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NUMERICAL STUDY OF STEADY AND UNSTEADY

CANARD-WING-BODY AERODYNAMICS

Eugene L. Tu
Ames Research Center

SUMMARY

The use of canards in advanced aircraft for control and improved aerodynamic performance is a topic

of continued interest and research. In addition to providing maneuver control and trim. the influence

of canards on wing aerodynamics can often result in increased maximum lift and decreased trim drag.

In many canard-configured aircraft, the main benefits of canards are realized during maneuver or other

dynamic conditions. Therefore, the detailed study and understanding of canards requires the accurate

prediction of the non-linear unsteady aerodynamics of such configurations. For close-coupled canards.

the unsteady aerodynamic performance associated with the canard-wing interaction is of particular

interest. The presence of a canard in close proximity to the wing results in a highly coupled canard-

wing aerodynamic flowfield which can include downwash/upwash effects, vortex-vortex interactions and

vortex-surface interactions. For unsteady conditions, these complexities of the canard-wing flowfield

are further increased.

The development and integration of advanced computational technologies provide for the time-

accurate Navier Stokes simulations of the steady and unsteady canard-wing-body flowfields. Simula-

tions are performed for non-linear flight regimes at transonic Mach numbers and for a wide range of

angles of attack. For the static configurations, the effects of canard positioning and fixed deflection an-

gles on aerodynamic performance and canard-wing vortex interactions are considered. For non-static

configurations, the analyses of the canard-wing-body flowfield includes the unsteady aerodynamics

associated with pitch-up ramp and pitch oscillatory motions of the entire geometry. The unsteady

flowfield associated with moving canards, which are typically used as primary control surfaces, are

considered as well. The steady and unsteady effects of the canard on surface pressures, integrated

forces and moments, and canard-wing vortex interaction are presented in detail, including the effects

of the canard on the static and dynamic stability characteristics.

The current study provides an understanding of the steady and unsteady canard-wing-body flow-

field. Emphasis is placed on the effects of the canard on aerodynamic performance as well as the

detailed flow physics of the canard-wing flowfield interactions. The computational tools developed to

accurately predict the time-accurate flowfield of moving canards provides for the capability of coupled

fluids-controls simulations desired in the detailed design and analysis of advanced aircraft.





Chapter 1

Introduction

1.1 Motivation

Since the Wright Brothers first introduced the canard configuration almost a century ago, the benefits

of canards over the now more conventional tailplane configurations have been researched and debated

extensively. In particular_ for the past 30 years, the use of canards in many advanced aircraft for control

and improved aerodynamic performance has been the topic of continued research. The influence of

canards on wing aerodynamics can often result in increased maximum lift. and decreased trim drag.

There are also unique dynamic performance characteristics for canard-configured aircraft coupled with

the capability of present-day automatic control systems. The reduced or even negative static stability

of canard configurations can lead to improved aircraft agility and maneuverability.

There are a variety of aircraft which utilize canards to enhance aerodynamic performance and

controllability. Aircraft flying today can be found with canards which are fixed or movable, located

at various longitudinal and vertical positions, and coincident or deflected with respect to the wing.

For example_ the X-31 aircraft has a "no-load" long-coupled canard which deflects between +20 and

-70 deg for high angle of attack pitch recovery control (ref. 1). Otherwise, during normal flight, the

X-31's canard is "free-floating" and deflects to maintain minimal aerodynamic loads.

Close-coupled canards, by definition, have a more significant, effect on the canard-wing aerodynamic

interaction and, consequently, the aerodynamic performance of the aircraft. The NASA X-29, SAAB

Viggen and SAAB Gripen are three examples of fully integrated close-coupled canard configurations.

The X-29 has a forward-swept wing and a movable close-coupled canard which is the primary pitch

control surface as well as an integral component in the active control system (ref. 2). The SAAB Viggen

has a close-coupled fixed canard for high performance aerodynamics while its successor, the Gripen,

utilizes movable close-coupled canards to obtain maximum lift in maneuvering, maximum lift-to-drag

ratio in cruise, and even nose-down pitching moment during short-field landing roll-out (ref. 3).

Improved performance of close-coupled canard configurations is usually the direct result of the

aerodynamic interaction between the canard and wing. However, depending upon geometry and flow

parameters, this interaction can be either favorable or unfavorable. In many canard-configured aircraft.

including some of those listed above, the main benefits of the canards are realized during maneuver

or other dynamic conditions. Therefore, the detailed study of canards as aerodynamic performance or

primary control surfaces requires the accurate prediction of both the steady and unsteady aerodynamics

of such configurations. Proper utilization of canards requires the detailed and complete understanding

of the canard's steady and unsteady influence on the flow structure about the wing.
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1.2 Background

At moderate angles of attack, for aft-swept lifting surfaces with sharp leading edges, the flow can

separate at the leading edge due to the adverse pressure gradient on the leeward side. Figures 1.1 and

1.2 show a perspective and crossflow-plane schematic, respectively, of the flow structure over a typical

canard or wing with leading-edge separation. A free vortex sheet is formed which rolls up over the

upper surfaces of the canard or wing. If the vortex is strong enough, secondary ($2) and, in some cases.

tertiary ($3) separations may result.

The flow structure of highly-swept or delta canard-wing configurations is characterized by a canard-

downwash which modifies the wing flowfield and an interaction between the canard and wing vortex

systems. A schematic of a typical canard-wing vortex interaction is given in figure 1.3. In the absence

of vortex breakdown over the canard, the canard vortex convects downstream and modifies the wing

flow structure through its induced flow and interaction with the wing vortex. The downwash of the

canard modifies the flowfield of the wing within the canard-tip span-line by decreasing the effective

angle of attack of the wing. Beyond the canard tip, upwash from the canard increases the wing's

effective angle of attack. The downwash and upwash effects of the canard significantly influence the

formation of the wing leading-edge vortex. The canard downwash can weaken or delay the formation

of the wing vortex, thus affecting its position over the wing surface.

The effect of changing the position of the canard or deflecting the canard can drastically alter

this canard-wing aerodynamic interaction. For example, a canard positioned with a vertical offset

from the wing (high- or low-canard) will have varying locations of the canard wake and leading-edge

vortex relative to the wing, both of which can significantly change the canard-wing flowfield from

that of the coplanar canard case. For the canard with a positive deflection angle, the stronger canard

downwash and modified canard trailing edge location will also change the wing flowfield relative to that

of the coplanar canard case. All of these flowfield changes can potentially affect both the aerodynamic

performance as well as the stability and trim characteristics of a configuration, and need to be fully
understood.

Additional flow features contributing to the complex flow structure of typical canard configurations

include secondary, trailing-edge, and tip vortices, as well as regions of shock-induced or boundary-layer

separation. A strong primary vortex often causes the formation of a strong secondary vortex which.

from the resultant induced velocities, will significantly affect the surface pressures near the canard

or wing leading edge. Furthermore, trailing-edge and tip vortices can interact with the leading-edge

vortex as it convects downstream. Boundary-layer separation due to high angles-of-attack or induced

by a strong recover)" shock is also influenced by the presence of these vortices.

In general, the characteristics of static canard configurations are adequately represented by steady-

state aerodynamics. At higher angles of attack, some of the conditions which may result in unsteady

aerodynamics include large regions of separated flow and vortex breakdown. For a configuration un-

dergoing body motion with a fixed or moving canard, the unsteady effects can be quite significant. In

particular, the downwash of the canard and the interaction between the canard and wing vortices can

exhibit highly non-linear unsteady aerodynamic characteristics.

1.3 Previous Studies

The use of canards for improved performance has been supported by numerous experimental studies as

well as some recent computational studies. An early experimental study by Behrbohm (ref. 4) indicated

the potential for improved aerodynamic characteristics of short or close-coupled canard configurations



basedon the canard-winginteraction. Other experimentalstudiesby Laceyand Chorney (ref. 5),
McKinneyand Dollyhigh (ref. 6), andDollyhigh (ref. 7) showed the canard's potential for obtaining

increased lift and reduced drag.

Studies by Gloss and McKinney (ref. 8), and Gloss (refs. 9-11) provided further insight into the

effects of canard geometry and positioning on aerodynamic loading. Experimental studies by Gloss

et ah (ref. 12), and Dollyhigh (ref. 7) examined the effects of canard size, position and deflection in the

subsonic and supersonic regimes, respectively. In particular, the studies by Gloss et al. (refs. 10 and 13)
identified unfavorable characteristics for the low-canard configuration. Substantial loss of lift due to the

interaction between the low-canard wake and the wing was experimentally measured. HoweveL due to

the nature of these studies, which only investigated aerodynamic performance parameters, insufficient

data were obtained to completely describe the canard-wing flowfield.

Lacey (ref. 14) conducted an extensive four-volume experimental study on the effects of canard

geometry, position and deflection on aerodynamic loads in the subsonic to supersonic regimes. Other

studies (refs. 15 and 16) investigated the effects of canard and control surface deflections on more

realistic canard configurations while references 7, 11, and 12 provided detailed studies on generic canard

configurations with canards at various deflection angles. Recent experimental studies by Howard and

Kersh (ref. 17), and Ponton et al. (ref. 18) have given extensive information on the flow structure of

deflected canard geometries in the low subsonic regime and have shown encouraging results towards

the optimization of such confgurations.
A series of experimental studies by Gloss and Washburn (refs. 13, 19, and 20) provided detailed

measurements of surface pressures as well as integrated force quantities on a variety of configurations

and flow conditions near the transonic regime. Experimental studies by Er-E1 and Seginer (ref. 21),

Calarese (ref. 22), and Oelker and Hummel (ref. 23) concentrated on the canard and wing vortex

systems and provided details into the mechanisms of their interaction.

The experimental studies cited above have, in general, concentrated on steady-state aerodynamics.

Considerably fewer studies have examined the unsteady aerodynamic flowfields, and more specifically,

the unsteady motion of canard configurations. An earlier study by Boyden (ref. 24) investigated the

dynamic stability' and response characteristics of typical canard configurations and showed potential

aircraft maneuverability and agility benefits with the use of canards. More recent low-speed water-

tunnel studies (refs. 25-27) from the Naval Postgraduate School have examined the effects of close-

coupled canards and canard oscillations on the canard-wing unsteady aerodynamic interaction. A

low-speed study (ref. 28) of an actual aircraft configuration undergoing canard pitch oscillations has

also been conducted.

Computational fluid dynamics (CFD) has become a valuable tool for understanding the complex

three-dimensional flow physics of canard configurations. In particular, CFD has the potential to greatly

expand the understanding of the unsteady canard-wing interaction. A number of previous studies based

on conformal mapping, linear and non-linear vortex lattice methods, the transonic small perturbation

(TSP) equation, and the Euler equations have been performed (refs. 29-39). However, limited compu-

tational work has been performed using the time-accurate Reynolds-averaged Navier-Stokes (RANS)

equations. Although viscous computations are generally not required for certain leading-edge-type sep-

arations, viscous modeling is essential to capture some of the other significant features of canard-wing

aerodynamics such as vortex-induced secondary separations and other boundary-layer-type separations.

With_the emergence of faster computers and increased memory capacities, the time-accurate RANS

equations can now be utilized.



1.4 Objectives

The primary objective of this study is to develop a complete understanding of the steady and unsteady

flowfield about canard-wing-body configurations in the high-subsonic and transonic flight regimes. The

development and enhancement of the computational technology necessary to predict the non-linear

time-accurate aerodynamics associated with close-coupled canard-wing interactions is an integral and

necessary portion of this study. In this study, the time-accurate RANS equations are solved for the

flow about highly-swept, close-coupled canard-wing-body configurations. The major numerical issues

involved in solving the RANS equations are addressed in detail.

The accuracy of the computational techniques developed and utilized in this study is demonstrated

through extensive comparisons with available experimental data. Computational results are compared

with experimental lift, drag and pitching moment coefficients, as well as surface pressure data. Accuracy

is further demonstrated through grid refinement studies for the steady-state computations, and through

both spatial and temporal refinements for the time-accurate computations. Comparisons of the time-

accurate computational results are also made with the limited unsteady experimental data which are
available.

The flow physics associated with canard configurations are studied through extensive computational

simulations of the steady and unsteady flowfield. The "baseline" geometry with a coplanar canard and

wing is used to examine the basic steady-flow characteristics of the canard-wing aerodynamic interac-

tion. These characteristics include the canard-wing leading-edge vortex interaction, canard downwash

effects and wing vortex breakdown. The effects of the canard's vertical position and deflection angle

on the canard-wing interaction, and subsequent steady-state aerodynamic performance, are investi-

gated. The time-accurate simulations are utilized to examine the unsteady flowfield characteristics of

canard-configurations undergoing pitch-up ramp motions, pitch oscillations of the entire configuration,

and independent canard oscillations. Various pitch rates are used in the study and numerical issues

affecting the accurate simulation of the unsteady fiowfield are addressed.

In addition to the details of the unsteady flowfield, the influence of fixed and moving canards on

the dynamic stability characteristics of the configuration are studied. The results of this study not

only demonstrate the suitability of RANS simulations for aerodynamic analysis and design of canard

configurations, but also provide for a future direction towards utilizing high-order CFD in stability and
control simulations.

1.5 Geometry

The geometry in this stud)' is illustrated in figure 1.4 and is based on the wind-tunnel models used

by Gloss et al. (refs. 9, 10, 12, 13, 19, and 20) and Boyden (ref. 24). The current geometry has also

been tested at low-speeds and high angles of attack by Calarese (ref. 22) in the wind-tunnel facilities

at Wright Aeronautical Labs.

The basic geometry consists of a highly-swept wing, close-coupled canard, and a fuselage with a

constant cross-sectional shape aft of the nose region. The wing and canard are composed of biconvex

airfoil sections which linearly vary in thickness from 6 percent to 4 percent as defined from root-to-tip.

The resulting sharp leading edges of both lifting surfaces fix the primary separation locations and are

conducive to generating vortices at moderate angles of attack.

For the deflected or moving canard geometries, the canard rotates about the spanwise axis (perpen-

dicular to the symmetry plane) at the mid-canard-root location as shown in figure 1.4. For the swept



canard,static (fixed)or dynamicdeflectionsresult in pure rotationat the canardroot sectionand a
combinationof translationandrotation at thecanardtip.

The cross-sectionalshapeof the bodyallowsfor a +10 to -10 degmid-canarddeflectionwithout
a canard-root/bodygap. Canarddeflectionangles,/_c, are given relative to the body axis (or wing

position) with positive /_c resulting in higher canard angles of attack (c_c). The _c = 0.0 deg mid-

canard deflection represents the coplanar canard case.

A2 $1

Figure 1.1. Sketch of the leading-edge vortex structure of a canard or wing.

A1 _ $1

Figure 1.2. Crossflow plane sketch of the leading-edge vortex.
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Chapter 2

Computational Modeling

The ability to accurately simulate the steady and unsteady flowfield of close-coupled canard config-

urations is governed by the appropriate computational modeling of the relevant flow physics. Time-

accurate vortical flows, transonic shocks, and viscous effects including boundary-l_'er separations are a

few of the present features which require accurate computational modeling. In addition to the complex

flowfield, geometric complexities, including moving surfaces, require advanced zonal interfacing and

dynamic grid generation techniques.

The computational modeling used in this study is presented in the current Chapter. Geometry

modeling, grid generation, and other case-dependent issues such as zonal interfacing and boundary

conditions are discussed in detail. The methods and procedures which comprise the developed com-

putational technology for accurately simulating canard-wing-body flowfields is described. Details on

the formulation of the governing equations, numerical algorithm, and turbulence modeling are found

in the Appendices.

2.1 Numerical Method

The numerical method used in this study is based on the solution of the Reynolds-averaged Navier-

Stokes equations. Due to the significant potential for the presence of transonic and crossflow shocks.

the strong conservation law form of the Navier-Stokes equations is utilized. As is typical for the

solution of the governing equations using body-fitted structured grids, the Navier-Stokes equations are

transformed to and solved in general curvilinear coordinates.

In general, for high Reynolds number flows, viscous effects are most significant in a thin region near

solid surfaces. Furthermore. in order to resolve the high gradient flow features normal to the body

surface, the spatial grid resolution is highest in the body-normal direction. Hence_ viscous terms along

the body are often neglected and the solution of the resulting "thin-layer" Navier-Stokes equations is

obtained. However. it is noted that for complex configurations, the body normal directions are not

always confined to one curvilinear coordinate direction. The thin-layer approximation is often made in

all three directions an& as a result, only the cross-derivative viscous terms are neglected.

The algorithm employed to solve the Reynolds-averaged Navier-Stokes equations is the Beam-

Warming alternating-direction-implicit (ADI) algorithm (ref. 40). The form of the Beam-\Varming

algorithm used in the current study is second-order accurate in space and first-order accurate in time.

Higher-order time accuracy is available with minor modifications, but is generally not required due to

the small stability-restricted time step sizes. For steady-state applications, the diagonal form (ref. 41) of

the Beam-Warming algorithm is utilized. The diagonalization of the original block tridiagonal matrices
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resultsin scalarpentadiagonalmatrices,whichhavemuchsimplerand moreefficientmatrix-inversion
propertieswith the samesecond-orderspatialaccuracy(refs.42and43). The useof spatially-varying
(or local) time steppingin conjunctionwith the diagonalizationprocedureleadsto highly efficient
steady-statecomputations.Furtherdetailson the governingequationsand numericalalgorithmcan
befound in reference43andarealsopresentedin the Appendices.

2.1.1 Turbulence modeling

For simulationsof complexgeometriesandflowfields,practicalresourceconsiderationsdictate the use
of relatively largespaceand time scalesin the computations.Thesescalesare inadequatefor direct
or large-eddysimulationsof turbulent fluid motions. Therefore,the RANSequationsare usedto
simulatethe flowfield.Usingthe RANSequations,highfrequencysmallscalemotionsassociatedwith
turbulencearenot resolved.However,asa result of the RANS "time-averaging"process,additional
termsrepresentingeffectivestressesdue to turbulencecanbe modeled.In this stud)', the Baldwin-
Lomaxalgebraicmodel (ref. 44) is usedto providethis turbulenceclosure.

TheBaldwin-Lomaxmodelsimulatestheeffectsof turbulencebycomputingan "effective"viscosity
in the stresstermsof the Navier-Stokesequations.Thiseffectiveviscosityis determinedfrom a two-
layer algebraicmodelwherethe inner layer is a function of density,mixing length, and vorticity
magnitude.The outer layeris alsobasedon vorticity distributionwith additionalparameterswhich
are functionsof wall-normaldistanceandmaximumdifferencesin velocitymagnitudes.

