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Abstract

Pd/SiC Schottky diodes detect hydrogen and hydrocarbons with high sensitivity. Variation of the diode temperature

from 100*C to 200'C shows that the diode sensitivity to propylene is temperature dependent. Long-term heat treating at

425"C up to 140 hours is carried out to determine the effect of extended heat treating on the diode properties and gas

sensitivity. The heat treating significantly affects the diode's capacitive characteristics, but the diode's current carrying
characteristics are much more stable with a large response to hydrogen. Scanning Electron Microscopy and X-ray

Spectrometly studies of the Pd surface after the heating show cluster formation and background regions with grain structure
observed in both regions. The Pd and Si concentrations vary between grains. Auger Electron Spectroscopy depth profiles

revealed that the heat treating promoted interdiffusion and reaction between the Pd and SiC that broadened the interface

region. This work shows that Pd/SiC Schottky diodes have significant potential as high temperature gas sensors, but
stabilization of the structure is necessary to insure their repeatability in long-term, high temperature applications.

INTRODUCTION

Hydrogen and hydrocarbon detection at elevated temperatm-es over a wide range of concentrations is important for a
ntmaber of aeronautical and commercial applications. NASA Lewis Research Center and Case Western Reserve University

(CWRU) have been developing high temperature hydrogen and hydrocarbon gas sensors using silicon carbide (SIC) as the
semicondtraor. The wide bandgap of SiC allows device operation at high temperatures. Recently, it has been shown that

Schottky diodes composed of palladium (Pd) on SiC can sensitively detect hydrogen and hydrocarbon gases at 400"C (Hunter
et al., 1995). In order for such a sensor to be of use in aeronautical and commercial applications, issues such as the

dependence of sensor response on operating temperature and the effects of long-term high temperature operation must be
addressed.

This paper discusses the electrical response and interracial properties ofPd/6H-SiC Schottky diode gas sensors exposed
to a variety of ambients and temperature conditions. First, the effect of operating temperature on sensor sensitivity to a

hydrocartxm (propylene) is _ These studies suggest a range of possible operating temperatures above 200"C. The
sensor then is heated to a temperattze above this operating range for an extended period to determine the effects of long-term

heat treating. The effects of this heat treatment are examined in two ways: 1) The characterization with time of the diode's

electronic characteristics. 2) The examination of the surface and interracial properties of the diode using Auger Electron

Spectroscopy (AES), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectrometry (EDS). These

studies show that although significant reaction occurs between the Pd and SiC, the diode is still operational as a sensitive

gas sensor.

DEVICE FABRICATION AND TESTING

Diode sensors composed of Pd deposited on 6H-SiC were fabricated using the same procedure as discussed in Hunter

et al., 1995. Approximately 400 angstroms (A) of Pd were magnetron sputter deposited onto as-grown 6H-SiC epilayer

surface and patterned by a lifl-offtechnique into circular Pd Schottky patterns of diameter 200 _m. A backside contact was
formed by sputtering AI onto the bottom of the wafer. The samples were placed in a test chamber and mounted on a heated

sample stage with a probing station. Sample contact was made using tungsten probes. The temperature of the heated sample
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stagewas controlled from 100*C to 425°C. Computer controlled mass flow controllers supply gaseous hydrogen (H_),

helium (I-Ie), nitrogen (N2), hydrocarbon containing mixtures, or air, either individually or as a mixture, to the test chamber.

The electrical properties of the Pd-SiC Sehottky diodes were determined using capacitance and current measurements.
The charaeteriz_on of the diode's capacitance was conducted as follows: The response of the diode capacitance measured

at 0 V with lime (C-t) was used to characterize the time dependent behavior of the system upon exposure to various gases.

The barrier height of the diode was determined using capacitance-voltage (C-V) measurements by finding the intercept on
the voltage axis oftbe plot I/C 2vs V. Corresponding current-time (I-t) and current-voltage (I-V) measurements were also

taken in separate tests. The forward voltage across the diode was held con,ctant and the current was measured as a function
of time for the I4 meastmmae_s. The forward voltage was chosen in order to maximize the diode response to the hydrogen-

bearing gas and to minimize series resistance effects. The barrier height as measured by the current is determined by curve-

titling the exponential region of the I-V measurement and using the results of that fitting in the thermonie emission model

(Sze, 1981).

