneth D. Cameron, Linda M. Godwin, Jerome Apt, and Jerry L. Ross. An unplanned EVA took place to help with the deployment of GRO's high gain antenna. Also demonstrated were mobility aids which will be used on Space Station Freedom. Mission Duration; 143 hrs 32 min 45 sec.
STS-39 (S) 1991 31A IBSS (S) 1991 31B	Shuttle (S) (Discovery)	Apr 28			ED AT KSC MAY 6, DOWN MAY 6, 1991			Twelfth Discovery flight with Michael L. Coats, Blaine L. Hammond, Jr., Guion S. Bluford, Gregory J. Harbaugh, Richard J. Hieb, Donald R. McMonagle, and Charles L. Veach. Discovery performed dozens of maneuvers, deploying canisters from the cargo bay, releasing and retrieving a payload with the RMS, allowing the Department of Defense to gather important plume observation data and information for the SDIO. Mission Duration: 199 hrs 26 min 17 sec.
NOAA-12 (S) 1991 32A	Atlas-E (S)	May 14	101.2	824	806	98.7	1418.0	Third-generation operational spacecraft to provide systematic global weather observations. Will replace NOAA-10 as the morning satellite in NOAA's two polar satellite system. Joint NASA/NOAA effort. (WSMC)

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PA	RAMETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (kn	n) Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS-40 (S) Spacelab (SLS-1) 1991 40A	Shuttle (S) (Columbia)	Jun 5		LAN	DED AT EAFB JU	N 14, 1991		Twefith Columbia flight with Bryan D. O'Connor, Sidney M. Gutierrez, M. Rhea Seddon, James P. Bagian, Tamara E. Jerrigan, F. Drew Gaffney, and Millie Hughes-Futford. The first mission since Skylab to do intensive investigations into the effects of weightlessness on humans. Data learned from this flight will be used in NASA's planning for longer Shuttle missions set for 1992, and in the planning of Space Station Freedom. Mission Duration: 218 hrs 15 mins 14 secs.
REX (S) 1991 45A	Scout (S)	Jun 29	101.3	867	769	89.6	96.7	understand the physics of the electron density irregularities that cause disruptive scintillation effects on transionospheric radio signals. Reimbursable - DOD. (VAFB)
STS-43 (S)	Shuttle (S)	Aug 2			DED AT KSC AU	G 11, 1991		Ninth Atlantis flight with John E. Blaha, Michael A. Baker, James C.
1991 54A TDRS-E (S) 1991 54B	(Atlantis)		1436.1	35793	35779	0.0	2226.9	Adamson, G. David Low, and Shannon E. Lucid. A TDRS satellite was deployed, keeping the network which supports Shuttle missions and other spacecraft at full operational capability. Mission Duration: 213 hours 22 minutes 27 seconds.
STS-48 (S) 1991 63A UARS (S) 1991 63B	Shuttle (S) (Discovery)	Sep 12	96.2	580	DED AT EAFB SE 573	EP 18, 1991 57.0	6532.2	Thirteenth Discovery flight with John O. Creighton, Kenneth S. Reightler, Mark F. Brown, James F. Buchii, and Charles D. Gemar. The Upper Atmosphere Research Satellite (UARS) will study physical processes acting within and upon the stratosphere, mesosphere, and lower thermosphere. Mission Duration; 128 hrs 27 mins 51 secs.
STS-44 (S) 1991 80A DSP (S) 1991 80B	Shuttle (S) (Atlantis)	Nov 24 Nov 25		_	DED AT EAFB DE			Tenth Atlantis flight with Frederick D. Gregory, Terence T. Henricks, F. Story Musgrave, Mario Runco, Jr., James S. Voss, and Thomas J. Hennen. A dedicated mission for the Department of Defense to gather data for their programs. Deployed Defense Support Program satellite (DSP). The mission was shortened when an inertial measurement unit failed on the sixth day of the mission. Mission Duration; 168 hrs 52 mins 27 secs.
1992								1992
STS-42 (S) 1992 2A	Shuttle (S) (Discovery)	Jan 22		LANE	DED AT EAFB JA	N 30, 1992		Fourteenth Discovery flight with Ronald J. Grabe, Steven S. Oswald, Norman E. Thagard, William F. Readdy, David C. Hilmers, Roberta L. Bondar, and Ulf D. Merbold. The International Microgravity Laboratory (IML-1) studied the effects of microgravity on living organisms and materials processes. Mission duration: 193 hrs 15 mins 43 secs.

MISSION/	LAUNCH	AUNCH	PERIOD	CUBBENT	BITAL PARA	METERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)		(kg)	(All Launches from ESMC, unless otherwise noted)
STS-45 (S) 1992 15A	Shuttle (S) (Atlantis)	Mar 24	<u> </u>		ED AT KSC APR 2,			Eleventh Atlantis flight with Charles F. Bolden, Brian K. Dufty, Kathyn D. Sullivan, David C. Leetsma, C. Michael Foale, Dirk D. Frimout and Bryon K. Lichtenburg. The Atmospheric Laboratory for Applications and Science (ATLAS 1) studied stmospheric science, solar science, space physics and astronomy. Mission Duration: 214 hrs 10 mins 24 secs.
STS-49 (S) 1992 26A	Shuttle (S) (Endeavour)	May 2		LANDED AT EAFB MAY 16, 1992				First flight of Endeavour with Daniel C. Brandenstein, Kevin P. Chilton, Richard J. Hieb, Bruce E. Melnick, Piere J. Thout, Kathryn C. Thornton, and Thomas D. Akers. On orbit repair of the Intelist VI satellife and redeployment with new kick motor. Assembly of Station by Extravehicular Activity Methods (ASEM), while attached to the cargo bay. Mission duration; 213 hrs 17 mins 38 secs.
EUVE (S) 1992 31A	Delta II (S)	Jun 7	95.1	529	514	28.4	3250	The Extreme Ultraviolet Explorer (EUVE), designed to study the extreme ultraviolet (EUV) portion of the electromagnetic spectrum as well as selected EUV targets, in order to create a definitive map and catalog of these sources.
STS-50 (S) 1992 34A	Shuttle (S) (Columbia)	Jun 25		LANDED AT KSC JUL 9, 1992				Twelfth Columbia flight with Richard N. Richards, Kenneth D. Bowersox, Bonnie J. Dunbar, Carl J. Meade, Ellen S. Baker, and Lawrence J. Delucas. The First United States Microgravity Laboratory (USML-1) studied scientific and technical questions in materials science, fluid dynamics, biotechnology and combustion science. Mission duration: 331 hrs 30 mins 4 secs.
SAMPEX (S) 1992 38A	Scout (S)	Jul 3	96.6	679	509	81.7		First of the Small Explorer (SMEX) fleet, carrying four cosmic ray monitoring instruments, to study solar energetic particles, anomalous cosmic rays, galactic cosmic rays, and magnetospheric electrons.
GEOTAIL (S) 1992 44A	Delta II (S)	Jul 24	4750.6	508542	41363	22.4	1009	Joint mission between the United States and Japan to study the geomagnetic tail region of the magnetosphere. Geotail will also measure the physics of the magnetosphere, the plasma sheet, reconnection and neutral line formation to better understand fundamental magnetosphere processes.
STS-46 (S) 1992 49A	Shuttle (S) (Atlantis)	Jul 31			ED AT AUG 8, 19			Twelfth Atlantis flight with Loren J. Shriver, Andrew M. Allen, Jeffrey A. Hoffman, Franklin R. Chang-Diaz, Claude Nicollier, Marsha S. Ivins, and Ensue Marchan. Becken Sciences, Decimately Control of Contro
EURECA 1992 498		<u>.</u>	94.6	503	499	28.5		Franco Malerba. Deployed ESA'S European Retrievable Carrier (EURECA), a platform placed in orbit for 6 months offering conventional services to experimenters. Tested Tethered Satellite System (TSS-1), a joint program between the United States and Italy. Mission duration: 191 hrs 16 mins 7 secs.

1992)
------	---

MISSION/	LAUNCH L	AUNCH	PERIOD	CURRENT	DRBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS-47 (S) (Spacelab-J) 1992 61A	Shuttle (S) (Endeavour)	Sep 12		LAND	ED AT KSC SEP 20			Second Endeavour flight with Robert L. Gibson, Curtis L. Brown, Mark C. Lee, N. Jan Davis, Mae C. Jemison, Jerome Apt, and Mamoru Mohri. The Spacelab J mission, a joint mission between the U.S. and Japan, performed a series of 43 extore the effects of producing new materials in the micogravity of space, and the study of living organisms in the organisms in the environission duration: 190 hrs 30 mins 23 secs.
Topex/Poseidon (S) 1992 52A	Ariane 42P (S)	Aug 10	112.4	1342	1330	66.0		U.S. French Satellite to help define the relationship between the Earth's oceans and climate. NASA payload launched on commercial Ariane vehicle. Joint NASA/CNES mission.
Mars Observer (S) 1992 63A	Titan III (S)	Sep 25		TRANS	3-MARTIAN TRAJE	CTORY		After an 11-month cruise, the Mars Observer (MO) will arrive at Mars and be inserted into orbit to examine the surface for elemental and mineralogical composition, global surface topography, gravity field and magnetic field determination and climatological conditions. The Mars Balloon Relay (MBR), on the Mars Observer, will relay communications from Mars landers; that will be sent by the Russians in 1995.
STS-52 (S) 1992 70A LAGEOS (S) 1992 70B	Shuttle (S) (Columbia)	Oct 22	222.5	LANDI 5950	ED AT KSC NOV 1, 5616	1992 \$2.7		Thirteenth Columbia flight with James D. Wetherbee, Michael A. Baker, William M. Sheperd, Tamara E. Jernigan, and Charles L. Veach. The Laser Geodynamics Satellite (LAGEOS) is a cooperative mission of the U.S. and Italy to obtain precise measurements of the crustal movement and gravitational field. The U.S. Microgravity Payload-2 (USMP-2), carried in the cargo bay, is one in a series of payloads for scientific experimentation and material processing in a reduced gravity. Mission duration: 236 hars 56 mins 13 serse.
MSTI-1 (S) 1992 78A	Scout (S)	Nov 21	91.2	378	292	96.7		DOD/SDIO payload.
STS-53 (S) 1992 86A	Shuttle (S) (Discovery)	Dec 2		LANDI	ED AT EAFB DEC S	9, 1992		Fifteenth Discovery flight with David M. Walker, Robert Cabana, Guion S. Bluford, James Voss, and M. Richard Clifford. This was a DOD mission. Mission duration: 175 hrs 19 mins 47 secs.
1993			_					1993
STS-54(S) 1993 3A TDRS F 1993 3B	Shuttle(S) (Endeavour)	Jan 13	1432.0	LANDI 35717	ED AT KSC JAN 19 35697	, 1993 0.5		Third Endeavour flight with John H. Casper, Donald R. McMonagle, Mario Runco, Jr., Gregory Harbaugh, Susan Helms. A TDRS satellite was deployed to continue support of the Shuttle network systems. Mission duration: 143 hrs 38 mins 19 secs.