Sincethe inner algebraicmodel is a functionof vorticity magnitudewithin the boundary-layer,
caremust be exercisedwhen usingthe modelin vortex-dominatedflowfields. In particular, when
vorticesarepresentnearthe surfaceboundarylayer,the unmodifiedBaldwin-Lomaxmodelcanyield
inaccurateturbulent viscosityestimatesby scalingwith the high vorticity valueswithin the vortex
core. For the canardand wing with sharpleadingedges,thesestrongvorticesareexpectedto form.
Therefore,modificationsassuggestedby Deganiand Schiff(ref. 45)areutilized in the currentstud)'.
Thesemodificationsprovidesearchinglogicwithin the turbulencemodelto ensureproperboundary-
layervorticity scaling. Further detailsof the Baldwin-Lomaxturbulencemodelarepresentedin the
Appendices.

2.1.2 Code performance

Althoughsupercomputingtechnologyis rapidlyexpanding,particularlyin the areaof scalableparallel
computing,codeperformancecontinuesto beanareaof major concernfor large-scalecomplexsimula-
tions. A majority of the CFD communitycontinuesto relyon serialsupercomputersrunningefficient
highly-vectorizableflow solvers.Even thoughthe efficiency"bottleneck"in CFD is often identified
asgeometrydefinition andgrid generation,the ability to computedetailedunsteadyflowfieldsabout
complexgeometriesis highlydependenton codeperformance.Memory,CPUcyclerequirementsand
convergenceor time-stepcharacteristicsfor agivenflowsolverarekeyperformancefactors.

The generalperformancecharacteristicsof the current flowsolverincludingturbulencemodeling,
multi-zonedinterfacing(for steady-statesimulations),andthe applicationof boundaryconditionsare
describedbelow.Approximately30wordsof in-corememoryare requiredfor eachgrid point and the
typical CrayC90single-processorperformanceis measuredat 450MFLOPSand 6 #secper iteration
pergrid point. It is noted that the performanceestimatesaredependenton maximumvectorlengths
which is a function of the specificcomputational-spacedimensions.The additional "overhead"for
dynamicgridding, movinginterfacesand morecomplexboundaryconditions,whichare requiredfor
the movingcanardcases,increasesthe cited computationaltime requirementsby up to 100percent.
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A significantamountof this increaseisdueto interfacesearchesand interpolationswhenmismatched
movinginterfacesarerequiredby geometrycomplexities.

For steady-statecomputations,approximately4,000iterationsare requiredto convergefrom free-
streamconditions. Convergenceis determinedby a 3+ order-of-magnitudereduction in L2 Norm
valuesaswell asconstantforce,momentand pressurepredictions.Angleof attack,Machnumberor
Reynoldsnumberperturbationsrequireanadditional1,500iterationsfor re-convergence.The number
of iterationsfor convergenceincreasesat higheranglesof attack,wherevorticesarestrongerand the
presenceof vortexbreakdownis possible.Thenumberof CPUhoursrequiredfor a typicalsteady-state
simulationof the canard-wing-bodyconfigurationrangesfrom 5 to 20 C90hoursdependingon grid
sizeandconvergencecharacteristics.

The numberof iterationsand overall computationaltime for unsteadycasesvarieswidely. A
typical unsteadypitch oscillationcaserequiresup to 14,000iterationspercycle,dependingon time-
stepsizeandgrid resolution.Formostflowconditions,2-3cyclesstartingfromaconvergedsteady-state
conditionaresufficientto obtainaperiodicsolution.At worst,almost150hoursof C90CPUtimemay
berequiredto obtainaperiodicconditionfor arefined-gridsimulationofamovingcanardconfiguration.
ConsiderablylessCPUtime is neededfor otherpresentedunsteadyresultsusingcoarsergrids, larger
time steps,andhigher reducedfrequenciesor pitch rates. In fact, keyresultspresentedin Chapter4
showthat higherpitch-oscillationfrequenciescanbe usedto significantlyreducethe computational
requirementsfor dynamicstabilit}_predictions.

2.2 Geometry Modeling

The fuselage, wing, and canard of the current geometry are analytically defined and, therefore, are

computationally modeled with a high degree of geometric fidelity. However, in order to simplify the

modeling, certain aspects of the geometry are approximated. In particular, differences between the

computational and wind-tunnel models exist in the canard-body junction region, and near the tips of

both the canard and wing. Other regions which have negligible aerodynamic effects in this study are

omitted or altered as indicated.

The geometry used in this study has been tested extensively in a variety of wind tunnels as outlined

in section 1.5. For these wind-tunnel models, fairings were used to facilitate a vertical-offset canard

(i.e., non-coplanar) and are present for both coplanar and non-coplanar models. These fairings, which

account for slight asymmetries in some of the experimental results, are omitted in the current com-

putational modeling. The vertical tail, which is included in one of the experimental studies (ref. 24),

is expected to have minimal effects on the static and dynamic longitudinal characteristics and is also

omitted in the present study.

The computational modeling for the vertical-offset canard geometry (high- or low-canard) is ac-

complished by vertically translating the coplanar canard (mid-canard). The surfaces of the canard are

then extended into the upper or lower portion of the fuselage by linear extrapolations. This extrapo-

lation results in a thicker canard-root section for the vertical-offset canard. The 6 percent thickness,

mentioned in section 1.5, applies to the canard span station located at the same span as the wing-root.

The sting used for wind-tunnel mounting is modeled by extending the body to the downstream

boundary. In order to compare with the experimental data, integrated force and moment results

are given for the configuration without the sting and the predicted drag coefficients are corrected to

free-stream static pressure on the base area of the model.
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2.3 Static Grid Generation

Details of the grid generation process for the static geometry simulations are presented in this section.

A procedure for efficient grid generation of static canard-wing-body geometries has been developed

and is outlined in figure 2.1. In general for static cases, grid generation occurs only once and can be

performed as interactive pre-processing or, for sufficiently simple geometries, as an automated initial-

ization routine within the flow solver code. It is also noted that, as opposed to dynamic geometry cases,

total computational expenses involved in grid generation of the static geometries are not significant.

2.3.1 Surface grids

The baseline surface grids for the static canard-wing-body configurations are generated with algebraic

techniques. Using the S3D surface geometry and grid generation code (ref. 46) developed at NASA

Ames Research Center, the canard, wing and body component surface geometries are modeled from

their original analytical definitions. Figures 2.2 and 2.3 show the baseline and refined surface grids,

respectively, generated for the wing-body configuration with and without the fixed mid-canard. The

upper surface of the half-model canard-wing-body grid contains 4,625 (baseline) and 8,790 (refined)

points. To capture complex flow regions, the canard and wing surface grids are clustered near the

leading edge, trailing edge, and tip. For the wing-body alone geometry, the total number of points on

the half-body surface is reduced to 2,110 (baseline) and 4,320 (refined) points.

For the vertical-offset canard geometry, translation, extension and body intersection of the canard

surface grids are required. These steps are shown schematically in figure 2.4. Starting with the mid-

canard baseline surface grid, the canard and fore-fuselage are separated from the rest of the surface grid.

The canard is translated in the vertical direction as required, and then the root section of the canard

is extended towards the body centerline using linear extrapolation. Finally, surface grid intersection

techniques employed in the S3D (ref. 46) program are used to produce a single, continuous, offset

canard-wing-body grid. An example of the surface grid for the high-canard case is shown in figure 2.5.

Deflecting the canard is performed with an algebraic redistribution of the undeflected canard surface

grid combined with cubic spline interpolation. As with the vertical-offset canard geometries, only the

canard portion (canard plus forebody) of the surface grid is modified for the deflected canard cases.

The generation of the deflected canard surface grid, shown schematically in figure 2.6, is outlined as
follows:

1. Starting with the undeflected canard grid, the canard points are rotated about the specified axis;

2. The upper/lower body dividing line forward of the canard is assumed to be parabolic;

3. Ttle axial distribution of the body cross-sections is adjusted according to the rotated canard;
and

4. The points along each cross section are redistributed using cubic spline interpolation based on

the new arc length of each section.

It is emphasized that for all deflected canard cases, the canard is actually rotated (not sheared)

about the mid-canard-root spanwise axis to maintain high geometric fidelity. An example of the surface

grid for the deflected canard case (_c = 10.0 deg) is shown in figure 2.7.

2.3.2 Flowfield grids

The static flowfield grids are generated by solving the elliptic grid generation equations with orthonor-

real and clustering control functions near the zonal boundaries. Such techniques are readily available
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in grid generationprogramssuchas3DGRAPE(ref. 47)and GRIDGEN(ref. 48),both of which are
utilized for the currentcanard-wing-bodygeometry.

Thebaselinegrid fortheundeflectedmid-canardconfigurationisshownin figure2.8andisgenerated
asasingleblock,H-O topologygrid with 152axial,32radial,and97circumferentialpoints. The H-O
topologyis idealfor this typeof configurationbecauseof thenaturalclusteringof grid pointsin certain
regionsof the grid. Whenclusteringis appliedto obtaina viscousgrid at the canard,wing, andbody
surfaces,grid clusteringalsoresultsalongthe complexflow regionsof thecanardandwing wakes,and
in the singularityregionsalongthe noseradial axisandupstreamof the canard. In orderto resolve
the viscousboundarylayernearthe canard,wing and body surfaces,anaveragevalueof y+ < 3 for
the first point awayfrom thewall wasachievedby clustering the flowfield grid to the surface (average

first grid spacing is approximately 10-6_), where g+ is defined as (ref. 49)

y+ -- Yv/K_wP _(2.3 - 1)
/-/w

In equation 2.3-1, y is defined as the wall-normal coordinate direction. The stretching of the grid in the

wall-normal direction is also minimized (typically, stretching factor < 1.2) to reduce numerical errors.

For the refined flowfield grid, the total number of points is increased from approximately 470.000

to over 1.7 million. As shown in the expanded view of figure 2.9, refinement of the grid is emphasized

in several key regions of the flowfield. In addition to an improved surface grid distribution, refinement

is achieved in the interaction region between the canard and wing. The viscous regions near all of the

surfaces are also refined by reducing the stretching factor while maintaining the original y+ criteria.

By reducing the amount of grid stretching, the resolution of any vortices near the canard and wing

surfaces will be improved.

Earlier figures 2.5 and 2.7 showed that the generation of vertical-offset or deflected canard surface

grids produces a mismatch on the body at the canard-wing junction. Furthermore, a geometric mis-

match is observed between the trailing-edge root of the close-coupled canard and the leading-edge root

of the wing. Consequently, to maintain the desired H-O topology grids, a mismatch is produced in the

zonal interface separating the canard and wing portions of the flowfield grid.

The flowfield grids of the different canard position and deflection cases are accommodated by

generating the canard and wing portions of the flowfield grid individually, with a mutual overlapping

interface analytically defined. Then, as required, the fiowfield grids for the vertical offset are re-

generated using the elliptic solvers.
For the deflected canard cases, rather than using interactive elliptic solvers, the flowfield grids are

re-generated using an algebraic redistribution of the original elliptically-generated coplanar canard-

wing-body grid. Figure 2.10 illustrates the simple technique used in the algebraic redistribution. The

redistribution is performed for each line in the 4 computational direction (from the surface to the outer

boundary). Based on the new position of a given surface point, each off-body point is repositioned using

cubic spline interpolation scaled with arc length from the outer boundary. Although this procedure

does not guarantee grid quality for large surface grid motions, it produces good quality grids and

is extremely fast and robust for small surface perturbations. As such, the highly efficient algebraic

redistribution procedure is well suited for the unsteady moving canard cases described in the next

section and Chapter 5.

By using these techniques for both the surface and flowfield grids, the grids for any canard vertical

offset and deflection angle (6c) can be efficiently obtained. The overall H-O topology grid, with the

mismatched interface, for a typical vertical-offset and deflected canard case is shown in fgures 2.11 and

2.12, respectively. An expanded crossflow plane view of the mismatched interface is also shown with
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the solid grid indicatingthe downstreamboundaryof the canardportion grid. The zonalinterfacing
techniquesusedto handlethe mismatchedinterfacesaredescribedin section2.6.

The numberof points for the resultingflowfieldgridsof the coplanar,vertical-offsetand deflected
canardconfigurationsaresummarizedin table 2.1. Whereneeded,up to six zonesstackedin the
streamwisedirection are usedto minimizecorememoryrequirements.Except for the canard-wing
interfaceof the vertical-offsetand deflectedcanardcases,one-to-onegrid matchingis usedon all
interfaces.Sincethe current computationsareperformedin the high-subsonicandtransonicregimes,
all oftheflowfieldgridsareextendedupstreamanddownstreambyapproximatelyeightwingroot-chord
lengths,andin the radial directionby six wingspanlengths.

2.4 Dynamic Grid Generation

The generation of surface and flowfield grids for moving geometries can be a complex and time-

consuming process. In particular, for motion which is not pre-determined (e.g., dynamic maneuvers,

free aeroelastic responses, active control surface motions), grid generation is required to be an integral

part of the time-iterative flow solution. For prescribed motions such as forced oscillation, the process

can be simplified. With sufficient computational storage resources, the gridding of predeseribed mo-

tions can be obtained by generating the grids as a pre-processing step to the flow solver. However,

this storage requirement becomes prohibitively large for even simple cases requiring viscous analyses.

Therefore, the capability to integrate efficient surface and flowfield grid generation within a flow solver

is highly desirable and is often needed.

Figure 2.13 illustrates the integration of the numerical flow" solver and dynamic grid generation.

As each step of the time-integration is completed, the new surface geometry position is determined.

For the cases presented in this stud?', the configuration and canard motions are based on prescribed

ramp motions or forced oscillations. However, it is noted that for dynamic maneuver simulations, the

equations governing the dynamics of the configuration can be easily integrated into the flow solver/grid

generation process described in this stud?'.

Based on the net, geometry position, surface grids are generated accordingly. For the moving

canard configuration of the current study, the steps outlined in section 2.3.1 for deflected canards are

utilized. The flowfield grid is then generated based on the algebraic redistribution concept described in

section 2.3.2 and illustrated in figure 2.10. By using these techniques, dynamic grid generation of the

moving canard flowfield produces less than 10 percent in grid generation overhead with no additional

computational storage requirements.

2.5 Boundary Conditions

The solution of the Navier-Stokes equations requires boundary conditions at each of the block bound-

aries. Although the finite difference scheme outlined in section 2.1 is implicit, the boundary conditions

are applied explicitly in the current stud?'. Numerous past computational studies have demonstrated

the successful coupling of explicit boundary conditions with implicit flow solvers.

The boundary conditions which are required for external flow about canard-wing-body configura-

tions can generally be categorized into two main types: 1) physical boundary conditions such as solid

surfaces or outer boundaries of the solution flowfield, and 2) zonal boundaries or interfaces between

adjacent (or the same) computational blocks. The first type of boundary condition is described below

in this section. The implementation of the zonal boundary or interfacing is presented in section 2.6.
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Physicalboundaryconditionsareappliedto the boundariesof the entire computationaldomain.
For thecurrentcanard-wing-bodystudy,theseboundariesincludethesolidsurfacesof theconfiguration
(canard,wing, andbody), inflowboundary,outer computationalsurfaces,and the outflowboundary.
Thesolidsurfaceboundaryconditionsaregenerallyreferredto as"no-slip"conditions.Thecomponents
of flowvelocityin physicalCartesianspaceareexplicitlysetto thephysicalvelocityof thesolidsurface.
The resultingtypesof solid surfaceboundaryconditionsfor velocityareshownfigure 2.14and are
outlinedasfollows:

Type 1) For a static configuration,the physicaland contravariantvelocitycomponentsat solid
surfacesaresetto zero:

Type 2) For a configurationwith a fixed canardin rigid body motion, the surfacegrid remains
fixedwith respectto the physicalsurfaceand the physicalvelocityis setto the surfacevelocity (the
contravariantvelocityremainszero);

Type3) Forthemovingcanardconfiguration,thesurfacegrid of thebody(fuselage)will bemovmg
relativeto the physicalsurface.In this case,thesurfacevelocityis computedseparatelyfrom the grid
velocityand isusedto setthe physicalvelocitycomponents.If theentireconfigurationandthe canard
surfaceare in independentmotion,both the physicalandcontravariantcomponentsof velocitywill be
non-zero.The additionalcomputationalsteprequiredfor Type3 boundaryconditionsis the separate
evaluationof the surfacevelocityat a physicalpoint from the evaluationof thetotal grid velocity.

Surfacepressuresand densitiesaredeterminedwith the aid of the normalmomentumequation,
perfectgasassumption,and an adiabaticwall condition. For flat surfaces,the normal momentum
equationyieldsthe familiarOp/On = 0. For the more general case, terms due to wall curvature and

acceleration of the moving surface yield

Op pu 2
- + pa_. g (2.5 - 1)

On R

where R is the local wall curvature and (a_- fi) represents the acceleration of the physical point on the

surface in the outward normal direction. The first and second RHS terms in equation 2.5-1 represent

effects due to wall curvature and wall acceleration, respectively.

However, further investigation of equation 2.5-1 reveals that differences in pressure due to both

wall curvature and surface acceleration effects scale directly with the first spacing of the wall-normal

grid. For viscous grids, the first spacing is small enough such that Op _ 0 is a good assumption and

zeroth-order extrapolation of pressure is reasonable. Density at the surface is determined by assuming

an adiabatic wall condition which also yields a zeroth-order extrapolation of both temperature and

density.

2.6 Zonal Interfacing

The close-coupled nature of the canard and wing surfaces can produce significant geometric and grid

topological discontinuities for deflected or vertical-offset canard configurations. As described in sec-

tion 2.3.2 and in figures 2.11 and 2.12, a mismatched interface in the flowfield grid can result between

the canard and wing zones.
For the mismatched interface in this study, bilinear interpolation as formulated in references 50

and 51 is used to transfer flow quantities from one zone to the other. For general cases where the

mismatched interface is not necessarily composed of coincident surfaces, trilinear interpolation may

be required. Since this interpolation is non-conservative, accuracy has been determined by comparing
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the solutionsfrom a single-block(conservative)casewith the multi-blockmismatched-interface(non-
conservative)casefor the undeflectedmid-canardconfiguration.Differencesin surfaceand flowfield
pressurecontoursbetweenthe two test casesweredeterminedto benegligiblysmall.