TEMPERATURE DEPENDENCE OF SENSOR RESPONSE TO PROPYLENE

The ability of SiC electronics to function at high temperatures allows SiC diode or capacitor-based sensors to operate

at temperatures at which hydroc,atbom dissociate (Arbab, 1993). The dissociation of these hydrocarbons on the gate of the
elecWonic device, which would not occur at lower temperatures, allows their detection by the eleclronic device (Baranzahi
et al., 1995; Hunter et al., 1995). However, no studies have been done on the operating temperature ofPd/SiC Schottky

diodes for the detection of hydrocarbons. We have studied the response of a Pd/SiC Sehottky diode to one hydrocarbon,

propylene, at a range of temperatures. Such studies help define the operating temperature of the sensor, and thus its long-

term Stability.

Figure 1 shows the zero bias capacitive response of the sensor to 360 ppm propylene (C3I-I_ at various temperatures.
The sensor temperature is increased from 100*C to 400"C in steps of 100" C and the response of the sensor is observed.

At a given temperature, the sensor is exposed to air for 20 minutes, N2 for 20 minutes, 360 ppm of propylene in N2 for 20
minutes, N2 for 10 minutes, and then 10 minutes of air. There are two points to note in the sensor behavior as shown in

Figure 1. First, the baseline capacitance in air does not change

between 100*C and 200 *C, but decreases to a lower value as Ie.5

the temperature is raised to 300"C and above. This decrease in

capacitance as the sensor is heated above 200"C is consistent ls.s

with the results reported in Hunter et al., 1995. Both results _14.s
suggest the possibility that temperature dependent chemical

13.5
reasons which affectthe el_'_dc properties of the diode may
have an onset at temperatures above 200"C. Second, Figure 1 _ 12.5

<

clearly shows that the magnitude of sensor response to 360 ppm _ 11.5
propylene depends strongly on the operating temperature. The
data can be understood by assuming that the reaction 10.s

mechanism is based on the dissociation of propylene on the 9.5
catalyst surface (Baranzahi et al., 1995; Hunter et al., 1995). A

sensor operating temperature of 100*C is too low for propylene

to dissociate on the Pd surface, so the device does not respond
at all. The three other curves for 200"C, 30(YC, and 400* C

show that elevating the temperature iner_ the sensor's

response to propylene. The presence of propylene can be
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Figure ]. The temperature dependence of the zero

bias capacitance to various gas mixtures.

80

detected at any of these temperatures with 200°C being the minimum operating temperature determined in this study.

EFFECTS OF LONG TERM HEAT TREATING

Electronic Properties

In order to examine the behavior of the sensor in long term operation, the sensor was heat treated at a temperature

(425°C) significantly above the minimum operating temperature of 200"C suggested in the last section. An as-deposited

diode was fu_-'toperated at 100*C to establish the baseline electronic properties (Figure 2). The sensor was exposed to 20



minutesofair,40minutesinHe,40minutesof 1000 ppm H_ in He (He/I-_ mix), 10 minutes of He, and then 10 minutes of
air. C-t meastwements of the sensor's behavior were taken during the gas exposure. C-V measurements were taken in air

and in He before the exposure to the He/FI2mix, and while the diode was in the HePrt2 mix. In separate measurements, I-t
and I-V data was also taken under the same conditions of temperature and gas exposure (Figure 3). After the baseline

condition was established, the diode was heat treated at 425"C in air for periods of at least 13 hours at a time. The diode

temperature was then decreased to 100*C and at least 1 hour elapsed before measurements were taken. The diode was

exposed once after heating to the He/I-I 2mix to assure reproducible behavior before characterization of the diode occurred

(Hunter el al., 1995). The charaeter_tion of the diode was carried out in the same manner used to establish the baseline:
C-t and C-V, or I4 and I-V, properties are measured during the timed exposure to air, He, He/H2 mix, He, and air. This cycle

of heating followed by diode characterization at 100*C mad was repeated several times until the total time of exposure at
425*(3 in air was 140 hours. The heating period was usually near 17 hours but an extended heat period at 425"C of 58 hours

was performed to see the effect of continuous heating on the diode.

The diode's capacitive properties are strongly affected by the heat treating. Figure 2 shows the diode's C-t responses

to the different gas ambients both before and after heat treating at 425 *C for 140 hours. There are two different scales in

this figure cotrestxmding to before and after heating. The C-t response before heating shows no capacitance change in the
He environment with a large change of capacitance (near 3pF) upon exposure to the He/H 2mix. This change of capacitance

corresponds to a change in bamer height of 550 mV as measured by the C-V data. After the He/H: mix exposure, recovery

of the capacitance in He is slow with a much more rapid

recovery in air. After heating, the baseline capacitance in air is
two orders of magnitude less than that before heating. There is
no measurable change in the capacitance upon exposure to He

or the He/l-_ mix. The corresponding C-V curve yields a value

of the barrier height using the thermonic emission model

greater than the 3.0 eV bandgap of SiC. This value for the

barrier height is clearly nonphysical. It is likely that the

capacitance in the after curve is dominated by noise: this

explains the lack of response to the He/l-I2 mix and the

nonphysical barrier heights.