MISSION/	LAUNCH		PERIOD	CUBBENT	ORBITAL PAR	AMETERS	WEIGHT	REMARKS
Intl Design	VEHICLE			Apogee (km)			(kg)	(All Launches from ESMC, unless otherwise noted)
1993			1	Apogeo (kill)	Ti engee (iai	/ mor (acg/	(-3)	1993
STS-56(S) 1993 23A	Shuttle (S) (Discovery)	Apr 8		LANDED AT KSC APR 17, 1993				Sixteenth Discovery flight with Kenneth Cameron, Steven S. Oswald, C. Michael Foale, Kenneth Cockreil and Elleen Ochoa. A Spartan
SPARTAN-201 1993 23B		Apr 8	90.3	311	295	57.0		satellite was deployed to study the solar corona. The ATLAS-2 was used to measure upper atmospheric variatioins around the Earth. Mission Duration: 222 hs 08 min 24 secs.
STS-55 (S) 1993 27A	Shuttle (S) (Columbia)	Apr 26		LAND	DED AT KSC MA	Y 6, 1993		Fourteenth Columbia flight with Steven R. Nagel, Terence T. Henricks, Charles Precourt, Bernard Harris, Jr., Ulrich Walter and Hans Schlegel. The German, Spacelab D-2, was flown to study autpmation and robotics, material and life sciences, the Earth and its atmosphere and astronomy. Mission Duration; 239 hrs 39 min 59 secs
STS-57(S) 1993 37A	Shuttle (S) (Endeavour)	Jun 21		LANDED AT EAFB Jul 1, 1993				Fourth Endeavour flight with Ronald J. Grabe, Brian J. Duffy, G. David Low, Nancy J. Sherlock, Peter J. K. Wisoff and Janice E. Voss. Retrieved ESA's European Retrievable Carrier (EURECA), a platform placed in orbit on STS-46. SPACEHAB-1 was carried in the cargo bay for experiments sponsored by NASA, the U.S. Commerce and ESA. Mission Duration: 239 hrs 44 mins 54 secs.
RADCAL (S) 1993 41A	Scout (S)	Jun 25	101.3	885	750	89.3		Radar Calibration Satellite(RADCAL) will be used to calibrate U.S. radar tracking stations Expected life of this sattelite is 24 months.
NOAA-13(S) 1993-50A	Atlas-G(S)	Aug 9	102.0	861	845	98.9		This weather observation satellite failed to function in orbit and was determined to be a failure.
STS-51 (S) 1993 58A	Shuttle (S) (Discovery)	Sep 12		LAND	ED AT KSC Sep	22, 1993		Seventeeth Discovery flight with Frank L. Culbertson, Willian F. Readdy, James H. Newman, Daniel W. Bursch and Carl E. Walz, The Advanced
ACTS 1993-58B	(,)		1437.8	35929	35929 35709 0.2 Communications Technology Satellia new initiatives in communications technology Satellia DOWN SEP 22, 1933 Retrievable Far and Extreme Utravi System(ORFEUS-SPA), is as astro			Communications Technology Satellite(ACTS) will be used to pioneer new initiatives in communicatioins technology. The Orbiting and
ORFEUS-SPA 1993-58C				D				Retrievable Far and Extreme Utraviolet Spectrometer-Shuttle Patlet System(ORFEUS-SPA), is as astrophysics mission designed to study very hot and cold matter in the universe.

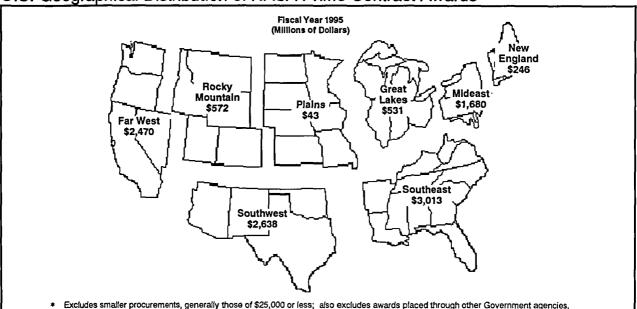
MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT ORBITAL PARAMETERS	WEIGHT	
Inti Design	VEHICLE			Apogee (km) Perigee (km) Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1993						1993
STS-58(S) 1993 65A	Shuttie (S) (Columbia)	Oct 18		LANDED AT EAFB NOV 1, 1993		Fifteenth Columbia flight with John E. Blaha, Richard Searfoss, David A. Wolf, Margaret Rhea Seddon, Shannon W. Lucid, William McArthur,Jr. and Marin J. Fettman. Spacelab Life Sciences-2(SLS-2) was a mission dedicated to the study of cardiovascular, regulatory, neurovestibular and musculoskeletal systems, to gain more knowledge on how the human body adapts to the space environment. Mission Duration: 336 hrs 12 min 32 sec.
STS-61(S) 1993 75A	Shuttle (S) (Endeavour)	Dec 2		LANDED AT KSC Dec 13, 1993		Fifth Endeavour flight with Richard O. Covey, Kenneth D. Bowersox, F. Story Musgrave, Thomas D. Akers, Jeffery A. Hoffman, Kathryn C. Thornton and Claude Nicollier. This flight was the first on -robit service of the Hubble Space Telescope(HST). The Solar Array(SA's), the Wide Field/Planetary Camera(WFPC-II), and the Corrective Optics Space Telescope Axial Replacement(COSTAR) were some of the major units serviced. Mission duration: 259 hrs 58 mins 35 secs.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURREN	IT ORBITAL PAR	AMETERS	WEIGHT	
Inti Design	VEHICLE		(Mins.)	Apogee (ki	m) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1994								
GOES 8 1994-22A	Atlas 1	Apr 13	192.4	42687	191	27.4		The GOES-8 meteorological geostationary spacecraft has instruments on board for high resolution visible and UV imagers and "sounders" for temperature and moisture profiles
STS-59 1994 20A	Shuttle (S) Endeavour	Apr 9		LA	ANDED AT KSC AP	RIL 20, 1994		Sixth Endeavour flight, with Sidney M. Gutierrez, Kevin P. Chilton, M.R. Citiford, Linda M. Godwin, Jay Apt and Thomas D. Jones as flight crew members. The Space Radar Laboratory-1 (SRL-1) payload in the cargo bay gave scientist detailed information on human-Induced environmenta changes from the natural forms of global change. The Measurement of Air Pollution From Satellite(MAPS) was also in the cargo bay. It measured carbon monoxide in the torposphere and lower atmosphere. Mission duration: 269 hrs 49 mins 30 secs
STS-65 1994 39A	Shuttle Columbia	Jul 8		LAI	NDED AT KSC JULY	23, 1994		Seventeenth Columbia flight, with Robert D. Cabana, James D. Halsell Richard J. Hieb, Carl E. Walz, Leroy Chiao, Donald A. Thomas and Chiaki Naito-Mukai as crew members. The International Microgravity Laboratory-2(IML-2) will use furnaces and other facilities to produce a variety of material structures, from crystals to metal alloys. Over 80 investigations will be studied as prepared by over 200 scientist from six space agencies. Mission duration: 353 hrs 55 mins 00 secs
STS 64 1994 59A SPARTAN 1 1994 59B	Shuttle Discovery	Sep 9		LA	NDED AT EDW SEF		394	Nineteenth Discovery flight, with Richard N. Richards, Susan J. Helms, L. Blaine Hammond, Jerry M. Linenger, Carl J. Meade and Mark C. Lee as crew members. The Lidar in Space Technology Experiment(LITE) will be used to better explain our climate. LITE will help us understand the human impact on the atmosphere and enable us to Improve our measurements of the clouds, particles in the atmosphere and the Earth SPARTAN will be deployed from the Shuttle to study the acceleration and velocity of the solar wind and it will also measure the Sun's corona. Mission duration: 262 hrs 49 mins 57 secs

MISSION/ Intl Design	LAUNCH			RRENT ORBITAL PARA		WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
1994							1994
STS-68(S) 1994 62A	Shuttle (S) (Endeavour)	Sep 30		LANDED AT EDW OCT 11	, 1994		Seventh Endeavour flight with, Michael A. Baker, Terence W. Wilcutt, Steven L. Smith, Daniel W. Bursch, Peter J.K. Wisoff and Thomas D. Jones as flight crew members. The Space Radar Laboratory-2 is comprised of the Spaceborne Imaging Radar-C/X Band Synthic Aperture Radar (SIR-C/X-SAR). and the Measurement of Air Pollution from Satellite (MAPS). Mission Duration 269 hrs 46 mins 08 secs
WIND(S) 1994 71A	Delta II	Nov 1		VARIABLE ORBITAL PARA	METERS	1250 .0	Measure the solar wind plasma and magnetic field besides several instruments to measurevery energetic particles and gamma rays.
STS-66 (S) 1994 73A CRISTA-SPAS 1994 73B	Shuttle (S) (Discovery)	Nov 3		LANDED AT EDW NOV 14 DOWN NOV 14, 199	•		Nineteenth Discovery flight with, Donald R. McMonagle, Ellen Ochoa, Curtis L. Brown, Joseph R. Tanner, Jean-Francois Clervoy and Scott Parazynski as flight crew members. The Atmospheric Laboratory for Applications and Science Spacelab(ATLAS) studied the middle atmosphere's chemical makeup. Seven expeirments made up this science experiment. CRISTA-SPAS operated independently of the Shuttle after its release from the Remote Manipulator System. This experiment studied the trace gases in the middle atmosphere and measured winds, wave interaction, turbulence and other processes. Mission Duration: 262 hrs 32 mins 20 secs
NOAA-14 (S) 1994-89 A	Attas-E	Dec 30	472	468		1030.0	The primary objective is to acquire daily global information for short and long term forecasting. The satellite will be part of the operational polar satellite system.

MISSION/ Inti Design	LAUNCH VEHICLE	LAUNCH DATE		RBITAL PARAMETE Perigee (km) Incl (VEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
INTELSAT 704 1995-001A	Atlas-2AS	Jan 10					Geostationary communications spacecraft launched from Cape Canaveral. It is parked over the Indian Ocean to provide radio and TV coverage to the Middle East, Africa and parts of Europe.
STS-63 1995-004A	Shuttle(S) (Discovery)	Feb 3	LAND	ED AS KSC FEB 11, 199	5		Twentieth Discovery flight, with James D. Wetherbee, Eileen M. Collen, Bernard A. Harris, Jr., Michael C. Foale, Janice Voss, and Vladimir Georglevich Titovas as flight crew members. The cargo bay deployable payloads were Shuttle-Mir Rendezvous and fly around, SPARTAN 204 Science, and EVA activities. In- cabin payloads were SPACEHAB-3 and AMOS. Mission Duration: 196 hrs 29 mins 36 secs
STS-67 1995-007A	Shuttle(S) (Endeavour)	Mar 2	LÄNDE	D AT EDW MAR 18, 199	5		Eighth Endeavour flight, with Steven S. Oswald, William G Gregory, John M. Grunsfeld, Wendy B. Lawrence, Tamare E. Jerrigan, Samuel T. Durrance, and Ronald Parise as flight crew members. Cargo Bay Payloads consisted of ASTRO-2 Spacelab with three UV telescopes. Crew cabin Payloads consisted of Commercial MDA ITA (CMIX), Protein Crystal Growth Experi- ments, Middeck Active Control Experiment (MACE), and Shuttle Amateur Radio Experiment (SAREX). Mission Duration: 399 hrs 09 mins 47 secs
GOES-J 1995-025A	Atlas-1	May 23					Named GOES-9 after launch, this geostationary meterological spacecraft will first cover the central United States. Later the spacecraft will be moved to cover either the east or west coast. The instruments onboard will provide cloud cover images and monitor atmospheric temperatures and moisture at many altitudes.