As illustrated in figure2.15,the mismatchedinterfacebetweenthecanardandwing isoverlapped
by one streamwisegrid cell and actually consistsof two setsof "base"and "target" surfaces.The
targetsurfacerepresentstheouterboundaryof thecurrentzonebeingsolved,while thebasesurfaceis
asubsetof anadjacentzoneandisusedto provideflowinformationfrom that zone.Theinterpolation
is performedby "locating" eachpoint of the targetsurfacewithin the setof basesurfacepoints.The
searchrequiredto identi_' the four basepointswhichcomprisethe "cell" containingthe target point
can be quite time consuming.After the target point is located,weightedcoefficients(representing
distances)arecomputedfor the nearestthreebasepoints. Thesecoefficientsare theneasilyusedto
bilinearly interpolatethe appropriateflowquantitiesto the targetsurface.

For static canardconfigurations,the interpolationdescribedaboveis requiredonly onceand the
weightedcoefficientsarestoredforusethroughoutthesolutionprocess.However,for themovingcanard
cases,this mismatchedinterfacewill changefor eachtime iteration and the interpolationis required
for eachiteration. Figure2.13providesa flow-chartdiagramillustrating the integrationof the zonal
interfaceprocedurewithin the solutionprocess.After the newsurfaceandflowfieldgridsaregenerated
for the current zoneand time iteration, the interpolationfor the mismatchedinterfaceis performed
andthe appropriateflowquantitiesaretransferredto adjacentzones.Sincethis processis requiredfor
eachtime iteration, localsearchtechniqueswhichcansignificantlyimprovethe interpolationefficiency
areemployed.

Figure2.16illustratesa searchprocedurewhich,givena favorablestartingposition (cell#1), can
significantlyreducethe time requiredto performthe interpolation.For thecurrentstudywith moving
grids, a starting positionbasedon the giventarget point positionof the previousiteration is used.
Sincetime stepsand the correspondinggrid movementsare relativelysmall,a successfulsearchand
interpolationis usuallyaccomplishedwithin 10searchsteps.The procedureis then repeatedfor each
targetpoint in thetargetsurface.Usingthis technique,thetimerequiredto interpolatethe interfaceis
reducedby up to twoordersof magnitude.Forthemovingcanardcases, interface interpolation results

in a 25-50 percent approximate increase in overall computer time requirements.

2.7 Dynamic Stability Analysis

In order to understand better the unsteady characteristics of the canard-wing-body configurations,

dynamic stability analyses are performed on the time-accurate computational simulations. Both rigid

pitch-oscillation of the entire configuration and independent canard oscillations (moving canard cases)

are considered in the analyses. The effect of the presence of the canard on dynamic stability parameters,

including pitch damping and oscillatory stability, are considered.

Using linear theory, the time-dependent moment coefficient due to rigid pitch oscillation of the

entire configuration can be expressed as

c,_ : ac,,_ + o-av-C,._. + c,._ + _c._q+
,_'J oc oo "_ "J oc_

...hi�her order terms (h.o.t.) (2.7 - 1)

where Cm_.• Crn_, Cm_.. and Cm_ are the stability, derivatives (OCm/Oc_)o, (OCm/O(2--5-g_))oa_

(OCm/O(_ and (OCm c'- _ o25_¢H- /0(_))0, respectively; q is the angular velocity of the configuration about
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the pitchaxis;andCr_o = 0 (not included in eq. 2.7-1) for the symmetric configuration. The notation

00 indicates that partial derivatives are evaluated assuming no disturbance from the other terms.

Assuming a sinusoidal motion of _ = c_m + Asinwt, where A is the amplitude of the oscillation,

equation 2.7-1 can be expressed as

Cm = a,_Cmo + (Cmo - k2Cm4)Asinat+

(Cma + Cmq)Akcoswt + ...h.o.t. (2.7 - 2)

The terms (Cm_ - k2Cmq) and (Cma + Cmq) in equation 2.7-2 represent the oscillatory stability and

damping-in-pitch parameters, respectively.

For the oscillating canard cases, the sinusoidal canard deflection as a function of time is given as

6c = _c_ + Acsinwct, where Ac is now the amplitude of the canard oscillation. In this case, the

time-dependent moment coefficient due to canard oscillations is written as

qcc C 4cC2 c
Cm = (_cmCmec Jr- _cC c q- q- q-...h.o.t. (2.7- 3)

(oc /o( ,,
'2Uoc ) ) 0where C,_6c, C,_6, Cmq_, and Cmq_ are the stability derivatives (OCm/OSc)O,

"cC2
(OC_/O(_))o and (OCm/O(_))o, respectively; q_ is the angular velocity of the canard about its
pitch axis.

Again, the resulting dynamic stability parameters are derived from

C_ = f_oCm_ + (Cms_ - k_2C._e.¢)Acsinwct+

(Cm6 _ + Cmq_)Ackccoswct + ...h.o.t.

where the stability terms are now expressed as (Cm_ - k¢2Crnq_) and (Cm6c

oscillatory stability and damping-in-pitch parameters, respectively_ for canard oscillations.

Similar analyses of the normal force coefficient given by

(2.7 - 4)

+ Cmq_) representing the

(2.7 - s)
.-2

&8 @ Aqr@2C,q + ...h.o.t.

or
• _Q

qcC- C _ .._ C, q_a C, + _ _\ac + .h.o.t. (2.7-6)
C,\, = 6cC\-_ + _ '_%c+ 2Uoc _"_ -_c

- k Cx_) and (C_% + C_\,_) fromwill yield the pitch displacement and pitch rate terms given by (C5,_ 2

eq. 2.7-5: or (Cx_ - kc2Cx_) and (CN_ + CNq_) from eq. 2.7-6.
The dynamic stability parameters for the canard configurations are predicted from the Fourier

analysis of the computed time histories of normal force and pitching moment coefficients. For example,

the time-history of computed pitching moments can be expressed as

a0

C_(t) = T + axsin_'t + blcoswt + ...h.o.t. (2.7 - 7)

where the Fourier coefficients are given by

2 fTo/2 C_(t)cos(n_t)dt; rz = O. 1....
an = Z J-To�2 ....
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and
2

--�To�2 Cm(t)sin(nwt)dt; n = 1,2 ....
bn = _oo J-To�2

In most cases of forced sinusoidal oscillations of the canard or the entire configuration, the normal

force and pitching moment responses are adequately represented by the first three Fourier coefficient

terms (a0, al, and bl). This assumption is easily verified by direct comparisons of the original predicted

responses and the Fourier analysis using only these terms.

A direct comparison of equation 2.7-7 with equations 2.7-2 or 2.7-4 yields the result

(Cm - k2Cmq) - k2Cm c) = (

for pitch damping, and

or = or ( bl )

for pitch oscillatory-stability parameters. Similar analyses of the normal force responses will produce

predicted values for the pitch displacement and pitch rate parameters.

Table 2.1. Surface and flowfield grid data for coplanar, vertical-offset and deflected canard configurations

Surface Flowfield grid Total

points dimension number of

Configuration (half-body) (j,k,l-normal)(zone) grid points

Baseline canard-off 4,220 99 x 79 x 32 250,000

Refined canard-off 8,640 136 x 119 x 58 940,000

Baseline mid-canard 9,250 152 x 97 x 32 470,000

Refined mid-canard 17,580 250 x 119 x 58 1,700,000

Low- or high-canard 11,000 89 x 128 x 40 (canard) 725,000

70 x 97 x 40 (wing)

Deflect canard 9,250 84 x 97 x 40 (canard) 600,000

70 x 97 x 40 (wing)

Unsteady fixed canard 9,250 152 x 97 x 32 470,000

ramp or pitch (baseline)

Unsteady fixed canard

ramp or pitch (refined)

Unsteady moving canard

17,580 250 x 119 x 58 1,700,000

9,250 84 x 97 x 40 (canard) 600,000

70 x 97 x 40 (wing)
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Figure 2.1. Schematic diagram of the grid generation procedure for static canard configu-

rations with various canard vertical positions and deflections.
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Canard off

2,110 upper surface points

Canard on

4,625 upper surface points

Figure 2.2. Baseline surface grid for the wing-body configuration with and without an
undeflected mid-canard.

Canard off

4,320 upper surface points

Canard on

8,790 upper surface points

Figure 2.3. Refined surface grid for the wing-body configuration with and without an

undeflected mid-canard.
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3) Intersect Canard�Body Grid

Figure 2.4. Schematic of the procedure for generating a vertical-offset canard configuration

from a baseline undeflected mid-canard configuration.

Figure 2.5. Perspective view of the surface grid for wing-body configuration with a high-

canard.
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3) Redistribute Axial Stations

2) Define Parabolic ..... _ \

Split Line \ 1) Rotate Canard

\

\

\

axis of

rotation

Figure 2.6. Schematic of the procedure for generating a deflected canard configuration from

a baseline undeflected mid-canard configuration.

MISMATCHED SURFACE GRID

Figure 2.7. Perspective view of the surface grid for wing-body configuration with a deflected

canard (6c = 10°).
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Figure 2.8. Flowfield grid topology and expanded near-body grid for the undeflected mid-

canard configuration.
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BASELI N E GRID

152 X32X97

REFINED GRID

250 X58X 119

Figure 2.9. Comparison of the baseline and refined near-body flowfield grids for the unde-

flected mid-canard configuration.
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original i,j grid line

X3 new i,j grid line
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Figure 2.10. Algebraic redistribution of the flowfield grid.
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MISMATCHED _TERFACE

Figure 2.11. Flowfield grid at the mismatched interface surface for the high-canard config-
uration.

Figure 2.12. Flowfield grid at the mismatched interface surface for the deflected canard

configuration.
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Figure 2.13. Schematic illustrating the integration of dynamic grid generation and zonal

interface computation into the time-iterative solution process.
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TYPE 1

NON-MOVING WALL

NON-MOVING GRID

PHYSICAL VELOCITY = 0

GONTRAVARIANT VELOCITY = 0

a) Fixed canard steady-state case

TYPE 2

MOVING WALL

GRID MOVING WITH WALL

PHYSICAL VELOCITY _= 0

CONTRAVARIANT VELOCITY = 0

b) Fixed canard unsteady case

TYPE 3

STATIC/MOVING WALL

MOVING GRID INDEP. OF WALL

PHYSICAL VELOCITY = 0 or _ 0

CONTRAVARIANT VELOCITY _ 0

c) Moving canard unsteady case

Figure 2.14. Types of velocity boundary conditions at the surfaces of the canard, wing and
body.
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Figure 2.15. Schematic illustrating the interfacing of two adjacent zones.
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Figure 2.16. Example of a local search procedure for improved efficiency in dynamic zonal

interface computations.
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Chapter 3

Effect of Canard on Steady-State

Aerodynamics

The influence of canards on the steady-state aerodynamics of the wing-body geometry is studied

through a series of computational simulations. Computations are conducted for the configuration with

and without the canard, with the canard at various vertical positions, and with the canard at specified

deflection angles. The accuracy of the steady-state computations is assessed with experimental com-

parisons and a grid refinement study. The effect of the canard is characterized through analyses of the

aerodynamic performance (e.g., lift, drag, and pitching moments), and with the detailed investigation

of the canard-wing flow structure.

3.1 Experimental Validation: Coplanar Canard

To assess the accuracy of the computational modeling given in Chapter 2 for steady-state predictions,

computations are conducted on the wing-body geometry with and without a coplanar canard. All

computational results in this section are for a transonic Mach number (M_) of 0.90, a Reynolds

number based on mean wing aerodynamic chord (Ree) of 1.52 million, and nominal angles of attack

(a) ranging from 0 to 12 deg. Based oil transition strips used in the experimental studies, boundary-

layer transition for the computations is assumed to occur at the canard and wing leading edges and

at the nose of the body. Comparisons between the computed results and the force balance and wing

surface pressure measurements are made for both the baseline and refined grids.

3.1.1 Baseline grid

The first, set of results is for computations performed on the baseline grids which were generated from

the surface grids of figure 2.2. A comparison of computed wing surface pressure coefficients (Cp) with

experimental data (ref. 13) at c_ _ 4 deg is illustrated in figure 3.1. The precise angles of attack are

reported in reference 13 and are shown in the figure. It is noted that no angle-of-attack or Mach number
corrections to calibrate the code were made for any computations in this stud)'. Comparisons with the

experimental data are given at wing semispan-stations of 25, 35, 45_ 65, and 85 percent as measured

from the symmetry plane. The first three span-stations on the wing are within the canard-span region.

For the canard-off case, the leading-edge vortex, as indicated by the suction peak in the Cp distri-

bution, moves aft with increasing wing span. At the relatively low incidence of approximately 4 deg,

the major canard influence on wing surface pressures is the canard downwash effect. Within the span
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of the canard,a significantdifferencein wing surfacepressurebetweenthe canard-onand canard-off
casesis observed.The effectivelocalangleof attack (a_Zf) of the wingis reducedand the formation
of the wingleading-edgevortex is inhibited. At wingspan-stationsbeyondthe canardtip, the wing is
no longerinfluencedby the canarddownwashandthe leading-edgevortexforms. In fact, outboardof
the canardtip the canardupwashincreasesthe O_eff of the wing. This normally would be expected to

increase the lift of the wing-tip region. However, the upwash effect is minimized due to the high sweep

of the wing, which results in a relatively large distance between the canard-tip and wing-tip regions.

The discrepancies between the computed and measured data towards the wing tip are due to both

computational modeling of the tip geometry and grid resolution. A previous study by Srinivasan et al.

(ref. 52) found that, especially for separated and vortex-dominated flows, the modeling of the tip

geometry has a considerable effect on the accuracy of the numerical results near the tip. Since detailed

geometric data were unavailable for the canard and wing tips of the wind-tunnel model, the tips are

computationally modeled as rounded.

In addition to the tip modeling, grid resolution has a significant effect on the accuracy of the

computations. Difficulty in capturing the leading-edge vortex increases towards the canard and wing

tips. As the vortex is convected downstream and away from the leading edge, computational accuracy

becomes increasingly sensitive to the degrading grid resolution. This effect becomes more acute at

higher angles of attack where the vortex trajectory is further above the wing surface. An effort to

improve the computational accuracy by increasing the grid resolution is performed and presented later

in this study.

Although detailed comparisons of flow quantities such as surface pressure are better measures of

the computational accuracy, integrated quantities such as lift, drag, and moments are often used to

assess the overall aerodynamic performance characteristics of a given configuration. Figure 3.2 presents

the comparison of canard-on and canard-off integrated force and moment quantities for the coplanar

canard-wing-body configuration. The canard-on computations are also compared with the appropriate

experimental data (ref. 10). Figure 3.2 shows that the nonlinearity of the lift coe_cient curve for the

canard-on case is captured well by the computations. For angles of attack less than 6 deg, the computed

lift coefficients for the canard-off and canard-on cases are comparable. At these low angles of attack.

the reduction in wing lift due to the canard downwash is balanced by the additional canard lift. As

the angle of attack is increased, the canard-on lift curve exhibits significant nonlinearity.

The drag polar in figure 3.2 indicates comparable levels of drag coefficient for both the canard-

on and canard-off cases. The "cross-over" of the two drag curves shows the potential of the canard

configuration for reduced drag at a given lift. At low angles of attack, the canard-on drag is higher due

to the additional viscous drag of the canard surface area. At higher angles of attack, the computed

additional lift due to the canard and the canard's influence on the wing aerodynamics results in a

higher lift-to-drag (L/D) ratio for the canard-on case.

Due to the relative location of the canard and the moment-center (fig. 1.4), the pitching moment

curve in figure 3.2 illustrates the typical nose-up pitching moment which is characteristic of many

canard configurations. At higher angles of attack, the computations overpredict the pitch-up moment

of the canard-on case. This overprediction is further studied by examining the lift and moment curves

of the canard and wing regions separately.

The lift and pitching moment coefficient curves for different regions of the canard-wing-body config-

uration are given in figure 3.3. The forward and aft regions including the body (henceforth designated

as the canard and wing regions, respectively) are chosen to correspond with regions measured in the ex-

periment (ref. 10). The significant decrease in the wing-region lift for the canard-on case in comparison
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with the canard-offcaseis dueto the canarddownwash.In figure3.3,the lift coefficientof the com-
pletecanard-onconfigurationisbeingsupplementedby the canardregionlift. Favorableexperimental
comparisonsof the canardand wing regionlift curvesconfirmthat the computedlift is accurately
distributedbetweenthesetwo regions.Thepitchingmomentcurvesshowthat the canard'sinfluence
on thewingregionpitchingmomentis nominal.Thenose-uppitchingmomentof the canard-onconfig-
uration is almostentirelydueto the canardregion.Again,goodcomparisonswith experimentaldata
indicateaccuratedistributionof pitchingmomentin the computedresults.Figure3.3alsoshowsthat
theoverpredictedpitch-upmomentfor thecompleteconfiguration,notedin figure3.2,isapproximately
evenlydistributedbetweenthecanardandwingregions.

3.1.2 Refined grid

At higheranglesof attack, thecanardandwingleading-edgevortextrajectoriesmoveaboveandaway
from thehighly-clusteredgrid regionof thecanardandwingsurfaces.In additiom separated regions o21

the wing become more prominent, recovery shock strength increases and the potential for leading-edge

vortex burst exists. Accurate computational modeling of these and other relevant flow features requires

improved surface and flowfleld grid resolution.

To improve the accuracy of the computed results in this study, refined surface and flowfield grids

were generated for the coplanar canard-on and canard-off cases. The refined surface grids were shown

earlier in figure 2.3. Refinement of the wing and canard surface grids, as ,,-ell as the body surface grid

near the canard-wing junction, was emphasized. For the current topology, the body surface grid at

the junction directly determines the grid resolution between the canard and the wing, and therefore

affects the computational accuracy of capturing the canard's influence on the wing. The resulting

canard-off and canard-on flowfield grids generated from the refined surface grids contain over 900,000

and 1.7 million points, respectively.

Since the wing, in the absence of the canard, exhibits a higher aeH and a more pronounced

leading-edge vortex, the canard-off configuration was chosen to verify the anticipated improvement in

computational accuracy with the refined grid. Figures 3.4 and 3.5 illustrate computed surface pressure
coefficients for the baseline and refined grids of the canard-off configuration at a' = 8.21 deg and a =

12.38 deg, respectively. In both figures, the comparisons with the experimental data show considerable

improvement for the refined grid solution over the baseline grid solution. Figure 3.6 illustrates the

computed force quantities using _;he refined canard-off grid. Note that since the computations were

performed at three angles of attack only, the refined grid results in figure 3.6 are indicated as solid

square symbols. Improvements in lift, drag and pitching moment comparisons with experimental data

are also observed.

A comparison between canard-on and canard-off wing surface pressure coefficients at a _ 12 deg is

shown in figure 3.7. Good agreement between the computed and experimental data (ref. 13) shows the

suitability of both the canard-on and canard-off refined grids for angles of attack up to at least 12 deg.