It should be noted that the diode continued to respond in

the capacitive mode with reasonable values for the barrier
height until alter the extended heating period (total heating time
= 125 hours). The capacitance as measured after 125 hours

was near 0.3 pF but recovered to 6.6 pF after exposure to the

He/I-I s mix. Further heating at 425"C until 140 hours left the
capacitance at near 0.2 pF. This capacitance did not recover to

higher values even after several He/H 2 mix exposures.
Therefore, after 140 hours at 425"C in air, the measured diode

capacitance was likely dominated by noise and the diode no

longer responded as a capacitive gas sensor.

In contrast, the diode's current response to hydrogen was

still significant even after heating. In Figure 3, the current at 0.7

V on a logarithmic scale before and after heating is shown.

Before heating, the current shows no significant change in the

oxygen deficient He environment while the after heating the
current increases from the air baseline nearly two orders of

magnitude upon exposure to He. Before heating, the current
changes from the baseline in air (near 10*A) by nearly four

orders of magnitude in response to the He/H: mix. Atter

heating, the CmTent change to same change in environment is
about three orders from the baseline in air (near 10"l° A) and
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Figure 2. Capacitance at zero bias vs time at ]00C

before (W) and after (&) heat treating (140 hours).
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Figure 3. Current at 0.7 V vs time at l O0°C before (l)

and after (&) heat treating (140 hours).

about one order from the level in the He environment. In both cases, the current in the He/H_ mix is significantly larger than

that in air. As with the capacitance, the recovery of the diode's current in air towards baseline is much more rapid than that



inHe. Therefore, after 140 hours at 425*(2 in air, the diode

current still responded sensitively to the He/H 2mix and thus the

diode still operated as a hydrogen sensor.

The corresponding before and after heating I-V curves are

shown in Figure 4. It can be seen that the magnitude and slope of
the I-V curves change significantly with heating. The

corresponding ideality constant in air derived from this curve

increased from near 1.I before healing to near 1.8 after heating.

The sensitivityofthediodedecreaseswithheating:a maximum

differencebetween theairand He/l_ mix curvesison the order

ofl0sbeforeheatingand on theorderofl0 3afterheating.The

barrier heights derived from the I-V curves (Sze, 1981) in air, in

the He/I-h mix, and the difference between these two values (Air-
Mix difference) arc shown as a function of heating time in Figure

5. The barrier heights in air and in the He/t-I 2mix decrease after

the initial heating and then increase again by the end of the heat
treamaents. In eoutrast, the Air-Mix Difference increases initially

but then remains relatively constant throughout the heating

period. As found for the shorter heating periods examined in

Hunter et al., 1995, this data suggests that there are elements of
the sensor behavior that are not changed by heating for the

periods studied. Nonetheless, significant changes in the sensor

behavior occur with heating. In order to determine the physical

reason for these electronic changes, the surface and interface

properties of the sensor were examined.

Surface and Interface Properties

The surface and interface of both an as-desposited (control)

sample and the heat treated (annealed) sample discussed in the

section above were studied by Auger Electron Spectroscopy
(AES). The AES system used for this work is a PHI-590
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Figure 4. Current vs voltage curves at I O0*C before

and after heating in air and in the He/H2 mix.
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scanningAES systemwithasinglepass CMA. An Argon ionbeam with4 KcV beam energywas used forsurfacesputtering

toobtainAES depthprofiles.The currentdensityofthesputteringionbeam was 0.02 IxA/mm2which correspondstoa

sputteringrateon theorderof4 A ofPd/rninutc(ram).Surfacesputteringand acquisitionofAES spectrumwere conducted

periodically.The shape ofSiLVV peakswere compared withtheshapeofSipeaksreportedforsystemscomposed of

variousmonolayersofPd on SiC (Bermudcz, 1983).