MISSION/ Inti Design	LAUNCH VEHICLE	LAUNCH DATE		GHT REMARKS (g) (All Launches from ESMC, unless otherwise noted)
STS-71 1995-30A	Shuttle (Atlantis)	June 27	LANDED AT KSC JULY 7, 1995	Fourteenth Atlantis flight, with Robert L. "Hoot" Gibson, Charles J. Precourt, Ellen S. Baker, Gregory J. Harbaugh, Bonnie Dunbar, Anatoly Y. Solovyev(MIR-19-Ascent Only), Gennady Strekalovas (MIR-18-Entry Only), Norm Thagard(MIR-18-Entry Only) crew members. Cargo Bay Payloads consisted of Shuttle-MIR rendezvous and docking, Orbit Docking system, and Shuttle-MIR Science. Cargo Bay Activities consisted of U.S. Russian Space Cooperation and STS-71/MIR Protocol Activities. In-Cabin Payloads consisted of IMAR and Shuttle Amateur Radio Experiment-II(SAREX-II). Mission Duration: 235 hrs 23 mins 09 secs
STS-70 1995-35A	Shuttle (Discovery)	July 13	LANDED AT KSC JULY 22, 1995	Twenty-First Discovery flight, with Terrence T. "Tom" Hendricks, Kevin R. Kregel, Donald A. Thomas, Nancy J. Curkie and Mary E. Weber crew members. Cargo Bay Payloads consisted of Tracking and Data Relay Satellite and Inertial Upper Stage. Middeck Payloads consisted of Biological Research in Canisters(BRIC), Bioreactor Development System(BDS), CPCG, NIH R-2, STL-B and MSX. Mission Duration: 214 hrs 21 mins 09 secs
TDRS-7 1995-35B	STS-70	July 13		An American Geostationary Tracking and Relay Satallite launched from STS-70. It relays data between spacecraft and between space- craft and ground stations in F and Ku bands. TDRS is parked on 150 W longitude for testing. After tests are completed TDRS will be moved to another latitude.
SOHO 1995-65A	Atlas-2AS	Dec 2	1,85	D kg An ESA-NASA spacecraft was launched from Cape Canaveral Air Station. It carried three American and nine European instruments to observe the sun and its corona. It was maneuvered to orbit around the first Lagrangian point(L-1) at 1,500,000 km in the sunward direction. The instruments will measure the intensity and polarization of light scattered by the coronal electrons, and the composition of cold and hot plasma ejected by the Sun.


MISSION/ Intl Design	LAUNCH VEHICLE				ARAMETERS (m) Incl (deg)	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
GALAXY 3R 1995-69A	Atlas-2A	Dec 15					A Geostationary communications spacecraft launched from Cape Canaveral Air Station. After parking at 95 degrees W longitude the spacecraft provided 140 television channels to Mexico, the Caribbean, and Central American countries through its 24 C-band and 324 Ku-band transponders.
1							
				_			

Section C

Procurement, Funding and Workforce

NASA Contract Awards By State

(FY 1995) State	Total (Thousands)	Business (Thousands)	Educational & Nonprofit (Thousands)	State	Total (Thousands)	Business (Thousands)	Educational & Nonprofit (Thousands)
Alabama	664,756	623,842	40,914	Nevada	2.261	1.091	1,170
Alaska	11,047	020,042	11.047	New Hampshire	14.832	3,712	11,120
Arizona	76,227	35,532	40,695	New Jersey	280,863	272,966	7,897
Arkansas	1,899	318	1,581	New Mexico	59.390	47,565	11,825
California	2,369,156	2,166,658	202,498	New York	48,291	21,753	26,583
Colorado	115,914	84,527	31,387	North Carolina	15,712	1.074	14,638
Connecticut	64.627	62,064	2,563	North Dakota	759	50	709
Delaware	2,874	1,306	1,568	Ohio	404.692	359.544	45.148
District of Columbia	105.070	64,593	40,477	Oklahoma	7,029	339,544	6,997
Florida	1.281.223	1,258,80	22,543	Oregon	8,788	2,366	6,422
Georgia	31.801	10,665	21,136	Pennsylvania	95,167	75,617	19,550
Hawaii	9,422	715	8,707	Rhode Island	4,519	592	3,927
Idaho	417		417	South Carolina	3,316	596	2,720
Illinois	19.427	5,502	13.925	South Dakota	1.675	277	1,398
Indiana	35,062	29.876	5,186	Tennessee	21,736	13,607	8,129
lowa	7.871	1.375	6,496	Texas	2,495,761	2,417,980	77,781
Kansas	5,915	3,142	2,773	Utah	451,922	442,088	9,834
Kentucky	1,483	14	1,469	Vermont	912	623	289
Louisiana	383,506	377,809	5,697	Virginia	437,858	400,940	36,918
Maine	1,987	960	1,027	Washington	89,915	76,853	13,062
Maryland	1,147,542	1,007,940	139,602	West Virginia	29,785	7,837	21,948
Massachusetts	158,716	38,521	120,190	Wisconsin	38,375	23,580	14,795
Michigan	33,382	3,920	29,462	Wyoming	1,035	20,000	975
Minnesota	9.552	5,662	3,890		1,000		0,0
Mississippi	139,987	132,529	7,458	TOTAL	\$11,213,261	\$10,097,140	\$1,116,121
Missouri	15,169	9,401	5,768				
Montana	2,607	609	1,998		naller procurements, g		
Nebraska	2,261	1,091	1,170		vards placed through o U.S., and actions on the		encies, awards

U.S. Geographical Distribution of NASA Prime Contract Awards *

awards outside the U.S., and awards on the JPL contracts.

Procurement Activity

Total Procureme	ent By Installation (FY 19	995)	Awards Placed Outside The United	States (FY 1995)
Installation	Awards (\$M)	Percent	Place of Performance A	wards (\$Thousands
OTAL	\$13,341,4	100.0		
Aarshall Space Flight Center	2,501.8	18.8	TOTAL	\$208,473*
Goddard Space Flight Center	2,354.4	17.6	1	
ohnson Space Center	1,754.0	13.1	Direct NASA Awards	\$208,321
Kennedy Space Center	1,257.2	9.4	Australia	11,159
ASA Resident Office/JPL	1,162.9	8.7	Bermuda	542
Space Station Alpha	1,463.2	11.0	Canada	40,984
ewis Research Center	759.2	5.7	Chile	2,243
leadquarters	774.5	5.8	France	700
mes Research Center	560.8	4.2	Germany	674
angley Research Center	528.9	4.0	Israel	45
Stennis Space Center	128.5	1.0	Japan	146
Dryden Flight Research Center	96.0	0.7	Netherlands	61
Awards Through Othe	r Government Agencles	FY 1995)	Puerto Rico	3,991
Agency	Awards (SM)	Percent	Russia	110,426
			_ Spain	12,598
TOTAL	\$562.7	100.0	Switzerland	22,725
Over \$25,000	459.3	81.6	United Kingdom	1,835
Air Force	215.0	38.2	Ukraine	192
Navy	93.2	16.6		
Energy Department	48.7	8.6	Placed Through Other Government Agencie	s \$152
Army	28.4	5.1	New Zealand	1
Interior Department	16.4	2.9	Puerto Rico	151
Commerce Department	15.6	2.8		
National Science Foundation	15.1	2.7	*Excludes smaller procurements, generally those	e of \$25,000 or less
Defense Department	10.8	1.9		
Other Government Agencies	16.1	2.8		
\$25,000 and Under	103.4	18.4		

Contract Awards by Type of Effort

Category	Number of Contracts	Total	Category	Number of Contracts	
		(Millions)			(Millions)
JOTAL	5,750	\$10,097.2 *			
Research and Development	1,976	3,596.0	Supplies & Equipment	2,252	2,120.2
Space Station	28	1,384.5	Ammunition & Explosives	8	353.7
Space Flight	68	776.1	Space Vehicles	33	1.064.8
Aeronautics & Space Technology	720	545.9	Engines, Turbines & Components	7	422.7
Space Science & Applications	395	262.2	Electrical/Electronic Equipment Components	65	5.3
Space Operations	30	44.0	Communication, Detection & Coherent Radiation	96	15.0
Commercial Programs	62	26.5	Equipment		
Other Space R&D	517	479.7	Instruments & Laboratory Equipment	350	23.2
Other R&D	156	77.1	ADP Equipment, Software, Supplies & Support Equipment	1,282	164.2
Services	1,522	4,381.0	Fuels, Lubricants, Oils & Waxes	28	25.4
ADP & Telecommunication	167	703.5	Other Supplies & Equipment	381	51.7
Maintenance, Repair & Rebuilding of Equipment	125	969.4			
Operation of Government-owned Facilities	41	148.2			
Professional, Administrative & Management Support	293	1,470.6			
Utilities & Housekeeping	88	160.5			
Construction of Structures & Facilities	125	276.5			
Maintenance, Repair, Alteration of Real Property	345	230.7			
Other Services	338	421.6			
		-	* Excludes smaller procurements, generally those of	\$25,000 or less	

Distribution of NASA Procurements

(In Millions of Dollars)					Fiscal Yea	rs 1961 - 19	95			*	ncluded in	Government
	FY 61 _	FY 62	FY 63	FY 64	FY 65	FY 66	FY 67	FY 68	FY 69	FY 70	FY_71	FY 72
Total Business	423.3	1,030.1	2,261.7	3,521.1	4,141.4	4,087.7	3,864.1	3,446.7	3,022.3	2,759.2	2,279.5	2,143.3
(Small Business)	(63.5)	(123.6)	(191.3)	(240.3)	(286.3)	(255.9)	(216.9)	(189.6)	(162.8)	(161.2)	(178.1)	(160.9)
Educational	24.5	50.2	86,9	112.9	139.5	150.0	132.9	131.5	131.3	134.3	133.9	118.8
Nonprofit			15.3	29.1	25.3	27.7	39.6	33.6	32.3	33.0	29.3	28.0
JPL	86.0	148.5	230.2	226.2	247.2	230,3	222.2	207.2	156.3	179.8	173.3	210.8
Government	221.7	321.8	628.5	692.6	622,8	512,5	366.9	287.0	279.0	265.8	212.5	207.8
Outside U.S.	Ċ	(*)	7.9	12.0	11.2	23.4	25.2	26.7	30.8	33.5	29.7	29.1
Total	755.5	1,550.6	3,230.5	4,593,9	5,187.4	5,031.6	4,650.9	4,132.7	3,652.0	3,405.6	2,858.2	2,737.8
	FY 73	FY 74	FY 75	FY 76	FY 7T	FY 77	FY 78	FY 79	FY 80	FY 81	FY 82	FY 83
Total Business	2,063.8	2,118.6	2,255.0	2,536.1	663.2	2,838.1	2,953.8	3,416.4	3,868.3	4,272.8	4,805.6	5,586.0
(Small Business)	(155.3)	(181.2)	(216.0)	(218.3)	(68.4)	(255.0)	(281.5)	(325.4)	(384.6)	(409.4)	(430.1)	(482.3)
Educational	111.7	97.8	111.4	123.0	27.7	125.5	137.2	147.2	177.0	192.5	187.0	211.3
Nonprofit	26.4	39.3	33,0	32.0	7.6	32.0	42.8	50.8	82.2	155.1	108.8	102.5
JPL	202.3	215.2	234.5	263.7	63.6	289.0	283.8	338.6	397.2	410.8	426.3	454.9
Government	235.2	208.6	198.3	222.4	63.9	223.2	216.0	221.4	271.8	321.9	308.1	394.2
Outside U.S.	34.0	34.1	34,2	27.4	3.8	24.5	26.0	37.4	46.1	55.2	47.9	47.9
Total	2,673.4	2,713.6	2,866.4	3,204.6	829.8	3,532.3	3,659.6	4,211.8	4,842.6	5,408.3	5,883.7	6,796.8
	FY 84	FY 85	FY 86	FY 87	FY 88	FY 89	FY 90	FY 91	FY 92	FY 93	FY 94	FY 95
Total Business	5.967.4	6.652.9	6,356,0	6.540.5	7.274.9	8,567,6	10.071.5	10,417.3	10,716,7	10.497.9	9,965.7	10,311.5
(Small Business)	(556.2)	(644.7)	(671.3)	(786.3)	(801.4)	(857.3)	(924.3)	(968.3)	(1.010.6)	(1.060.7)	(1,150.2)	(1,171.2)
Educational	22.6	256.9	276.6	315.4	370.3	464.2	513.6	592.0	659.3	707.8	730.9	814.4
Nonprofit	98.6	103.1	119.0	119.1	129.5	180.0	200.6	244.0	297.8	336.6	311.0	311.1
JPL	533.1	724.6	891.3	1,005.6	979.9	1,058.1	1,106.8	1,139.6	1,229.6	1,029.8	1,093.4	1,135.0
Government	494.3	535.1	489.7	594.9	734.6	543.2	610.4	693.4	498.6	508.4	642.6	562.7
Outside U.S.	38.1	35.4	47.1	34.3	55.9	63.3	62.3	72,7	76.2	79.9	169.5	206.7
Total	7,154.1	8,308.0	8,179.7	8,609.8	9,545.1	10,876.4	12,565.2	13,159.0	13,478.2	13,160.4	12,913.1	13,341.4