A strong secondary vortex is evident from the sustained low pressure region between the suction peak

of the primary vortex and the wing leading edge. In comparing the results of figure 3.7 with figure 3.1,

one observes that for the canard-on case at higher angles of attack, the wing leading-edge vortex is no

longer inhibited at the inboard wing span-stations. The vortex forms at the wing apex and remains

near the leading-edge up to the wing location corresponding to the canard-tip span-line.
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3.2 Aerodynamic Performance

The highly interactive flowfield of a close-coupled canard results in aerodynamic performance which is

extremely sensitive to changes in canard geometry, position and deflection angle. These changes, in

turn, have pronounced effects on the lift, drag and pitching moment performance of the wing and the

entire configuration. In order to determine the potential aerodynamic performance benefits of utilizing

canards, the effects of canard position and deflection on aerodynamic performance are investigated in
this section.

Comparisons between the computed results and the available experimental data (refs. 9. 10. 12. 13,

19, and 20) are made to validate the current method for accurately predicting the steady flowfield of the

vertical-offset and deflected canard cases. Computations for these cases are at transonic Mach numbers

(M_c) of 0.85 and 0.90, angles of attack (c_) ranging from -4 to +12 deg, canard vertical positions of

z/_: = -0.185, 0.0 and +0.185 (henceforth referred to as low-, mid- and high-canard, respectively), and

canard deflection angles ((5c) for the mid-canard cases from -10 to +10 deg. To match experimental

conditions, at M_ = 0.85 and 0.90: the Reynolds number based on the mean aerodynamic chord of the

wing (Ree) is 2.82 million and 1.52 million, respectively. As with the earlier coplanar (or undeflected

mid-canard) cases, transition strips were used in the experiments at the body nose and leading edges

of the canard and wing. Therefore, tile computations are performed assuming fully turbulent flow.

3.2.1 Canard vertical position

Comparisons of the lift,drag and pitching moment curves with experimental data (ref.i0) are given

in figure 3.8 for the low-, mid-, and high-canard cases. Figure 3.8(a) shows the nonlinearities in the

high- and mid-canard liftcurves. At o > 4 deg, significantdifferencesare noted in the liftcurves

for the three canard positions. Although the absolute values of liftare slightlyunderpredicted by the

computations, the relativedifferencesare captured. Further investigation of the incremental changes

due to canard vertical position ispresented laterin this section.

Figures 3.8(b) and (c) show computed drag and pitching moment coefficientcomparisons with

experimental measurements. At the higher angles ofattack, the low-canard configuration exhibits lower

drag at a given ct. Figure 3.8@) shows an overprcdiction of pitching moment by the computations at

the higher angles of attack. This overprediction isof the same order-of-magnitude as shown earlierand

discussed in figure 3.2. However, as in the liftand drag curves of figures3.8(a) and (b), the overall

pitching moment comparisons are favorable.

Figures 3.9(a) and (b) illustrateliftand moment curves, respectively,for the two component regions

of the high-canard configuration. As with the coplanar canard studies,the canard region consists of

the canard and the body forward of the wing leading-edge root location (fore-body). The wing region

consists of the wing and the remaining aft-body (not including the sting).

The wing portion liftcurve slope of figure3.9(a) isinfluenced by the effectof the canard downwash

on reducing wing lift.The total liftisaugmented by the canard portion lift.Figure 3.9(a) also shows

that the slight underpredietion in total liftis primarily due to the computed wing portion lift.The

pitching moment curves in figure 3.9(b) show that the wing, in the presence of the canard, exhibits

statically stable characteristics while the canard pitching moment causes the total configuration to

be approximately neutrally stable. Such characteristicsare often typical of canard-configured aircraft

and were also evident in the mid-canard configurations shown earlier.Favorable comparisons in fig-

ures 3.9(a) and (b) between computations and experimental data indicate that the distribution of lift

and moment between the component regions is captured well by the computations.
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In order to predict the potential benefits of placing the canard in a non-coplanar (either high- or

low-canard) configuration, a more detailed analysis of the lift and drag results is required. Polynomial

curve fits through the computational and experimental results are used to determine the incremental

lift and drag differences due to vertical positioning of the canard.

Figure 3.10(a) shows the effect of canard vertical position on the incremental change in lift coefficient

(ACe) at different angles of attack. The reference line (ACL = 0.0) is the Cc corresponding to either

computations or experiment for the mid-canard configuration. Although the absolute ACL values are

not exactly predicted by" the computations, it is noted that relatively small values are being compared.

The qualitative trends indicating the relative effects of canard vertical position are captured well by the

computations. Both the computations and experiment show increased lift at higher angles of attack

for the high-canard case. However. the tow-canard ACL curves show significant loss of lift as a is

increased.

The incremental changes in drag coefficients (ACa) given in figure 3.10(b) show that the high-

canard configuration exhibits the best overall drag characteristics. At. a higher CL, the high-canard

case has a lower Cd than both the mid- and low-canard cases. The results in figure 3.10 show clear

evidence of an unfavorable canard-wing interaction for the low-canard configuration.

3.2.2 Canard deflection angle

Comparisons of the computed lift, drag and pitching moment curves with experimental data @eft 12)

are given in figure 3.11 for mid-canard deflections (6c) of 0 and 10 deg. Figure 3.11(a) shows the

nonlinearity in the lift curves. Note that the subtle differences in the experimental (_c = 0 deg and

C_c= 10 deg lift curves are captured well by the computations. The drag polar curves in figure 3.11(b)

show that the undeflected mid-canard (6c = 0 deg) exhibits a lower overall drag coefficient. The drag

polars also show that minimum Ca for the 10 deg case occurs at a negative lift coefficient. Figure 3.11(c)

shows that increasing mid-canard deflection increases overall pitching moment for all computed angles

of attack. Significant nonlinearities due to the canard-wing interaction are also noted in the pitching

monlent curves.
Similar to the vertical-offset studies, the lift and pitching moment curves are separated into two

configuration component regions in order to examine the effects of mid-canard deflections in more

detail. Figures 3.12(a) and (b) illustrate lifts and moments, respectively, for the _c = 10 deg case.

The wing portion lift curve of figure 3.12(a) shows the effect of the canard downwash on reducing

wing lift. For example, at a = 0 deg, the additional canard lift (due to its deflection) is mostly

cancelled by the negative lift generated by the wing (due to the canard downwash). The pitching

moment curves in figure 3.12(b) show that the wing, in the presence of the canard, exhibits statically

stable characteristics while the canard pitching moment causes the total configuration to be statically

unstable. Such characteristics are often typical of canard-configured aircraft. Favorable comparisons

in figures 3.12(a) and (b) between computations and experimental data indicate that the distribution
of lift and moment between the component regions of the mid-canard deflection cases are captured well

by the computations.
An analysis of the effect of canard deflection on lift., pitching moment, and, particularly, t rimnled

conditions is of interest. For long-coupled canard configurations, the effect on aerodynamic performance

is usually limited to the lift of the canard itself and the total pitching moment. However, the close-

coupled canard has significant influences on wing performance as well.

Figure 3.13 shows lift and moment curves for the canard and wing portions at various canard

deflection angles (6c) ranging from -10 to +10 deg. While the canard portion lift curve (fig. 3.13(a))

exhibits increasing lift for increasing _ at a given c_. the wing portion lift curve (fig. 3.13(b)) decreases

35



for increasing3c. As 6c is increased, the canard generates greater lift and, consequently, greater

downwash in the canard wake. The resulting effective wing angle of attack (aeff) on the inboard

portion of the wing decreases with increasing 6c. Vortex visualization results presented later in this

study will show that. for certain a and 6c values, c_efj can be negative in the inboard wing while

freestream ct is positive.

The canard and wing portion pitching moment curves for various canard deflection angles are given

in figures 3.13(c) and (d), respectively. The canard portion pitching moment increases as _c is increased

while the wing portion pitching moment is relatively insensitive to 6c. The strong 6c coupling with wing

portion lift (fig. 3.13(b)) and the weak coupling with wing moment (fig. 3.13(d)) indicate a significant

shift in wing center-of-pressure as a function of 6c. Due to the canard downwash effect of "unloading'"

the inboard portion of the wing, the aft-swept wing's center-of-pressure location moves outboard and

aft for increasing canard deflections.

Figure 3.14 illustrates lift and moment as a function of 3c at a representative a of 4.27 deg. The

lift curves in figure 3.14(a) are given for the total configuration, canard portion and wing portion. For

increasing 6c, the cancellation of the lift between the canard and wing portions is clearly observed.

At this moderate angle of attack, the total lift is minimally affected by the deflection of the canard.

The moment curves in figure 3.14(b) show that the canard portion moment is the major contributor

to changes in the total configuration moment. At this condition (Moc= 0.85, a = 4.27 deg), the

configuration is trimmed about the moment center (69.17 cm from the nose) at _c m -4 deg.

For a realistic aircraft configuration, the determination of trimmed lift and drag is critical in assess-

ing aerodynamic performance. A contour plot of pitching moment about the model center-of-gravity

location (c.g. = 59.14 cm from the nose) is given in figure 3.15. The trimmed (C,_ = 0.0) pitching mo-

ment curve is highlighted and indicates that relatively small, negative canard deflections are required

to trim this configuration at moderate angles of attack.

3.3 Canard-Wing Vortex Interaction

For the configurations in this study, many of the complex non-linear effects of the various canards on

aerodynamic performance can be directly attributed to the canard and wing vortical flowfields and. in

particular, the canard-wing vortex interaction. The current configuration flowfield is characterized by

strong leading-edge vortices from the canard and the wing. As vortex strength increases, secondary

separation induced by adverse pressure gradients can result in strong secondary vortices. The presence

of secondary vortices will also serve to alter the position and trajectory of the primary canard and/or

wing vortex. In cases of high vortex strength, tertiary separations can be observed as well.

One of the primary mechanisms for the canard-wing interaction is the canard's influence on the wing

leading-edge vortex. Both the canard downwash and the canard leading-edge vortex have pronounced

effects on the formation and subsequent trajectory of the wing vortex. The canard vortex influences

the surface pressures on the wing directly and, to a greater extent, indirectly through its influences

on the wing vortex. Furthermore. the effect of the canard vortex on the wing is highly sensitive to

vortex strength and relative location, which are both significantly modified by variations in the canard

position and deflection angles.

3.3.1 Coplanar canard

A baseline analysis of the canard-wing vortex interaction is performed for the undeflected mid-canard

(coplanar) configuration at ,_I_ = 0.90, Ree = 1.52 million, and various angles of attack. Comparisons
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aremadebetweencanard-onandcanard-offcasesto determinetheeffectsof thecanardon thestructure
of the wing flowfield.

Figure 3.16illustratesa comparisonbetweenthe upper-surfacepressurecontoursof the canard-
off and canard-onconfigurationsat threeanglesof attack. Thesecontoursshowa significantcanard
influenceon the body aswell asthe influenceof the canardand wing vorticeson surfacepressures.
The vortex-inducedlow pressureregion(L) givesa qualitativeestimateof the vortextrajectory over
the uppersurface.As angleof attackincreases,theselow pressureregionsmoveinboard. Note that,
sincethe canardsweepangleis lower,and becausethereis anabsenceof a downwashfield upstream
of the canard,the recoveryshockis strongestand mosteasilyobservedon the canardat the higher
anglesof attack.

Althoughevidentin thesurfacepressurecontoursoffigure3.16,thecanard'seffecton theformation
of the wingvortex is moreclearlyobservedin thecomputedsurfaceflowpatternsgivenin figure3.17.
Thesecondaryseparationline($2)dueto thewingleading-edgevortexis observedfor both thecanard-
on and canard-offcases.As the angleof attackis increased,the secondaryseparationand primary
attachmentlinesmoveinboardand are indicativeof the upwardand inwardmovementof the wing
primary vortex. The surfaceflowpatternsfor the canard-oncasesshowthe modifiedwing flowfield
includingthe delay in wingprimary vortex formation. At a _ 4 deg,no evidenceof a leading-edge
vortex is detectedon the inboardportionof the wing. At c_ _ 8 deg and 12 deg, the corresponding

inboard surface flow patterns are influenced by a small leading-edge vortex which is comparable to

a leading-edge vortex formed for the canard-off case at lower angles of attack. These observations
correlate with the surface pressure distributions which were given earlier in figures 3.1 and 3.7.

The dominating effect of the canard downwash on the wing, inboard of the canard-tip span-line,

has already been illustrated. Outboard of the canard-tip span-line, the canard leading-edge vortex

is the primary mechanism for the canard's influence on the wing flowfield. Crossflow-plane vortex

visualizations in the form of normalized total pressure contours and velocity vectors at two constant

streamwise stations are given in figure 3.18, and show the effect of the canard-vortex induced flow on

the wing. The approximate total pressure loss at each canard or wing primary vortex core is also given

in figure 3.18 and is an indication of the instantaneous vortex strength. Although the computed canard

vortex (fig. 3.18(a)) is considerably weaker than the corresponding wing vortex, its influence on the wing

flowfield is still significant. For the two co-rotating vortices, each with a counter-clockwise rotation and

position as shown in figure 3.18(a), the wing vortex flowfield induces a relative downward and inward
motion of the canard vortex while the canard vortex induces an upward and outward movement of

the wing vortex. In the absence of such interaction, the canard and wing vortex trajectories would be

expected to follow an upward and outward path which would be dependent on the angle of attack and

respective sweep angles.
In addition to the canard-wing vortex interaction, the flowfield is further complicated by the pres-

ence of a counter-rotating secondary vortex. The secondary vortex for the canard-off case is clearly

visible in both total pressure contours and velocity vectors of figure 3.18(b). The smaller wing vortex

for the canard-on case renders the corresponding secondary wing vortex undetectable in the scale of

figure 3.18(a). However, computed surface flow patterns given earlier in figure 3.17 clearly show the

existence of secondary separation for both the canard-on as well as the canard-off cases. Evidence of a

tertiary wing or canard vortex is not observed.

3.3.2 Canard vertical position

For the same flow conditions as the mid-canard cases given in the previous section (3.3.1), the differences

in wing surface pressures between the high- and low-canard configurations are shown in figures 3.19(a)
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and(b) for c_ = 4.27 deg and 8.55 deg. respectively. The upper and lower surface pressure distributions

are given at three wing span stations for each angle of attack. All three stations are inboard of the

canard-tip span line and, therefore, are directly influenced by the high- or low-canard downwash.

Results in figure 3.19 show that the relative canard and wing positions have a large effect oi1 the level

of canard-wing interaction.

At a = 4.27 deg (fig. 3.19(a)), small differences in wing surface pressures are observed. For the

high-canard case, lower pressures on the upper surface near the wing leading edge indicate the possible

formation of a leading-edge vortex. In the low-canard case, formation of the wing leading-edge vortex

is inhibited due to the canard downwash and the relative positions of the canard and wing.

In figure 3.19(b), tile wing leading-edge vortex is clearly visible and contributes substantially to

the lift of the high-canard configuration. However, even at this higher angle of attack, the low-canard

results do not show evidence of a strong vortex on the inboard wing. In addition to inhibiting the

formation of this vortex, the low-canard case also shows a substantial low pressure region on the wing

lower surface. Both of these factors (absence of the wing vortex and low pressure on the wing lower

surface) contribute to the loss of lift for the low-canard case observed in figures a.8(a) and 3.10(a).

Further insight into the unfavorable nature of the low-canard configuration can be gained by ex-

amining the canard-wing flowfield structure. Figure 3.20 illustrates crossflow contours of stagnation

pressures for the high- and low-canard configurations at c_ = 4.27 deg. For each configuration, five

streamwise stations are chosen to illustrate the development and convection of the canard and wing

vortices. The high-canard results (fig. 3.20(a)) show the formation of the canard vortex and its sub-

sequent trajectory over the wing surface. At x/g: = 3.2 and 3.6, formation of the wing leading-edge

vortex is observed. Although the vortex positions differ, the high-canard-wing vortex interaction has

similar characteristics to that of the mid-canard configuration shown in section 3.3.1.

The low-canard case given in figure 3.20(b) shows a significantly different flowfield structure. Like

the high-canard case. the low-canard vortex forms as visualized at x/e = 2.0. However, due to the

relative position of the low-canard to the wing and the canard-wing aerodynamic interaction, the

subsequent canard vortex is convected under the wing surface. The low-canard vortex can therefore

induce an unfavorable low pressure region on the wing lower surface. The formation of the wing vortex

on the upper surface is again observed in figure 3.20(b) at x/e = 3.6.

Figure 3.21 shows that at the higher angle of attack of 8.55 deg, the low-canard vortex interacts

directly with the wing. The original low-canard vortex (x/e = 2.0) splits into two (upper and lower

canard) vortices upon impact with the wing leading edge (x/e = 2.8). Further downstream at x/_" > 3.2,

the split canard vortices continue to have the same rotational structure, but now exhibit independent

trajectories. The canard lower vortex (C1L), with its counter-clockwise rotational sense as viewed in

the figure, tends to move inboard due to its proximity' to the wing lower surface. The canard upper

vortex (C1U), also with a counter-clockwise rotation, is additionally influenced and moved inward by

the formation of the wing vortex (W1) on the wing upper surface (x/e = 3.2 and 3.6).

To visualize the results in figure 3.21 more clearly', a qualitative schematic of the canard-wing vortex

trajectories for the low-canard case is given in figure 3.22. The low-canard vortex impacts the wing

leading-edge and is split into the upper and lower vortices. The wing vortex forms on the wing upper

surface and interacts with the canard upper vortex.

A perspective view of the low-canard vortex interaction with the wing is given in figure 3.23 for

c_ = 8.55 deg. Crossflow contours of stagnation pressures show the formation of the canard vor_;ex.

the splitting of the canard vortex by' the wing, and the formation of the wing vortex on the outboard

wing. The effect of this wing vortex on the canard upper-vortex trajectory, is also clearly' visible.
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3.3.3 Canard deflection angle

In addition to thosecanardinfluencesdueto changingvertical position, the additional freedom-of-
motionof mid-canarddeflectionsallowsfor furthervariationsin thetypesof canard-wingvortexstruc-
tures. Changing/_c affects the strength of the canard downwash and vortex, the location of the canard

trailing-edge relative to the wing, and the subsequent canard vortex trajectory in the wing flowfield.

Results given in section 3.2.2 illustrated the effect of canard deflections on lift, drag and pitching

moments for the entire configuration and the separate canard and wing component regions. The

aerodynamic performance characteristics from that section are better understood with further analyses

of the canard-wing vortex interactions. The differences in surface flow patterns for _c = 0 deg,

5 deg and 10 deg are illustrated in figure 3.24. As for the undeflected mid-canard case, the secondary

separation lines from the canard and wing primary vortices are indicated ($2) for each case and show

that viscous effects are significant to the overall flow structure. As canard deflection is increased, the

secondary separation line on the canard moves inward reflecting the upward and inward shift of the

canard vortex. In all three cases, the secondary separation line forms near the apex of the canard while

its formation on the wing inboard is inhibited. At this angle of attack, the formation of the wing vortex

is delayed until outboard of the canard-tip span location.

