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Abstract

The goal of this work was to analyze the potential of neural networks and

fuzzy logic methods to develop approximate response surfaces as process modeling,

that is for mapping of input into output. Structural response was chosen as an

example. Each of the many methods surveyed are explained and the results are

presented. Future research directions are also discussed.

Introduction

Neural networks and fuzzy logic methods have been enjoying vigorous

developments. They are well suited for development of computable models for

complex processes given sufficient data for the correspondence between input and

output variables of the process at hand. The principal goal of this investigation

was to compare the accuracy of approximation of these two methods on the same

set of data. Fuzzy logic models are limited to only about a half dozen variables

because of computational explosion. The value of these approaches is in cases

where no computable analytic model exists, only experimental data. For this

investigation, in order to generate well controllable data sets, a conveniently

computable set was chosen in the form of the response of a small plane truss with

well known behavior characteristics. The methods are applicable for physical

phenomena for which only experiments can provide reliable data sets. In those

cases fast executing computable models are often still desirable, for example for

optimization. It should be noted that the two methods, neural networks and fuzzy

logic are fundamentally different. The neural networks produce the trained model



as a 'l_lack box" of weights associated with the network topology. The fuzzy logic

methods, on the other hand produce expert rules captioning the behavior of the

system. These rules, in general, can be examined by the experts, modified if

needed, and validated on new data. Another case studied was a model from output

to input to simulate inverse behavior for reverse engineering for which the inverse

of the computable models are not available.

The chosen simple structural example is the well known ten bar truss used

intensively in optimization research and literature. Despite the small number of

variables the behavior characteristics of statically indeterminate structures, the

nonlinear dependence of internal load distribution on relative member size, is

sufficiently represented.

The ten-bar truss is depicted in Figure 1. The data for neural networks

(NN) and fuzzy logic (FL) methods were supplied in the form of numerical input-

output pairs generated by the finite element method.
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Figure 1. Ten bar truss
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The following three types of NN are considered. The linear feedforward



network, the radial basis function (RBF) network, which although needed more

time for training than the linear, gave best results in terms of error measures, and

the multi-layered feedforward network using backpropagation.

In choosing the fuzzy system we had to deal with the fact that most of the

FL applications described in the literature are related to control systems, and

often involve just a few input variables. In addition, these methods use heuristic

rules which could hardly be generalized. As a general characteristic, FL needs

large training sets and training times longer than NN. Also, with the exception of

the Sugeno type systems fuzzy logic methods produced, on average, larger errors

for the case problem studied. On the other hand, the Sugeno type fuzzy system

was not only the best from all FL methods investigated but was also comparable

with best results achieved by NN in terms of errors. The drawback of the Sugeno

type fuzzy system, however, is the use in the training phase of a very large matrix

which needs to be inverted. We were able to circumvent this problem by reducing

the number of IF ... THEN rules by clustering the outputs, and partitioning the

input space accordingly.

A word on the method of calculating the errors. In order to compare the

results the following formula was used for error evaluation. Namely, for each point

the error was calculated as an overall error:

IF_, (yi-zi) 2%= _:Y] l o o Yi - the target value
z_ - the output value

This method of calculating the error may be misleading in the sense that the

overall error can be small even though individual errors may be relatively quite

large.

Neural Networks Methods

The approximation problem can be stated as follows : Given a continuous

function f(X), defined on a set X, and an approximating function, F(W,X),



continuous in W and X, determine W such that the difference between f(x) and

F(W_:) is minimal.

Depending on the choice of the approximating function several cases [1] can

be considered :

1.- the classical linear case

F(W,X) = W * X

where W is an m-by-n matrix and X is an n-dimensional vector. It corresponds to

a feedforward network without hidden units.

2.- the nested sigmoids scheme which can be written as

F(W,X) = o( Z w,,a ( Z wia (... a( Z wja ) ... )))

where o is a sigmoid function. It corresponds to a multi-layer network of neurons

that sum their inputs with weights w n, w_, wj, and then perform a sigmoidal

transformation of this sum. This type is used with the backpropagation learning.