Principal Contractors (Business Firms)

	Contractor and Principle	Aw	/ards	1				
		(Thousands)	(Percent)		Contractor and Principle		Awa	ards
	Total Awards To Business Firms	\$10,311,491	100.00				(Thousands)	(Percent)
1.	Boeing Co.	1,441,977	13.98	22.	Bamsi Inc.	(D)	65,018	.63
	Rockwell International Corp.	1,022,151	9.91	23.	Space Systems Loral Inc.	(2)	64,620	.63
	Martin Marietta Corp.	737,403	7.15	24.	Teledyne Industries Inc.		60,834	.59
	Lockheed Space Operations Co.	558,447	5.42	25.	General Dynamics Corp.		58,474	.57
	McDonnell, Douglas Corp.	468,094	4.54	26.	CAE Link Corp.		52,164	.51
	Thniokol Corp.	439,978	4.27	27.	General Electric Co.		51,010	.49
7.	Computer Sciences Corp.	311,114	3.02	28.	Martin Marietta Services Inc.		50,935	.49
3.	Rockwell Space Operations Inc.	306,153	2.97	29.	Sterling Federal Systems Inc.		49,228	.48
	TRW Inc.	288,202	2.80	30.	Hughes S T X Corp.		47,789	.46
	Alliedsignal Technical Services	231,100	2.24	31.	Ball Corp.		47,030	.46
	EG & G Florida Inc.	182,595	1.77	32.	Hughes Aircraft Co.		43,956	.43
	U S B I Booster Production Co.	171,643	1.77	33.	Science Appliction Intl. Corp.		42,908	.42
3.	Lockheed Engr & Science Co.	164,257	1.59	34.	Krug Life Sciences Inc.		40,991	.40
4.	Loral Aerospace Corp.	158,564	1.54	35.	Aerojet General Corp.		39,617	.38
5.	United Technologies Corp.	158,564	1.54	36.	Cortez III Service Corp.		39,198	.37
5.	Santa Barbara Research Center	93,761	.91	37.	Spacehab Inc.	(S)	37,724	.37
7.	Lockheeed Missles & Space Co.	93,325	.91	38.	Nyma Inc.	(S) (D)	36,782	.36
Э.	Boeing Commercial Airplane Group	88,641	.86	39.	Bionetics Corp.		36,111	.35
Э.	Hughes Information Tech Corp.	87,065	.84	40.	Raytheon Service Co.		34,439	.34
).	Grumman Aerospace Corp.	65,571	.64	41.	Swales & Associates Inc.	(S)	33,269	.32
	Johnson Controls World Services	65,296	.63	42.	General Electric U T C JV	• •	32,712	.32
	Small Business/D=Disadvantage Busines	,			Small Business/D=Disadvantag	e Business)	02,772	.0

-

The second second second second

Principal Contractors (Business Firms)

One Hundred Contractors (Business Firms) Listed According To Total Awards Received (FY1995) Contractor and Principle Awards Contractor and Principle Awards (Thousands) (Percent) (Thousands) (Percent) N S I Technology Serv. Corp. 43. 32.187 .31 67. EG&GLangley Inc. 17,563 .17 Sverdrup Technology Serv, Corp. 44. 32,027 .31 68. Government Micro Resources (S) (D) 17.351 .17 45. CTAInc. 31,734 .31 69. Hernandez Engineering Inc. (S) (D) 16.719 .16 46. I Net Inc. (D)31,181 .30 70. Calspan Corp. 16.309 .16 Cray Research Inc. 28.952 .28 71. Scott Co. California 47. 15.868 .15 Alliedsignal Inc. 28.952 .28 72. Cleveland Electric Illuminating 48. 15.429 .15 49. Unisys Corp. 28.002 .27 73. General Sciences Corp. .14 14,684 50. Silicon Graphics Inc. 27.059 .26 74. Fairchild Space & Defense Corp. 14.330 .14 51. Boeing Computer Support Services 26,685 .26 75. Brown & Root Services Corp. 14,146 .14 52. Martin Marietta Technologies 25,400 .25 76. E E R Systems Corp. (S) (D) 13.953 .14 53. Analex Corp. 25,288 .25 77. Lockheed Corp. 13.942 .13 54. Jackson & Tull Inc. (S) (D) 24,612 .24 78. Albert M. Higley Co. 13.936 .13 55. Manhattan Construction Co. 24,600 .24 79. Recom Technologies Inc. (S) (D) 12.950 .12 56. Orbital Sciences Corp. (S) 22.850 .22 80. Serv Air Inc 12,903 .12 57. Air Product & Chemicals Inc. 22.563 .22 81. Science Systems Applications (S) (D) 12.254 .12 58. Johnson Engineering Corp. (S) 22.109 .21 82. PRCinc. 12.229 .12 59. Lockheed Advanced Development Co. 22.058 .21 83. Virginia Electric & Power Co. 12,032 .12 60. DYN Corp. 20.610 .20 84 North American Construction 11.663 .11 61. Harris Space Systems Corp. 19.239 19 85. Anstec Inc. (S) (D) 11,341 .11 62. R M S Technologies Inc. (D) 18.544 .18 86 Gilcrest Electric & Supply Co. (S) (D) 11,295 .11 63. International Business Machines 18,342 .18 87. TRI Cor Industries Inc. (S) (D) 11.073 .11 ITT Corp. 64. 18,113 .18 88. BMS Associates Inc. .IV (D) 10.567 .10 Micro Craft Inc. 65. (S) 17.840 .17 89 Native American Services Inc. (S) (D) 10.247 .10 Daniel Mann Johnson Mendenha .17 UNISYS Government Systems Inc. (S) (D) 66. 17.655 90. 10.247 .10 (S=Small Business/D-Disadvantaged Business) (S=Small Business/ D=Disadvantage Business)

Principal Contractors (Business Firms)

	On	e Hundi	red Contra	ctors (B	usiness Firms) (FY1
	Contractor and Principle				ards
			(Thous	ands)	(Percent)
91.				9,335	.09
92.	Ogden Logistics Services			9,295	.09
93. 94.		(S)		9,136 8,773	.09 .08
95.		(0)		8,725	.08
96.				8,683	.08
97. 98.				8,587 8,320	80. 80.
99,	Military Construction Corp.	(S)		8,247	.08
100.				8,046	.08
	S=Small Business/D=Disadvantage	Busine	ss)		- 1 407 000
	ncludes other awards over \$25,000 ess.	and sm	aller procu	rements	ot \$25,000 or
l "					

One Hundred Educational And Nonprofit Institutions Listed According To Total Awards Received* (FY1995) Institution and Principle Awards Place of Performance (Thousands) (Percent) Place of Performance (Thousands) (Percent) Total Awards to Educational \$1.125.448 100.00 Total Awards to Educational 100.00 \$1,125,448 and Nonprofit Institutions and Nonprofit Institutions Assn Univ Research & Astronomy 61.198 5.44 1. (N) 21. University of Washington 12.132 1.08 Stanford University 58.333 5.18 2 22. University of Alaska Fairbanks 11.045 .98 4.23 Smithsonian Institution 47.570 94 3 (N)23 Pennsylvania State University Up 10.594 4.15 Mass Institute of Technology 46.660 University of Texas Austin 9,992 89 4 24. 3.33 5. University Space Research (N) 37.493 .88 25. University of New Hampshire 9,916 3.24 6 University of Arizona 36.468 University of California Los Angeles 9.376 .83 26 2.73 7. California Institute of Technology 30.740 9.000 .80 27. Georgia Institue of Technology University of California Berkeley 24,346 2.16 Battelle Memorial Institute 8.914 .79 8. 28. (N)University of Alabama Huntsville 24,001 2.13 8,707 .77 9 29. University of Hawaii University of Maryland College Park 22.206 1.97 8.221 .73 10. 30. University of Alabama Brimingham National Academy of Sciences (N) 22.148 1.97 Univ. Corp Atmospheric Research 7.860 .70 11. 31. (N) New Mexico State Univ. Las Cruces 12. 20.259 1.80 Charles Stark Draper Labs 7.636 .68 32 (N)1.74 Johns Hopkins University 19.587 Harvard University 7,490 .66 13. 33. University of Colorado Boulder 1.60 18.004 Columbia University 7.422 .66 14 34. Wheelig Jesuit College 1.60 15. 17.990 Ohio State University 7.236 .64 35. Ohio Aerospace Institute (N) 1.42 15.949 36 Delta College 6.825 .61 16. 1.20 University of Michigan Ann Arbor 13.561 .56 17. 37 University of Virginia 6.349 1.18 18. University of California San Diego 13.320 6.251 .56 38 Oklahoma State University Southwest Research Institute 19. (N)12.908 1.15 6.228 .55 39 University of Utah 1.15 University Of Wisconsin Madison 12.903 6,170 .55 20. 40 University of Florida

Educational and Nonprofit Institutions

Educational and Nonprofit Institutions

	One Hundred	i Educa	tional And Nonpi	ofit Institutio (FY1)		sted According To Total Awards Recei	ved*	
	Institution and Principle		Awa	ards		Institution and Principle	Aw	ards
	Place of Contract Performance		(Thousands)	(Percent)		Place of Contract Performance	(Thousands)	(Percent)
41.	Texas A&M University		5,895	.52	66.	Florida A&M University	3,646	.32
42.	University of Chicago		5,868	.52	67.	Spelman College	3,627	.32
43.	Cornell University		5,518	.49	68.	Univ. Minnesota Minneapolis St. Paul	3,424	.31
44.	SETI University	(N)	5,458	.49	69.	University of Miami	3,423	.30
45.	Research Triangle Institute	(N)	5,430	.48	70.	Rice University	3,365	.30
46.	University of Houston		5,362	.48	71.	Utah State University	3,354	.30
47.	Old Dominion University		5,337	.48	72.	Clark Atlanta University	3,312	.29
48.	San Jose State University		5,134	.46	73.	Auburn University Auburn	3,267	.29
49.	Princeton University		5,070	.45	74.	University of Illinois Urbana	3,262	.29
50.	CIESIN	(N)	5,066	.45	75.	Carnegie Mellon University	3,224	.29
51.	Mitre Corp	(N)	5,038	.45	76.	University of Pittsburgh	3,100	.28
52.	Oregon State University		4,934	.44	77.	Tennessee State University	3,062	.27
53.	University of Iowa		4,810	.43	78.	Purdue University	2,924	.26
54.	Case Western Reserve University		4,709	.42	79.	George Washington University	2,849	.25
55.	University California Santa Barbara		4,565	.41	80.	Arizona State University	2,844	.25
56.	Hampton University		4,248	.38	81.	Colorado State University	2,832	.25
57.	University of California Irvine		4,075	.36	82.	University of California Riverside	2,762	.25
58.	Washington University St. Louis		4,057	.36	83.	University of California Davis	2,547	.23
59.	Virginia Polytechnic Institute		4,012	.36	84.	Louisiana State Univ. Baton Rouge	2,542	.23
60.	University of Southern California		3,973	.35	85.	West Virginia Univ Research Corp. (I	N) 2,526	.22
61.	Howard University		3,941	.35	86.	University Massachusetts Amherst	2,516	.22
62.	Morehouse College		3,897	.35	87.	Michigan State University	2,513	.22
63.	University Of New Mexico		3,868	.34	88.	State Univ. New York Stony Brook	2,508	.22
64.	City of Hampton	(N)	3,804	.34	89.	University of Houston Clear Lake	2.477	.22
65.	North Carolina A & T State University	• •	3,743	.33	90.	North Carolina State University	2,444	.22