Figure 3.25 illustrates the effect of canard deflection on wing surface pressure at 35, 55 and 75 per-

cent semispan. For clarity, the upper surface pressure curves are indicated (U). As canard deflection is

increased from 0 to 10 deg, the near-leading-edge lower surface pressure at 35 percent span transitions

from positive to negative values. At _c = 10 deg, a strong suction peak exists on the lower surface,

indicating the possibility of a wing vortex on the wing lower surface. Furthermore, high upper surface

pressures at 35 percent span are clearly indicative of a decrease in local angle of attack for the inboard

wing with increasing canard deflection angle. The loss of wing lift due to these pressure changes was

shown previously in figure 3.13(b). Towards the outboard stations, figure 3.25 shows that the effect of

canard deflection on surface pressure is minimal.

To visualize the effect of canard deflection on the canard-wing vortex interaction, crossflow contours

of total stagnation pressures are given in figure 3.26 for _c = 5 deg and 10 deg. The crossflow contours

are shown at x/_: = 2.0. 2.S and 3.5 as measured from the fuselage nose. The relative primary vortex

strengths are indicated in the figure by the approximate total pressure toss in the vortex core. For

c% = 5 deg (fig. 3.26(a)), there are canard primary (C1), canard secondary (C2), and wing primary

(\VIU) vortices over tile upper surfaces of the canard and wing. The distortion of the canard primary

vortex at x/_ = 2.8 is due, in part, to the canard secondary vortex.

At c_ = 10 deg (fig. 3.26(b)), an additional wing primary vortex (WlL) forms and is visible on

the wing lower surface (x/g = 2.S). This vortex causes the suction peak on the lower surface of the

wing observed earlier in figure 3.25 and would generally be considered an unfavorable effect. At these
flow conditions, there is a transition from negative to positive effective wing angle of attack, C_e//, from

the wing-root to wing-tip locations. At the last station, x/_ = 3.5, the wing flowfield structure for the

c_c = 10 deg case includes two wing primary vortices (upper and lower) as well as the canard primary

vortex.
The mutual interaction between these vortices is an important factor in wing performance and is

complex in nature. A comparison of the relative position of the canard vortex between x/_ = 2.8 and

3.5 in figure 3.26 shows that the trajectory of the canard vortex is influenced by the wing upper-surface

vortex. For two co-rotating vortices (canard and wing primary), each with a position and counter-

clockwise rotation as shown in the figure, the wing vortex induces a relative inward motion of the

canard vortex.
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The influenceof the wing vortex on the canardvortex trajectory is moreclearly visualizedin
figure3.27,which illustratesthe uppersurfacecanardandwing vortexsystemsfor $c = 5 degand
10deg.Crossflowcontoursof total stagnationpressureareshownat selectedstreamwisestations.As
shownearlierin figures3.24to 3.26for both6c = 5 degand 10deg,the formationof the wingvortex
on the wing uppersurfaceis inhibitedby thecanarddownwashuntil outboardof the canard-tipspan
location. Thedifferencein the canardprimaryandsecondaryvortexstrengthsbetweenthe two_ccases
is qualitativelyobserved.In eachcase,asthe canardprimary vortex is convectedoverthe wingupper
surface,the wing primary vortex in the outboardregionclearlymodifiesthecanardvortex trajectory
inward.

Figure3.28showsa perspectiveviewof theoverallflowfieldfor theconfigurationat c_ = 4.27 deg

and 6_ = 10 deg. The darker region over the canard upper surface indicates low pressure induced by

the canard vortex. The particle traces released near the wing root and towards the wing tip show the

formation of the leading-edge vortices on both the upper and lower surfaces.

3.4 Effect of Canard on Wing Vortex Breakdown

The potential for a canard to delay or eliminate wing vortex breakdown is of significant interest and has

been the topic of numerous experimental studies (refs. 19, 21, 53, and 54) and a recent numerical study

(ref. 55). By comparing vortex lift theory with experimental results, Gloss and Washburn (ref. 19)

found that wing vortex burst occurs at ct _ 13 deg for the current canard-off case. For the undeflected

mid-canard case, their study indicated no evidence of wing vortex burst for angles of attack up to at

least 20 deg.

Figure 3.29 shows a crossflow-plane visualization of the predicted wing vortex for the canard-off

case at three angles of attack. At the higher angles of attack, the resulting increased vortex strength

and relative shift of the core location is observed in the normalized total pressure contours. The

development of the secondary vortex is also noted. The corresponding off-surface particle traces for the

canard-off cases are shown in figure 3.30. Evidence of vortex burst in the computational simulation is

observed at o_ = 12.38 deg. Crossflow-plane visualization of scaled axial velocity contours in figure 3.31

serves to confirm the presence of predicted vortex breakdown over the wing for the canard-off case.

Reversed axial flow in the core of the primary vortex is identified (ref. 56) as a qualitative indication

of vortex breakdown, and is observed in figure 3.31. From figure 3.30, the wing vortex burst location

appears to be near the trailing edge of the wing and indicates that the computed angle of attack for

vortex burst is approximately 12 deg, which is within reasonable agreement with the experimental

observations (ref. 19).

Computed particle traces for the undeflected mid-canard case at c_ = 12.38 deg are given in

figure 3.32. The lower leading-edge sweep-angle of the canard results in a canard vortex burst further

upstream of the canard trailing edge compared to the wing vortex burst relative to its trailing edge

shown earlier. Figure 3.32 shows a stable wing vortex with no evidence of wing vortex breakdown in

the presence of the undeflected mid-canard. Although not computed directly for this study, the results

shown in Sees. 3.2 and 3.3 indicate that wing vortex breakdown is quite possible given certain canard

vertical positions and deflection angles.

The good comparisons with the experimental data for both the canard-on and canard-off cases at

ct _ 12 deg and the corresponding canard-off vortex burst location near the wing trailing edge show

that the computed relative effects on vortex breakdown location and behavior in the presence of the

canard are accurate. However, it is noted that vortex breakdown is generally an unsteady phenomenon

and steady-state computations downstream of the burst location may be suspect. To perform a detailed
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Chapter 4

Effect of Fixed Canard on Unsteady

Aerodynamics

The effects of fixed canards on the unsteady longitudinal aerodynamics of the canard-wing-body con-

figuration are presented in this section. As outlined earlier in the Introduction, many benefits of

canards are realized during maneuver and other dynamic conditions which result in highly unsteady

aerodynamics. In such conditions, the fixed canard has a pronounced infuence on the unsteady forces.

moments, and uhimately the performance and stability of the configuration.

Computational simulations solving the time-accurate Reynolds-averaged Navier-Stokes equations

are used to study the effects of the canard on the pitch-up ramp motion and pitch oscillations of

the canard-wing-body configuration. All fixed canard simulations in this section are performed for

the undeflected mid-canard configuration. Comparisons are made with a_ailable experimental data

(ref. 24), and numerical convergence is demonstrated through spatial and temporal refinement studies.

The results of the simulations are used to study the unsteady forces and moments due to the canard,

and the unsteady canard-wing vortical flowfield. Ultimately, in section 4.3, the capability of utilizing

high-order CFD for configuration stability evaluation is demonstrated through a dynamic stability

analysis (derived in sec. 2.7) of the time-accurate pitch-oscillation predictions.

4.1 Pitch-Up Ramp Motion

Results are presented to provide the analyses of the unsteady canard-wing-body flowfield associated

with pitch-up ramp motions. All unsteady results in this section are computed at M_ = 0.90 and a

Reynolds number based on the mean aerodynamic chord of the wing (Re_) of 1.52 million. Convergence

of the unsteady flowfield is verified using both spatial and time-step refinement studies.

All unsteady canard-wing-body results are computed for a from 0 deg to either 12.83 deg or 15 deg

and for non-dimensional pitch rates (defined by Ap = &c/Uzc) of 0.05 and 0.10. Ramp motions are

started from converged steady-state solutions at an initial angle of attack (ai) and held at the final

angle (a f) for a fixed length of time. The pitch axis of the ramp motion and the pitching moment
results are taken from the model c.g. location shown in figure 1.4.

A typical ramp motion from c_ = 0 deg to cU = 15 deg is illustrated in figure 4.1. In order

to directly compare unsteady results at different pitch rates and steady-state results, time (t) is given

in degrees. During the ramp motion (0 deg < t < 15 deg) a and t are equal (c_ = t). However, for

t > 15 deg, c_ is held constant at 15 deg (a = 15 deg or c_f). It is noted that during the ramp motion,

c_ increases linearly as a function of time. Consequently, the ramp motion has an impulsive start and
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stopwhichsignificantlyinfluencesthe unsteadyresults.(Notethat theconversionto physicaltime can
beeasilyobtainedusingthe definitionAp = dg/Uoc and replacing d with At_e/At,ec.)

4.1.1 Aerodynamic performance

Computed time histories of lift, drag and pitching moment for the configuration, with and without

canard, undergoing a ramp motion (pitch rate, Ap = 0.10) are illustrated in figure 4.2. Computational

and experimental steady-state results are also given for the corresponding angles of attack. The lift

curves of figure 4.2 show a significant lift increase for the unsteady canard-on case. Early in the motion

(t < 4 deg), the unsteady canard-on lift is slightly lower than the canard-off lift due to the pitch-rate

effects of the configuration. Since the entire canard is forward of the pitch axis, there is an initial loss

of lift on the canard at the start of the ramp motion (t = 0 deg). As the ramp motion continues, the

canard-on case exhibits increased lift over both the canard-off and steady-state canard-on cases.

The time histories of drag coefficient show that at a given instantaneous angle of attack, there

is higher drag for the canard-on case. However, by replotting the drag results of figure 4.2 in drag

polar form, figure 4.3 shows that the unsteady canard-on case exhibits improved dynamic lift-to-drag

performance at the higher angles of attack.

The pitching moments given in figure 4.2 also illustrate the significant influence of the fluid virtual

(or apparent (ref. 57)) mass at the.beginning (t = 0 deg) and end (t = 15 deg) of the ramp motion.

The virtual mass acts to counter the acceleration of the body and, therefore, causes a rapid nose-down

pitching moment at t = 0 deg and a nose-up moment at t = 15 deg. Beyond t = 15 deg, the lift,

drag and pitching moment values converge toward the steady-state a = 15 deg result.

The effect of pitch rate on lift for the canard-on case is given in figure 4.4 for Ap = 0.10 and 0.05.

Note that since comparisons are made at instantaneous angles of attack during the ramp motion (t in

deg), the physical time (tsec) between the two pitch rates differ by a factor of two. Figure 4.4 shows

that the lift of the canard configuration is increased at the higher pitch rate throughout the ramp

motion. Further into the ramp motion (t > 10 deg), the pitch rate and total lift are approximately

proportional at given angles of attack.

Better insight into the dynamic loads produced by the ramp motion can be attained by examining

the separate component regions of the geometry. Similar to the steady-state component results given

earlier: the canard region consists of the canard and the body forward of the wing leading-edge root

location (fore-body). The wing region consists of the wing and the remaining aft-body (not including

the sting).

Time histories of the canard and wing region lift contributions for the Ap = 0.05 ramp motion

are illustrated in figure 4.5. Computed steady-state lift coefficients are also given for reference. By

definition, the total configuration lift is the sum of the canard and wing region lift. The effects of the

fluid virtual mass are evident at both c_i = 0 deg and (_f = 15 deg. Due to the relative locations of

the canard and wing to the pitch axis. there is an initial increase in wing region lift and a decrease in

canard region lift at ai = 0 deg. These trends are then reversed at c_I = 15 deg.

Figure 4.5 shows that, in comparison to the steady-state results, there is a net loss of lift for the

canard throughout the ramp motion. The increased lift for the total configuration during the ramp

motion is due to the large increase in the lift of the wing. Although the canard-wing flowfield is highly

non-linear and complex in nature, it can be quite useful to qualitatively describe the effects of the

unsteady motion in terms of simplified linear theory. In linear theory, the lift of the wing or canard can

be written as the sum of the static lift (CL_c_), the lift due to pitch or quasi-static lift (CLqq), and the

unsteady lift (CLad). The terms CL_, CLq, and CL_ are the stability derivatives (OCL/Oa)O , (OCL/Gqq)o

and (OCL/cg&)o, respectively; q is the angular velocity of the configuration about the pitch axis. The
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notation ()0 indicates that partial derivatives are evaluated assuming the disturbance quantities are

zero. Note that for the ramp motion, q = &.

For tile canard or wing, the lift contribution due to pitch is represented in the CLq and Cca terms.

The loss of canard lift is primarily due to the canard location forward of the pitch axis which, if

described by linear stability theory, causes a large negative contribution to CL ...... d from the Ccqq

term for high pitch rates. The directions of the induced velocities due to pitch are given schematically

in figure 4.5 as well. After the ramp motion stops (t > 15 deg), the wing region lift contribution

converges to the steady-state result much more slowly than the canard region lift. Results shown in

section 4.1.3 indicate that the canard-wing vortex interaction is a significant factor in this phenomenon.

4.1.2 Spatial and temporal convergence

To confirm the convergence and accuracy of the pitch-up ramp motion computations, time-step and

grid refinements are performed for the Ap = 0.05 ramp case presented earlier in figure 4.5. Figures 4.6
and 4.7 show the effect of time-step size (At in deg) on the unsteady lift curves near t = 0 deg and

t = 15 deg, respectively, for the component regions of the geometry. In the previous computations

presented in this section, At = 0.0025 deg was used.

From figure 4.6, it is clear that with decreasing time-step size, the time-accurate solutions converge

quickly. In fact, even when using a larger step size, the lift curves compare favorably for t > 0.1 deg.

Figure 4.7 shows that, after the ramp motion has stopped, the transient solution is adequately converged

in time using At = 0.0025 deg.

Spatial accuracy is demonstrated in figure 4.8 by the favorable comparison between baseline and

refined grid solutions of component lift curves. The refined grid contains over 1.7 million points in

the flowfield and was used extensively in Chapter 3 for the steady-state study. Figure 4.8 shows that,

with the refined grid, slightly higher lift coefficients are predicted due to the improved resolution of the

canard and wing leading-edge vortices. The remaining analyses of the unsteady canard-wing vortex

interaction are performed using the refined grid.

4.1.3 Canard-wing vortex interaction

An analysis of the canard-wing vortex interaction provides further understanding of the complex flow-

field that produces the unsteady load characteristics of the ramp motions shown earlier. Computations

are performed for the canard-wing-body configuration undergoing a ramp motion of ai = 0.00 deg to

(if = 12.83 deg and at a pitch rate of Ap = 0.05. Comparisons are also made with the corresponding

steady-state results.

The steady and unsteady ramp motion results are summarized in figures 4.9 and 4.10, respectively,

which show instantaneous streamlines released on the upper surfaces of the canard and wing. Positions

As, B_, and C,, as indicated in figure 4.9, correspond to steady-state a = 4.21 deg, 8.55 deg, and

12.83 deg, respectively. Similarly, during the ramp motion (fig. 4.10), positions A, B, and C correspond

to instantaneous a = 4.21 deg, 8.55 deg, and 12.83 deg. The ramp motion stops at c_f = 12.83 deg

and the configuration is held fixed for all remaining time (t > 12.83 deg). Time-accurate transient

results are given for t > 12.83 deg at instances D, E, and F. The a. vs. time plot given in figure 4.10
illustrates the relative time instances of the ramp motion (A-F). Corresponding upper surface pressure

contours for the stead)' and unsteady cases are given in figure 4.11 for the same instances during the

ramp motion as in figures 4.9 and 4.10 (A_ - Cs and ,4 - C, respectively).

A comparison between the steady and unsteady results shows significant differences in the char-

acteristics of the canard and wing vortices during the early portion of the ramp motion. Stead); and
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unsteadycasetotal pressurecontoursat a crossflowplaneof x/e = 3.6, as measured from the

body nose, are given in figure 4.12 for these same angles of attack. As observed in figures 4.10, 4.11,

and 4.12(b), a delav in canard vortex formation occurs for the unsteady case which correlates with the

loss of canard lift due to the pitching motion (fig. 4.5). For the steady case, figure 4.12(a) shows the

presence of the convected canard vortex, even at the lower angles of attack. Differences between the

steady and unsteady' wing vortices are also noted in figure 4.12. During the ramp motion, the increased

strength of the wing vortex (fig. 4.12(b)) contributes to the increased lift of the wing portion observed

earlier in figure 4.5.

For the current ramp motion, as the configuration reaches a/, the motion stops. Figure 4.10 shows
the formation of the canard vortex and, at later times, evidence of canard vortex breakdown. Total

pressure contours in figure 4.13 illustrate the transient vortical flowfield of the canard (x/e = 2.0) and

wing (x/e = 3.6) once the ramp motion has stopped. The development of the canard vortex, which

was inhibited during the early portion of the ramp motion, is clearly observed. The canard vortex

convects downstream and the changes in canard lift and downwash influence the characteristics of the

wing vortex. As time increases from instances D to F (fig. 4.13), the canard-wing flowfield approaches

the steady-state results illustrated earlier in figure 4.12(a).

Although the canard vortex forms rapidly once the ramp motion has stopped, figure 4.13 shows that

the increasing strength of the canard vortex, its subsequent convection downstream, and its interaction

with the wing vortex occur more slowly. As also observed earlier in figure 4.5, it is evident that

the time scale is considerably larger for the wing than the canard to reach a relatively steady-state

condition. Although some unsteadiness remains in the flow due to the breakdown of the canard vortex,

the time-accurate results indicate a relatively stable flowfield for large time (t >> 12.83 deg).

4.2 Pitch Oscillation

Results of pitch-oscillation simulations are presented to understand the unsteady flowfield, provide

analyses of the canard-wing-body dynamic stability characteristics and to evaluate CFD accuracy and

efficiency, issues in predicting stability parameters. In order to match experimental test conditions

(ref. 24) for tile dynamic stability analysis, unsteady results are computed at M_c = 0.70 with the

Reynolds number based on the mean aerodynamic chord of the wing (Re¢) of 3.05 million.

Unsteady computations are performed for the mid-canard configuration undergoing pitch oscilla-

tions about the pitch axis {shown earlier in fig. 1.4). Computations are made at mean angles of attack.

a,,. of 0 to 16 deg and a pitch amplitude, A, of 1.0 deg. A reduced frequency, as defined by k - _'e
2Uec '

of 0.236 radians is used in the majority of the computations.