Another approach to an approximation problem is to use interpolation [2] :

Given N different input points { x_ ,i=l, ... N} and N output points {Yi ,i=l, ...N} find

a function F satisfying the interpolation conditions

F(x,) = Yi i=1, ..., N

The radial basis function method belongs to this category. It requires choosing

function F of the following form •

F(x) = ]_ aif(llx-xi IV + _ bjgfx) m < n,

' J i=1, ... N j=l, ... m

where f is a continuous function, called radial basis function, II ° II is the Euclidean

norm, { gi }__1....m is a basis of the linear space of algebraic polynomials of degree

at most k-l, with k given, and a_ and bj are scalar coefficients.



1. Linear feedforward network

It is the simplest neural network which can be solved directly by using

matrix algebra. Suppose we have a set of input-output pairs, X i - Yi, i = 1, ... N,

where Xi e Sn and Y_ e _m. Then the network is described by the equations :

W*Xi = Yi i= 1, ... N

where W is the weight matrix of dimension m*n which can be found using the

least square error method :

W= Y * Y_ *( XXt) " _

where X = [ X_ X2 ... XN ] is an n-by-N matrix of input vectors and

Y = [ Y1 Y2 ..- YN ] is an m-by-N matrix of output vectors.

This method is good for approximating linear or quasilinear functions. It is

computationally efficient for moderate values of N. A drawback of the method is

the possibility of X X t being singular.

2. Multi-layered network with sigmoidal units

2.1. Gradient descent learning.

The sigmoidal transfer function is given by :

a(x) = 1/(1 + e x)

and has values between 0 and 1. Therefore if the outputs take on different values

we need to scale them to the interval (0,1) and then rescale them back. Instead of

doing that, one can scale the sigmoidal function to the outputs range. For

example, if the output varies between Y_n and Ym_ the scaled sigmoidal function

becomes [3] :

a(x) = Y,_n + ( Y_" Ymin) / (1 + e _)

A neural network with one hidden layer using the above sigmoidal function was

trained using the gradient descent technique.



2.2. Learning using Levenberg-Marquardt algorithm.

This algorithm is a combination of Newton' s method and the steepest

descent method [4]. It is not as powerful as Newton's method but it is better than

the steepest descent. The update of the weight matrix is given by :

dw = (jc j + 11)-1 jt e

where J represents the Jacobian of derivatives of error e with respect to weights

w, I is the identity matrix, and/l is a parameter which controls the search

direction. When/l is zero the Levenberg-Marquardt (L-M) algorithm reduces to

Newton's method and when/t is very large L-M approximates the steepest descent

method. The L-M algorithm requires large memory, however.

3. RBF nevlral network

Radial basis function network can be designed very quickly, especially when

compared with backpropagation networks. There are two different ways of

designing an RBF network [5]. One creates as many neurons as there are training

vectors, and the other finds the smallest network architecture iteratively by

adding one neuron at a time until the error goal is met. In any case, the RBF

network has two layers of neurons, the first one uses the radial basis functions

and the second one is a linear network. The output is given by:

Y = W * F(V'X)

where - W is the augmented weight vector of the output linear layer

- F(X) = exp ( I_X-Ci II2 / 2 a _) is the Gaussian radial basis function with

center C, and spread a.

- V is the weight vector of the first layer

The only parameter to be specified is the spread constant. If it is chosen too small

the ability of the network to generalize decreases. On the other hand, if it is

chosen too big the information content of the training data is lost as all the

neurons will output large values ( near 1 ) for all the inputs.
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Fuzzy Logic Methods

As we have seen neural networks map data points in the input space to

points in the output space. The mapping is point to point. On the other hand,

fuzzy sets perform set to set mapping. This fact is a major difference between the

two techniques and cause of FL computational difficulties. The advantage of using

FL methods is that the generated IF ... THEN ... rules can be understood and

investigated by human experts. The mapping is achieved by first performing point-

to-set ( fuzzily ) conversion of inputs. At the end a set-to-point ( defuzzify )

conversion of the outputs is usually performed.