The surface properties of the control and annealed sample differed significantly. The surface of the control sample
contained some common surface contamination such as carbon and oxygen but was free of silicon (Si). The major

components of the saa'face of the annealed sample were Pd, silicon oxide (SiO.), and palladium silicides (Pd,Si) with a total
AES intensity ratio of Pd to Si of 35/65. Scanning Electron Microscopy (SEM') of the Pd region shows that before annealing

the Pd surface was quite smooth. After annealing, SEM of the Pd region shows dense, bright, irregular shaped spots

surrounded by a relatively darker background. The typical size of bright and dark regions are 0.1 tun with the area ratio of

bright to dark regions being close to one. Further EDS studies indicated that Pd and Si concentrations vary considerably

due to this grain structure. Some clusters with diameters from 0.3 to 2 lain were observed on top ofthe surface, but EDS

results did not show any compositional difference between cluster and non-cluster regions. The Pd (Si) concentration was

much higher (lower) in brighter grains than that in the darker grains. The SiO x on the annealed surface may possibly be

formed by either Si segregation from the interior of the Pd to the Pd surface or two dimensional diffusion of Si from the SiC

stwface mounding the Pd region. In the surrounding SiC region, Si was detected in both oxides and carbide states. The

mechanism for this SiO_ formation is still under investigation.

The AES depth profile of the control sample is shown in Figure 6A. The region below the surface of the control sample
was predominately Pd with no other constituents until a sputtering time oft - 40 min. The silicide features dominated the

4



Si(LVV)peakat t - 45 min with the peak shape corresponding to that of 3.5 monolayers (ML) of Pd on SiC. In the region
45 min < t < 95 rain, the silicides features decreased gradually with sputtering time. At the time of t - 54 rain, SiC features

became dominant gad the shape of Si peak was very similar to that reported for 0.5 ML Pd on SiC 03ermudez, 1983). After

the sputtering time corresponding to t - 95 min, the silicide features almost completely disappeared.

The AES data for the annealed sample suggests that the heat treating promoted the reaction between the Pd and SiC

forming Pd,eSi. After a very brief sputtering (0.15 rain), the silicide features noted on the surface disappeared and the Si peak

presented only oxide features. With further sputtering, silicide features were present for a significant depth into the sample.
As shown by Figure 6B, the relative intensity of the Si AES peak
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Figure 6. Relative AES intensities ofPd (O), Si (I),
and C (A) as a function of sputtering time for the

control (A) and annealed sample 03).

was near 18% in the upper part of Pd region (0.4 min < t < 30

rain). Both the concentration and the chemical state of Si in this

region were quite uniform. The Si peak shape in this region
corresponded to the peak shape reported for a system of 3.5 ML
Pd on SiC. The differential spectra of Si peaks at 73, 78.5, 84.5,

89, 93.5 eV indicate that the reaction products in this region are

predomina_ly Pd_Si. The relative intensity of the Pd AES peak
decreases and the Si intensity increases in the region 45 rain <

t < 95 mitt At t- 40 rain, the shape of the Si peak corresponded
to that of 3.5 ML Pd on SiC. With inereasing sputtering time, the

Si peak at 89 eV becam_ stronger. At t - 75.5 min, the shape of

Si peak corresponded to that of 1.3 ML Pd on SiC while around
t ~ 81 rain the shape of Si peak corresponded to that of 0.5 ML
Pd on SiC. After t - 95 rain, the only Si peak remaining

corresponded to that of Si in SiC at 89 eV.

The interface region, which is defined as the transition

region between the near surface region and the substrate, was
broadened by the annealing. The majority of the Pd ,Si was

distributed in the region of 45 rain < t < 95 min for both

samples. However, the distribution and concentration of Pd xSi
in the annealed and control samples were very different. This is

reflected in the lower slope of the change of the relative intensity
for both Pd and Si in the region 45 rain < t < 95 min in the

annealed sample, as well as the presence of Si throughout the

sample (Figure 6B). Further, the concentration of Pd,Si in the

interface region of the annealed sample was higher than that of

the control sample (not shown). Thus the interface region became broader because of the interdiffusion and reaction between

Pd and SiC promoted by the heating. The dissociated carbon was always depleted where Pd,Si formed with relatively rich

Pd (45 min < t < 50 min for Figure 6A and 40 rain < t < 60 rain for Figure 6B). In the substrate region, the Si and C

intensities changed slowly with sputtering time never matching the ratio of 1:1 as expected for SiC. This was likely due to

preferential sputtering effects.