The computed time histories for the lift and moment coefficients are given in figures 4.14 and 4.15,

respectively, as a functioll of non-dimensional time. cot. Each case was computed for three full cycles

of oscillation about a mean angle of attack of 4 deg, with the time histories of the latter two cycles

shown in the figures. The angle of attack, with the appropriate scale on the right vertical axis, is given

in each figure for reference.

A comparison of the lift time histories in figure 4.14(a) shows that the canard-on and canard-off

cases exhibit similar trends. The amplitude of the oscillation in lift is slightly higher and the average

lift coefficient is slightly lower for the canard-on case. Figure 4.14(a) also shows no significant phase

shift for the total lift due to the canard. A breakdown of the lift time histories into component regions

is given in figure 4.14(b) for the canard-on case. As with the pitch-up ramp cases given earlier, the

canard and wing regions include the fore- and aft-body portions, respectively. Figure 4.14(b) shows

that significant phase differences exist between the canard and wing lift curves. In fact, the wing
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lift is shownto leadthe pitch motionwhile the canardlift appearsto lag. Previousresultsgivenin
section4.1demonstratedthat the leadand lag in wing andcanardlift curvesis primarily causedby
the inducedvelocitiesdueto the rapidpitch motion.A comparisonof figures4.14(a)(canard-off)and
4.14(b)(wing lift.) alsoshowsthat the presenceof the canardcausesa phaseshift in the wing region
lift curve.The resultingtotal lift for thecanard-oncaseslightly leadsthe pitchoscillation.

The time historiesof canard-on/offtotal andcanard-oncomponentpitchingmomentsaregivenin
figures4.15(a)and (b), respectively.Figure4.15(a)showsthat tile canard-oncaseexhibitsa higher
averagenose-upmoment. In contrast to the total lift curvesof figure 4.14(a),a moresignificant
phaseshift betweencanard-onand canard-offtotal momentcurvesis alsonoted.Thebreakdowninto
componentsof the momentcontributions(fig. 4.15(b))illustratesthe largephasedifferencesbetween
the canardandwing regionmoments.Dueto the forwardpositionof the canard,the nose-uppitching
momentof the canardresultsin a significantnose-upshift of the total momentcurve.

In orderto isolatethe effectsof thecanardon the amplitudeandphaseof the lift/moment curves,
a plotof the changein lift/momentasafunctionof thechangein angleof attackisgivenin figure4.16.
In both thelift (fig.4.16(a))andmoment(fig.4.16(b))curves,thechangein lift/moment is takenfrom
the averagelift/moment coefficientsfor the respectivecanard-onor canard-offcases.The directionof
thecurvesarealsoindicatedin the figure.Fromfigure4.16(a),the largeroscillationamplitudeandthe
minimal phasechangeof lift coefficientfor the canard-oncaseis moreclearlyobserved.Figure4.16(b)
showsthe significantphaseshift in momentcoefficientfor the canard-oncase.

Further insight into the energybalancerelatedto the motionof the configurationcan begained
by integratingthe pitchingmomentcurvesof figure4.16.For theco-locatedmomentcenterand pitch
axis,anevaluationof

.f Cm(_)d_ (4.2 - 1)It,'p

for a single cycle represents the amount of nondimensional work done by the fluid due to the motion

of the configuration. A similar analysis for roll oscillations of delta wings has been performed in a

previous computational study (ref. 58). For the pitching moment curves of figure 4.16(b), which have a
counter-clockwise sense_ an evaluation of equation 4.2-1 yields Wp < 0 indicating that work (or energy)

is imparted to the fluid by' the pitch oscillation of the configuration. Therefore, the configuration is

expected to be positively damped in pitch. Furthermore, the apparent increased area contained within
the canard-on moment curve (fig. 4.16(b)) indicates that more work is imparted to the fluid for the

canard-on case, leading to a higher damped condition.

The periodicity' of the oscillatory motion is demonstrated with the plot of lift and moment as a
function of instantaneous angle of attack given in figure 4.17. The time-accurate computations are

started from converged steady-state solutions at am. Figure 4.17 shows that lift and moment time

histories reach a periodic oscillatory response within 2-3 cycles. A Fourier analysis was also performed

on the second and third cycles of the oscillatory motion and the results showed less than 0.5 percent

difference between the cycles in computed Fourier coefficients. Therefore, for the current configuration

and flow conditions, the second cycle of oscillation is sufficiently accurate to perform the detailed

dynamic stability analysis.

4.3 Dynamic Stability

A comparison between the lift/moment curves and the appropriate Fourier series using the first three

Fourier coefficients (commonly referred to as ao,az, and bz) is given in figure 4.18 for the canard-on

configuration. The coefficients were determined from a Fourier analysis of the computed second cycle
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andthe excellentagreementconfirmsthat the higher-ordertermscanbeneglected.Thesecoefficients
arethenscaledwith A and Ak as described in section 2.7 to obtain the corresponding dynamic stability

parameters.

Figure 4.19 shows a generally favorable comparison between the computed and experimental (ref. 24)

dynamic stability parameters for the canard-off case at various mean angles of attack (c_m) and an

amplitude, A = 1.0 deg. The stability parameters based on normal force are given in figures 4.19(a)

and (b) as the pitch rate and pitch displacement parameters, respectively. Damping-in-pitch and

pitch-oscillatory stability, which are based on pitching moment coefficients, are given in figures 4.19(c)

and (d), respectively. In addition, results from fine grid computations at two different _rn are given in

figure 4.19 and show improvement in the damping-in-pitch parameter (fig. 4.19(c)) at c_m _ 16 deg. For

moderate angles of attack (a < 10 deg), both computations and experiment predict positive damping,

(Cma +Crnq) < 0 in figure 4.19(c), and positive oscillatory stability, (Cmo -k2Cmq) < 0 in figure 4.19(d),

for the canard-off configuration.

4.3.1 Effect of canard

The canard is expected to have a pronounced effect on the dynamic stability of the wing-body con-

figuration. Results from Chapters 3 and 4 on this configuration have shown that the close-coupled

canard has a large influence on both the steady-state and unsteady wing aerodynamics. The effect

of the mid-canard on longitudinal dynamic stability parameters is summarized in figure 4.20. Each

data point on the curves represents the predictions at a mean angle of attack of c_m and an amplitude,

A = 1.0 deg.

Figure 4.20 shows that the presence of the canard significantly changes the dynamic stability charac-

teristics of the configuration. In particular, the pitch-rate parameter in figure 4.20(a) shows an increase

throughout the mean angle-of-attack range, while the pitch-displacement parameter (fig. 4.20(b)) shows

a dependence on angle of attack for the effect of the canard. For the pitching moment based parameters

(figs. 4.20(c) and (d)), the computations show an increase in damping and a decrease in longitudinal

stability with the canard.

The changes in damping-in-pitch and oscillator)' stability due to the presence of the mid-canard

is of particular interest and is again summarized in figure 4.21. Differences between canard-on and

canard-off stability parameters are shown in figure 4.21 with the "zero-line" representing the canard-off

case. As with figure 4.20 earlier, figure 4.21 also illustrates that the canard increases the damping-in-

pitch of the configuration while reducing the oscillatory stability. The increase in damping with the

canard correlates with the earlier analysis of the fluid "work" (eq. 4.2-1) described in section 4.2 and

shown in figure 4.16(b).

For reference, the experimental data for the high-canard configuration is shown in figure 4.21.

Since there is a difference in the canard vertical positions between the computation (mid-canard)

and experiment (high-canard), the comparison with the experimental measurements is intended as a

qualitative confirmation of the computational findings. However, it is noted that the agreement with

experiment is quite favorable, except at am = 0 deg, where the wake of the mid-canard in the

computational model directly interacts with the co-planar wing.

The results given above are based on the computations of the canard-off and canard-on config-

urations undergoing pitch oscillations at a reduced frequency, k = 0.268. On the other hand, the

experiment (ref. 24) was conducted at a one-order-of-magnitude lower reduced frequency, k = 0.0268.

The implications of this difference and_ in general, the effect of reduced frequency on predicting dynamic

stability parmneters is a topic of considerable interest and is discussed in the following section.
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4.3.2 Reduced frequency

Time-accurateNavier-Stokescomputationsaregenerallyrestrictedto smalltime-stepsizesby accuracy
andnumericalstability constraints.As aresult,simulationsof lowreduced-frequencycases,whichare
typical of small-scalewind-tunneltests,can requireextensiveamountsof computerresources.The
numberof iterationsrequiredfor eachcycleof oscillationbecomesinverselyproportionalto reduced
frequency.Therefore,in order to improvecomputationalefficiency,it is highly desirableto evaluate
the effectsof reducedfrequencyon the accuracyof thedynamicstability parameterpredictions.

In particular, suchan evaluationcanprovideguidanceon the highestreducedfrequencieswhich
can be usedin computationalsimulationsfor a givenconfigurationand flow condition. When the
simulatedreducedfrequenciesbecometoo high, the higher-ordertermsof equations2.7-1and 2.7-7
becomesignificantand canno longerbe neglected.Furthermore,the classicalassumptionof linear
aerodynamictheory,from whichequation2.7-1is based_canno longerbe taken.

Figure4.22illustratestheeffectof reducedfrequency(k) on thenormalforceandpitchingmoment
coefficientsasa functionof angleof attackfor the canard-onconfiguration.Themeanangleof attack
is 4 degandreducedfrequencyvariesfrom k = 0.268to 1.072.The increasein amplitudeand shift in
phasedueto increasingk isobservedin figures4.22(a)and(b) for both thenormalforceand pitching
momentcoefficients,respectively.

Fromthe dynamicstability analysis,the effectof k on the damping-in-pitchand pitch oscillatory
stability parametersis givenin figure4.23for the canard-oncase.For clarity, the reducedfrequency
(horizontalaxis) is plotted astheinverseof k (l/k) ona logscale.Theexperimentalvaluesaregiven
at the actual reducedfrequencies(k) reportedin the wind-tunneltests. Figure4.23showsthat the
dynamicstability parametersareaccuratelycomputedfor awiderangeof reducedfrequencies.In fact,
for damping-in-pitch,a computedreducedfrequencywhich is up to 1.5orders-of-magnitudehigher
than theexperimentalvaluecontinuesto yieldaccuratestability parameterpredictions.In the present
study, a reducedfrequencyof k = 0.268is utilizedand allowsfor an order-of-magnitudereduction
in the requiredcomputationaltime. For dynamicstability evaluationsin general,a similar stud?"on
the sensitivitiesto reducedfrequencyhasthe potentialto reducecomputationalexpensesby ordersof
magnitude.
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Figure 4.11. Upper surface pressure contours at various times for the canard-wing-body

configuration undergoing unsteady ramp motion. Mo¢ = 0.90, zip = 0.05, ai = 0 °,

a f = 12.83 °, Ree = 1.52 milfion.
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Chapter 5

Unsteady Aerodynamics of Moving

Canards

Many canard-configured aircraft, including several mentioned in Chapter 1. utilize moving canards

for longitudinal stability, pitch control and aerodynamic performance. In order to understand the

influence of moving canards and to demonstrate the current capability to predict the resulting unsteady

flowfield, time-accurate Navier-Stokes simulations are solved for the configuration undergoing pitch-up

and oscillatory canard motions. Details of the grid generation, boundary conditions and zonal interfaces

for the moving canard cases are found in sections 2.4, 2.5, and 2.6, respectively. The freestream flowfield
conditions used in the canard motion studies are M_c = 0.85 and a Reynolds number based on the

mean aerodynamic chord of the wing (Re_) of 2.82 million. These conditions match those used for the

steady-state canard deflection studies (secs. 3.2.2 and 3.3.3), thereby altowing for the direct comparisons

and observations between fixed and moving canard results.

5.1 Canard Pitch-Up Ramp Motion

The deflections of the canard (luring the pitch-up ramp motions are illustrated in figure 5.1. All canard

pitch-up cases begin with an initial canard deflection (_c_) of 0.0 deg_ and final canard deflections (gc:)

of 5.0 and 9.25 deg. As with the pitch-up motions of the entire fixed-canard configuration (see. 4.1),

the canard motions b(,_in and end instantaneously. Various canard pitch rates (Ape) are simulated

in this section. The rim(. histories of force and moment are again given in non-dimensional time

lt_.:_j = t, ,,,._/j_u.,,). Nolo that during the portion when the canard is moving, C_c = t.

5.1.1 Unsteady lift and pitching moment

The time histories of lift and pitching moment coefficients are given in figure 5.2 for the canard con-

figuration at c_ = 4.27 (leg. Canard deflection angles as a function of non-dimensional time (t) are

also indicated in the figure. Starting from a steady-state condition at _c = 0.0 deg, the canard begins

to pitch up at time. t = 0 deg with a pitch rate of Ape = 0.05. The lift curve for o = 4.27 deg

(fig. 5.2(a)) shows that an increase in total lift is purely transitory during the unsteady aerodynamic

portion of the canard motion. In fact, the initial total lift at t = 0 deg (_c = 0.0 deg) and the

final total lift for t > _ deg (gc = 5.0 deg) are basically unchanged. This result is consistent with the

steady-state computations at various fixed canard deflections shown earlier (fig. 3.14), which illustrated
an increase in canard lift and a decrease in wing lift as a function of incre_ing canard deflection angles.
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Figure5.2(b) showsthe effectsof the canardmotion on the pitchingmomentcoefficientsfor the
configuration. Steady-stateresultsof section3.2 found that the wing portion pitching momentis
relativelyinsensitiveto the variousfixed canarddeflectionangles. The resultsin thesetwo figures
indicatethat this effectisextendedto unsteadycanardrampmotionsaswell. Forthe configurationin
this study,the pitchingmomentsfor the entireconfigurationat a = 4.27deg(fig. 5.2(b)) is purely
dependenton the canardportioncontributions.

Although the pitchingmomentsof theconfigurationundergoingcanardpitch-upmotion arevery
similar to the correspondingsteady-statecharacteristics,the unsteadynature of the lift curve is of
particular interest. Figure 5.2(a)alsoshowsthat althoughthe canardportion lift respondsalmost
immediatelyto the canardpitch-upmotion,asignificantdelayis observedbeforethewingportion lift
respondsto the effectsof the canardmotion. This delay is due to the time requiredto convectthe
effectsof the canarddownstreamto the wing. Thelengthof the delayobservedin thefigure,which is
on the orderof At _ 3 deg (or 0.05 rad.), correlates well with the pitch rate of Apc = 0.05 for this

angle-of-attack case. In essence, for Apc = 0.05, At = 0.05 rad. is the length of time for a freestream

fluid particle to travel the distance a, which also represents the approximate average distance between

the canard and the wing. The transient increase in total lift is primarily due to this delay in the wing's
response to the increase in canard lift.

The transient nature of the configuration lift curve and, specifically, the delay observed in the wing

response is a direct function of the canard pitch rate. Figures 5.3 and 5.4 show the effects of canard

pitch rate, Ape, on lift and moment coefficients, respectively, for the configuration at a = 4.27 deg.

As pitch rate is increased, both the magnitudes of the canard lift and the non-dimensional time delay

in the wing response increase (figs. 5.3(b) and (c)). The combination of these two effects produces a

higher peak lift coefficient for the entire configuration (fig. 5.3(a)). The results of figure 5.4 illustrate

that canard pitch-rate effects on pitching moment are considerably less significant than for lift.

For the higher pitch rate cases given in figures 5.3 and 5.4, a constant physical time-step size results

in a higher non-dimensional time step. However, refining the step sizes can be used to demonstrate

temporal convergence. Figure 5.5 shows the effect of time-step size on the lift and pitching moment

predictions of the computations performed for Apc = 0.20. The excellent comparison between the

computational simulations at various step sizes, particularly during the transient period after the canard

motion has stopped (t > 5 deg), confirms the adequate time-step resolution for the canard pitch-up

ramp cases.

5.1.2 Canard-wing vortex interaction

The results given in the preceding section can be further understood by examining the canard-wing

vortex interaction during the canard pitch-up maneuver. For easier visualization of stronger vor-

tices, a canard pitch-up simulation is performed for the configuration at the higher angle of attack

of _ = 8.0 deg. Figure 5.6 illustrates the time histories of lift and pitching moment coefficients

for this case. Similar to the lower angle-of-attack case given earlier in figure 5.2, the current case at

c_ = 8.0 deg shows a transitory increase in total lift which is due to the delay in wing lift response.

Figure 5.6(b) also shows that pitching moment characteristics during the canard motion are similar to

the lower angle-of-attack case.

Comparisons of total pressure contours at constant streamwise locations are given in figure 5.7

for the instant when the canard is deflected at 5c = 5.0 deg during the canard pitch-up motion

(Apc = 0.05). The steady-state results of the static canard at the corresponding freestream condition

and canard deflection angles are also shown in the figure. The crossflow total pressure contours illustrate

a slightly weaker canard vortex formation for the unsteady cases (x/_ = 2.0) in comparison to the
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steadycases.The weakercanardvortexat. a givendeflectionangleis primarily dueto the induced
velocitiesat thecanardleadingedgefromthecanardrotationabout,its pitchaxis.Furtherdownstream
at the sameinstant in time, the weakercanardvortexand theeffectsfromconvectionof the canard's
influencesproducea lessdevelopedcanardvortexoverthe wing surface(x/e = 2.8and 3.5). After
the canardmotionsstops, the effectsof the canardvortex on the wing flowfieldwill approachthe
steady-stateresults.

To better visualizetheeffectsof the wingflowfielddevelopment,the time scalesandcanardeffects
are increasedby starting with the lowerangleof attack case(a = 4.27deg) and continuingthe
canardpitch-upmotion to a higherdeflectionangle.Figure 5.8showsthe lift and pitchingmoment
curvesfor the configurationundergoinga canardpitch-upfrom 6c, = 0 degto _cj = 9.25degwith
a non-dimensionalpitch rateof Apc= 0.05. The increase in total lift and the delay in wing response

are both clearly evident in figure 5.8(@. For the canard pitching to c_c = 9.25 deg, the downwash of

the canard causes the wing to generate very little lift at the positive ct of 4.27 deg. This effect was

also observed in the deflected static canard cases of section 3.2.2, which showed steady-state vortices

on both the wing upper and lower surfaces.

Traces representing instantaneous streamlines at seven different times are given in figure 5.9 for the

6cl = 9.25 deg canard pitch-up case. As illustrated in the legend of figure 5.9, the first four instances

in time (A-D) are during the canard motion (8c _< 8cs), and the last three instances (E-G) are during

the transient phase as the flowfield approaches a steady-state condition. Visualization of the canard

and wing vortices is performed by starting the traces near the upper- and lower-surface leading edges

of the wing, and the upper-surface leading edge of the canard.