There are two main categories of fuzzy systems. One is based on the Sugeno

method of reasoning. These models are formed by logical rules of IF (antecedent) ...

THEN (consequent) type that have a fuzzy antecedent part and a functional non-

fuzzy consequent. The second category is based on collections of IF...THEN rules

and use of fuzzy reasoning. In these models fuzzy quantities are associated with

linguistic labels.

In order to develop a fuzzy system one needs to define its three main

components :

- the input fuzzy sets or the antecedents of the rules

- the outputs or the consequents

- the inference mechanism

Unfortunately, there is no general method of constructing a fuzzy system,

and many of them are based on an a priori knowledge provided by a human

expert. In our case, the information is given only in the form of input-output data.

Thus, we shall use the following two approaches to define fuzzy sets. One is to

define a fuzzy set for each point being centered around that point, and the other is

to define equally shaped fuzzy sets covering the entire ranges of the corresponding

variables. The antecedent parts of the rules are represented by input fuzzy sets

and the consequent parts by the output fuzzy sets. There can be several

combinations of inputs and outputs, for instance input fuzzy sets may be defined

for each input point and output fuzzy sets may be equally shaped. An inference



mechanism is related to the way in which the fuzzy sets are defined.

One of the problems, especially when the second approach is used to

construct fuzzy sets is that of completeness of the fuzzy set system. It becomes

critical with the increasing number of input variables.

Let us explain what we mean by completeness. Given a fuzzy set partition

Fil#2,.._o = FilXFi2x...xFi° of a space I = [al,bl]X[a2,bs]x...x[a,,b°] c lR° , we say that the

fuzzy sets form a complete partition on I, if for any x=(xl,x2,...,x o) • I there exists

Fil,i2,.._o such that _j(x)>0 [6]. This requirement of completeness must be

reflected in the set of rules, otherwise the fuzzy sets not covered by any rule are

invisible to the system [7]. For example, consider a simple fuzzy system, with the

input space [0,1] x [0,1] partitioned into fuzzy sets, as shown in Figure 2, and

described by the set of rules:

Rule 1: IF x 1is

Rule 2: IF xl is

Rule 3: IF xl is

Rule 4: IF x_ is

Rule 5: IF x_ is

Rule 6: IF x l is

F n and x 2 is F12 THEN y is G I

F n and x2 is F22 THEN y is G2

F n and x2 is F31 THEN y is G3

F21 and x2 is F12 THEN y is G4

F2_ and x2 is F22 THEN y is G5

F21 and x 2 is F31 THEN y is G 6

As we can see set Fsl is not covered by any rule. Thus, for instance for x_ • [.75, 1]

and any x_, after calculating the membership function of the antecedents for all

the rules we obtain •

Rule2: I_%_._(X)=l_F (x_)Al_F, (x;):oAp._, (x;)=o

Rule3: ,_....(x) --,,. (×_)A ,, (x;): o A ,_. (x;)=o

Rule4: _.... (X) ffi_r.(x_)A_F. (x2)=oA_F. (x2)ffiO

Rule5: _,....(x):_,. (x,)A_. (x,):oA_,. (x,)=o

Rule6: _,.....(X) : _,..(x,)A _F..(X.): o A _,..(x,)=0
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In terms of fuzzy rules, the completeness requirement may be stated as follows •

for any value of the input variable the antecedent part for at least one rule must

be nonzero.