DISCUSSION AND SUMMARY

Long term operation of Pd/SiC diodes as gas sensors depends on the stability of the device structure at operating

temperature. An operating temperature of 200"C has been shown in this work to be sutficient for detection of propylene but

higher temperatures may be necessary for other hydrocarbons. Heating the sensor at temperatures significantly above 200°C

for extended periods showed definite changes in the sensor properties. The sensor is still operational in the current mode

after this heat treating although with decreased sensitivity. The capacitance of the sensor decreased significantly and was

insensitive to changes in the hydrogen concentration.

Possible reasons for these changes may be found by examining the surface and mterfacial properties of the diode. After

heating, SiOx and P_ Si formed on the surface that may have interfered with the probe contact for the capacitance
measurements conducted at zero bias. The current may have tunneled through these barriers with forward bias and thus still

been measurable. The changes with heating observed in the current response correspond to changes in the diode's surface



andinterface.TheformationofSiO, and Pd_Si on the surface may have interfered with the surface dissociation of hydrogen.

Before heating, reactions at the Pd/SiC interface resulted in an inteffaeial region in which major reaction product is Pd_Si.

This interface cc_ributed to the capacitive and current carrying characteristics initially observed for the diode. The interface
broadened after heating with Pd, Si present throughout the interface regiorL Since Pd_Si behaves like a conductor CRubloff,

1982), the electronic properties of Pd/SiC Schottky diodes are determined, especially after heat treating, largely by (Pd,Si
+ Pd)/SiC interface rather than an ideal metal Pd/SiC interface. With this picam: of the interface, it can be suggested that

the macro-electronic properties of the device are determined by the superposition of all the (silicides + metal mixture)lSiC

contacts constituting the interface. The heat treating at high temperature promoted the interdiffusion and chemical reaction
between Pd and SiC, and thus changed the spatial distributions (the interface region was broadened) and chemical

environment of these effective micro-contacts. It has been reported that the dissociated carbon found near the interface

region is basically graphitic (Bermudez, 1983), but the effects of the dissociated carbon on the macao-electronic properties
of the device are still not well understood.

It is suggested fi-om these results that the heat treating at high temperature accelerated the interdiffusion and reaction

process, and thus changed the spatial distributions and chemical environment of these effective mierocontaets. The change

in the surface may have decreased etiieieney of the hydrogen dissociation. These surface and interfacial changes are
significantly responsible for the changes m the sensor response. Nonetheless, it is extremely hopeful that even after these

significant changes in diode's structure, the diode is a sensitive hydrogen sensor.

FUTURE PLANS

The futme development of the Pd-based sensors using SiC will concentrate on stabilizing the sensor structure. Continued
heat treating for even longer periods than discussed in this paper will be attempted to determine if changes in the sensor

structure are minimized after a certain heating time. Another area of potential research is to place a thin diffusion barrier

layer between the metal and the SiC to limit the interdiffusion.

Acknowledtqnents

The authors would l_e to acknowledge the eontributiom of Dr. W. D. Williams, Dr. Jib-Fen Lei, Dr. Herbert Will, Dr. Dave
Laddn, and Dr. Daniel L. P. Ng of NASA Lewis and the technical assistance ofD. Androjna and C. Salupo of Cortez/NASA

Lewis. L. Chert is a NRC Fellow. This work was performed at NASA Lewis and CWRU with NASA funding.

References

Arbab, A., A. Spetz, Q-u Wahab, M. Willander, and I. Lundstrom (1993), "Chemical Sensors for High Temperatures Based
On Silicon Carbide", Sensors and Materials 4,4 173-185.

Baranzahi, A., A. L. Spetz, R. Johansson, G. Hamrefors and I. Lundstrom (1995) "Influence of the Interaction

Between Molecules on the Response of a Metal-Oxide-Silicon Carbide, MOSiC, Sensor" The 8th
International Conference on Solid-state Sensors and Actuators, and Eurosensors IX, held in Stockholm, Sweden,

June 25-29. 1995.

Bermudez, V. M. (1983) "Auger and Electron Energy-Loss Study of the Pd/SiC Interface and Its Dependence on

Oxidation" Appl. Surface Sci. 17(1983) 12-22.

Hunter, G. W., P. G. Neudeck, L.-Y. Chen, D. Knight, C. C. Liu and Q. H. Wu (1995) "Silicon Carbide-Based

Hydrogen and Hydrocarbon Gas Detection", AIAA Paper 95-2647.

Rubloff, G. W. (1982), "Microscopic Properties and Behavior of Silicide Interfaces", in Surface and Interface:

Physics and Electronics, Edited by R.S. Bauer, North-Holland Publishing Co., Amsterdam, pp. 268-314.