As the canard deflection begins to increase, minimal initial influence of the canard on the wing

vortex structure is shown (time positions A and B). As the canard deflection approaches 8c _ 7 deg,

time position C shows the initial formation of a leading edge vortex on the wing lower surface..Just

before the canard motion stops at time position D, the wing lower surface vortex becomes more or-

ganized, and the canard leading-edge vortex shows evidence of vortex breakdown. Time positions

E-G show the completion of the vortex structure development while the canard deflection is fixed at

8_ = 8cl = 9.25 deg. The formations of the lower surface vortex on the inboard of the wing and the

upper surface vortex on the outboard wing portion are clearly evident.
Crossflow visualizations of total pressure contours are given in figure 5.10 for the canard and wing

regions. Figures 5.10(a) (c) correspond to time instances A-C from figures 5.9(a)-(c) during the canard

ramp motion. In figure 5.10, the development of the canard vortex and its convection over the wing

surface is observed. Furthermore, the initial formation of the wing lower surface vortex is noted in

figure 5.10(c) (wing region) and correlates with the instantaneous streamlines of figure 5.9(c).

In order to more clearly visualize the development of the wing vortex structure, crossflow total

pressure contours are given in figure 5.11 at the same x/_ = 3.3 for five time positions starting with

just prior to when the canard deflection angle has reached _c_. As time increases, the development of

the canard vortex over the wing and the wing leading-edge vortices on the upper and lower surfaces

are observed. Since the contour levels of total pressure are evenly distributed, the relative strengths

of these vortices are indicated in figure 5.11 as an approximate loss in total pressure at the vortex

cores. Although at slightly different conditions, a qualitative comparison can also be made with the

static canard deflection cases given in figure 3.26: where the canard, wing upper surface and wing lower

surface vortices were also observed in the wing flowfield. As illustrated earlier in figures 5.2 and 5.6 of

section 5.1.1, and currently in figures 5.9 and 5.11, the time required for the full development of the

wing flowfield and vortex structure allows for the transient increases observed in the total lift of the

configuration.
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5.2 Canard Pitch Oscillation

The investigation of the unsteady aerodynamics of canard pitch oscillations can lead to an evaluation

of the dynamic stability characteristics of the moving canard control surface. Furthermore, previous

studies (refs. 26-28) have experimentally examined the potential of using canard oscillations to promote

wing performance in extreme maneuver conditions. Specifically, these studies explored the potential of

using high frequency canard oscillations as an active control method of delaying wing stall. Although

unsteady experiments may be able to evaluate the effectiveness of such techniques, computational

simulations are required to fully understand the physics of such unsteady flow phenomenon and. more

importantly, to optimize the use of the oscillating canard. This section will present the results of canard

pitch oscillations at the pre-stall conditions of interest in this study.

Canard pitch oscillation simulations are performed at a pitch amplitude (Ac) of 2 deg, and reduced

frequencies (kc) of 1.0. Mean angles of attack for the configuration of 4.27 deg and 8.00 deg are

presented. As with the rigid-body oscillation studies of sections 4.2 and 4.3. high values of reduced

frequencies are simulated to minimize computational expense.

5.2.1 Unsteady lift and pitching moment

The effects of the oscillating canard on the configuration lift and pitching moment characteristics

are given in figures 5.12(a) and (b), respectively, as a function of non-dimensional time (a_'ct) for the

configuration at a = 4.27 deg. The canard deflection angles with respect to a:ct are also indicated

in the figure. From figure 5.12. it is evident that the time histories of the canard lift and moment are

closely in-phase with the canard oscillation. On the other hand, the wing contributions to both lift

and moment exhibit significant shifts in phase and appear to be the primary contributor to the phase

differences between the canard motion and the total lifts and moments. These effects of the oscillating

canard on the canard and wing contributions are consistent with the earlier findings of the canard

pitch-up ramp motion studies (see. 5.1). which also found almost instantaneous canard response to

changes in deflection angle _..

Figure 5.13 shows that a periodic time response is achieved within two cycles of canard oscillations in

spke of the fact that the wing responses are due to the canard motions rather than direct wing motions.

Note also that the significant contributions of the wing responses to the overall phase differences in

both lift and moment are observed in figures 5.13(a) and (b), respectively. In fact, figure 5.13(b) shows

tha_ the phase differences between the overall pitching moment and the canard deflections are almost

entirely due to the wing response. Furthermore, it is significant to observe that the relatively small

amplitude oscillations of the canard produce relatively large wing responses in pitching moment. The

amplitude of wing responses due to the pitch oscillations are comparable to those resulting from the

much larger canard deflect ions of the canard ramp motion cases (fig. 5.8). Correspondingly, the wing

lift response due to the canard oscillations in figure 5.13(a) also exhibits a relatively high amplitude

for the small canard deflection angles. These results indicate that the high frequency nature of the

canard oscillations has a significant influence on the wing response characteristics, even at relatively

small pitch amplitudes.

Similar trends are observed for the lift and moment characteristics of the configuration at

= 8.0 deg. Figures 5.14 and 5.15 show that the canard oscillation produces nearly in-phase re-

sponses for the canard region and significant phase shifts for the wing responses in both lift and pitching

moment. Amplitudes of the total configuration as well as the canard and wing region responses are

comparable to the lower angle-of-attack case.
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5.2.2 Canard and wing vortex structures

Visualizationsof the canardandwingvortexstructuresaregivenin figures5.16and5.17.respectively,
for thecanardoscillationcaseof c_ = 4.27 deg. For both figures, crossflow visualization of normalized

total pressure contours are shown at different w'ct values, as indicated in the legend at the end of each

figure. Figure 5.16 shows that the strength and location of the canard leading-edge vortex changes

throughout the cycle. Early in the cycle (a-c), the canard vortex appears weaker and is increasing in

strength. Near the middle to the end of the cycle (d-i), the canard vortex appears to move inward

towards the root of the canard and then begins to weaken again. The effect on the wing of these

changes in the canard vortex characteristics is shown in figure 5.17. Over the stationary wing surface,

the convected canard vortex changes in strength, location and structure throughout the oscillation

cycle. It is noted from figure 5.17 that. the wing vortex strength and location appear to be relatively

unchanged. However, further analysis of the wing surface pressures shows that the characteristics of

the wing vortex are indeed affected by the oscillating canard.

Figure 5.18 illustrates the effect of the oscillating canard on the wing surface pressures at the

55 percent and 75 percent senfispan stations. Each streamwise pressure distribution curve represents

the instantaneous pressure on the wing at the same corresponding time instance (A, C, E, G. and I)

indicated earlier in figures 5.16(a)-5.17(i). On the inboard portion of the wing, the canard oscillation

clearly affects the formation of the wing leading-edge vortex. The effect on the lower-surface pressure

distribution near the leading edge indicates that the local effective angle of attack of the wing is changing

as well. Further outboard, figure 5.18 shows that there are significant changes in the upper-surface

pressure peaks which are generated by the wing vortex. Starting from the beginning of the cycle, the

suction peak weakens and appears to move aft (from A-C). Later in the same cycle, the peak moves

forward towards the leading edge as suction again increases near the end of the cycle (E-I). Although

the wing upper surface at T5 percent semispan shows considerable change, the local effective angle

of attack at this station is observed to be relatively constant from the nearly constant lower surface

leading-edge pressures.
The effects of the canard oscillation on vortex structures are given in figures 5.19 and 5.20 for the

configuration at a. = 8.0 deg. At. these conditions, the amplitude of the canard oscillations is a

smaller fraction of the mean angle of attack. Therefore, over the canard region (fig. 5.19), the changes

in the canard vortex characteristics appear to be more subtle than for the earlier a, = 4.27 deg case.

However, results over the wing in figure 5.20 show that the convected canard vortex does indeed change

in strength and structure throughout the canard oscillation cycle. Similar to the earlier c_ = 4.2T deg

case, figure 5.21 shows that the wing vortex at c_ = 8.0 deg, as characterized through surface pressures,

is also affected by the canard oscillations. The local effective angle of attack of the wing is again most

influenced in the inboard portion of the wing.
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Figure 5.1. Schematic of canard pitch-up ramp motion from _c, = 0 ° to/_c_ = 5 ° and 9.25 °.
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Figure 5.2. Time history of unsteady lift and pitching-moment responses due to the canard

pitch-up ramp motion for the configuration at a = 4.27 °. ._I_ = 0.85, Ap¢ = 0.05, 6c, = 0°,

6_i = 5°, Ree = 2.82 million.
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Figure 5.7. Comparison of crossflow total pressure contours between the steady and un-

steadv cases at various streamwise locations for the configuration at a = 8.0 ° and 6¢ = 5.0 °

(unsteady case given at the instantaneous _¢ for t = 5.0°). Moo = 0.85, Ape = 0.05,

/_¢, =0 °,_c I =50 ,Ree = 2.82 million.
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a) Time Instance A: t = 2.33 deg; 8c = 2.33 deg

b) Time Instance B: t = 4.66 deg; _c = 4.66 deg

c) Time Instance C: t = 7.00 deg; 5c = 7.00 deg

d) Time Instance D: t = 9.19 deg; 7_c= 9.19 deg

Figure 5.9. (Part-l) Upper and lower surface instantaneous streamlines for the canard

pitch-up ramp motion from be, = 0° to 6_ = 9.25 ° . 3I_ = 0.85, a = 4.27 ° , ,4pc = 0.05,

Ree = 2.82 million.
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Figure 5.9. (Part-2) Upper and lower surface instantaneous streamlines for the canard

pitch-up ramp motion from de, = 0° to _cI = 9.25 °. M_ = 0.85, _ = 4.27 °, Ape = 0.05,

Re: = 2.82 million.
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Figure 5.10. Crossflow total pressure contours over the canard (x/e = 2.0) and wing (x/e =

a.a) during the canard pitch-up ramp motion from 6c, = 0 ° to _5cl = 9.25 °. Moo = 0.85,

a = 4.27 °, Ape = 0.05, Ree = 2.82 million.
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Figure 5.11. Crossflow total pressure contours over the wing (:r/5 = 3.3) after the canard

pitch-up ramp motion from _c, = 0 ° to gc_ = 9.25 °. M_ = 0.85, a = 4.27 ° , Apc = 0.05,
Ree = 2.82 million.
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pitch oscillation motion for the configuration at a = 4.270 . M_ = 0.85, Ac = 2.0 °,
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Figure 5.13. Lift and pitching-moment curves for the configuration undergoing canard pitch
oscillation motion at a = 4.27 °. M_ = 0.85, Ac = 2.0 °, kc = 1.0, Ree = 2.82 million.
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pitch oscillation motion for the configuration at o = 8.0 °. M_ = 0.85, Ac = 2.0 °, kc = 1.0,

Ree = 2.82 million.
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115



: 138

A

a) _c t = 0 deg. d) _c t = 133.2 deg.

b) O_ct = 43.2 deg. e) O_ct= 180.0 deg.

1 C.mKa _ Vortex (0

J

c) O_ct = 90.0 deg. f) ¢Oct = 223.2 deg.

Figure 5.16. (Part-l) Crossflow total pressure contours over the canard (z/_ = 2.0) for the

canard pitch oscillation motion at c_ = 4.27 °. Moo = 0.85, Ac = 2.0 °, kc = 1.0, Ree = 2.82
million.
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Figure 5.16. (Part-2) Crossflow total pressure contours over the canard (x/6 = 2.0) for the

canard pitch oscillation motion at c_ = 4.27 °. M_ = 0.85, Ac = 2.0 °, kc = t.0, Ree = 2.82

million.
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Figure 5.17. (Part-l) Crossflow total pressure contours over the wing (x/c = 3.5) for the

canard pitch oscillation motion at c_ = 4.27 °. ,1I_ = 0.85, Ac = 2.0 °, kc = 1.0, Ree = 2.82
million.
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Figure 5.17. (Part-2) Crossflow total pressure contours over the wing (z/? = 3.5) for the

canard pitch oscillation motion at _ = 4.27 ° . M_c = 0.85, Ac = 2.00: kc = t.O, Ree = 2.82

million.
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c) O_ct = 90.0 deg. f) C°ct = 223.2 deg.

Figure 5.19. (Part-l) Crossflow total pressure contours over the canard (z/_ = 2.0) for the

canard pitch oscillation motion at a = 8.0 °. M_ = 0.85, .,tc = 2.0 °, kc = _.0, Rea = 2.82

million.
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Figure 5.19. (Part-2) Crossflow total pressure contours over the canard (x/_ = 2.0) for the

canard pitch oscillation motion at a = 8.0 °. M_ = 0.85, Ac = 2.0 ° , kc = l.O, Ree = 2.82
million.
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Figure 5.20. (Part-l) Crossflow total pressure contours over the wing (x/O. = 3.5) for the

canard pitch oscillation motion at a = 8.0 ° . Moo = 0.85, Ac = 2.0 ° . kc = 1.0, Ree = 2.82

million.

123



g)COct= 270.0 deg.

LEGEND

3

.......-..........._.........; ..........7...........-..........
-1

-2

-a_................... o i ....
0 60 120 180 240 300 360

O_t (deg)
C

h) (Oct = 313.2 deg.

i) Oct = 360.0 deg.

Figure 5.20. (Part-2) Crossflow total pressure contours over the wing (:c/_ = 3.5) for the

canard pitch oscillation motion at a = 8.0 °. Moo = 0.85, Ac = 2.0 °, kc = 1.0, Ree = 2.82
million.
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Figure 5.21. Effect of canard pitch oscillation motion on wing surface pressures at a = 8.0 °.

Moo = 0.85, Ac = 2.0 °, kc = 1.0, Flee = 2.82 million.
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Chapter 6

Conclusions

A detailed numerical investigation has been performed for the steady and unsteady fiowfield about a

static and dynamic canard-wing-body configuration. Computational technology has been developed

and enhanced to perform a series of time-accurate Navier-Stokes sinmlations about the close-coupled

canard configuration. Tile computational methods presented in this study are capable of accurately

predicting the unsteady viscous fiowfield for the canard-wing-body configuration with various fixed

canard positions and with moving canards.

6.1 Validation of the Computational Method

The accuracy of the simulations is demonstrated by extensive comparisons with available stead)' and

unsteady experimental data. Favorable comparisons with steady-state experimental surface pressures,

forces, and moments for the configuration with various fixed canard positions veri_" that the present

method is capable of accurately predicting the steady-state flowfield about such configurations. For

low angles of attack (up to approximately 6 deg), a relatively coarse (baseline) grid was found to be

effective in accurately computing surface pressures, forces and moments. However, a more refined

grid was shown to be critical for higher angle-of-attack cases where boundary-layer separation, strong

shocks, and vortex breakdown dominate the flow characteristics.

Comparisons of experimentally measured dynamic stability parameters with computations of the

configuration undergoing pitch oscillations also demonstrate accurate predictions of the unsteady

canard-wing-body flowfield. An analysis of the effect of reduced frequency was also performed and

demonstrates the ability to accurately predict dynamic stability with considerably higher computa-

tional reduced frequencies. As a result, significant reductions in required computational resources

allows the use of state-of-the-art computational fluid dynamics (CFD) for the prediction of dynamic

stability about complex canard configurations. For those cases where experimental data was unavail-

able, a spatial and time-step refinement study was conducted to veri_ " the convergence of the unsteady

computations.

6.2 Canard-Wing-Body Steady Flowfield

For the steady-state mid-canard flowfield, the canard-induced downwash was found to weaken or delay

formation of the wing leading-edge vortex. At a _ 4 deg, the formation of the wing leading-edge vortex

is delayed to the canard-tip span-line of the wing. At a _ 8 deg and 12 deg, a weakened leading-edge

vortex was observed on the inboard portion of the wing. The wing vortex on the outboard span was
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shown to be influenced by both the canard vortex and the aforementioned canard downwash. The

presence of the canard was also shown to eliminate the wing vortex breakdown which was evident in

the canard-off case at c_ _ 12 deg. These results confirm and provide an explanation for the canard's

potential for delaying wing vortex breakdown which has been observed in experimental studies.

At low to moderate angles of attack, the fixed high-canard configuration exhibits improved steady-

state lift and drag over the mid-canard case. However, due to the interaction between the low-canard

vortex and the wing surface, unfavorable lift and drag characteristics for the low-canard configuration

are evident as angle of attack is increased. At low angles of attack, the low-canard vortex passes under

the wing surface and can induce lower pressures on the wing lower surface. At higher angles of attack,

the canard vortex is split by the wing surface into upper and lower vortices. Toward the outboard

wing, the wing vortex induces a large inward movement of the canard upper-vortex.

When the fixed canard is positively deflected, a pronounced effect on aerodynamic performance

parameters is observed, particularly for wing lift and configuration pitching moment. Visualization of

the canard-wing-body flowfield shows a complex flow structure consisting of several interacting canard

and wing vortices. Specifically, at significantly large canard deflection angles, effective wing angle of

attack transitions from negative (inboard) to positive (outboard) values causing the formation of both

lower and upper surface leading-edge vortices. Furthermore, due to the strength of these vortices,

secondary vortices are present indicating strong viscous effects.

These findings both correlate with, and provide an explanation for, much of the experimental

results presented in the literature. These results also suggest that detailed investigations are required

to determine optimum canard positioning for given configurations. The accurate prediction of such

steady-state effects are needed in the design and optimization of future close-coupled canard aircraft.

6.3 Canard-Wing-Body Unsteady Flowfield

To understand the predicted unsteady flowfield, an analysis of the unsteady canard-wing-body aero-

dynamics with emphasis on the canard-wing vortex interaction was performed. Dynamic conditions in

this study included rigid-body pitch-up and pitch oscillation motions of both the entire configuration

and the independent canard.

For the entire configuration undergoing pitch-up ramp motions, computations with and without the

canard showed increased dynamic lift and improved lift-to-drag ratios for the configuration with the

canard. Results also indicated the strong influence of the relative positioning of the canard and wing

to the pitch axis. For the canard located forward of the pitch axis, the ramp motion at high pitch rates

decreases the effective angle of attack of the canard and delavs the formation of the canard vortex.

However. as angle of attack increases and the ramp motion ends, the canard vortex and its interaction

with the wing develops rapidly. As time increases, the configuration flowfield approaches a relatively

steady solution.