Fll

o

F21 F31

.25 .5 .75 1

F12 F22 F32

0 .25 .5 .75 1

Xl X2

Figure 2. Fuzzy sets partition
of xl and x2

1. Sugeno fuzzy system

In this form of a fuzzy system the output is determined by a parameterized

function of inputs, not by fuzzy values. If we consider a multi-input single-output

mapping the Sugeno system [8] can be described as follows •

R 1 • IF x I is F_ and x e is F_ and ... and x, is F1,

THEN yl = p_ + p_ xl + ... + pl x,

R M" IF x_ is F_ and xe is F_ and ... and x, is F_

M
THEN yM = pM + p_/Xl + ... + P ,,X,

where _ are fuzzy sets, Pi are real-valued parameters, yt is the system output
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from rule R1. The output of this fuzzy system is a weighted average :

Z wly z

where the weight w I represents the overall truth value of the premise of rule R _

and is calculated as :

w' = 1-1u/(x)

ln_l(x _) is the degree of membership of the crisp input x i to the fuzzy set F]. Using

the following notation :

a wi/E w

X = [ a 1 ... a M alXl ... otMxl ... alx,.., aMx,,]

p= [ p_ ... pM p_ ... pM ... pl,, ... pM ]t

the output can be rewritten in a vector form :

y =XP

The parameter vector P is unknown, and we need (n+ 1)M input-output pairs in

order to completely determine it. Often there are more than (n+l)M pairs in the

training set and the linear system of equations is overdetermined; thus, P can be

calculated using the pseudo-inverse of X :

p = (XtX).i Xty

which minimizes the mean square error.

The important factors here are the number of rules and the choice of the

membership functions. Usually one starts with a small number of fuzzy partitions

and increases it until the error goal is reached.
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2. Mamdani model

The rule base of the Mamdani system [9, 10] has the following form:

r/:

?.2:

IF x 1 is Fn AND ... AND x,, is FI,, THEN y is G

ALSO

IF x_ is F21 AND ... AND x,, is F2,, THEN y is G_

ALSO

r": IF x2 is Fr_ AND ... AND x,, is F,, THEN y is G r

where xp...,xn are the input variables and y is the output variable. Fij and G i ,

( i=l,r ;j=l,n ) are fuzzy subsets of the universes of discourse of xl,...,x,, and y.

The output is constructed by superimposing the outputs of the individual

rules. The AND operator in the antecedents of the rules is interpreted as a fuzzy

intersection. Each individual implication, or rule, is expressed as a fuzzy relation

R between the antecedent part and the consequent part. In Mamdani model the

relation is interpreted as a fuzzy intersection of the antecedent and consequent

fuzzy sets and for rule r i we have :

R i = (F n [_F_ f)... _fin) f']Vi

The ALSO connective corresponding to aggregation of the rules P, or fuzzy

relations 1_., is accomplished through the union of the individual fuzzy relations :

R = UR i

For a given input fuzzy sets x_=A_, ..., x,,=A,,, the fuzzy output y=G is

obtained by using the max-min inference rule :

G= (A r.. A,) o R

The membership function of the inferred fuzzy set G is :
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G(y) =( A I(xl)A. . .A An(xn) ) A R(x 1. . .x ,y)

I

= V ( A I (xl)A...A A n (xn) ) A Rj (xI . . .xn,y)
j=l

I

= V ( A 1 (x_)A...A A n (x n) ) A (Fj_ (×_)A...AFj_ (%)) A Gj (y)
j;1

r

j=l

The term

_l,j = ( A I (X l) A Fj_ (x_)) A ... A ( A (x) A Yj.(x ))

denotes the degree into which the j-th rule fires, or in other words the degree of

relevance of the j-th rule. With this notation we have:

I

G(y) = V _2 A Gj (y)
J-1

In the case the inputs are crisp values xl", ..., xn*, the input fuzzy sets A 1, ..., An

are considered as fuzzy singletons and laj is given by •

_ j : Yj_ (x; ) A ... A Fj_ (x; )

For crisp inputs and outputs the simplified method of reasoning gives "

_j Y j*
J-1

y-

J-1

where _j is given by the former expression.