Sze, S. M. (1981) "Physics of Semiconductor Devices", 2nd Edition ed. (New York: Johrl Wiley & Sons).





Form Approved
REPORT DOCUMENTATION PAGE OMBNo.070_01_

Public reposing 10urclenfor this cabolion of InformmionIs estlmaed to avorage 1 hour per respome, Including the time for n_iewtng insmJcttons,uanddng exlstrng_ soutoes,
¢aZhedngand m_lnudnlngthe data needed, and mmpi_,_g _ reviewingthe .¢_lec_ of in_mmion. Send _o_'r_enm regardingthis burckmectrm.e or any omor aspect of _his
cof_m:Ck:mof Infomlalko_.includingsuggestionsfor reduc_tg this burden, to Wash,ngton_uaners Seh.k:_, Direnlomle Ior InformationOperllons and Reports. 1215 Jefferson
Davis Highway, _ 1204, Arl_on. VA 22202-4302. and to the Office of Mm_;ecnent aria Bu_ P,q)en_ork Reduc0on Pro_ (0704-01U), Wash_n, DC 2O5O3.

1. AGENCY USE ONLY (Leave blank) 2. REPORT'DATE 3. REPORT TYPE AND DATES COVERED

June 1996 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Electronic and Interracial Properties of Pd/6H-SiC Schottky Diode Gas Sensors

6. AUTHOR(S)

Liang-Yu Chela, Gary W. Hunter, Philip G. Neudeck, Gaurav Bansal, Jeremy B.

Petit, Dak Knight, Chung-Chiun Liu, and Qinghai Wu

7. PERFORMINGORGANIZATIONNAME(S)AND ADDRESS{ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORINGAGENCYNAME(S)AND ADDRESS(ES)

National Aeronautics and Space Adminiswation

Washington, D.C. 20546-0001

WU-242--20--06

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-10316

10. SPONSORiNG/MONITORING
AGENCY REPORT NUMBER

NASA TM- 107255

11. SUPPLEMENTARY NOTES

Prepared for the Third International High Temperature Electronics Conference sponsored by Sandia National Laborato-

ries, Albuquerque, New Mexico, June 9-14, 1996. Liang-Yu Chen, National Research Council-NASA Research Associate
at Lewis Research Center;, Gary W. Hunter, advisor, NRC-NASA associate program; Philip G. Neudeck, and Gamav

Bansal, NASA Lewis Research Center, Jeremy B. Petit, NYMA Inc., 2001 Aerospace Parkway, Brook Park, Ohio 44142

(work funded by NASA Conwact NAS3-27186); Dak Knight, Cortez 1II Service Co,Ix)ration, 21000 Broo_k Road,

Cleveland, Ohio 44135 (work funded by NASA Contract NAS3-24816); Chung-Chiun Liu and Qinghai Wu, Case
Western Reserve University, Cleveland, Ohio 44 106. Responsible person, Liang-Yu Chen, organization code 2510, (216)

433-6459.
12a. DISTI:UBUTIOWAVAILABlUTY STATEMENT

Unclassified - Unlimited

Subject Category 35

This publication is available from the NASA Center for AezoSpace Information, (301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Max/mum 200 words)

Pd/SiC Schottky diodes detect hydrogen and hydrocarbons with high sensitivity. Variation of the diode temperature fix)m
100°C to 200°C shows that the diode sensitivity to propylene is temperature dependent. Long-term heat treating at 425°C

up to 140 hours is carried out to determine the effect of extended heat treating on the diode properties and gas sensitivity.
The heat treating significantly affects the diode's capacitive characteristics, but the diode's current carrying characteristics

are much more stable with a large response to hydrogen. Scanning Electron Microscopy and X-ray Spectrometry studies

of the Pd surface after the heating show cluster formation and background regions with grain slructure observed in both

regions. The Pd and Si concentrations vary between grains. Auger Electron Spectroscopy depth profiles revealed that the

heat treating promoted interdittusion and reaction between the Pd and SiC that broadened the interface region. This work

shows that Pd/SiC Sehottky diodes have significant potential as high temperature gas sensors, but stabilization of the

structure is necessary to insure their repeatability in long-term, high temperature applications.

14. SUBJECTTERMS
Hydrogen; Hydrocarbons; High temperature; Silicon carbide

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

08
16. PRICE CODE

A02
20. UMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescnl)ed by ANSI Std. Z39-18
298-102





- • 0

-. -o_53.

p,q, I_

o CO
z wl,

'11

L-

-l