Educational and Nonprofit Institutions

	One Hundre	ed Educa	ational And No	nprofit Institu (FY
	Institution and Principle		Awa	urds
	Place of Contract Performance	-	(Thousands)	(Percent)
91.	University of Texas El Paso		2,409	.21
92.	Prairie View A & M University		2,254	.20
93.	New Mexico Highlands University		2,244	.20
94.	Alabama A&M University		2,207	.20
95.	Browm University		2,200	.20
96.	Vanderbilt University		2,172	.19
97.	Aerospace Corp	(N)	2,167	.19
98.	Bowie State University		2,117	.19
	Cleveland State University		2,086	.19
100.	College of William & Mary ** OTHER		2,080	.18
	*Excludes JPL **Includes other awards over \$25,000 and s	smaller pro	curements of \$25,0	000 or less
ł				

NASA's Budget Authority in 1995 Dollars

Financial Summary

(In Millions Of Dollars)				Outlays								
Fiscal Year	Total Appropriations	Total Direct Obligations	Total	Research & Development	Space Flight, Control & Data Communications	Construction Of Facilities	Research & Program Management	Trust Funds	Office Of Inspector General			
1959	330.90	298.70	145.50	34.00		24.80	86.70					
1960	523.90	486.90	401.00	255.70		54.30	91.00					
1961	966.70	908.30	744.30	487.70	-	98.20	159.10					
1962	1,825.30	1,691.70	1,257.00	935.60		114.30	207.10					
1963	3,674.10	3,448.40	2,552.40	2,308.40	-	225,30	18.70					
1964	5,100.00	4,864.80	4,171.00	3,317.40		437.70	415.90					
1965	5,250.00	5,500.70	5,092.90	3,984.50		530,90	577.50		••			
1966	5,175.00	5,350.50	5,933.00	4,741.10		572,50	619.40		-			
1967	4,968.00	5,011.70	5,425.70	4,487.20		288.60	649.90					
1968	4,588.90	4,520.40	4,723.70	3,946.10	-	126.10	651.50					
1969	3,995.30	4,045.20	4,251.70	3,530.20		65.30	656.20					
1970	3,749.20	3,858.90	3,753.10	2,991.60		54,30	707.20		••			
1971	3,312.60	3,324.00	3,381.90	2,630.40		43,70	707.80		••			
1972	3,310.10	3,228.60	3,422.90	2,623.20		50.30	749.40					
1973	3,407.60	3,154.00	3,315.20	2,541.40		44.70	729.10					
1974	3,039.70	3,122.40	3,256.20	2,421.60		75.10	759.50	••				
1975	3,231.20	3,265.90	3,266.50	2,420.40		85.30	760.80		••			
1976	3,551.80	3,604.80	3,669.00	2,748.80	-	120.90	799.30					
τQ	932.20	918.80	951.40	730.70		25.80	194.90					
1977	3,819.10	3,858.10	3,945.30	2,980.70		105.00	859.60					
1978	4,063.70	4,000.30	3,983.10	2,988.70		124.20	870.20					
1979	4,558.80	4,557.50	4,196.50	3,138.80		132.70	925.00					
1980	5,243.40	5,098.10	4,851.60	3,701.40		140.30	1,009.90		-			
1981	5,522.70	5,606.20	5,421.20	4,223.00		146.80	1,051.40		-			
1982	6,020.00	5,946.70	6,035.40	4,796.40		109.00	1,130.00		••			

Financial Summary

5)				Outlavs			As Of S	eptember 30, 19
		Research & Development	Space Flight, Control & Data Communications		Research & Program Management	Trust Funds	Offic e of Inspector General	GSA Building Delegation
.70 6,723.90	6,663.90	5,316.20		108.10	1,239.60			
.60 7,135.20	7,047.60	2,791.80	2,914.60	108.80	1,232.40		-	
.20 7,638.40	7,317.70	2,118.20	3,707.00	170.00	1,322.50	-		
.20 7,463.00	7,403.50	2,614.80	3,267.40	188.90	1,332.40		-	
.00 8,603.70	7,591.40	2,436.20	3,597.30	149.00	1,408.90			
.50 9,914.70	9,091.60	2,915.80	4,362.20	165.90	1,647.70		-	
.50 11,315.80	11,051.50	3,922.40	5,030.20	190.10	1,908.30	0.50		
.70 13,068.93	12,428.83	5,094.30	5,116.52	218.42	1,991.09	1.00	7.50	-
.62 13,973.54	13,677.64	5,765.48	5,590.28	326.31	2,185.06	1.02	9.49	
.05 14,159.75	13,961.42	6,578.85	5,117.51	463.03	1,788.05	1.54	12.44	-
.39 14,118.47	14,306.23	7,086.12	5,025.16	556.77	1,621.64	1.12	14.63	0.79
15 13,949.17	13,695.89	6,758.00	4,899.24	371.16	1,650.15	1.20	15.02	1.12
00 1500.30	5,114.26	3,286.34	1,408.87	305.09	98.38	1.13		
			Office of Inspector General,	all transfers, and	ell rescissions.			
	iations Obligations .70 6, 723.90 .60 7, 135.20 .20 7, 638.40 .20 7, 638.40 .20 7, 638.40 .20 7, 638.40 .20 7, 638.40 .20 7, 638.40 .20 7, 638.40 .20 7, 638.40 .20 7, 638.40 .20 7, 638.40 .20 7, 638.40 .20 7, 638.40 .20 7, 638.40 .20 7, 638.40 .20 7, 638.40 .50 9, 914.70 .50 11, 315.80 .70 13, 068.93 .62 13, 973.54 .53 14, 118.47 .55 13, 949.17 .00 1500.30 PROPRIATIONS' shows t include the Trust Funda	Iations Obligations Total .70 6,723.90 6,663.90 .60 7,135.20 7,047.60 .20 7,638.40 7,317.70 .20 7,638.40 7,317.70 .20 7,463.00 7,403.50 .00 8,603.70 7,591.40 .50 9,914.70 9,091.60 .50 11,315.80 11,051.50 .70 13,068.93 12,428.83 .62 13,973.54 13,677.64 .05 14,159.75 13,961.42 .39 14,118.47 14,306.23 .15 13,949.17 13,695.89 .00 1500.30 5,114.26	Iations Obligations Total Pessanch & Development .70 6,723.90 6,663.90 5,316.20 .60 7,135.20 7,047.60 2,791.80 .20 7,638.40 7,317.70 2,118.20 .20 7,463.00 7,591.40 2,436.20 .50 9,14.70 9,091.60 2,915.80 .50 9,14.75 9,091.60 2,915.80 .50 9,14.75 3,914.64 5,765.48 .05 13,973.54 13,675.64 5,758.85 .39 14,118.47 14,306.23 7,086.12 .55 13,949.17 13,695.89 6,758.00 .000 1500.30 5,114.26 3,286.34	Iations Obligations Total Development Pesearch & Development Space Flight, Control & Data Communications 70 6,723.90 6,663.90 5,316.20 60 7,135.20 7,047.60 2,791.80 2,914.60 2.0 7,638.40 7,317.70 2,118.20 3,707.00 2.0 7,463.00 7,403.50 2,614.80 3,267.40 0.00 8,603.70 7,591.40 2,436.20 3,597.30 5.0 9,091.60 2,915.80 4,362.20 5,003.20 7.70 13,068.93 12,428.83 5,094.30 5,116.52 6.2 13,973.54 13,977.64 5,758.45 5,117.51 3.9 14,118.47 14,306.23 7,066.12 5,025.16 13,949.17 13,695.89 6,758.00 4,899.24 00 1500.30 5,114.26 3,286.34 1,408.87	Iations Obligations Total Pessarch & Development Space Fight, Control & Data Communications Construction of Facilities 70 6,723.90 6,663.90 5,316.20 108.10 60 7,135.20 7,047.60 2,791.80 2,914.60 106.80 20 7,638.40 7,317.70 2,118.20 3,707.00 170.00 20 7,463.00 7,493.50 2,614.80 3,267.40 188.90 0.00 8,603.70 7,591.40 2,436.20 3,597.30 149.00 5.0 9,14.70 9,191.60 2,915.80 4,362.20 165.90 5.0 11,315.80 11,051.50 3,922.40 5,030.20 190.10 7.70 13,068.93 12,428.83 5,094.30 5,116.52 218.42 0.51 13,973.54 13,676.45 7,654.45 5,500.28 328.31 0.51 13,949.17 13,695.89 6,758.00 4,899.24 371.16 0.50 1500.30 5,114.26 3,286.34 1,4	at istions Total Total Pesearch & Development Space Flight, Control & Data Communications Construction Of Facilities Research & Program Management 70 6,723.90 6,663.90 5,316.20 - 108.10 1,239.60 .60 7,135.20 7,047.60 2,791.80 2,914.60 108.80 1,232.40 .20 7,638.40 7,317.70 2,118.20 3,707.00 170.00 1,322.40 .20 7,463.00 7,403.50 2,614.80 3,267.40 188.90 1,332.40 .00 8,603.70 7,591.40 2,435.20 3,597.30 149.00 1,406.90 .50 9,914.70 9,091.60 2,915.80 4,362.20 165.90 1,647.70 .50 11,051.50 3,922.40 5,030.20 190.10 1,908.30 .62 13,973.54 13,677.64 5,765.48 5,590.28 326.31 2,185.06 .05 14,118.47 14,306.23 7,086.12 5,025.16 556.77 1,621.64 .13,949.17	at istions Total Pesearch & Development Space Flight, Control & Data Communications Construction Of Facilities Research & Program Management Trust Funds 70 6,723.90 6,663.90 5,316.20 - 108.10 1,239.60 - 60 7,135.20 7,047.60 2,791.80 2,914.60 108.80 1,232.40 - 20 7,638.40 7,317.70 2,118.20 3,707.00 170.00 1,322.40 - 20 7,463.00 7,403.50 2,614.80 3,267.40 188.90 1,322.40 - 50 9,914.70 9,091.60 2,915.80 4,362.20 165.90 1,647.70 - 50 11,051.50 3,922.40 5,030.20 1901.00 1,908.30 0.50 62 13,973.54 13,677.64 5,765.48 5,590.28 326.31 2,185.06 1.02 05 14,118.47 14,066.23 7,086.12 5,025.16 556.77 1,621.64 1.12 13,949.17 13,665.89	at lations Total Research & Development Space Flight, Control & Data Communications Construction Research & Program Trust Funds Office of Inspector General 70 6,723.90 6,663.90 5,316.20 - 108.10 1,239.60 -