2.1. Fuzzy model using least squares method for learning consequents.

The basic structure of this fuzzy model is like that of the Mamdani model.
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The input space is partitioned into equally shaped fuzzy sets and the antecedents

of the rules are formed by taking all the combination of input fuzzy sets. Thus, we

can easily determine the degree of firing of each rule, but the consequents of all

rules are not known. The consequents, or rather the consequent centroids, can be

determined by first observing that the output is calculated as a linear combination

of the consequents [9]:

Y = ]_1" Yl + lu2*Y2 + ... + lu3*Y,,,

where 1_ is the normalized degree of firing of rule i and Yi is the consequent of

rule i. For a set of n input-output pairs we have n such equations which can be

rewritten in a matrix form :

Y=Iu*y

where Y is the vector of outputs,/z is the matrix of the degrees of firing and y is

the vector of consequents. Using the least square method y is calculated from :

y = (,u'*,u)l*lu'*Y

Results

The numerical experiments were performed on the ten-bar-truss shown in

Figure 1. The programs were implemented using MATLAB soi_ware on a SUN 10

Sparc station. For each example the training set consisted of 250 input-output

vector pairs (IOP). The tests were performed on 200 IOP. The inputs represent

cross sectional areas of the elements and the outputs represent the stresses. The

training and test sets were generated with uniform distribution within +/- 10% of

the nominal values of the cross-sectional areas. The errors obtained by applying

each of the methods described in the paper are shown in Figures 3 through 10 .

The results for the linear feedforward neural network ( FFN ) are shown in

Figure 3. The results for backpropagation neural network using the Levenberg-

Marquardt algorithm are shown in Figure 4. Backpropagation using the standard

13



gradient descent technique resulted in the largest errors of all NN as can be seen

in Figure 5.

Figure 6 shows the results for the radial basis functions network (RBF).

The inputs were normalized to the interval [0,1]. The hidden layer, the one using

radial basis functions, consisted of 30 neurons. These errors are smaller than

those of any feedforward neural networks studied.

Fuzzy logic Sugeno type method couldn't be used as the matrix to be

inverted became too large for the soi_ware used ( using only two fuzzy sets

partitions for the inputs would result in 1024 rules). To avoid this problem we

used clustering of the input space, based on clustering of the output space. Then

we applied the Sugeno method. The results are shown in Figure 7.

The Mamdani model was implemented using the center fuzzification

method and was tested with various aggregation operators [11]. The best

performance, shown in Figure 8, was obtained with the classical max-rain

operator. An example of the fuzzy rules obtained using Mamdani method with

clustering is given below. The rules shown refer to a single output y which

represents the stress in element 1. The rules for all other outputs are similar and

thus are not shown here. First, the range of the output is divided into nine

adjacent intervals ( Y_,..-,Y9 ) • The output fuzzy sets are constructed for these

intervals. The inputs are clustered into nine clusters Ci = { x / y(x) e Yi }, i=1,...,9.

If we define by Y_, i=1,..,9 the nine output fuzzy sets then the rules are given

by:

RI: IF x e C, THEN y e Ym,

Rg: IF x E C 9 THEN y e Ym9

The degree of firing of rule Ri is given by the degree of membership of x to the

cluster Ci.

The inference mechanism for The Mamdani model is illustrated in Figure 9,
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where dotted lines indicate the nine fuzzy sets and solid lines the resultant fuzzy

output. The crisp values obtained from deffuzification using the centroid and

maxgrade methods are shown on the x-axis. The results in terms of the errors for

the Mamdani model usin clustering are shown in Figure 10.

The results for the fuzzy model using the least squares method and

clustering ( in the same manner as for Mamdani model ) are depicted in Figure

11. These errors are comparable with those of Mamdani model.

For each method the histogram of the probability density function and

distribution function can be obtained by calling a special function. An example for

element 1 of the ten bar truss for the radial basis functions network is shown in

Figure 12.

Table 1 summarizes the results of this investigation. It shows the average

errors for each method used. In addition, it gives details about the number of

neurons used by each neural network and the number of rules used by the fuzzy

systems. For the original Sugeno fuzzy system the results could not be calculated

although we show the minimum number of rules which would need to be used.