During pitch oscillations, the fixed canard was found to have a pronounced effect on the unsteady

aerodynamics associated with the wing-body configuration. Significant changes in amplitude and shifts

in phase of the lifts and moments were observed with the addition of the canard. Using the results

of the numerical pitch oscillation simulation, an analysis of the time histories of normal force and

pitching moment coefficients led to the prediction of longitudinal dynamic stability parameters. These

parameters were utilized to evaluate the effects of the canard on dynamic stability. The current study

found that the presence of the canard increases the pitch damping of the configuration and decreases

the oscillatory stability.
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The current computationalmethodhasbeenfurther extendedto investigatetile unsteadyaero-
dynamiceffectsof movingcanards.Both canardpitch-up rampand pitch oscillationmotionswere
simulatedusingthe developeddynamicgridding,zonalinterfacingand boundaryconditioncapabili-
ties. Thecanardpitch-uprampmotionsimulationshowedthat.a transientincreasein overalllift was
the direct result of the time delay'(or lag) in wing responsefrom the convectionof the canardef-
fects.Furthermore,the vortexanalysesillustratedtheunsteady,natureof the canardandwingvortex
structures,particularly with respectto theformationof the upper-and lower-surfacewingvortices.

The investigationof canardpitch oscillationsdemonstratedthat highfrequency,smallamplitude
oscillationscanproducesignificantlift and momentresponsesof the wing. It wasalsoobservedthat,
similar to the canardrampmotionresults,the canardresponseswerenearlyin-phasewith the canard
motion while the wing responsesshowedsignificant,phaseshifts. Although the vortex visualizations
indicatedminimalchangesin wingvortexcharacteristics,analysesof thewingsurfacepressuresshowed
significantchangesin the localangleof attackon theinboardwingandoverallchangesin wing vortex
influences.

6.4 Recommendations for Future Studies

The current study has characterized the complex steady and unsteady aerodynamic flowfield of a canard

configuration, including effects of both fixed canards at various positions and independently moving
canards. Future studies should focus on utilizing the tools and findings which have been presented

to optimize the use of canards for both cruise and maneuver aerodynamic performance. Such studies

could include, but are not limited to:

1. Optimization of fixed canard positions (vertical, longitudinal, and deflection) for trimmed cruise

performance;
2. Development of control-law based canard motions for enhanced maneuver performance:

3. Investigation of non-symmetric canard positions or motions for lateral stability' and control;

4. Investigation of high-frequency canard oscillations for improved wing performance in pre- and

post-stall environments;
5. Evaluation of complete static and dynamic stability characteristics of a canard configuration for

stability, and controls applications; and

6. Coupled controls-fluids simulation of a dynamic maneuver condition.
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Appendix A
Governing Equations

(Note: For further details o.f the governing equations, numerical algorithm, and turbulence modeling,

the reader is referred to ref. _3 and the appropriate original publications which are cited.)

The governing equations solved in this study are nondimensionalized by free-stream quantities and

are transformed to the computational domain (4, r], _) so as to preserve the strong conservation form

of the equations. The strong conservation law form of the Navier-Stokes equations are used for shock

capturing purposes. The equations in Cartesian coordinates in non-dimensional form can be written

as OQ OE OF OG OE. aF. OG. (A- 1)
+ 0:- W

where

with

pupu 2 + P

E = [ puv

[ p_w
L u(e ÷ p)

[;'1

pv

[ puv

K = ] pv 2 + p

I pyre

lOl i°"rzz 7z_j

,3_ L ,3.

pw 1puw

O = I pvu, I'

I p_'2 + p |
k_(_ + p) J

0

_z

G. = Re -1 Ty:

T~_

~

(A - _'2)

7zx = A(ux + vy + w_) + 2pux

_-_y = A(uz+vy+w=)+2ttvy

7zz = A(uz + vy + wz) + 2#wz

7y: = ,%y=p(v:+wy)

3z = 2,'nPr-l OzeI

_3v = ?npr-lOyez

k_ Z

eI =

+ UTxx + vTzy + w_-zz

+ uryz + vT-yy + wT:y=

?_pr-lOzei + uTzx + v'rzy + WTzz

ep -1 _ 0.5(u 2 + v 2 + w 2)

(A 3)

The Cartesian velocity components u, v. and w are nondimensionalized by a_c (the free-stream

speed of sound), density p is nondimensionalized by poc: ; and the total energy per unit volume c is
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nondimensionalized by '_p_cagc.. Pressure can be found from the ideal gas law as

p = (:,- 1)[_- 0.5p(_?+ _,2+ _,._,)] (A - 4)

and throughout 2/ is the ratio of the specific heats. Also, _ is the coefficient of thermal conductivity,

# is the dynamic viscosity, and A from the Stokes' hypothesis is -2/3tL. The Reynolds number is Re
and the Prandtl number is Pr.

To enhance numerical accuracy and efficiency and to handle boundary conditions more easily, the

governing equations are transformed from the Cartesian coordinates to general curvilinear coordinates
where

_- = t

= ¢(z,y,z,t)

,7 = _(z,y,:,t)

¢ = ¢(_,y,_,t)

(A --5)

The resulting transformed equations are not much more cornplicated than the original Cartesian
set and can be written in nondimensional form as

0
0 6 a _ o(F_pv)+ (d-G,)=0 (A-6)

where

F = ,]-1

p'u

pV ]
PUI'/i + rlxp
pvV + r]yp [ ,

ptuV + qzp ]

(e + p)V - rhpJ

pvU + _yp _ .

pwU + (zp I
(e+ p)u - _pJ

pW ]puI:V + #zp

¢ = J-_ pvW + ¢yp I
pwW + _=p I

(c + p)w - _tpJ

(A - 7)

and

U = 4t+(xU+4_v+_y

V = 7h + rlxtt + rlyv + r]:u_

IV = _t +_xu +@v +C:w

(A - s)

where U, V. and W are contravariant velocity components written without metric normalization. The

viscous flux terms are given by
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i_u = J-1Re-1

F_, = j-1Re -1

G_ = j-1Re-1

0

c + (:Tx:[xT_x + _y_-zy

[ orlzTzx + r]yTxy + _Tzrzz

I r]xTyx -[- 77yTyy + _zTYz

[ r]x%z + 77y%y + qzT:=

0

(x-r_:_+ (,Sx_, + (:Tx:

(A - 9)

where the components of the shear-stresstensor and heat-flux vector in nondimensional form were

given in equation A-3. Here, the Cartesian derivatives are expanded in _, rh ( space via chain-rule

relationssuch as

"ax = _zu_ + _xu,7 + (zu(

Finally. the metric terms are obtained from chain-rule expansion of x(, yn, etc., and soh;ed for Ix, _y,

[:c = J(y_z( - yCz,1) fix = J(z_y( - y_z()

_y = .I(z,Tx ( - x,Tz() _?y = J(x_z( - x:z_)

(_ = .](x,_z_, - x_z,_) tit = -x_-rlx - y_-r]_ - z_

(z -- J(x_y,_ - y_xv) (t = -Xr_x - y,-(y - zT(z

(A- 10)

etc.. to give

and

.]-_ = x_y_z( + x(y_z,_ + x,_y(z_ - x_y(z,_ - x,_y_z( - x_y,_z_

In high Reynolds number flows, the viscous effects are confined to a thin layer near rigid boundaries.

In most cases, there are only enough grid points to resolve the gradients normal to the body by clustering

the grid in the normal direction, and resolution along the body is similar to what is needed in inviscid

flow. As a result, even though the full derivatives are retained in the equations, the gradients along the

body are not resolved unless the streamwise and circumferential grid spacings are sufficiently small.

Hence, for many Navier-Stokes computations, the viscous derivatives along the body are dropped. This

leads to the thin-layer Navier-Stokes equations.

The thin-layer model requires a boundary layer type coordinate system. For example, if _ and r]

directions are along the body and the viscous derivatives associated with these directions are dropped,

the terms in ( only are retained and the body surface is mapped onto a constant ( surface. As a

result, equation A-6 simplifies to

O-tO -t- COck -t- Or_] _ "1- ()<O ---= I{e-lO<s (A - 11)
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where

0

,(Cx_+ ¢_+ (2)_ + (,/3)(_=_ + (_v<+ Q_,_)_
#(_ + _ + (2.)v_ -4-(#/3)(_zu( + @v_ + (zw;)_y

#(C_ + C_ + _2)u'¢ + (#/3)(¢xu4 + Cvv( + (:w;)(_

{(C:+ 4_+ C_)[o.su(__ + _,2+ w_);
+.P,-_(=,'- 1)-_(a2)_]+ (./3)(C=_,+ _, + ¢__.)
x (Gu_ + _yv¢ + Gw¢)

(A- 1!)

To generalize the coordinates of complex geometries, the thin-layer approximation can be made in

all three coordinate directions and, as a result, only cross-derivative viscous terms are neglected. It

should also be emphasized that the thin-layer approximation is valid only for high Reynolds immber

flows. ¥_rv large turbulent eddy viscosities would invalidate the thin-layer assumption.
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As mentioned in section 2.1. the algorithm used to solve the Reynolds-averaged Navier-Stokes equa-

tions is due to Beam-Warming. The basic Beam-Warming algorithm is first- or second-order accurate

in time and second- or fourth-order accurate in space. The equations are approximately factored (spa-

tially split) which, for a given time iteration, reduces the process to three one-dimensional problems.

Due to the second-order central-difference operators employed, the algorithm produces block tridiag-

onal systems for each spatial dimension. The stability and accuracy of the numerical algorithm is

described by Beam and Warming (ref. 40). According to the linear analysis, the numerical scheme is

unconditionally stable in two dimensions but. in actual practice time step limits are encountered because

of the nonlinear nature of the equations. However, this limitation is much less stringent than compa-

rable explicit schemes. In three dimensions the algorithm is unconditionally unstable, but stability is

maintained by the addition of artificial dissipation terms.

The finite-difference algorithm due to Beam and Warming applied to equation A-11 results in the

following approximate factorization:

(I + h6ofl" + D#2))(I + h6_B" + D;_2))

× (I + h6(C n - hRe-16<,J-IJ_)InJ + D#")))/S@ ' =/_,z (B - i)

= -_7(&E _ + 6_F _ + 6¢G _ - Re-16(S ") - D('_)#"

where 6 is the central-differenceoperator and h and V are forward and backward-difference operators,

C._£..

,i ¢ ___Q [Q(_ + A_, _, <) Q(_, _, <)]//_ (B - 2)

v,_© = [Q(_, _, () - 0(_ - z_, _, <)]/_

Indices denoting spatial location are suppressed and h = /XT corresponds to first-order time-
n(2) r)(2)

accurate Euler Implicit and h = A_-/2 to second-order time-accurate Trapezoidal Rule. _,_ , _'r/ ,

and 0 {2) _- arc the implkit m_d n<;) is the explicit, smoothing operator which are given in detail in

ref'(,r(ul(:(_ 43.

The .lacobian matrivt's :t"'. B r'. and C" are obtained by linearizing the flux vectors/_. F'. and 0"

in time such that

139



k,,+:= k-+ A_(6"+I_ @) + o(_ 2)

k"+_ = k_+ B'(<b+_- ©')+ O(_#')

¢,,+_= ¢_ + d_(6"+__ %_)+ o(_ 2)

(B- 3)

where indices denoting spatial location are suppressed again and

.4- OE _9- Of" d- O¢ (s-4)
od' 06' o<}

are the flux Jacobian matrices. These flux Jacobians and the viscous coefficient matrix ifi. which comes

from the time linearization of the viscous vector _n+l, are documented in reference 43.

Block tridiagonal-matrix inversions constitute the major portion of numerical work associated with

the standard Beam-Warming algorithm. Equations A-6 are a coupled set of five equations and thereby

produce a (5 × 5) block-tridiagonal structure for the implicit operators of equations B-1. The diagonal

version of the standard algorithm due to Pulliam and Chaussee (ref. 41) overcomes this difficulty. In

this algorithm, rather than inverting block-tridiagonal matrices in each direction, scalar pentadiagonal

matrices are inverted. This is computationally more efficient.

The Jacobian matrices..4, /_, and C, have a set of eigenvalues and a complete set of distinct

eigenvectors. Sinfilarity transformations can be used to diagonalize A, 19. and C_

._ : ruij) -1, _9= r,,i,,r,7', ¢ = r<i<r[' (B - .5)

where

h( = D[U, U, U. U 4- c(_'2z 4- _; 4- _2)1/2 g - c(_; 4- _; 4- (2)1/2]

:;b, : D[V.I<V.V+c(r/_+rl_+_;) -, - "+r/_+U]) 1/-°]

,_i( : D[[I". _'I;, 1'_: -[- c(_'; 4- ¢; 4- <;)1/2 l,i + - c((_; 4- _F 4- <2)1/2]

(B 6)

where c is the speed of sound (c _ = O'P/P), and for example :_ reads as

^

A_ =

U 0 0 0

0 U 0 0

0 0 U 0
• 2 ')0 0 0 c,_+c(_+_ +_)_/-_

0 0 0 0

° 10

0

0

C__ c(_+_2+_?)_./2

(B - 7)

The similarity transformation matrices [/_, Tn, T¢ and their inverse matrices are given in reference 43.

Relations exist between T_, T_, and [/_ of the form

Z_.r : zclzu, _<_-1 : z_-lz( ' /° = z£-lr(, /D-I --_ _)-lZr; (B - 8)

where
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T_IT/=

77_ 1 m2 m3 -- #rn4 #m.1

--TFt 2 Yrl 1 Wt4 _/7T/,3 --/2 7n, 3

--77_3 --Yf_4 ml --ttm2 _17_2

#rn4 -#m3 ttrno_ p2(l+ml) #2(i-mI)

-#m4 /m_3 -#m2 S(1 - ml) #2(1 + re,l)

(B - 9)

After applying the similarity transformations of equation B-5 and identities given in equation B-S into

equation B-1 and exchanging the smoothing operators with new ones, the diagonal form of the standard

algorithm reads

Ze(I + h_<_._ - hDil_,)_'(I + hS,TA,7 - hDil,7)P(I + h@_.( - hDil()Z_l&@ _ = R" (B - 10)

The spatial accuracy of the standard and diagonalized algorithms for steady-state problems (i.e.,

/kQ _ --, 0 as _ _ _c) is determined by the type of differencing in forming/_. Since the modification

that produces the diagonal algorithm does not effect /)_, both schemes wilt have the same steady-

state solution assuming that the steady-state solution is independent of the convergence path: i.e., that

the steady state is unique. For unsteady simulations, care must be exercised in ensuring small enough

time-step sizes for accuracy. When the diagonalized algorithm is used, the author strongly recommends

time-step refinement studies to evaluate temporal accuracy of the unsteady simulations.
For constant coefficient matrices A, /), and C, the diagonal algorithm reduces to the standard

algorithm because the eigenvector matrices are also constant. Therefore, the linear stability analysis

of Beam and Warming also holds for the diagonal algorithm.
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Turbulence Modeling

Tile apparent turbulent stresses in compressible flow can be written as

! ?l !
(Tij)tur b = --pU i j

(C-l)

and the apparent turbulent heat flux components as

8
-(V. q)tu,b - (pqvT'u}) (C - 2)

axj

In order to predict turbulent flows by applying finite-difference methods to the Reynolds equations,

it is necessary to make assumptions for the terms in equations C-1 and C-2. Boussinesq (1S77) suggested

that the apparent shearing stresses might be related to the rate of mean strain through an apparent

turbulent or "eddy" viscosity given in incompressible flow by

, , fOu,_ O'uj

Closure for the Reynolds heat flux-term, pcpT_uj is treated in algebraic models by a form of Reynolds

analogy. The Reynolds analogy is based on the similarity between the transport of heat and momentum

and applied to the apparent turbulent conductivity in the assumed Boussinesq form

or (c - 4)
= O.%-j

Experiments reveal that the ratio of the diffusivities for the turbulent transport of heat and momentum

which is called the turbulent Prandtl number, PrT = prCp/kr, is a well-behaved function across the

flow and in algebraic models is generally taken to be 0.9. Using the turbulent Prandtl number, the

turbulent heat flux is related to the turbulent viscosity and mean flow variables as

_ cp/_T OT
-_r'_} - _ O_j

(c - 5)

In the Baldwin-Lomax model the effects of turbulence are sinmlated by replacing the molecular

coefficient of viscosity PM with the effective viscosity #M + _T in the stress terms of the laminar

Navier-Stokes equations. In heat flux terms k/c_ = ff/Pr is replaced by #/Pr + pz/Prr.

The Baldwin-Lomax model is a two-layer algebraic model in which PT is given by

{ (_r)_._,, y < y_o_o,_, (c - 6)#T = (PT)o_t_, y >_ y_o_o,_

where y is the normal distance from the wall and Ycrossover is the smallest value of y at which values

from the inner and outer formulas are equal. The eddy viscosity coefficient in the inner layer is based

on the Prandd mixing-length theory
(,T)_.,,_,- = P'_21_' I (C - 7)

The parameter _ is the mixing length corrected with the Van Driest damping factor to account for the

laminar sublayer
t =/_y [1 - ezp(-y+/A*)] (C - S)
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wherek = 0.4. A + = 26. and la_,I is tile magnitude of the vorticity given by

/

and

(c- g)

9+ = _'_'-------_Y= _Y (c- 10)
#w #w

The eddy viscosity coefficient in the outer layer is based on the distribution of vorticity which is used

to determine the length scale and is given by

([ZT)o,ater = K Ccp p FWAKEFKLEB(g) (C- 11)

where K = 0.0168 is the Clauser constant and Ccp= 1.6 is an additional constant. FWAKE is found
via

Fw.4KI_ _ = rain or (C - 12)

where CWK = 0.25 and

/ ,3

ttDIF =- (V tt- 4. _,2 4. W2)rnax _ (\/_2 4. t,2 4-ZC2)rnirt (C -- 13)

In equation C-13 the second term is taken to be zero (except in wakes). The quantities Ymaz and Fma_
are determined from the function

F(y) = _1_' I[1- c._p(-y-t-/A-[-)] (C -- 14)

In wakes the exponential term is set equal to zero. The quantity Fm_= is the maximum value of F(y)

that occurs in the profile and Y,_a_ is the value of y at which F,_a_ occurs. The function FKLEB is the

Klebanoff intermittency factor given by

FKLEB(y) = [1

and CKLEB = 0.3.

+ 5.5(CKLEBy)6J -
YMAX

(c - ts)

Although not seen explicitly, tile F/eynolds number enters into the computation of eddy viscosity

through the computation of y+. When the variables in equation C-10 are nondimensionalized, the

following expression is obtained:

y__ /Re _,f_,
= \/ _ _ (c- 16)

In high Reynolds number flows; as Re -- oc, the length scales I and F(y) in the inner and outer

layers go to zero. which result in vanishing values of pr- For more discussion on the Baldwin-Lomax

turbulence model, the reader is referred to the original paper (ref. 44).
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