Financial Summary

(In Million	s Of Dollars)			Outlays									
Fiscal Year	Total Appropriations	Total Direct Obligations	Total	*Science, Aeronautics & Technology	*Human Space Flight	*Mission Support	Office Of Inspector General						
1995	14,362.76	12,940.73	8,263.46	2,706.76	3,527.72	2,028.98	14.45						
		i											
			all transfers, and	ATIONS [*] shows actual amou all rescissions. It does not in aw appropriation categories	nclude the Trust Fund	iding the Office of Ir s and GSA Building I	ispector General, Delegation.						
0.16													

Mission Support Funding By Program/Location

(In Millions of Dollars)			As of September 30, 1995
By Program	<u>FY 1995</u>	By Location	FY 1995
Space Communication Services	208.90	Headquarters Ames Research Center	274.53 204.15 1558
Space, Reliability and Quality Assurance	38.70	Dryden Flight Research Center Goddard Space Flight Center Jet Propulsion Laboratory	471.44 22.42
Operating Account		Johnson Space Center	351.20
Mission Support (Programmatic)	247.60	 Kennedy Space Center Langley Research Center Lewis Research Center 	258.74 224.44 217.90
Mission Support (Research Operations Support)	475.79	Marshall Space Flight Center Space Station Project Office	362.22 28.00
Mission Support (Research & Program Management)	1,674.89	Stennis Space Center Undistributed	28.00 34.20 68.46
Mission Support (Construction of Facilities)	135.00		
TOTAL MISSION SUPPORT	2,,533.28	Total Program	2,533.28
Approp. Trans. & Adjustment	39.31	Approp. Trans. & Adjustment	
Appropriation	2,572.90	Appropriation	2,572.59
Lapse Unoblig Bal Incl.	-	Lapse Unoblig Bal Incl.	-

Research and Development Funding By Program

in Millions of Dollars)									As of Septe	mber 30, 199
	FY 1995	FY1994	FY1993	FY 1992	FY 1991	FY 1990	FY 1989 - FY 1980	FY 1979	FY 1978	FY 197 & Pri
Space Station	1,687.07	1,864.27	2,077.08	1,976.71	1,875.39	1,723.70	2037.89		-	
space Filght										
Space Shuttle		-	-	-	~	-	7659.30	1,637.60	1,348.80	4,599.7
Space Transp Cap Dev	584.70	584.70	496.98	559.49	594.62	546.02	6,788.90	299.70	263.60	3,946.2
STS Oper Capability Dev	(~)	(-)	(-)	(-)	()	()	(816.70)	(89.90)	(65.40)	(65.4
Spacelab	(132.80)	(132.80)	(113.89)	(99.20)	(129.30)	(118.58)	(470.00)	()	()	()
Upper Stage	()	()	(-)	(59.70)	(82.40)	(79.70)	(832.90)	()	()	()
Payload Oper & Support Eqt	(116.73)	(116.73)	(124.92)	(110.86)	(93.42)	(58.54)	(329.60)	()	(~)	()
Eng & Tech Base (ETB)/DTMS	(180.53)	(180 .53)	(214.15)	(210.80)	(208.50)	(181.60)	(1341.30)	(177.20)	(171.90)	(1,050.7
Advanced Programs	(27.30)	(27.30)	(32.09)	(34.55)	(35.20)	(29.70)	(237.20)	(7.00)	(10.00)	(188.8
Advanced Launch Systems	(19.94)	(19.94)	(9.60)	(27.98)	(-)	(-)	(144.70)	()	()	(-)
Advanced Transportation Tech.	(-)	()	()	()	(23.90)	(-)	(-)	(-)	(-)	()
Tethered Satellite Program	(7.40)	(7.40)	(3.40)	(16.40)	(21.90)	(27.30)	(83.20)	(-)	(-)	(-)
Orbital Maneuvering Veh (OMV)	(~)	(100.00)	(-)	()	()	(50.60)	(206.80)	()	()	(
STS Operations/Russian Coop	(100.00)	(-)	(-)	()	(-)	()	(2,368.60)	(-)	(-)	(
Skylab	()	(-)	()	()	(~)	()	(-)	()	()	(2,427.1
Apollo Soyuz Test Project	()	()	()	()	(-)	(-)	(-)	()	()	(214.2
Expendable Launch Vehicles	-	-	-	-	-		235.80	73.60	136.50	2,274.6
Completed Programs		-			-		-	-	-	22,020.
Apollo	()	(-)	()	()	(-)	()	()	(-)	(-)	(20,443.6
Gemini	()	()	()	()	(-)	(-)	(-)	()	()	(1,280.7
Others	()	(-)	(-)	()	(-)	(-) <u> </u>		()	(-)	(295.8
otal OSF	584.70	584.70	496.98	559.49	594.62	546.02	14,683.50	2,010.90	1,749.10	32,840.
Commercial Programs										
echnology Utilization	-	-	28.91	32.08	24.05	23.40	117.20	9.10	9.10	75.3
Commercial Use of Space		-	132.84	113.63	62.79	32.41	96.70	-	-	-
Total OCP	••		161.75	145.75	86.84	55.81	253.00	9.10	9.10	75.3

As of September 30, 1995 FY1993 FY 1979 FY 1995 FY1994 FY 1992 FY 1991 FY 1990 FY 1989-1980 FY 1978 FY 1977 & Prior Aeronautics and Space Technology Current Programs Space Research & Technology ------266 98 299.90 277 90 273 77 1522.40 98.30 88 70 432.30 Aeronautical Research & Tech 824.22 823.72 700.81 543.70 500.10 433.36 3130.30 264.10 228.00 1,021.40 Transatmospheric Res & Tech 19.68 19 68 4.08 93.79 58.29 164.80 ---------Energy Tech, Applications -----••• ------4.90 5.00 7.50 20.80 Prior Programs Apollo Applications Expr 1.00 ---------------------------Chemical & Solar Power 62.30 -------------------•• Basic Research 193.60 ---_ -----------------Space Vehicle Systems 332.20 ----------------------Electronic Systems 272.00 --------------------Human Factor Systems 151.30 --------------------Space Power & Elec Prop Svs 385.40 ----------------Nuclear Rockets 512.80 ------------Aeronautical Vehicles 365,40 -Chemical Propulsion 451.20 ----_ -_ _ ••• Nuclear Power & Propulsin 44.10 ----------------•• Mission Analysia ----16.00 Total OAST 843.90 843.40 967.79 847.68 869.38 765.42 4832.40 367.40 4.261.80 324.20 Space Tracking & Data Systems Tracking and Data Acquisition 19.30 19.27 22.93 21.73 19.75 19.08 1998.90 276.30 3,852.80 299.90 Safety, Reliability, Maintainability & Quality Assurance Standards & Practices 33.76 33.76 32.24 33.18 32.59 22.35 76.70 9.00 9.00 24.20 University Space Science & Technology Academic Program Academic Programs 53 45 53 45 69 15 44 24 37 43 23.00 --------Minority University Res. Prog. 30.72 30.72 22.36 21.73 16.98 14.03 --------Total U.S.S.&T.A. P. 84.17 84.17 91.51 65.97 54.41 37.03 -----------

Research and Development Funding By Program

Science, Aeronautics and Technology Funding By Program/Location

(In Millions of Dollars)			As of September 30, 1995
By Program	FY 1995	By Location	FY 1995
Aeronautics Research and Technology	843.51	Headquarters	663.60
Space Access and Technology		Ames Research Center	402.66
Space Access and Technology	603.25	Dryden Flight Research Center	66.21
Launch Services	333.80	Goddard Space Flight Center	1,879.74
Total S.A.T.	937.05	Jet Propulsion Laboratory	1,013.17
		Johnson Space Center	144.18
Mission Communications Services	480.44	Kennedy Space Center	47.83
Academic Programs		Langley Research Center	424.30
Educations Programs	56.30	Lewis Research Center	522.72
Minority University Research Programs	45.86	Marshall Space Flight Center	613.89
Total A.P.	102.16	Space Station Project Office	
		Stennis Space Center	16.09
Mission to Planet Earth	1,243.50	Undistributed	104.20
Space Science		· · · · ·	
Planetary Exploration	682.15	Total Program	5,898.59
Physics and Astronomy	1.093.82	·	
Total S.S.	1,775.97	Approp. Trans. & Adjustment	2.61
Life and Microgravity Science & Applacations	465.35	Appropriation	5,901.20
Operating Account	11.61	_	
Science, Aero. & Tech. (Programmatic)	5,859.59	Lapse Unoblig Bal Incl.	-
Science, Aero. & Tech. (Construction of Facilities)	39.00		
TOTAL SCIENCE, AERO. AND TECH.	5898.59		
Appropo. Trans. & Adjustment	2.61		
Appropriation	5,901.20		
Lapse Unoblig Bal Incl.			

C-20

(In Millions of Dollars)	FY 1995	FY 1994	FY1993	FY 1992	FY 1991	FY 1990	FY 1989-1980	FY 1979	FY 1978	FY 1977 & Prior
Space Science and Applications Current Programs	-	_								
Physics & Astronomy	1,044.03	1,038.41	1,025.34	1,019.99	854,94	847.11	5059.30	281.80	223.10	2,196.30
Planetary Exploration	640.83	637.83	524.74	527.35	469.91	380.85	2721.80	181.90	146.70	3,550.20
Life Sciences	460,84	459.83	145.00	155.75	135.60	104.70	586.00	40.10	33.30	145.70
Space Applications	1,007.10	1,007.10	881.15	868.27	835.07	632.05	3807,40	271.90	232,10	2,092.60
Prior Programs										
Manned Space Science	-	-			-	-	-		-	46.40
Launch Vehicle Development	-	-	-	-	-	-	-		~	614.40
Bioscience	-	-	-	-	-	-	~		~	257.80
Space Flight Operations	-	-	-	-	-	-		-	4.00	58.30
Payload, Plan & Prog Integ		<u>(-)</u>	(~)_	<u>(-:)</u>		(-)	(-)	()	(4.00)	(58.30)
Total OSSA	3,152.80	3,141.17	2,591.38	2,591.38	2,395.52	1,964.71	12,449.50	775.70	639.20	8,961.70
Advanced Concepts & Technolog	y 463.10	429.01								
Exploration	-	~	3.48	3.46	3.50		-	-	-	-
University Affairs	-	-	-	-		-	-	-	-	229.20
Operating Account	464.70	533.75	474.78	589.75	89.11	93.56	453.80	5.20	4.70	79.70
Total Program	7,533.50	7,533.50	7,094.30	6,827.61	6,023.52	5,227.69	36,464.90	3,477.20	3,011.60	50,325.30
Approp Trans & Adjustment	-4.20	-4.20	-5.00	0.00	0.00	-7.00	224.10	0.00	1.40	301.00
Appropriation	7,529.30	7,089.30		6,827.61	6,023.52	5,220.69	36,734.00	3,477.20	3,013.00	50,626.30
Lapse Unoblig Bal Incl	(.6)	(1.12)		(1.16)	(1.32)	(1.68)	(7.4)	(0.3)	(0.3)	(.3)

Research and Development Funding By Program

Note: Unobligated Balances Lapsed at the end of the second year of accountability.