The results of the methods shown in Table 1 are grouped into four major

categories. Two for each, neural networks and fuzzy systems. The first three

results are for the feedforward neural networks. Sugeno method was used in two

variations: with and without clustering and Mamdani fuzzy system was used in

three variations : with and without clustering and using least square method.

Another experiment consisted of applying the reverse engineering method to

determine the cross-sectional areas given the desired or prescribed stresses in the

bar elements. A radial basis functions neural network was used and trained using

250 IOP patterns. This time, though, stress values were presented as inputs of

and the cross-sectional areas were the outputs. The neural network consisted of

two layers of neurons, one hidden layer with 30 neurons and the output layer

with 10 neurons. The main purpose of this experiment was to find the ranges of

the areas given a set of random stress values within the same range as that of the

training set. The results of Table 2 show the original ranges in the test set, and
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the ranges found by using the RBF neural network for the same data set,

respectively.The corresponding errors are shown in Figure 13.

A menu driven interfacewas written such that the user can easilyaccess

the desired method and run itindependently. Examples of the graphical user

interfaceoutputs are shown in Figure 14.

Conclusions

Both neural networks and fuzzy logicmethods proved to be effectivein

simulating the behavior of small modeling problems. The studied case was a ten

bar plain truss.While neural networks are easy to implement and train and give

very good approximations, fuzzy sets need more training time and are not

computationally as effectiveas neural networks with the exception of the Sugeno

method. However, the knowledge imbedded in a fuzzy logicsystem can be

expressed in terms of IF ...THEN ...ruleswhich can be checked and modified by

the domain expert.In case of fuzzy systems further work may involve applying

machine learning methods [12,13]and geneticalgorithms for learning the IF ...

THEN rules and may alsoinvolve the optimizationof structuresusing fuzzy

equations.

References

[1]Poggio, T. and Girosi,F.," Networks forApproximation and Learning ",

Proceedings of the IEEE, vol.78, No. 9, Sept. 1990, pp. 1481-1495.

[2]Wu, J.-K.," Neural Networks and Simulation Methods ",Marcel Dekker :NY,

1994.

[3] Fausset, L., " Fundamentals of Neural Networks ", Prentice Hall : Englewood

Cliffs, 1994.

[4] Bazaraa, M.S., Sherali, H.D., and Shetty, C.M., " Nonlinear Programming

Theory and Algorithms ", 2nd ed., Wiley : N-Y, 1993.

16



[5] Haykin, S., " Neural Networks A Comprehensive Foundation ", Macmillan •

NY, 1994.

[6] Zeng, X.-J. and Singh, M.G., " Approximation Theory of Fuzzy Systems -

MIMO Case ", IEEE Trans. on Fuzzy Systems, vol. 3, No. 2, May 1995, pp. 219-

235.

[7] Driankov, D., Hellendoorn, H. and Reinfrank, M., " An Introduction to Fuzzy

Control ", Springer-Verlag : Berlin, 1993.

[8] Takagi, T. and Sugeno, M., " Fuzzy Identification of Systems and Its

Applications to Modeling and Control ", IEEE Trans. on Systems, Man, and

Cybernetics, vol. SMC-15, No. 1, Jan./Feb. 1985, pp. 116-132

[9] Yager, R.R. and Filev, D.P., " Essentials of Fuzzy Modeling and Control ",

Wiley : N-Y, 1994.

[10] Pedrycz, W., " Fuzzy Control and Fuzzy Systems ", 2nd ed., Wiley • NY, 1995.

[11] Klir, G.J. and Yuan, B., " Fuzzy Sets and Fuzzy Logic. Theory and

Applications ", Prentice Hall : Englewood cliffs, 1995.

[12] Cios, K.J. and Liu, N., "An Algorithm which Learns Multiple Covers via

Integer Linear programming, Part I - The CLILP2 Algorithm", Kybernetes, MCB

University Press, U.K., Vol. 24 (2), pp. 29-50, 1995

[13] Cios, K.J. and Liu, N., "An Algorithm which Learns Multiple Covers via

Integer Linear programming, Part II - Experimental Results and Conclusions",

Kybernetes, MCB University Press, U.K., Vol. 24 (3), pp. 28-40, 1995

17



o.12[ ......... I

0.1

0.08

o_
_50.06
t--
®

0.04

0.02

0
0 20 40 60 80 100 120 140 160

pattern # - test set

180 200

Figure 3. Results of linear feedforward neural network

0,8 l i ! ! i i l = |

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 20 40 60 80 100 120 140 160 180 200

pattern # - test set

Figure 4. Results of NN using backpropagation with L-M algorithm

18



0
0 20 40 60 80 1O0 120 140 160 180 200

Pattern # - test set

Figure 5. Results of NN using backpropagation with gradient descent

0.08

0.07

0.06

0.05

o_

0.04
(D

0.03

0.02

0.01

0
0

Figure 6.

20 40 60 80 1O0 120 140 160
pattern # - test set

Results of radial basis functions network

180 200

19



0.14

0.12

0.08

0.04

Figure 7.

9

8

20 40 60 80 1O0 120 140 160 180 200
pattern # - test set

Results of Sugeno fuzzy system using clustering

i i i g i i i i

20 40 60 80 100 120 140 160 180 200
pattern # - test set

Figure 8. Results of Mamdani model

20



Element 1

I I I I I I I

(.9

08

06

02

.°

0 : ............. :.....................![................."........... _....... e-" ......... -_.... ------x

• .- • .. ..-. --. .
• . *. , . • . • •

• . ° . . .
• . . , . , . •
• . . o , .

• . , . . o

• •

• . o

• . , . . ,

"." '..' 7
;. - .,

............ :. ........ :.. ............ .:-[ ............. -- ............ :-.

: / ".::

• , . . ' o " "°

• . " ". " .

• ° ' . , " ' '

• , o " . ,

•-...../. i/ -.- .
• ": '." ':i"

(o)Nominal=-44.99 (*)Centroid=-44.46 (x)Maxgrade=-44.01

-47

I I I I I I I

-46.5 -46 -45.5 -45 -44.5 -44 -43.5

Support

Figure 9. Inference mechanism for Mamdani model

21



0 20 40 60 80 1O0 120 140 160 180
Pattern #

Figure I0. Results of Mamdani model using clustering
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Results of fuzzy system using LS and clustering
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Figure 12. Probability density and distribution functions
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Method

Linear feedforward network

Gradient descent

Levenberg-Marquardt

Radial basis function

Sugeno with equally shaped

fuzzy inputs

Sugeno using clustering

Mamdani

Mamdani using clustering

Fuzzy system using LS and

clustering

Ten-bar-truss

0.033

( 10 neurons )

1.83

( 10 neurons )

0.1297

( 10 : 10 neurons )

0.027

( 30 : 10 neurons )
i

would need over

1000 rules

0.0286

( 9 rules )

3.5847

( 250 rules)

3.707

( 9 rules )

2.95

( 9 rules )

Table 1. Average percentage error
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Element

1

2

3

4

5

6

7

8

9

I0

Original cross-sectional

areas

minimum mAxlmlzm

4.2847 4.7287

2.0545 2.2675

RBF network results

mlnlmnm

4.2814

2.0505

0.095 0.105 0.0939

0.095 0.105 0.0934

4.1674 4.5952 4.1662

maximum

4.7262

2.2674

0.106

0.1053

4.5909

0.095 0.105 0.0961 0.1027

2.9011 3.2042 2.8978 3.2003

3.0737 3.3936 3.0708 3.3898

0.0952 0.1049 0.0941 0.1069

2.9034 3.2037 2.9002 3.2016

Original cross-sectional area ranges and the

ranges found by the RBF network

Table 2.
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Figure 13. Errors for reverse engineering method
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Figure 14. Graphical user interface
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