Research and Development Funding By Location

									As of Septe	mber 30, 1995
	FY 1995	FY 1994	FY 1993	FY 1992	FY 1991	FY 1990	FY 1989- 1980	FY 1979	FY 1978	FY 1977 & Prior
Headquarters	717.37	729.07	827.39	767.42	645.77	471.79	2,101.90	115.30	95.00	2,253.90
Ames Research Center	478.85	468.96	458.62	431.64	357.72	314.20	2,141.70	140.40	115.50	1,183.10
Dryden Flight Research Facility	-	-	-	-	-	-	46.90	13.10	18.60	242.00
Electronics Research Center	-	-	-	-	-	-		-	-	82.50
Goddard Space Flight Center	1,373.59	1,310.08	1,286.44	1,177.23	1,047.81	930.64	5,753.50	515.50	493.00	6,400.10
Jet Propulsion Laboratory	786.91	760.92	672.59	714.19	734.97	575.29	3,800.00	236,80	201.40	3,017.90
Johnson Space Center	818,29	791.84	1.406.57	1,433,47	1.173.60	1.049.33	7,971.30	1,161.80	970,60	15,423.30
Kennedy Space Center	231.81	225.13	281.93	272.67	209.80	150.68	2.055.60	234.90	170.00	2,503.20
Langley Research Center	451.19	445.32	388,24	349.97	308.15	260.81	1.733.20	138.20	157.10	2,322.90
Lewis Research Center	559.05	547.99	761,58	681.66	559.20	500.26	2.607.0	148,50	133.60	2,864.60
Marshall Space Flight Center	910.58	880,088	984,68	974.43	968.32	959.89	8,607,70	785.20	630,90	13,293.10
NASA Pasadena Office		-		-		-			-	4.40
Pacific Launch Operations	-			-	~	-		-	-	0.30
Space Nuclear Systems Office		-	~			-		-		436.50
Space Station Project Office	1,184.05	1,012.94	-	-	~	-		-		
Station 17	-		-			-	-506.80	-38.80		
Stennis Space Crieter	21.81	21.73	26.26	24.93	18.18	14.80	124.10	9.20	10.00	21.50
Wallops Flight Facility	-		-		-	-	28.00	17.10	15.90	156.30
Western Support Office		-	-	-	-	•		-	-	119.70
Undistributed		339.44	-	-		-			-	-
Total Program	7,533.50	7,533.50	7,094.30	8,827.61	6,023.52	5,227.69	36,064,90	3,477.20	3.011.60	50,325.30
Approp Trans & Adjustment	-4.20	-4.20	-5.00	0.00	0.00	-7.00	224.10	0.00	1.40	301.00
Appropriation	7,529.30	7,529.30	7,089.30	6,827.61	6,023.52	5,220.69	36,689.00	3,477.2	3,013.00	50,626.30
Lapse Unobilg Bal Incl	(.6)	-	(1.12)	(1.16)	(1.32)	(1.68)	(26.0)	(0.3)	(1.8)	(0.3)

Note: Unobligated Balances Lapsed at the end of the second year of accountability

Human Space Flight Funding By Program/Location

(In Millions of Dollars)			As of September 30, 1995
By Program	FY 1995	By Location	FY 1995
		Headquarters	35.60
Space Flight		Arnes Research Center	0.46
Space Shuttle	3,137.61	Dryden Flight Research Center	7.45
Space Station	1,869.30	Goddard Space Flight Center	13.77
Russian Cooperative	150.10	Jet Propulsion Laboratory	0.32
Payload and Utilization Operatiions	319.95	Johnson Space Center	1,381.36
Total OSF	5,476.96	Kennedy Space Center	1,047.83
		Langley Research Center	2.01
Operating Account	5.44	Lewis Research Center	15.91
		Marshall Space Flight Center	1,501.68
Human Space Flight (Programmatic)	5,482.40	Space Station Project Office	1,397.29
Human Space Flight (Construction of Facilities)	32.50	Stennis Space Center	50.67
		Undistributed	60.55
TOTAL HUMAN SPACE FLIGHT	5,514.90	Total Program	5,514.90
TOTAL HOMAN SPACE FLIGHT	5,514.90	Approp. Trans. & Adjustment	
Approp. Trans. & Adjustment			**
Appropriation	5,514.90	Appropriation	5,514.90
Lapse Unoblig Bal Incl.	_	Lapse Unoblig Bal Incl.	-
			_

Space Flight, Control And Data Communications Funding By Program	
--	--

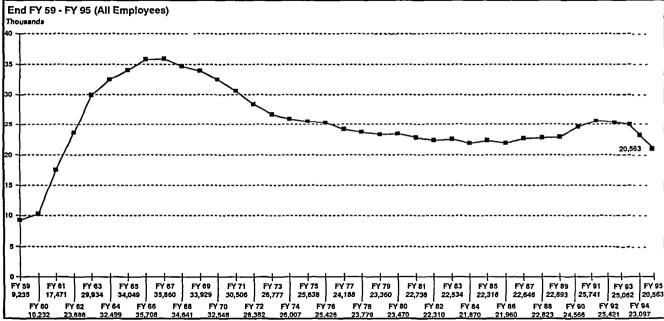
(In Millions of Dollars)							As of September 30, 1995		
	FY 1995	FY 1994	FY 1993	FY 1992	FY 1991	FY 1990	FY 1989 -1984		
Space Flight							40.005.00		
Shuttle Prod & Oper Cap Space Transportation Ops	1,037.63 2,559.28	1,012.75 2,550.08	1,045.48 2,804.94		1,295.07 2,976.73	1,189.84 2,628.41	10,005.33 10,540.32		
Total OSF	3,596.91	3,562.83	3,562.83 3,850.42 4,223.61 4,2		4,271.80	3,818.25	20,545.65		
SPACE SCIENCE & APPLICATION Expendable Launch Vehicles	S	303.34		179.85			-		
Space Tracking & Data Systems	758.83	734.05	820.70	869.73	973.91	897.97	4671.75		
Operating Account	176.02	234.98	207.83	258.76	10.13	9.39	79.79		
Total Program Approp Trans & Adjustment		4,835.10 18.40	5,058.80 27.20	5,352.10 -195.03	5,255.84 1,063.29	4,725.61 -170.71	25,297.19 -286.53		
Appropriation		4,853.50	5,086.00	5,157.07	6,319.13	4,554.90	25,010.66		
Lapse Unoblig Bal Incl		(0.30)	(1.21)	(0.43)	(0.41)	(0.82)	(2.6)		

Construction of Facilities Funding

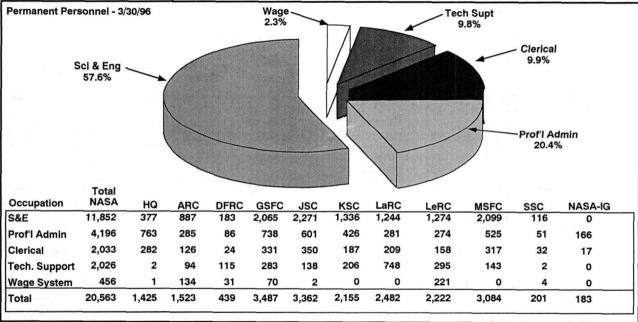
									As of September 30, 19
In Millions of Dollars)	FY 95	FY 94	FY 93	FY 92	FY 91	FY 90	FY 89-80	FY 79-70	FY 69-59
mes Research Center	2.1	-	-	-		12.3	88.1	30.9	55.66
Dryden Flight Research Fac	5.5	-	-	-	4.0	-	16.8	2.1	6.1
Goddard Space Flight Center	5.0	25.6	19.8	23.5	16.6	16.0	31.1	16.7	83.8
Jet Propulsion Laboratory	4.7	2.9	-	4.3	30.2	4.9	44.6	20.6	42.2
Johnson Space Center	4.3	2.2	4.0	7.0	6.7	2.6	18.4	6.6	93.0
Kennedy Space Center	1.5	1.9	-	6.5	-	16.2	7.9	40.4	911.0
Langley Research Center	-	6.0	-	-	4.6	-	93.4	32.3	72.1
Lewis Research Center	-	8.2	-	-	16.0	-	50.3	24.8	111.2
Marshall Space Flight Center	4.9	2.6	-	5.2	-	-	24.5	5.1	140.2
Stennis Space Center	-	3.0	2.2	-	3.4	-	-	2.0	238.4
Wallops Flight Facility	-	5.2	-	3.5	5.5	-	3.2	3.1	38.1
Various Locations	-	15.6	33.8	11.4	17.6	2.6	98.8	62.1	660.1
Facility Planning & Design	10.0	21.5	23.3	27.9	28.0	26.3	129.7	92.0	58.7
Large Aero Fac	-	-		-	·		45.7	124.1	-
Minor Construction	2.0	14.0	14.0	12.9	11.0	10.0	52.1	28.5	-
Repair	30.0	36.0	31.9	31.7	28.2	28.0	175.4	-	-
Envir Compl & Rest, Program	35.0	50.0	40.0	36.0	32.0	30.0	49.9		-
Rehab & Mods *	30.0	36.0	34.0	34.8	32.9	35.0	233.3	122.9	-
Space Station Facilities	-	-	13.8	35.0	25.0	49.4	12.4	-	-
Shuttle Facilities	-	54.7	193.4	168.7	165.6	112.1	309.9	351.6	-
Shuttle Payload Facility	-	-	-	-	-	••	31.1	11.7	-
Unallocated Plans & Design	-	-		-			0.4	-	
Aero. Facils Revitalization	-	203.0	39.8	48.3	32.6	63.7	46.0	-	-
Advanced Launch System Fac		-		-	-		15.0		-
Trust Fund	-	-	-	-	-	-	15.0	-	-
Wake Shield Facility	-	-		-	3.0	2.2	-	-	-
Future Software Program	-	-		6.0	4.0		-		-
Earth Science Info Network	-	_		3.4	1.0	_	-	-	-

								,	As of September 30, 19
In Millions of Dollars)	FY 95	FY 94	FY 93	FY 92	FY 91	FY 90	FY 89-80	FY 79-70	FY 69-59
ISC Visitor Center	-	-	-	-	10.0	-	-	-	-
Deferred Rehab & Major Maint.	-	-	-	11.8	20.0	-	-	-	-
National Tech. Transfer Center	-	-	-	13.5	-	-	-	-	-
Chris Columbus Center	-	-	-	20.0	-	-	-	-	-
Indp Software Valid/Verif	-	-	-	10.0	-	-	-	-	<u></u>
Space Dynamics Laboratory	-	-	-	10.0	-	-	-		-
Delta College, HQ	-	-	8	-	-	-		-	-
High Speed Civil Transport	-	-	-	-	-	-	-	-	-
Electronics Research Center	-	-	-	-	-	-	-	-	24.6
Michoud Assembly Facility	-	-	-	-		-	-	-	43.7
Nuclear Rocket Dev Statioin	-	-	-	-	-	-	-	-	15.6
Pacific Launch Operations	-	-	-	-	-	-	-	-	2.4
Aeroacoustic Mod	-	-	25		-	-		-	-
Other	-	-	-	-	-	-	-	1.7	
TOTAL PROGRAM	135.0	488.4	483.0	531.4	497.9	411.3	1,592.1	979.2	2,596.8
Approp Trans & Adjust	0.0	29.3	15.0	-6.4	0.0	190.0	248.8	-10.3	-105.7
Approp & Availability	135.0	517.7	498.0	525.0	497.9	601.3	1,840.9	968.9	2,491.1
Approp & Availability fincluded in Various Locations P		517.7	498.0	525.0	497.9	601.3	1,840.9		8.9

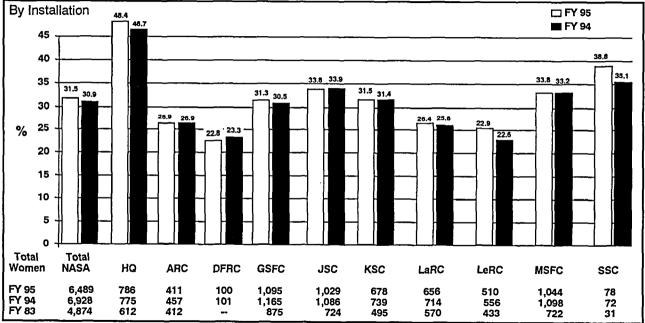
Construction of Facilities Funding (cont'd)

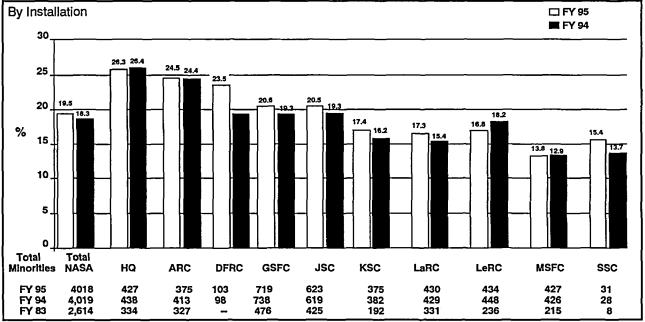

Personnel Summary

Onboard At End Of Fiscal Year*											-			
	FY59_	FY60	FY61	FY62	FY63	FY64	FY65	FY65	FY67	FY68	FY69	FY70	FY71_	FY.72
Headquarters	429	587	735	1,477	2,001	2,158	2,135	2,336	2,373	2,310	2,293	2,187	1,895	1,755
Ames Research Center	1,464	1,421	1,471	1,658	2,116	2,204	2,270	2,310	2,264	2,197	2,117	2,033	1,968	1,844
Dryden Flight Research Facility ⁽¹	340	408	447	538	616	619	669	662	642	622	601	583	579	539
Electronics Research Center		-			25(a)	33(a)	250	555	791	950	951	592		-
Goddard Space Flight Center	398	1,255	1,599	2,755	3,487	3,675	3,774	3,958	3,997	4,073	4,295	4,487	4,459	4,178
Johnson Space Center		in GSFC	794	1,786	3,345	4,277	4,413	4,889	5,064	4,956	4,751	4,539	4,298	3,935
Kennedy Space Center	-	-		339	1.181	1.625	2.464	2,669	2.867	3.044	3,058	2,895	2,704	2,568
Langley Research Center	3,624	3,203	3,338	3,894	4,220	4,330	4,371	4,485	4,405	4,219	4,087	3,970	3,830	3,592
Lewis Research Center	2,809	2,722	2.773	3,800	4.697	4,859	4,897	5,047	4,956	4,583	4,399	4,240	4,083	3,866
Marshall Space Flight Center	·	370	5,948	6.843	7.332	7.679	7.719	7,740	7.602	6,935	6,639	6,325	6,060	5,555
NASA Pasadena Office	-		·		·	(b)	19	85	91	79	80	72	44	40
Pacific Launch Operations Office	-	-			17	22	21	(c)		-	-			
Space Nuclear Systems Office		-	4	39	96	112	116	115	113	108	104	103	89	45
Stennis Space Center		-	-											
Wallops Flight Facility (2)	171	229	302	421	493	530	554	563	576	565	554	522	497	465
Western Support Office		37	60	136	308	376	377	294	119	(d)				
Total	9,235	10,232	17,471	23,686	29,934	32,499	34,049	35,708	35,860	34,641	33,929	32,548	30,506	28,382
	FY73	FY74	FY75	FY76	EY77	FY78	.FY79	.FY80	FY81	FY82				
Headquarters	1,747	1,734	1,673	1,708	1,619	1,606	1,534	1,658	1,638	1,431				
Ames Research Center	1,740	1,776	1,754	1,724	1,645	1,691	1,713	1,713	1,652	2,041				
Dryden Flight Research Facility	509	531	544	566	546	514	498	499	491	434	NOTES:			
Electronics Research Center									-	-	1			
Goddard Space Flight Center	3,852	3,936	3,871	3,808	3,666	3,641	3,562	3,535	3,431	3,621	* Include	s Other Tha	n Permanen	t
Johnson Space Center	3,896	3,886	3,877	3,796	3,640	3,617	3,563	3,616	3,498	3,268	ļ			
Kennedy Space Center	2,516	2,408	2,377	2,404	2,270	2,234	2,264	2,291	2,224	2,104	(1) Inclu	Ided in ARC	After FY 19	81
Langley Research Center	3,389	3,504	3,472	3,407	3,207	3,167	3,125	3,094	3,028	2,801	(2) Inclu	ided in GSF	C After FY 1	981
Lewis Research Center	3,368	3,172	3,181	3,168	3,061	2,964	2,907	2,901	2,782	2,485				
Marshall Space Flight Center	5,287	4,574	4,337	4,336	4,014	3,808	3,677	3,646	3,479	3,332	(a) Figu	res for North	a Eastern Off	ice
NASA Pasadena Office		39	35	·	·	_	_			-	(b) Prio	r Years Figu	res included	in WSO
	39	39									1.5 54.	AL I. 4000	DI OO Adda	/ity Was
Pacific Launch Operations Office	39						-			-	(c) Effe	CIVO IN 1906	, FLOO AGIN	
Pacific Launch Operations Office Space Nuclear Systems Office						-	-	-	-	-		ged Under K		•
			 76	 72	 94	 108	108		 113	 103	Mer		SC	
Space Nuclear Systems Office		 447	-		 94 426	 108 429	 108 409	 111 406	 113 400	-	(d) Effe	ged Under K	SC , WSO Was	s Merged
Space Nuclear Systems Office Stennis Space Center			 76	 72						103	Mer (d) Effe Dise	ged Under K ctive in 1968	SC , WSO Was	s Merged


Personnel Summary

Year-End Strength													
	FY83	FY84	FY85	FY86	FY87	FY88	FY89	FY90	_FY91	FY92	FY93	FY94	FY 95
Headquarters	1,492	1,396	1,383	1,362	1,532	1,653	1,727	1,966	2,092	2,143	2,074	1,843	1,672
Ames Research Center	2,033	2,043	2,052	2,072	2,079	2,101	2,151	2,205	2,263	2,243	2,173	1,696	1,559
Dryden Flight Research Facility	y											434	428
Goddard Space Flight Center	3,668	3,541	3,629	3,679	3,648	3,626	3,735	3,873	3,999	3,964	3,910	3,824	3,544
Johnson Space Center	3,235	3,227	3,330	3,269	3,349	3,399	3,578	3,615	3,677	3,631	3,609	3,205	3,081
Kennedy Space Center	2,084	2,067	2,081	2,051	2,188	2,236	2,423	2,466	2,571	2,546	2,497	2,352	2,197
Langley Research Center	2,904	2,821	2,827	2,814	2,851	2,840	2,864	2,961	2,969	2,953	2,859	2,789	2,504
Lewis Research Center	2,632	2,624	2,715	2,598	2,663	2,649	2,749	2,728	2,835	2,799	2,731	2,457	2,258
Marshall Space Flight Center	3,351	3,223	3,284	3,260	3,384	3,340	3,609	3,619	3,788	3,715	3,627	3,311	3,111
Space Station Program Office												301	316
Stennis Space Center	105	108	122	123	137	147	183	192	222	216	200	205	204
NASA Permanent	21,505	21,050	21,423	21,228	21,831	<u>21,9</u> 91	23,019	23,625	24,416	24,210	23,680	22,417	19,072
Other Than Permanent	1,029	820	893	732	815	832	874	941	1,325	1,211	1,382	680	1,491
NASA Total	22,534	21,870	22,316	21,960	22,646	22,823	23,893	24,566	25,741	25,421	25,062	23,097	20,563


NASA Civil Service Workforce Employment Trend


Occupational Summary

Women as Percent of Permanent Employees

Minorities as Percent of Permanent Employees

ON THE FRONT COVER

PILLARS OF CREATION IN A STAR-FORMING REGION

Undersea coral? Enchanted castles? Space serpents? These eerie, dark pillar-like structures are actually columns of cool interstellar hydrogen gas and dust that are also incubators for new stars. The pillars protrude from the interior wall of a dark molecular cloud like stalagmites from the floor of a cavern. They are part of the "Eagle Nebula" (also called M16), a nearby star-forming region 7,000 light-years away in the constellation Serpens.

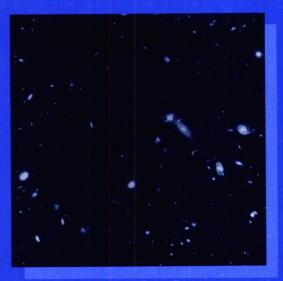
The pillars are in some ways akin to buttes in the desert, where basalt and other dense rock have protected a region from erosion, while the surrounding ladscape has been worn away over millennia. In this celestial case, dense clouds of molecular hydrogen gas (two atoms of hydrogen in each molecule) and dust have survived longer than their surroundings in the face of a flood of ultraviolet light from hot, massive newborn stars (off the top edge of the picture). This process is called "photoevaporation". This ultraviolet light is also responsible for illuminating the convoluted surfaces of the columns and the ghostly streamers of gas boiling away from their surfaces, producing the dramatic visual effects that highlight the three dimensional nature of the clouds. The tailes pillar (left) is about a light-year long from base to tip.

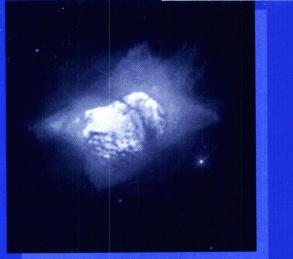
ON THE BACK COVER

HUBBLE'S DEEPEST-EVER VIEW OF THE UNIVERSE UNVEILS MYRIAD GALAXIES BACK TO THE BEGINNING OF TIME

Several hundred never before seen galaxies are visible in this "deepestever" view of the universe, called the Hubble Deep Field (HDF), made with NASA's Hubble Space Telescope. Besides the classical spiral and elliptical shaped galaxies, there is a bewildering variety of other galaxy shapes and colors that are important clues to understanding the evolution of the universe. Some of the galaxies may have formed less than one billion years after the Big Bang.

Representing a narrow "keyhole" view all the way to the visible horizon of the universe, the HDF image covers a speck of sky 1/30th the diameter of the full Moon (about 25% of the entire HDF is shown here). This is so narrow, just a few foreground stars in our Milky Way galaxy are visible and are vastly outnumbered by the menagerie of far more distant galaxies, some nearly as faint as 30th magnitude, or nearly four billion times fainter than the limits of human vision. (The relatively bright object with diffraction spikes just left of center may be a 20th magnitude star.) Though the field is a very small sample of sky area it is considered representative of the typical distribution of galaxies in space because the universe, statistically, looks the same in all directions.


HUBBLE TELESCOPE PHOTO REVEALS STELLAR DEATH PROCESS


This NASA Hubble Space Telescope image of planetary nebula NGC 7027 shows remarkable new details of the process by which a star like the Sun dies.

The nebula is record of the star's final death throes. Initially the ejection of the star's outer layers, when it was at its red giant stage of evolution, occurred at a low rate and was spherical. The Hubble photo reveals that the initial ejections occurred episodically to produce the concentric shells. This culminated in vigorous ejection of all of the remaining outer layers, which produced the bright inner regions. At this later stage the ejection was non-spherical, and dense clouds of dust condensed from the ejected material.

